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Abstract. We propose a split-merge Markov chain algorithm to address the problem of ineffi-
cient sampling for conjugate Dirichlet process mixture models. Traditional Markov chain Monte
Carlo methods for Bayesian mixture models, such as Gibbs sampling, can become trapped in iso-
lated modes corresponding to an inappropriate clustering of data points. This article describes a
Metropolis-Hastings procedure that can escape such local modes by splitting or merging mixture
components. Our Metropolis-Hastings algorithm employs a new technique in which an appropriate
proposal for splitting or merging components is obtained by using a restricted Gibbs sampling scan.
We demonstrate empirically that our method outperforms the Gibbs sampler in situations where
two or more components are similar in structure.
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1 Introduction

Mixture models are often applied to density estimation, latent class analysis, and classification
problems, as discussed, for example, by Everitt and Hand (1981), McLachlan and Basford (1988),
and Titterington et al (1985). The Bayesian approach to mixture models has recently generated
interest due to advances in statistical computation, in particular Markov chain Monte Carlo (see
Tierney 1994 and Gilks et al 1996). In this article, we consider Bayesian mixture models in which
a Dirichlet process prior on the mixing distribution is used to handle a countably infinite number
of mixture components. Some earlier references on computational techniques for Dirichlet process
mixture models include Escobar (1994), Escobar and West (1995), MacEachern (1994), Bush and
MacEachern (1996), Neal (1992), Richardson and Green (1997), and Neal (2000).

Gibbs sampling is a common Markov chain Monte Carlo scheme for sampling the posterior distri-
bution of the Dirichlet process mixture model. When conjugate priors are used, the Gibbs sampling
procedure is easily constructed. We fully exploit the conjugacy in the model by analytically inte-
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grating away the mixing proportions for the components and the parameters for each component.
As a result, the Gibbs sampling procedure only updates the latent indicator variables associating
mixture components with data observations. This particular Gibbs sampling method was first dis-
cussed by Neal (1992) for models of categorical data and MacEachern (1994) for normal mixture
models.

Although the Gibbs sampling approach is straightforward and easily implemented, it can be slow
to converge and mix poorly. When two or more mixture components have similar parameters, the
Gibbs sampling method may become trapped in a local mode that corresponds to an incorrect
clustering of data points. Celeux et al (2000) attribute this mixing problem to the incremental
nature of the Gibbs sampler, which is unable to simultaneously move a group of observations to a
new mixture component. Incremental updates are unlikely to move a single observation to a new
mixture component because such an intermediate state has low probability. A sampling scheme
which allows a group of observations to be updated simultaneously may remedy this problem, since
neighbouring observations would support the formation of a new component if appropriate.

Split-merge and birth-death updates have previously been proposed by Phillips and Smith (1996)
and Green and Richardson (1999). Phillips and Smith (1996) consider the birth and death of mix-
ture components using a jump-diffusion sampling algorithm. In the mixture model context, they
wish to estimate the number of components and approach this as a model comparison problem for
models of varying dimensions. Their algorithm generates a Markov chain by a local “jump” step in
which discrete transitions are made between mixture models differing by one component and a “dif-
fusion” step in which model parameters are updated between the jumps. In their one-dimensional
example, the parameters of a possible new component are drawn from the prior. When proposing
to create or delete a component, the weights of adjacent components are modified appropriately.
This method does not generalize easily to higher dimensional problems.

Green and Richardson (1999) introduce a complex split-merge scheme in the reversible jump
framework (Green 1995). Changes to the parameter space are proposed by increasing or decreasing
the number of mixture components by one in a single iteration. The split-merge proposals are
based on conserving specific moment conditions and are evaluated by a Metropolis acceptance
probability. Their method requires the inclusion of tuning parameters so that asymmetrical splits
may be proposed and to adjust for unequal sample sizes when merging. Depending on the type
of statistical mixture model, there are numerous ways to propose an appropriate split proposal.
Green and Richardson provide general guidelines in constructing split proposals that satisfy various
moment conditions. It is not clear whether adequate split proposals are simple to construct or
compute in high-dimensional multivariate mixture problems using their technique.

This article introduces a new Metropolis-Hastings method that avoids the problems associated
with the Gibbs sampling procedure and is suitable for high-dimensional data. Typically, Metropolis-
Hastings updates involve simple parametric distributions as the proposal distribution. To split
mixture components, our method employs a more complex proposal distribution obtained by using
a restricted Gibbs sampling scan for the latent class variables. This method is able to quickly
traverse the state space and frequently visit high-probability modes because it splits or merges
a group of observations in each update, thereby bypassing the incremental updates of the Gibbs



sampler. Furthermore, although the proposal distribution used is complex, it does not need to
be specially tailored to each model, since the same scheme can be applied to any model with a
conjugate prior.

In Section 2, notation and terminology for the Dirichlet process mixture model and a Gibbs
sampling algorithm suitable for conjugate priors are introduced. Section 3 presents our split-merge
Metropolis-Hastings procedure and its variants. In Section 4, we empirically compare our split-
merge method to the Gibbs sampler and demonstrate its improved performance for a categorical
data problem. We conclude, in Section 5, by discussing possible extensions of the split-merge
algorithm and the general applicability of our new Metropolis-Hastings technique.

2 A Gibbs sampling procedure for the Dirichlet process mixture
model

In this section, we present the Dirichlet process mixture model (for early references, see Ferguson
1973 and Antoniak 1974) and describe a Gibbs sampling algorithm to sample from the posterior
of this model. This procedure completely utilizes the conjugacy in the model to integrate away
model parameters and mixing proportions, eliminating them from the algorithm. In Section 4, this
version of the Gibbs sampler is compared to the new split-merge Metropolis-Hastings algorithm.

2.1 The Dirichlet process mixture model

We consider a hierarchical mixture model in which the observations, vyi,...,y,, are modelled as
a mixture of distributions having the form F(#). There is no restriction on the dimensionality
of the y;, and the data may be categorical or quantitative. For each observation y;, the model
parameters, 6; , are considered to be independent draws from some mixing distribution, G. Rather
than requiring G to take some parametric form, a Dirichlet process prior, a distribution over the
space of distribution functions, is placed on G. This yields a mixture model of the following form:

yi | ;i ~ F(60;)
;|G ~ G (1)
G ~ DP(G(),O[)

where Gy and « are the two Dirichlet process parameters. (G defines a baseline distribution
for the Dirichlet process prior, while « is a total mass parameter that takes values greater than
zero. Equation (1) represents the most basic Dirichlet process mixture model. Further stages
may be added to this hierarchy by placing priors on « and the parameters of Gy (for example,
see MacEachern 1998). The usual conditional independence assumptions for a hierarchical model
apply, so that the only dependencies are those that are explicitly shown.

