
Non-reversible Langevin Methods for

Sampling Complex Distributions

Radford M. Neal

University of Toronto, Vector Institute Affiliate

radford@stat.utoronto.ca

https://www.cs.utoronto.ca/∼radford
https://radfordneal.wordpress.com

Virtual seminar, McMaster University, 18 March 2020

The Need to Sample from Complex Distributions

Very complex, high-dimensional probability distributions arise in

• Statistical physics. The “canonical” distribution at a given

temperature is the foundation for deriving the properties of

physical systems such as liquids and magnetic materials.

• Bayesian statistics. The “posterior” distribution for unknown

quantities is the foundation for statistical inference from data

using the Bayesian approach.

By averaging over a random sample of points from these complex

distributions, one can get Monte Carlo estimates of important

quantities. For example,

• The volume of some quantity of a fluid at a given temperature

and pressure.

• The predictive mean of a future observation based on past

observations.

Markov Chain Sampling

Fast and accurate ways have been devised to randomly sample from

many standard univariate distributions — binomial, exponential, etc.

Multivariate distributions with a simple dependence structure can also

be handled — eg, multivariate Gaussians.

Problem: There is no fast, general method of directly sampling from

a high-dimensional distribution for which the joint probability mass or

density is some complex function with no special properties.

A general approach: Instead simulate a Markov chain that

converges to the desired distribution (from any starting point),

in the limit of many transitions.

Surprisingly, this is often much easier than finding a way to sample

directly!

Invariance and Reversibility

For a Markov chain to converge to a desired distribution, which has

probability density π(x), it is necessary for it to leave π invariant :

For all x,

∫
π(x)T (x′|x) dx = π(x′)

where T (x′|x) is probability density for the Markov chain to move to

state x′ when it is currently in state x. (Convergence also requires that

the Markov chain not get trapped in some subset of the state space.)

Invariance is implied by reversibility (also called “detailed balance”)

with respect to π:

For all x and x′, π(x)T (x′|x) = π(x′)T (x|x′)

Just integrate both sides over x to see this.

But reversibility is not necessary — non-reversible Markov chains that

leave π invariant exist and are useful.

The Metropolis Algorithm
[Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller, 1953]

A very general way of defining a transition that’s reversible for π was

devised by Metropolis, et. al. — propose a state, x∗, to move to from x,

and then accept or reject the proposal based on the ratio π(x∗)/π(x).

If we reject the proposal, the new state is the same as the old state.

Let S(x∗|x) be the probability density for proposing to move to x∗

when in state x. We require that S(x∗|x) = S(x|x∗).

We accept the proposal x∗ with probability min[1, π(x∗)/π(x)].

It’s easy to show that the resulting transition is reversible with respect

to π, and hence leaves π invariant.

Note: We only need the ratio π(x∗)/π(x), which we can get even if

we can only compute an unnormalized density function.

Illustration: Metropolis for Bivariate Gaussian

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3 Var(x1) = Var(x2) = 1

Cov(x1, x2) = 0.99

S(x∗|x) = N(x∗;x, 0.32 I)

Green points are an i.i.d.

sample from π(x).

Black points show 250

transitions of the Markov

chain

Rejection rate (last 90%)

is 0.68. Red lines point to

rejected proposals

When started from a low-probability point, the chain moves steadily

towards the high-probability region. But once there, it wanders about

the distribution in a random walk, often doubling back on itself.

Metropolis for Replicated Bivariate Gaussian

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3 Var(xi) = 1, i = 1, . . . , 20

Cov(x2j−1, x2j) = 0.99

S(x∗|x) = N(x∗;x, 0.072 I)

Green points are an i.i.d.

sample from π(x1, x2).

Black points show 4500

transitions of the Markov

chain

Rejection rate (last 90%)

is 0.71. Red lines point to

rejected proposals

To get a similar rejection rate with 20 dimensions, a smaller proposal

standard deviation is needed. So the random walk takes smaller steps.

About 18 times more transitions are needed to move a similar distance.

The Inefficiency of Random Walks

Following an initial period of approach to convergence, reversibility

implies that Metropolis transitions that each move only a small

distance will explore high-probability regions via a random walk,

with no tendency to keep going in the same direction.

This is inefficient.

A simple example: Suppose xt+1 = xt + nt, where nt is a random

draw from N(0, 1), independently for each t. Then xt+K is likely to be

only about
√
K away from xt — not about K away, as one might

expect if the nt all had the same sign.

Enormously faster exploration of the distribution can result from

avoiding this inefficiency, by either:

• Using transitions that make big rather than small changes, or

• Not doing a random walk (using non-reversible transitions).

