
The Reinforcement Learning Problem

The supervised and unsupervised learning methods we’ve looked at are both very

specialized compared to real-life learning by humans.

• We seldom learn based on a fixed “training set”, but rather based on a

continuing stream of information.

• We usually act on our knowledge so far during the course of learning, not just

at the end.

• We usually don’t take single actions, but rather sequences of actions.

• The effects of our actions depend on the state of the world.

• We obtain a “reward” that depends in a complex way on the state of the

world and on our actions.
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Formalizing the Reinforcement Learning Problem

We envision the world going through a seqence of states, s0, s1, s2, . . ., at integer

times. I’ll mostly assume that there are a finite number of possible state. (Of

course, real time is continuous, and the real state of the world would be too

complex to ever model.)

At every time, we take an action from some set (which I’ll usually assume is

finite). There might be a “do nothing” action. The sequence of actions taken is

a0, a1, a2, . . ..

As a consequence of the state, st, and action, at, we receive some reward, rt+1,

at the next time step.

Our aim is to maximize the total reward we receive over time. Sometimes a

future reward is discounted by γk−1, where k is the number of time-steps in the

future when it is received. This is like interest payments — money arriving in the

future is worth less than money arriving now.
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Introducing Probabilities

The world may not operate deterministically; we may not as well. Even if the

world is really deterministic, an imprecise model of it will need to be probabilistic.

We assume the Markov property — that the future depends on the past only

through the present state (really a criterion for what the state needs to be.)

We can then describe how the world works by a transition/reward distribution,

given by the following probabilities (assumed the same for all t):

P (st+1 = s′, rt+1 = r | st = s, at = a)

We can describe our own policy for taking actions by the probabilities (again,

assumed the same for all t):

P (at = a | st = s)

Note that the policy is something we decide on, whereas the way the world works

is beyond our control. Note also that in this formalism we’re limited to deciding

only on the basis of the current state, not previous states or rewards. (When we

learn a policy, however, our actions will indirectly depend on past states.)
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Exploration Versus Exploitation

If we knew exactly how the world worked, there would be no need to randomize

our actions — we could just take the optimal action in each state. Randomizing

would at best equal this.

But if we don’t have full knowledge of the world, always taking what appears to

be the best action might mean we never experience states and/or actions that

could produce higher rewards. There’s a tradeoff between immediate reward

(exploitation) and gaining knowledge that might enable higher future reward

(exploration).

In a full Bayesian approach to this problem, we would still find that at any point

there’s an optimal action, accounting for the value of gaining knowlege, but

computing it might be infeasible. A practical approach is to randomize our

actions, somtimes doing apparently sub-optimal things so that we learn more.
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The Expected Reward from Following a Policy

If we fix some policy, π, which defines P (at = a | st = s), we can define the value

of a state under that policy, V π(s), as the expected discounted reward if we follow

that policy starting from state s0 at time 0:

V π(s0) = E
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Since we’ve assumed probabilities are the same for all t, this tells us the value of a

state at any other time too.

This value function will satisfy the following consistency equation:

V π(s) =
∑

a

P π(at = a | st = s)
∑

s′

∑

r

P (st+1 = s′, rt+1 = r | st = s, at = a) (r + γV π(s′))

We can also look at the expected value of a state if we perform a certain action,

a, and then follow policy π, which is called Qπ(s, a).
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