This model may be regarded as a countably infinite mixture model (Ferguson 1983), a view
that is adopted in the remainder of this article. When G is integrated over its prior distribution in



equation (1), we see that the 8; follow a generalized Polya urn scheme (for details, refer to Blackwell
and MacQueen 1973 and Ferguson 1973). The prior distribution for the 8; may be represented by
the following conditional distributions:

01 ~ Go
1 = o (2)

011,001~ z‘—1+aj§15(ej) e 00

where 6(6;) is the distribution which is a point mass at ;. The model of equation (1) has been
simplified by integrating away the random distribution, G. We can represent the fact that (2)
results in some of the 6; being identical by setting 6; = ¢.,, where c; represents the “latent class”
associated with observation i. The Polya urn scheme for sampling the 6; is equivalent to the
following scheme for sampling the latent variables, ¢;, and associated ¢.:

T e
P(c; = c; for some j<i | ci,...,¢i-1) = i_;ﬁ
3)
o o
P(c; #cjforall j<i|cy,...,ci1) = a

where n; . is the number of ¢, for £ < 4 that are equal to c. The labelling of the indicator c; is
irrelevant in the above probabilities, since counts of the ¢; that are equal to each other are all that
matter. The ¢. are drawn independently from the initial distribution Gy. The probabilities shown
in (3) define the Dirichlet process model and are equivalent to the mixture model in equation (1).
This notation will be employed in subsequent sections.

2.2 Gibbs sampling for the conjugate Dirichlet process mixture model

For this model, if G is a conjugate prior for F, it is straightforward to sample from the posterior
distribution using Gibbs sampling. There have been several Gibbs sampling approaches proposed in
the Dirichlet process mixture model literature, but we consider the procedure in which conjugacy is
fully exploited, which was first introduced by Neal (1992) and MacEachern (1994). This procedure
integrates away the model parameters, ¢.,. Eliminating ¢, simplifies the algorithm considerably,
so that the state of the Markov chain for the Gibbs sampler now consists only of the indicators c;.

The Markov chain is initialized by setting the ¢; to some initial state, for example, all the c; set to
the same component or all to different components. The ¢; are then updated via Gibbs sampling by
repeatedly drawing a new value for each ¢; from its conditional distribution, which is proportional
to the product of its conditional prior and likelihood. Because the observations are exchangeable,
the conditional prior is derived from equation (3) by considering observation i to be the last of the
n observations. This yields the following conditional probabilities:

n—i,c]'

P(c; = cj for some j#i | c—i, yi) = bm /F(yz',qs) dH_;;(¢)

Plei# ¢ forall j#i | e i) = b—5— [Fly:.$)dGo(9)



where c_; represents the c; for j #14, n_;. is the number of ¢; for j #4 that are equal to ¢, n is
the number of observations, H_; . is the posterior distribution of ¢ based on the prior Gy and all
data observations y; for which j#i and ¢; = ¢, F(y;, ¢) is the likelihood, and b is the appropriate
normalizing constant so that the probabilities sum to one. When Gy is a conjugate prior for F', the
integrals [F(y;, #) dGo(¢) and [F(y;,¢) dH_; (¢$) may be analytically computed.

MacEachern (1994) demonstrated the application of this Gibbs sampling algorithm for a conju-
gate normal mixture model with fixed variance. In this case, F' is the normal distribution N (6;, o%),
and Gy is the normal distribution N (u,72) which is conjugate to F. Similarly, Neal (1992) illus-
trated that this algorithm could be applied to categorical data. In his example, the data observa-
tions are dichotomous, so F' is a product of independent Bernoulli distributions, and G| is a product
of independent Beta prior distributions. In Section 4, we consider a similar categorical data example
to establish that the algorithm we present below is an improvement over Gibbs sampling.

3 A split-merge Metropolis-Hastings algorithm for the conjugate
Dirichlet process mixture model

When two or more mixture components have similar parameters, Gibbs sampling can be inefficient.
The Markov chain can become trapped in a local mode, in which two distinct mixture components
are merged and assigned parameters which are a compromise between the two separate components.
Because the Gibbs sampler incrementally updates each observation, the Markov chain must pass
through a low-probability intermediate state in order to split such a component. This leads to
slow convergence to the true posterior distribution. Here, we introduce a nonincremental Markov
chain sampling method based on the Metropolis-Hastings algorithm that avoids this problem. Our
algorithm is able to split or merge groups of data points, avoiding the need to pass through a
low-probability intermediate state in order to make major changes.

We begin by reviewing Metropolis-Hastings updates. We then discuss two possible proposal
distributions for Metropolis-Hastings updates for the Dirichlet process mixture model, based on a
simple random split and on a more complex restricted Gibbs sampling scan. Even though these
algorithms are ergodic, performance may be further improved by combining the split-merge updates
with a regular Gibbs sampling scan.

3.1 Metropolis-Hastings updates

Our algorithm, in which we propose split and merge moves that nonincrementally update groups of
observations, is a form of the Metropolis-Hastings algorithm (Metropolis et al 1953, Hastings 1970).
The Metropolis-Hastings algorithm samples from a distribution with density w(x) by first drawing
a candidate state, *, according to a proposal density ¢(z*|z). This proposed state, z*, is evaluated



by the Metropolis-Hastings acceptance probability which is calculated as follows:

d(zlz*) (=)
J(2) (@) )

a(z*,z) = min |1,

The next state will be set to this candidate state with probability a(z*, z). Otherwise, the new state
remains as the current state, x. These Metropolis-Hastings updates leave the posterior distribution,
7, invariant and produce a valid Markov chain Monte Carlo sampling scheme provided the chain
is ergodic.

As discussed by Tierney (1994), when constructing Markov chains, it is acceptable to select a
transition probability at random from a set of appropriate transition probabilities. In particular,
we may randomly choose amongst valid Metropolis-Hastings algorithms by randomly selecting a
proposal distribution, ¢(z*|z). Note that when calculating the Metropolis-Hastings acceptance
probability, the ratio, Zg'ff;g, may be calculated for the particular proposal distribution that was
chosen rather than computing the ratio by summing over all possible proposal distributions. Both
lead to valid Metropolis-Hastings updates, but the latter calculation may be computationally in-

feasible.

3.2 Random split-merge proposals

First, we introduce the split-merge algorithm when the proposal distribution is based on a simple
random split of the subset of observations associated with one mixture component into two separate
components, without reference to the properties of the observed data. This is the simplest version
of the split-merge algorithm, which we do not expect to work well, but which illustrates the basic
construction. A more elaborate version of this procedure, based on a restricted Gibbs sampling
proposal, produces more sensible splits and is discussed in Section 3.3.

This split-merge approach will be applied to the conjugate Dirichlet process mixture model, in
which the random distribution, GG, and the model parameters, ¢.,, are integrated away. The state
of the Markov chain consists only of the mixture component indicators, ¢;. The Markov chain is
initialized by assigning each observation to a mixture component. Typical initial states we have
used are placing all the data in the same component and assigning each observation to a different
component. Below, we outline the steps for the simple random split-merge procedure.

3.2.1 Algorithm 1: Simple random split-merge procedure

1. Select two distinct observations, ¢ and j, at random uniformly. The random selection of these
two items will decide the particular Metropolis-Hastings proposal distribution considered.

