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From Linear Basis Function Models to Gaussian Processes

We saw previously that a linear basis function model with a Gaussian prior for
the coefficients defines a Gaussian prior distribution for any set of observed or

unobserved responses.

If we fix all means to zero, this Gaussian prior distribution is determined by the
covariances between responses, which we saw could sometimes be computed even

when the number of basis functions is infinite.
But why bother?

We can just start with a function that defines the covariances between responses.
As long this function always produces positive-definite covariance matrices, we

can use it to infer unobserved responses from observed responses.

| Actually, we might bother with the original basis functions approach if that was
the simplest way of expressing our prior beliefs, but often the covariances

themselves have more intuitive meaning. |



Defining a Gaussian Process Model

We’ll model the response y; associated with covariate vector z; as being equal to

some function, f, of x; plus Gaussian noise: y; = f(z;) + e;, with e; ~ N(0,0?).

We can define the “noise-free” covariances in terms of a function K (z,x'), as:

Cov(f(zi), f(xi)) = K(zi,zy)

I'll always assume that the prior means of all the y; are zero, so this is enough to
specify a multivariate Gaussian distribution for the value of the function at any

set of x;’s.

Since this gives us a prior for f(x) at an arbitrarily large set of z’s, it effectively

gives us a prior for the function f itself.

The covariances for actual observations will be

Cov(yi,ysr) = 025i,7;/ + K(zi, zy)



The Covariance Function

We can choose the noise-free covariance function, K (z,z’), to be anything we
want, provided that it produces positive definite (or at least positive

semi-definite) covariance matrices for the y;’s with any allowed set of z;’s.

It’s not easy to determine whether some arbitrary K (x,z’) will produce positive
definite covariance matrices. But there are some well-known classes of valid

covariance functions.

Furthermore, the sum of two valid covariance functions, K and K>, is also a
valid covariance function. It can be seen as the covariance function for the sum
of two functions, one drawn from the Gaussian process with covariance K and

the other drawn independently from the Gaussian process with covariance K.

The product of two covariance functions is also a valid covariance function

(though this isn’t so obvious).



Constant and Linear Covariance Functions

The constant covariance function:
K (x, az’) = 0(2)

can be derived from a model in which the function is an unknown constant:
f(z) = p, with p ~ N(0, 07).
The linear covariance function:

K(z,2) = otxa

comes from a simple linear regression model, f(z) = Bz with 3 ~ N(0,0%).

If we have two covariates, we can add linear covariances based on each, plus a

constant covariance, to get
/ 2 2 / 2 /
K(z,z') = o5 + ojx12] + 05225

(Note that subscrips on = here select covariates, not cases.)



Stationary Covariance Functions

A stationary covariance function can be written as K(z,2') = K(z—2z'). It is

translationally invariant, since only the difference x — 2’ matters.

Typically, the covariance goes down with increasing distance of z and z’. One

class of valid covariance functions of this form is

K(z,2') = ~*exp(—p*||z — 2'||")

where ||z|| is the Euclidean norm. This is valid for any r € (0, 2]. It’s clearly

rotationally symmetric.

One can compare the above to the following:
K(z,z") = exp( 22|x] . )

They’re the same when p = 1 or r = 2, but they otherwise are different.

We can see that the second form is valid since it’s a product of covariance

functions of the first form.



Functions From Some Gaussian Process Priors

1 + a2’ exp (—(z—1z')?)
+ 0.1% exp (—3%(z—2")?) + 0.1% exp (5% (z—2')?)



Predictions with Gaussian Process Models

If we know the covariance function, and the noise variance, predictions for test
cases with a Gaussian process model can be done with straightforward matrix

operations.

As we saw before, if y is the vector of responses in the n training cases, and v, is
the response for a test case, the conditional distribution of y, given y will be

Gaussian, with mean and variance given by
Es|yt,...,yn) = ETC7 Yy,  Var(ye|y1,...,yn) = v — KTC 1k

Here C' is the n X n covariance matrix of the responses, in the training set, k is
the vector of covariances of the response for the test case with the responses for
training cases, and v is the variance of the test response (covariance of y, with

itself).

If K(z,2") takes O(p) time to compute, then C~! will take O(pn? 4+ n3) time to
compute, after which a prediction for each test case takes O(pn) time for just the

mean, plus O(n?) time if the variance is also required.



When the Covariance Function Isn’t Known

In practice, the covariance function usually has some unknown parameters
— such as the scale parameters v and p in the exponential covariance function.

The noise variance is also typically not known.

The covariance matrix of responses, C, needed for prediction, will depend on

these unknown parameters.

One could find the maximum likeihood estimates for the unknown parameters,

and then use these single values for prediction.

The full Bayesian approach is to average predictions over the posterior

distribution for the unknown parameters, probably using MCMC.



