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Models with Multiple Latent Variables

We previously looked at mixture models, in which the distribution of the

observable variables was determined by a single discrete latent class variable.

But often a model with several latent variables makes more sense.

Example: Symptoms of a patient are determined by which diseases they have.

This can be modeled easily as a mixture only if we unrealistically assume that

patients can have only one disease at a time.

If we have 100 possible diseases, and a patient can have up to 10 diseases, we’d

need “100 choose 10” ≈ 1013 mixture components to model the possible

combinations of diseases.



Models with Binary Latent Features

For simplicity, I’ll look only at models with binary (0/1) latent features.

Denote the observed data for item i by a vector yi of dimension p, with yij being

the value of the j’th variable.

Denote the latent features for item i by the binary vector zi of dimension K,

with zik being the value of the k’th feature.

The model will define some distribution for the latent features in an item, and

some distribution for the observed variables given the latent features. We’ll

assume that items are independent, given the model parameters.

For example, if the observed data is real, we might have

yij | zi, ωj , σj ∼ N(zT

i ωj , σ2

j )

where σ2

j and the vector ωj are model parameters. For binary data, we might

have

yij | zi, ωj ∼ Bernoulli (1 / (1 + exp(−zT

i ωj)))

In both cases, we might assume that the features of an item are independent

given zi.



A Bayesian Model with a Finite Number of Binary Features

If there are K binary features associated with each item, we could model them

as independent, with πk being the probability that feature k is 1.

Using the conjugate Beta prior for the πk, and a general form for the distribution

of yi given zi, we have the following model:

πk ∼ Beta(α/K, β)

zik | πk ∼ Bernoulli (πk)

φk ∼ . . .

θ ∼ . . .

yi | zi, φ, θ ∼ F (zi, φ, θ)

where F (zi, φ, θ) is some distribution that depends on the parameters, φk,

associated with features for which zik is 1, as well as on common parameters, θ.



MCMC for the Model with a Finite Number of Features

Due to conjugacy, we can integrate away the πk parameters. We might sometimes

be able to integrate away θ and φ too, but I’ll assume here that we can’t.

We can repeatedly perform the following MCMC updates:

1) For i = 1, . . . , n and k = 1, . . . , K, do a Gibbs Sampling update for zik. The

conditional probabilities for zik needed for sampling are given by

P (zik | z−ik, zi, yi, θ, φ) ∝



















n−ik + α/K

n − 1 + β + α/K
F (yi; zi, φ, θ) if zik = 1

n − 1 − n−ik + β

n − 1 + β + α/K
F (yi; zi, φ, θ) if zik = 0

where n−ik =
∑

i′ 6=i

zi′k. (Note that zik is part of the zi argument of F above.)

2) For k = 1, . . . , K, update φk by Gibbs Sampling if possible, or otherwise by a

Metropolis or slice sampling update.

3) Update θ by Gibbs Sampling if possible, or otherwise by a Metropolis or

slice sampling update.

Here, F (yi; zi, φ, θ) is the density for yi according to the distribution F (zi, φ, θ).



Letting the Number of Features go to Infinity

What happens if we let K → ∞ with this model?

First, note that the expected number of zik that are 1 in any item, i, is

E
[

K
∑

k=1

zik

]

=
K

∑

k=1

E[zik] =
K

∑

k=1

α/K

β + α/K
=

α

β + α/K

which goes to α/β as K → ∞.

So we don’t end up with an infinite number of features with value 1 for a single

item. Also, for a finite training set, only a finite number of features will have the

value 1 in any training item.

So it looks like the infinite model might be sensible.



The Indian Buffet Process

To get more insight into the infinite model, consider the prior distribution for zn

given z1, . . . , zn−1.

Let nk be
n−1
∑

i=1

zik, and let A be the set of k for which nk > 0.

Given z1, . . . , zn−1, the probability that znk is 1 is
nk + α/K

n − 1 + β + α/K
.

So when K → ∞, for the finite number of k in A, the probability that znk is 1 is

nk / (n − 1 + β).

For any of the infinite number of k not in A, the probability that znk = 1 is zero,

but the total number of such k for which znk = 1 will have a Poisson distribution

with mean α / (n − 1 + β).

This process has been pictured as an “Indian Buffet”, in which the n’th dinner

samples each dish that a previous dinner sampled with probability nk / (n − 1 + β),

and also samples Poisson (α / (n − 1 + β)) new dishes. (This process is usually

presented with β fixed at 1, apparently due to the lure of a spurious simplicity.)



MCMC for the Infinite Feature Model

As K → ∞, the MCMC updates can be rephrased as follows:

1) For i = 1, . . . , n,

a) Let A be the set of k for which n−ik > 0. For all k in A, in random order,

do a Gibbs Sampling update for zik, using these conditional probabilities:

P (zik | z−ik, zi, yi, θ, φ) ∝



















n−ik

n − 1 + β
F (yi; zi, φ, θ) if zik = 1

n − 1 − n−ik + β

n − 1 + β
F (yi; zi, φ, θ) if zik = 0

b) Let B be the set of k for which n−ik = 0 but zik = 1. Proposal to replace

the set B with a new set of size Poisson (α / (n − 1 + β)), with new values

of φk for k in the new set drawn from their prior. The prior cancels in the

Metropolis-Hastings acceptance probability, leaving only the likelihoods.

2) For all k for which zik = 1 for some i, in random order, update φk by Gibbs

Sampling if possible, or otherwise by a Metropolis or slice sampling update.

3) Update θ by Gibbs Sampling if possible, or otherwise by a Metropolis or

slice sampling update.