2. Let S denote the set of observations, k € {1,...,n}, for which k # ¢ and k # j, and ¢, = ¢;
or ¢ = ¢j.

3. If items ¢ and j belong to the same mixture component, i.e. ¢; = ¢;, then:



(a) Propose a new assignment of data items to mixture components, denoted as P!, in
. . . lit lit
which component ¢; = ¢; is split into two separate components, ¢;”" and ;. We
define each element of the proposal vector, c¢*P*, as follows:
o Let ¢” " be a new component such that c? it {er,. . e}
split
o Let ¢ =¢j
split

e For every observation k € S, let ¢, be randomly set, independently with equal

split split
i or Cj

e For observations k ¢ SU {i,}, let ¢;* = o
(b) Evaluate the proposal in (a) by the Metropolis-Hastings acceptance probability a(cP c)
discussed below. If the proposal is accepted, c*P!* becomes the next state in the Markov
chain. If the proposal is rejected, the original vector, ¢, remains as the next state.

probability, to either component ¢

4. Otherwise, if 7 and j belong to different mixture components, i.e. ¢; # ¢;, then:

(a) Propose a new assignment of data items to mixture components, denoted as ¢™¢"9¢, in
which components, ¢; and ¢;, are combined into a single component. Each element of

the proposal vector, ¢™¢"9¢, is assigned as follows:

e Let ;"9 = cj

o Let c;-nerge =c¢j

e For every observation k € S, let ¢, "% = ¢;

e For observations k ¢ SU {4, 5}, let ¢,"“"% = ¢

(b) Evaluate the proposal in (a) by the Metropolis-Hastings acceptance probability a(c™¢"9€, ¢).

If the proposal is accepted, ¢™"9¢ becomes the next state. If the merge proposal is re-
jected, the original configuration, ¢, remains as the next state.

5. Repeat steps 1-4 for T iterations.

Note that because the numerical values of the ¢, are irrelevant, it does not matter in steps
3(a) and 4(a) which item, 7 or j, remains fixed at its original mixture component. The labels are
significant only in that they distinguish which items are grouped in the same mixture component.
Also note that the vectors ¢*P*, ¢™¢"9¢, and ¢ designate which mixture component is assigned to
each observation in the data — not just to observations that are involved in the split or merge
steps. However, items not associated with %, j, or set S remain unchanged and unaffected during
the Metropolis-Hastings update.

3.2.2 Metropolis-Hastings acceptance probability for the simple random split algo-
rithm

When updating the vector ¢ associating observations with mixture components, the Metropolis-
Hastings acceptance probability of equation (5) takes the following form:

q(c|e*) P(c*) L(c*|y)
" g(c*|e) P(e) L(cly)

(6)

a(c*,e) = min |1

7



where ¢* is either the vector ¢’/ or ¢™¢79¢ depending on the type of proposal. The posterior
distribution, 7(c), in equation (5) has been expanded into a product of its factors: the prior, P(c),
and the likelihood, L(c|y), where y = (y1,-..,yn) is the vector of observations. Note that factors
not involving ¢ may be ignored.

The prior distribution, P(¢), for the entire vector ¢ will be a product over distinct ¢ € {c1,...,cn}
of factors presented in equation (3). This product yields the following prior distribution:

OtD Hce{cl,...,cn}(nc_l)! (7)
[Ti=i(at+k—1)

where D is the number of distinct mixture components contained in vector ¢ and 7. is the count

of items belonging to mixture component ¢ in c.

P(c)

Notice that the ratio of the prior distributions in equation (6) simplifies considerably because
the denominator in equation (7) will cancel, as well as factors in equation (7) associated with
components that are not directly involved in the Metropolis-Hastings update. For the split proposal,
the prior distribution ratio reduces to the following:

P(coPlity B (’nlcfplit -1 (nc;pm -1
Pl ° (10 —1)! (8)

where c¢ represents the original state in which ¢ and j belong to the same mixture component.
Here, n spit and n spir Tepresent the number of observations that belong to the two split mixture
i J

components. The factor of o in the numerator arises from D being one greater in ¢*P¥* than in c.

Similarly, for the merge proposal, the prior ratio simplifies to:

P(cmerge) 3 1 ('n,c;nerge—]_)!
Ple) a(ne—D(n,—1) )

where ¢ represents the original state in which items 7 and j belong to separate components.

The likelihood for the vector of component indicators will be a product over the n observations:

L(cly) H Pl #) A, () (10)

where Hy ., is the posterior distribution of ¢ based on the prior Gy and all observations y; for
which I < k and ¢; = ¢;. We assume that the integral [F(yg, $) dHy ., (¢) is analytically tractable,
which is the case if G is a conjugate prior. Note that when £ is the first item observed from a
particular component, then Hj, . will be the prior distribution, Gy, since no data from that mixture
component precedes item k.

Alternatively, L(c|y) may be expressed as a double product over components, ¢, and items,
k€ {1,...,n}, associated with each component:

pel) = I I [Fomd i (1)

c=1 k:cx=c

8



where D is the number of distinct components.

Since factors involving items associated with components not directly involved in the split pro-
posal will cancel, the ratio of likelihoods in equation (6) reduces to the following:

H /F Yk, O dH splzt((/)) H /F Yk, @ dH splzt(¢)

L(csplit|y) k- cspllt splzt k: 2pl1,t splzt
i S L VA (12)
Liely) I [Fed)dbi (@)
k:cp=c;
Similarly, for the merge proposal, the ratio of likelihoods is:
[T [Pk d)di g (@)
L(cmerge|y) B k:c kmerge merge (13)
Lely) I [Fonddbie(@ T [Flwd)db, o)
k:cp=c; k:cp=c;

The random split proposal distribution is the simplest version of this algorithm. The selection of
observations, ¢ and j, decides which Metropolis-Hastings proposal will be used. As a result, when
calculating the acceptance probability, ¢ and 7 are fixed. The probability of proposing a particular
split of the items in set S from the merged state is:

li 1 ”C‘?plit'f'ncs'plit_z
glerie) = (3) (19

Notice that q(c*P"|c) is equivalent to q(c|c™¢9¢).

The probability of proposing a merge move for the items in S from a split state is:
q(c™"le) = 1 (15)

since there is only one way to assign all items in S to the same component. Note that g(c¢™¢"9¢|c)
is equivalent to g(c|c*P!).

It follows from equations (14) and (15) that the appropriate ratio of transition probabilities for
the split proposal is:
alcle’™"™) 1

Q(CSplit|C) - (l)nc§plit +"qulit*2 (16)
2

t J

Similarly, the appropriate ratio of transition probabilities for the merge proposal is:

merge Ne;+Ne; —2
el (1) )

dlemerele) ~ 2



Therefore, the resulting acceptance probability (6) for a split proposal is based on the product
of equations (8), (12), and (16). Likewise, the acceptance probability for a merge proposal is based
on the product of equations (9), (13), and (17). By employing the Hastings (1970) version of the
Metropolis (1953) algorithm when calculating the acceptance probability, we correct for the fact
that the probability of proposing a particular split is smaller than the probability of proposing to
merge the two resulting components.

This basic form of our procedure illustrates how we may nonincrementally update groups of
observations. If a proposed split is appropriate for the data, it will likely be accepted, since
neighbouring observations will lend support for the creation of a new component, bypassing the
problem of being trapped in a local mode. Unfortunately, as stated earlier, we do not expect the
simple random split version of this algorithm to perform well. Since components are split without
reference to the observed data, the split proposals are unlikely to be appropriate, and hence are
unlikely to be accepted.

3.3 Restricted Gibbs sampling split-merge proposals

Next, we describe a proposal distribution in which properties of the observed data are used to decide
how to split mixture components via a restricted Gibbs sampling scan. This yields a method in
which reasonable splits of components are more frequently proposed. First, as a way to validate the
main algorithm, we introduce the Gibbs sampling split-merge proposal when the state prior to the
Gibbs sampling scan is fixed. This pre-Gibbs state will be referred to as a launch state. We then
present a generalized version in which the launch state is itself randomly selected; in particular, we
can select the launch state by conducting several “intermediate” restricted Gibbs sampling scans.

3.3.1 Restricted Gibbs sampling proposals from a fixed launch state

Here, we replace the simple random split step in Algorithm 1 (Section 3.2) by a restricted Gibbs
sampling scan on the component indicators, ¢, starting from a predetermined fixed launch state.
The fixed state version of this algorithm is not expected to be of any particular use, except as
a method to prove the validity of the subsequent random launch state algorithm. The restricted
Gibbs sampling proposal distribution is more elaborate than typical Metropolis-Hastings proposals.
However, by fixing the state prior to the scan, the proposal probabilities may be explicitly computed,
and this yields a valid Metropolis-Hastings update. Each fixed launch state for the Gibbs sampling
scan defines one particular Metropolis-Hastings algorithm. All fixed launch states will produce valid
proposal distributions since they satisfy the usual requirements, such as independence of proposals
from past states.

For the split proposal, once observations ¢ and j have been assigned to different components,
other observations (i.e. those in S) that belong to the merged component will first be assigned to
one of these two split components in some predetermined manner. Once this launch state, ¢levnch
is determined, one restricted Gibbs sampling scan is conducted to decide how the items in § will

10



be allocated between the two split components. The Gibbs sampling scan is restricted in that it
is only performed on a subset of the data (set S) and can assign these items to only two of the
mixture components. To update a ¢ in S via restricted Gibbs sampling, a new value of ¢, is drawn
from its (restricted) conditional distribution as follows:

N_kcp /F(yk, ¢)dH ., ())
Pleg | ¢k, yk) = (18)
N _k,c; /F(ykad)) dka,ci (¢) + N—k,c; /F(ykad)) dH*k,Cj (¢)

To simplify notation, we refer to component indicators for the launch state as ¢, in equation
(18). However, throughout the Gibbs sampling scan, these values (as well as the values for the
other terms) are continually modified as the ¢, are incrementally updated and used for the next
computation leading to ¢*?%. Here, c_j represents the ¢; for [#k in SU{i, 5}, n_g . is the number
of ¢; for I#k in S U {i, j} that are equal to ¢, F(y, ¢) is the likelihood, and H_j . is the posterior
distribution of ¢ based on the prior Gy and data observations y; such that ¢; = ¢ where [ € SU{3, j},
for which [ #k. Again, when Gy is a conjugate prior for F', the above integrals may be analytically
computed.

In general, the transition probability for a full sequential Gibbs sampling scan is a product of
the conditional probabilities of each individual update. The restricted Gibbs sampling transition
probability from state ¢!2¥m¢h to 5Pt is the product of the probabilities of assigning each observation
k € S to a particular split mixture component via Gibbs sampling from the fixed launch state
as given by equation (18). In our algorithm, this product is the Metropolis-Hastings proposal
probability, g(c***|c).

For the merge proposal, as in the simple random split-merge procedure, there is still only one
way to merge items in two components to one component, so ¢(c™¢"9¢|c) = 1. However, to obtain
the corresponding probability, ¢(c|c™¢"9¢), we need to calculate the probability of generating the
original split state from the fixed launch state in one Gibbs sampling scan. This is done in the
same way as for the split proposal, except that no actual sampling is performed since the “split”
state is already known.

As in the simple random split case, to obtain the Metropolis-Hastings acceptance probability, the
appropriate split or merge proposal distribution ratio (now based on restricted Gibbs sampling) is
substituted into equation (6). The prior and likelihood ratios in equation (6) remain as shown in
Section 3.2.

Since only one scan of Gibbs sampling is conducted, we do not expect that the allocation of items
between the two components has reached equilibrium. Because the Metropolis-Hastings proposal
distribution can take any form and still produce a valid algorithm, lack of convergence will not
invalidate this algorithm. However, it is quite likely that the proposed splits using a single iteration
of Gibbs sampling may not be that sensible. That is, we would still like to improve the proposals
so that the splits proposed are appropriate for the data.

11



3.3.2 Restricted Gibbs sampling proposals from a random launch state

Every fixed launch state for the algorithm of the previous section produces a valid Metropolis-
Hastings update. As was discussed in Section 3.1, we may select a Markov chain transition at
random from the set of valid transitions (Tierney 1994). Therefore, a launch state for the restricted
Gibbs sampling scan may be chosen at random from the set of all fixed states. However, if only a
single scan of Gibbs sampling is done from a launch state chosen uniformly at random, it may still
lead to an unreasonable assignment of observations to the two mixture components.

To achieve more reasonable splits, several intermediate restricted Gibbs sampling scans are per-
formed before the final scan. When calculating the split proposal probability, the result of the last
intermediate Gibbs sampling scan is considered the random launch state, from which the restricted
Gibbs sampling transition probability is explicitly calculated. We would prefer to incorporate all of
the intermediate Gibbs sampling scans in the proposal distribution, but summing probabilities over
all of these intermediate states is computationally infeasible. Although equilibrium will probably
not be reached after only a few restricted Gibbs sampling scans, the clustering of observations
between the two mixture components will probably be a better reflection of the actual attributes
of the data (compared to just a single scan of Gibbs sampling). This version of the algorithm
shows much improvement over the traditional Gibbs sampling method and previous versions of this
algorithm (simple random split and Gibbs sampling proposals from a single fixed state). Increasing
the number of intermediate Gibbs sampling scans leads to further improvement in convergence
measured in iterations, but at the cost of computational time per iteration. In Section 4, the effect
of varying this tuning parameter is examined.

Split proposal probabilities are calculated in the same way as for the fixed launch state Gibbs
sampling proposals (equation 18). For the merge proposal, to obtain g(ec|c™¢"9¢), the same interme-
diate Gibbs sampling operations that are performed when proposing a split must be conducted here
to arrive at a launch state, even though no actual split is performed. The Gibbs sampling transi-
tion probability is calculated from the launch state (which is the last intermediate Gibbs sampling
state) to the original split state. These operations are necessary in order to produce the correct
proposal ratios. Below, the procedure for the restricted Gibbs sampling split-merge procedure with
a random launch state is summarized.

3.3.3 Algorithm 2: Restricted Gibbs sampling split-merge procedure

1. Select two distinct observations, 7 and j, at random uniformly.

2. Let S denote the set of observations, k € {1,...,n}, for which k # ¢ and k # j, and ¢, = ¢;
or ¢, = ¢j.

3. Define the launch state, ¢/@¥"c* that will be used to compute Gibbs sampling probabilities.

If ¢; = cj, then let claunch he set to a new component such that ci®m°" ¢ {c;,... ¢c,} and let
cg‘“”wh = ¢j. Otherwise, if ¢; # c;, then let claunch — ¢ and cé-““mh = ¢;. For every k € S, set

chaunch ¢4 either of the distinct components, ci®m¢h or cé-‘“”wh, as follows:

12



launch

Select an initial state by randomly setting, independently with equal probability, ¢;

to either clovnch or claunch

1 g .
Modify c'®m<h by performing ¢ intermediate restricted Gibbs sampling scans.

4. If items ¢ and j are in the same mixture component, i.e. ¢; = c;, then:

(a)

(c)

Propose a new assignment of data items to mixture components, denoted as ¢***, in

which component ¢; = ¢; is split into two separate components, c? it and c;p " Define
each element of the proposal vector, ¢*P", as follows:
split
o Let ;7" = claunch (note that clovnet ¢ {ci,...,c,})
e Let ¢}’ it — clgunch (which is the same as c;)
e For every observation k € S, let ¢;” " be set to either component ¢;” it or cjp lit by
launch

conducting one final Gibbs sampling scan from the launch state, ¢
e For observations k ¢ SU {7,5}, let c,sgpl” = ¢

Calculate the proposal probability, q(csPl“|c), by computing the Gibbs sampling transi-
tion probability from the launch state, c'*"“"_ to the final proposed state, ¢*P!. The
Gibbs sampling transition probability is the product, over k € S, of the probabilities of

setting each ¢;” " to its final value in the final Gibbs sampling scan.

Evaluate the proposal by the Metropolis-Hastings acceptance probability a(c*P%, ¢). If
the proposal is accepted, c*P'* becomes the next state in the Markov chain. If the
proposal is rejected, the original vector, ¢, remains as the next state.

5. Otherwise, if 7 and j are in different mixture components, i.e. ¢; # c;, then:

(a)

()

Propose a new assignment of data items to mixture components, denoted as ¢™¢"9¢, in

which components, ¢; and ¢;, are combined into a single component. Assign each element

of the proposal vector, ¢™¢"9¢, as follows:
o Let c;nerge =c¢j
o Let c;-nerge =¢j
merge

e For every observation k € S, let ¢, =¢j
e For observations k ¢ SU {4, 7}, let ;"% = ¢

Calculate the proposal probability, ¢(c|c™¢™9¢), by computing the Gibbs sampling transi-
tion probability from the launch state, ¢'*°" to the original split configuration, c¢. The
Gibbs sampling transition probability is the product, over k € S, of the probabilities of
setting each ¢, in the original split state to its original value in a (hypothetical) Gibbs
sampling scan from the launch state.

Evaluate the proposal by the Metropolis-Hastings acceptance probability a(c™¢"9¢, ¢).
If the proposal is accepted, ¢™¢"9¢ becomes the next state. If the merge proposal is
rejected, the original configuration, ¢, remains as the next state.

6. Repeat steps 1-5 for T iterations.
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3.3.4 Computational issues

When calculating the prior ratios in equations (8) and (9), counts of observations associated with
each mixture component are required. Similar counts are needed when performing Gibbs sampling,
as seen in equations (4) and (18). To improve efficiency, it is useful to maintain these counts
incrementally in an array, by decrementing and incrementing appropriate counts when observations
are moved between components. Depending on the statistical model, an incremental update of the
relevant sufficient statistics may also be advantageous for use in likelihood calculations.

Another way of reducing the computational cost is to minimize the time spent searching the arrays
for mixture components that are in use. Since the numerical value of a component indicator is only
relevant in that it distinguishes components from one another, when creating new components,
previous labels that are currently not being utilized may be recycled. This will reduce the time
required to search through the count arrays.

As a final consideration, when calculating the ratios for the Metropolis-Hastings acceptance
probability of equation (6), to avoid numerical overflow problems, the priors, likelihoods, and
proposal probabilities should be calculated in terms of logarithms.

3.4 Cycling Metropolis-Hastings and Gibbs sampling updates

The split-merge Metropolis-Hastings algorithm produces a Markov chain that leaves the posterior
distribution invariant. The Markov chain is also irreducible, since for any statistical model in which
the data have non-zero prior probability, there is a non-zero probability that the chain started from
any initial state will assign every observation to a separate mixture component as a result of a
series of split moves. Further, except for some extremely degenerate models, the Markov chain is
aperiodic, since there is a non-zero probability that the chain will remain in its current state (i.e.
that at least some split or merge proposals have a non-zero probability of being rejected). The
split-merge algorithm is therefore ergodic.

Even though Algorithm 2 is ergodic and produces nonincremental splits or merges of components,
further improvements in convergence may be obtained by combining this algorithm with traditional
Gibbs sampling. Algorithm 2 addresses the problem of making major changes in the allocation of
items by moving observations as a cluster during a single iteration. However, it may take longer
to move a single observation between components. In this situation, a “fine tuning” approach is
required, which the regular Gibbs sampling scan can provide. Consequently, we propose combining
these two algorithms by alternately performing a Metropolis-Hastings update and a full scan of
Gibbs sampling. By doing this, we exploit the nonincremental (major) changes from the Metropolis-
Hastings step, and the incremental (minor) refinement from the Gibbs sampling step.

Tierney (Section 2.4, 1994) notes that if Markov chain transition kernels are applied in cycles, and

one of the kernels is ergodic, then the cycle kernel is not guaranteed to be ergodic. However, in our
case, since both the Metropolis-Hastings and Gibbs sampling steps have a non-zero probability of
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leaving the state unchanged, applying each transition in turn will produce an ergodic Markov chain.

We can tune this algorithm by modifying the number of Metropolis-Hastings updates and the
number of final Gibbs sampling scans in each full iteration. As expected, by increasing the values for
both of these tuning parameters, convergence (measured in full iterations) is improved, but at the
cost of computation time per iteration. In Section 4, we illustrate the effects of these modifications
and provide guidelines for setting these tuning parameters.

4 Example: Bernoulli data with a conjugate Beta prior

In this section, we empirically compare the split-merge procedure (and its variants) to Gibbs sam-

pling. We consider a categorical mixture model, in which the data, y = (y1,...,¥yn), are inde-
pendent and identically distributed, such that each observation, y;, has m Bernoulli attributes,
(Yi1, - - - »Yim)- Given the class, ¢;, that observation i belongs to, the item’s attributes are indepen-

dent of each other. This type of model is common in latent class analysis (see, for example, Everitt
1984), in which the mixture components are considered latent classes that represent heterogeneous
mechanisms which underly or produce the observed data. Neal (1992) considered a similar model
when examining the performance of the Gibbs sampling procedure discussed in Section 2. For
simplicity of exposition, we consider only dichotomous attributes, but the model and algorithms
easily generalize to categorical attributes with more than two values.

4.1 The statistical model

In the Bayesian framework, the Bernoulli data can be modelled as a Dirichlet process mixture model.
The observations, y; = (¥i1, - - - , Yim), are multivariate Bernoulli, such that each y;;|0; ~ Bernoulli(6;3,),
and the likelihood is as follows:

F(ys,0 H 0% (1 — Bip) " Yin (19)

The parameters of a component, 6, give the probabilities of each attribute having the value one.
Each such probability is given a Beta distribution prior with parameters (51, 5p). Under Gy, which
is the prior over the vector 8 = (61,...,0,,), the 8, are independent. (Note that here we use
subscripts to denote different attributes rather than different observations.) The density for Gy is:

_ (Bin +Bon) pBin—1 4 p \Bor-1
ro = I (Fasra o 0o e

where (3 ; and 3; ), are greater than zero.

Because this is a conjugate prior for F(y;,6;), the model parameters may be integrated away.
To update ¢; via Gibbs sampling, a new value of ¢; is drawn from its conditional distribution
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(equation 4), which for this model is the following, when the Beta prior and Bernoulli likelihood
are substituted:

N_je. % 0(cg,ci)8 ih) + By,
Plei = ¢ for some j £ | s, ) o T Dkti 0(Cks €5)6(Ykns Yin) + By h

n—l+a ;- N—ic; + Bon + B1n

m
’Byzhv

n 1+a H Bo,n + B

(21)
P(c; # cj for all j#i | c—i, i)

The delta function §(z, y) is equal to one if z = y and zero otherwise. The term 3 ,; 6(ck, ¢;)6(Ykn, Yin)
counts the number of observations associated with component c; that match y; with respect to at-
tribute h. The second formula gives the probability for setting ¢; to a new mixture component
that is currently not assigned to any other observation. In both equations, b is the factor that
normalizes the distribution to sum to one.

For the Metropolis-Hastings acceptance probability in equation (6), the prior is calculated as
shown in equation (7). The appropriate ratio of the transition probabilities based on restricted
Gibbs sampling is obtained by using the first formula in equation (21). The likelihood (equation 11)
based on the Bernoulli-Beta model is as follows:

C|y H H H Ez<k5 Ci» €)0(Yihs Ykh) +/6ykh, (22)

C—lkck ¢ h=1 nk6+/80h+ﬁ1h

If we interchange the products over k and h, equation (22) simplifies and can be computed as
follows:

L(c| 19[ ﬁ (30 (cks €)0(Ykn, 0) + Bo,n) /T (Bon)l [T (X 6(cks €)(Ykn, 1) + i) /T (Brn)l
v=1111 T(ne + fo + Bra)/T(Bon + Brn)

(23)

As mentioned in Section 3.3.4, it is useful to incrementally update the sufficients statistics for the
model. Here, efficiency is improved by maintaining a count of items associated with each mixture
component having particular values for each attribute. This array of counts can be used for Gibbs
sampling (equation 21) and in the likelihood calculation above (equation 23).

4.2 The simulated data sets

Although Dirichlet process mixture models consider the number of mixture components to be count-
ably infinite, the model can nevertheless be applied to finite mixtures. The prior chosen ensures
that some of the infinite number of components are given significant probability, so overfitting does
not occur. The model will assign a small probability to observations being from one of the infinite
number of additional components, but this does not cause serious problems. For simplicity, we will
therefore test the algorithms on simulated data from a finite mixture.

Our primary goal is to partition observations into appropriate latent classes using the Bernoulli-
Beta Dirichlet process mixture model. Computationally, this classification problem becomes more
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difficult as the dimensionality increases and as the sets of attributes that distinguish the various
components become more similar in structure. We illustrate this difficulty by considering three
simulated data sets, in which the number of attributes is increased so that the different components
appear more alike as the dimensionality increases.

The data are composed of five equally-probable mixture components, in which each component
produces a distribution over m dichotomous attributes. To maintain uniformity amongst the ex-
amples, n = 100 observations were produced for each example, and 20 observations were generated
from each of the five mixture components.

Data for the three simulated examples were randomly generated from the mixture distributions
shown in Tables 1-3. The mixture components are distinguished by the first four attributes, which
for consistency, have been kept constant throughout all three examples. The examples differ in the
number of additional attributes. Dimensionality is increased by simply replicating the distribution
for the last attribute, which makes the components more similar, and thereby, more difficult to
distinguish. Note the intentional asymmetry in the construction of the mixture components, in
which the first three components are more similar than the last two components. This is intended
to test whether the split-merge algorithms can handle “three-way” splits.

For the following demonstrations of the algorithms, the Dirichlet process parameter, «, is set to
one. A small value of « implies that the number of mixture components present in the data set
is likely to be small. The Gy, and (15, parameters for the Beta prior distribution have also been
set to one. These priors may not be realistic, but for consistency, these values are fixed at one
during the simulations. In actual problems, a and the §’s would be set by prior knowledge or given
higher-level priors.

Table 1: True mixture distribution for Example 1.

c| Plcg=c) | Plysh=1|ci=c),h=1,...,6
1 0.2 95 .95 95 95 95 .95
2 0.2 .05 .05 .05 .05 .95 .95
3 0.2 95 .05 .05 95 95 .95
4 0.2 .05 .05 .05 .05 .05 .05
5 0.2 95 95 95 95 .05 .05

Table 2: True mixture distribution for Example 2.

P(¢; =¢) P(yin =1lci=c¢),h=1,...,15
0.2 95 .95 .95 .95 .95 .95 .95 .95 .95 .95 .95 .95 .95 .95 .95
0.2 .05 .05 .05 .06 .95 .95 .95 .95 .95 .95 .95 .95 .95 95 .95

0.2 95 .05 .05 .95 .95 .95 .95 .95 .95 .95 .95 .95 .95 .95 .95
0.2 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05
0.2 95 .95 .95 .95 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05

U W N —=O
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Table 3: True mixture distribution for Example 3.

c| Ple;=¢) P(y;p =1lc; =c¢),h=1,...,18

1 0.2 95 .95 95 95 95 .95 95 .95 .95 .95 .95 .95 .95 .95 .95 .95 .95 .95
2 0.2 .05 .05 .05 .05 .95 .95 .95 .95 .95 .95 .95 .95 .95 .95 .95 .95 .95 .95
3 0.2 95 .05 .05 95 95 95 95 .95 .95 .95 .95 .95 .95 .95 .95 .95 .95 .95
4 0.2 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05
5 0.2 95 .95 95 95 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05

4.3 Performance of the algorithms

For each example, the Gibbs sampling algorithm was compared to five versions of the split-merge
algorithm: Simple Random Split, Split-Merge (0,1,0), Split-Merge (0,1,1), Split-Merge (5,1,0), and
Split-Merge (5,1,1). The first number in parentheses is the number of intermediate Gibbs sampling
scans to reach the launch state, the second is the number of Metropolis-Hastings updates in a single
iteration, and the third is the number of complete Gibbs sampling scans after the final Metropolis-
Hastings update. For each algorithm, all observations were assigned to the same mixture component
for the initial state, and each algorithm was run for 2000 iterations. All simulations were performed
in Matlab, Version 5.3, on a SGI system with a 200 MHz MIPS processor.

The performance of each algorithm was evaluated by examining trace plots (Figures 1-3) and
the computation time per iteration (Table 4). In each trace plot, the five values plotted are the
fraction of observations associated with the most common, two most common, three most common,
four most common, and five most common mixture components. Since each of the five components
appear equally in the samples, if the true situation were captured exactly, the five traces would
occur at values of 0.2, 0.4, 0.6, 0.8, and 1.0.

Table 4: Time per iteration in seconds for algorithms tested.

Algorithm Ezample 1 Ezample 2 Ezample 3
Gibbs Sampling 1.1 1.5 1.6
Simple Random Split 0.2 0.4 0.5
Split-Merge (0,1,0) 0.3 0.7 0.9
Split-Merge (0,1,1) 1.1 1.9 2.2
Split-Merge (5,1,0) 0.9 1.9 2.5
Split-Merge (5,1,1) 1.6 3.2 4.0

4.3.1 Example 1

The first example is the simplest. It is relatively low-dimensional (six attributes) and has five
well-separated mixture components. From the trace plots (Figure 1), it appears that all of the
algorithms except for the Simple Random Split have appropriately separated the data into the five
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Figure 1: Trace plots of the six algorithms in Example 1.
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mixture components. As discussed earlier, the Simple Random Split is not expected to converge
rapidly, even in simple situations, because the split proposals are usually nonsensical.

By inspection, Gibbs sampling, Split-Merge (0,1,1) and (5,1,1) seem to have short burn-in times
and mix about equally well. To further examine the performances of these three algorithms, the
autocorrelation times were computed for the first trace on the plots (corresponding to the fraction
of items associated with the most common mixture component) and for the indicator variable,
called I3 42, which codes if observations 13 and 42 are assigned to the same mixture component.
Ttems 13 and 42 were generated from components 3 and 2, respectively. However, due to random
noise, item 42 differs in one of the four distinguishing attributes from its true distribution (given in
Table 2), which makes it as likely to have come from component 3 as from its actual component, 2.
Consequently, the mean of this indicator function is approximately 0.5 (i.e. these two items should
be grouped together half of the time).

The autocorrelation time is defined as one plus twice the sum of the autocorrelations for a
quantity at lags one up to infinity. This is the factor by which the sample size is effectively
reduced when estimating the expectation of that quantity, when compared to an estimate based
on independent draws from the posterior distribution (Ripley 1987, Section 6.3). Autocorrelation
time was estimated by one plus the sum of the estimated autocorrelations up to the lag where the
autocorrelations are approximately zero. The results are presented in Table 5.

Table 5: Autocorrelation times for algorithms that converged in Example 1.

Algorithm ‘ Trace 1 Indicator 11340
Gibbs Sampling 2.0 0.9
Split-Merge (0,1,1) 2.1 0.7
Split-Merge (5,1,1) 4.0 0.7

Gibbs sampling, Split-Merge (0,1,1), and Split-Merge (5,1,1) have approximately equal autocor-
relation times. Note that the slightly higher trace 1 autocorrelation time for Split-Merge (5,1,1)
is not statistically significant, but is due to the chance distribution of the occasional sharp peaks
visible in the trace plot (Figure 1). In this simple problem, Gibbs sampling is successful in correctly
splitting the items amongst the five components, so the split-merge algorithms are not necessary.
Comparing Split-Merge (0,1,1) and (5,1,1), we see that the addition of several intermediate Gibbs
sampling scans does not improve autocorrelation times and are not worth the extra computation
time. Split-Merge (0,1,0) and (5,1,0), which do not include the final complete Gibbs sampling scan,
also separate the data into five components. However, from the trace plots, it is clear that mixing
is much slower than when intermediate Gibbs sampling scans are included.

4.3.2 Example 2

Example 2 is a higher dimensional problem (fifteen attributes), in which the posterior distribution,
given the priors assigned, gives substantial probability to configurations with four or five main
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components. From the trace plots (Figure 2), we see that Gibbs sampling is extremely slow to
separate the data into four or five components, and remains stuck in a particular configuration for
a long time. When Gibbs sampling is initialized to all observations in a different mixture component
(plot not shown), the observations are quickly split into five components, but then stays in that
configuration for a very long time, thereby failing to explore the true posterior distribution. Split-
Merge (5,1,1), on the other hand, mixes rapidly between the four and five component configurations.
There is a drawback in that Split-Merge (5,1,1) takes double the time per iteration compared
to Gibbs sampling. However, since Gibbs sampling fails to mix adequately over the posterior
distribution and Split-Merge (5,1,1) reaches equilibrium almost immediately, the extra time per
iteration is clearly well spent.

Split-Merge (5,1,0) seems to do reasonably well in moving between four and five components,
but minor changes (moving one or two observations between components) are still a problem. The
split-merge algorithms without any intermediate Gibbs sampling scans are slow in mixing between
four and five components; however, Split-Merge (0,1,1) seems to mix better than Gibbs sampling.
Again, the Simple Random Split is unable to separate the data adequately and performs the worst.

4.3.3 Example 3

Example 3 is the highest dimensional example (eighteen attributes) considered. The posterior
distribution, again given the prior distribution we have used, is a mixture of (mainly) four and
five component configurations. The trace plots (Figure 3) show that Gibbs sampling remains in an
incorrect split that is not typical of the true posterior distribution for the entire 2000 iteration run.
The mixture components are now quite similar, so an incremental creation of a new component via
Gibbs sampling is quite rare. If each item is initially assigned to a different mixture component (plot
not shown), Gibbs sampling splits the data into five components immediately, but takes roughly
1000 iterations to move to the four-component configuration, showing that it mixes poorly between
the four and five component configurations.

Split-Merge (5,1,1) separates the observations into the proper configuration immediately and
mixes well between the four and five components. Split-Merge (5,1,0) also mixes between four and
five components, but the minor adjustments are slow. The two split-merge algorithms without any
intermediate Gibbs sampling scans find the four and five component configurations, but are stuck
in the four-component split for a long time. This is a result of non-optimal Metropolis-Hastings
split proposals. Again, the Simple Random Split performs extremely poorly.

4.3.4 Summary of results

Both the Gibbs sampling and split-merge methods seem to work reasonably well in low-dimensional
cases. However, as the classification task becomes increasingly difficult, Gibbs sampling mixes
exceedingly poorly. The cycled split-merge version that includes both intermediate Gibbs sampling
scans and a full overall Gibbs sampling scan is the most successful split-merge variation. Its split
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proposals are more appropriate, yielding better mixing between different major configurations,
while the final Gibbs sampling scan handles the necessary minor adjustments. The split-merge
algorithms that include intermediate Gibbs sampling scans are successful in handling three-way
splits, even though this must be done by two two-way splits. Computation time per iteration is
greater than for Gibbs sampling, but in situations where Gibbs sampling is unable to arrive at the
correct stationary distribution in any reasonable length of time, this burden is clearly acceptable.

4.4 Tuning parameters

In this section, we examine the role that the tuning parameters play in our split-merge algorithm.
There are three adjustable parameters: the number of intermediate Gibbs sampling scans, the
number of Metropolis-Hastings updates conducted in a single iteration, and the number of complete
Gibbs sampling scans conducted after the Metropolis-Hastings updates. We reconsider the data
from Example 2, and examine the effect of varying each tuning parameter holding the other two
parameters constant. Table 6 displays the computational time per iteration and autocorrelation
times for trace 1 and indicator I13 49 for various settings of this algorithm. Trace plots are shown
in Figures 4-6.

Table 6: Effects of the tuning parameters.

Time per iteration  Autocorrelation Autocorrelation
Algorithm in seconds time for Trace 1 time for Indicator I13 42
Split-Merge (1,1,1) 2.2 57.4 1.5
Split-Merge (3,1,1) 2.7 40.5 1.5
Split-Merge (5,1,1) 3.2 31.9 1.6
Split-Merge (10,1,1) 4.6 26.7 1.6
Split-Merge (20,1,1) 7.0 24.2 1.6
Split-Merge (100,1,1) 28.8 18.4 1.4
Split-Merge (1,1,1) 2.2 57.4 1.5
Split-Merge (1,2,1) 3.1 48.0 2.0
Split-Merge (1,3,1) 4.1 19.5 1.8
Split-Merge (1,4,1) 5.1 19.2 1.8
Split-Merge (1,5,1) 6.2 17.6 1.9
Split-Merge (1,1,0) 1.0 165.8 41.7
Split-Merge (1,1,1) 2.2 57.4 1.5
Split-Merge (1,1,2) 3.3 63.5 1.7
Split-Merge (1,1,3) 4.5 35.9 1.0
Split-Merge (1,1,5) 6.7 35.3 1.0
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4.4.1 Varying the number of intermediate Gibbs sampling scans

Better splits are expected when more intermediate Gibbs sampling scans are performed, since
the proposed splits will be closer to the restricted equilibrium distribution. From Figure 4, we
observe improved mixing when the number of intermediate Gibbs sampling scans used to arrive
at the launch state is increased. The autocorrelation times for trace 1 are lower (compare five
vs. one-hundred intermediate scans), but there is an increased cost of computational time per
iteration (3.2 vs. 28.8 seconds). However, after five intermediate scans, the improvement is fairly
minimal. In Table 7, the acceptance rates for the Metropolis-Hastings updates are given. There
is only minor improvement in the acceptance rate after five scans. When these simulations were
repeated with different pseudo-random seeds, we found that, on occasion, five intermediate Gibbs
sampling scans would appear as good as 20 or 100 intermediate scans (in terms of rejection rate and
autocorrelation times). Therefore, it seems that improvements level off after only a few intermediate
Gibbs sampling scans, and additional scans are not worth the increased computational time.

Table 7: Acceptance rate for different numbers of intermediate Gibbs sampling scans.

Algorithm Acceptance rate in percent
Split-Merge (1,1,1) 1.5
Split-Merge (3,1,1) 3.1
Split-Merge (5,1,1) 3.3
Split-Merge (10,1,1) 4.1
Split-Merge (20,1,1) 3.7
Split-Merge (100,1,1) 4.3

4.4.2 Varying the number of Metropolis-Hastings updates per iteration

Autocorrelation times decrease and mixing between four and five components improves when the
number of Metropolis-Hastings updates is increased. However, these improvements seem to taper
off after three Metropolis-Hastings updates, while the computational cost continues to increase.
Three updates per iteration seem to be the best number in this particular example. This suggests
that a full Gibbs sampling scan is not imperative after each Metropolis-Hastings update and may
be a waste of computational time.

4.4.3 Varying the number of final complete Gibbs sampling scans

From Figure 6, we observe that the Metropolis-Hastings updates need to be supplemented by some
complete Gibbs sampling scans in order to make minor clustering changes. This is also evident
from the autocorrelation times for I13 49, which drop from 41.7 to 1.5 when a full scan of Gibbs
sampling is included. Splitting or merging these two particular observations is most easily done by
a small-scale incremental update.
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The autocorrelation time for trace 1 also decreases as the number of final scans is increased.
However, from the trace plots, it appears that differences in mixing are minimal. The time per
iteration grows when the number of final Gibbs sampling scans is increased, and beyond one Gibbs
sampling scan per iteration, it does not appear that the improvements in autocorrelation times
offset this.

4.4.4 Guidelines for selecting tuning parameters

The most critical tuning parameter is the number of intermediate Gibbs sampling scans, since
this controls the quality of the Metropolis-Hastings split proposals. For this problem (and other
similar problems that we have examined), a small number of scans (say, 4 to 6) is the best com-
promise between computation time and autocorrelation time. For data sets in which the number
of observations per mixture component is large, more intermediate Gibbs sampling scans may be
required.

Two or three Metropolis-Hastings updates per iteration appear to provide a good balance between
computation time and autocorrelation time. Because final Gibbs sampling scans take a long time
to compute, it is better to perform them after multiple Metropolis-Hastings updates, which are
relatively faster.

Conducting a final Gibbs sampling scan after Metropolis-Hastings updates has been shown to
be a necessity. However, since these final Gibbs sampling scans are computationally expensive,
performing more than one scan seems undesirable.

5 Discussion

The split-merge Metropolis-Hastings procedure has been shown to be an improvement over tra-
ditional Gibbs sampling in high-dimensional problems in which mixture components are similar.
The nonincremental clustering changes of our method avoid the problem of being trapped in local
modes, and the posterior distribution is fully explored. Implementing this method is relatively
simple and does not become more difficult in higher dimensions. It should be straightforward to
apply this method to any conjugate model, including normal mixture models for real-valued data
with the conjugate normal-inverse gamma, priors for the mean and variance. The quality of the
proposals can be controlled by varying the number of intermediate Gibbs sampling scans.

One inefficiency of this procedure that we are currently investigating is the random selection and
treatment of the observations, i and j, that define the split or merge operation. If i and j are
initially in the same component (hence, a split is proposed), the probability that the “correct” split
configuration will be proposed can be as low as 25%, even when the split should be into components
of equal size. After ¢ and j are set to different mixture components, their component labels cannot
change. Two types of problems may arise from this restriction. First, if ¢ and j actually belong
to the same mixture component, then these two items have unnecessarily been separated. If this
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problem does not occur (so 7 and j should be separated), a labelling problem is still possible. The
initial random split of the other items in the merged component could assign labels biased towards
a split that is opposite to the fixed labels of 7 and j. The intermediate Gibbs sampling scans
may not overcome this initial bias, and are not expected to, since the component labels of 7 and
j are not involved in these intermediate scans. Therefore, ¢ and j end up in the “wrong” mixture
components. This could be fixed by allowing the labels of ¢ and j to adapt during the intermediate
Gibbs sampling, but this would then need to be accounted for in the Metropolis-Hastings acceptance
probability.

Our algorithm could also be easily modified by replacing the intermediate restricted Gibbs sam-
pling scans by Markov chain updates of some other type. However, replacing the final Gibbs sam-
pling scan (from the launch state) with some other update would be possible only if the transition
probability for this update could be calculated.

When the data is very high dimensional, or there are very many observations, it is possible that
our algorithm may only rarely accept the splits and merges that are proposed, even if they are
appropriate. This potential problem is most easily seen for merge proposals, which will have a high
probability of being accepted only if the current split configuration has a high probability of being
produced from the launch state in a single Gibbs sampling scan. For difficult problems, however,
the distance that can be traversed in one Gibbs sampling scan may be small compared to the
extent of posterior variation. Determining whether a split or merge proposal should be accepted
is analogous to the problem of Bayesian model choice, for which the introduction of intermediate
models has been found to be useful (see Gelman and Meng 1998). Some analogous technique may
be useful if a low acceptance rate for split and merge proposals proves to be a problem in practice.

Our main priority for future research is extending the algorithm to handle non-conjugate models,
in which the model parameters cannot be analytically integrated away. We believe that this should
be possible, but how well the resulting algorithm will work remains to be seen.

Finally, the technique we use of producing Metropolis-Hastings proposals using restricted Gibbs
sampling scans may be applicable in other contexts as well. Simple Gibbs sampling often fails to
work well when dependencies between variables prevent one of them from changing much (or at
all) when the others are fixed. This can be overcome by performing Gibbs sampling on blocks
of several variables, provided that the conditional distribution for all variables in a block can be
sampled from. When sampling for all variables in a block is infeasible, one might propose to change
all the variables in a block simultaneously using a Metropolis-Hastings update, but finding a suitable
multi-dimensional proposal distribution can be difficult. An alternative that seems worth exploring
is to initially propose a change to only one (or a few) of the variables in the block, and to find
appropriate proposed values for the other variables in the block using restricted Gibbs sampling
updates, from some randomly chosen initial state. It should be possible to compute a suitable
acceptance probability to make this a valid Markov chain update, as in the algorithms we have
presented in this article.
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