Combining Transitions in Sequence

If we have several Markov transitions, T1, T2, . . . , Tk, all of which leave

the distribution π invariant, then the combined transition that applies

each of these Ti in sequence will also leave π invariant.

But even if T1, T2, . . . , Tk are all reversible w.r.t. π, the combination

will generally not be reversible.

Gibbs Sampling: For a multivariate state, x = (x1, . . . , xk),

each Ti might update only component xi, replacing it with a random

value from its conditional distribution given the other components.

Gibbs sampling is generally not reversible, but the non-reversibility

seems to have no important consequences. But in other situations,

non-reversible transitions constructed by sequential combinations can

be much better than reversible methods.

Hamiltonian Monte Carlo (HMC)
[Duane, Kennedy, Pendleton, and Roweth, 1987]

Simple Metropolis proposals (eg, Gaussian) lead to slow exploration

via a random walk. Much better is to make distant proposals by

simulating Hamiltonian dynamics for some period of fictitious “time”.

We augment the variable of interest, x, with a “momentum” variable,

p, of equal dimension, with a Gaussian distribution, independent of x.

An HMC transition has two parts:

1) Sample p from its distribution (eg, N(0, I)).

2) Do a Metropolis update, with proposal found by simulating

Hamiltonian dynamics from (x, p) for some time τ (then negating

p so the proposal is symmetrical).

If the dynamical simulation were exact, the proposal would always be

accepted — the dynamics preserves the log of the joint density of (x, p).

In practice, we simulate the dynamics with L “leapfrog” steps, each for

a time ǫ = τ/L. Since these steps are not exact, rejection is possible.

Illustration: HMC for Bivariate Gaussian

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3 Var(x1) = Var(x2) = 1

Cov(x1, x2) = 0.99

ǫ = 0.16, L = 10

Green points are an i.i.d.

sample from π(x).

Black points show 25

transitions of the Markov

chain

Rejection rate (last 90%)

is 0.22. Red lines point to

rejected proposals

HMC proposals (as found with suitably long trajectories) are often

to states distant from the current state. So even though HMC is

reversible, random walks are not a problem.

Some HMC Trajectories for the Bivariate Gaussian

−2 −1 0 1 2

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

Six successive trajectories

(red first) used to produce

proposals for HMC (blue

rejected, others accepted)

Only x is shown (not p)

ǫ = 0.16, L = 10

The dynamics confines the trajectories to the high-probability region,

while keeping them going in the same direction (except turning at an

end). But each trajectory has a random initial direction.

HMC for Replicated Bivariate Gaussian

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3 Var(xi) = 1, i = 1, . . . , 20

Cov(x2j−1, x2j) = 0.99

ǫ = 0.1, L = 16

Green points are an i.i.d.

sample from π(x).

Black points show 25

transitions of the Markov

chain

Rejection rate (last 90%)

is 0.22. Red lines point to

rejected proposals

With 20 dimensions, ǫ needs to be smaller, and so L needs to be larger

to compensate. But the scaling of HMC with dimensionality is

substantially better than for simple Metropolis methods.

Langevin Monte Carlo
[Rossky, Doll, and Friedman, 1978; others later]

Doing only one leapfrog step in HMC is equivalent to “Langevin”

Monte Carlo. A Langevin transition goes as follows:

• Sample p (of same dimension as x) from the N(0, I) distribution.

• Compute a proposal (x∗, p∗) with one leapfrog step, as follows:

p◦ = p − (ǫ/2)∇ log π(x)

x∗ = x + ǫ p◦

p∗ = − [p◦ − (ǫ/2)∇ log π(x∗)]

• Accept (x∗, p∗) as the new state with probability

min [1, π(x∗)φ(p∗) / π(x)φ(p)]

where φ(p) is the probability density for the N(0, I) distribution.

If (x∗, p∗) is not accepted, the new state is the same as the old.

Note: we can write x∗ as x + (ǫ2/2)∇ log π(x) + ǫn, with n ∼ N(0, I).

Illustration: Langevin for Bivariate Gaussian

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3 Var(x1) = Var(x2) = 1

Cov(x1, x2) = 0.99

ǫ = 0.17.

Green points are an i.i.d.

sample from π(x).

Black points show 250

transitions of the Markov

chain

Rejection rate (last 90%)

is 0.37. Red lines point to

rejected proposals

Langevin benefits from using gradient information, but since it is

reversible, and (typically) takes small steps, it still suffers from the

inefficiency of a random walk.

Langevin for Replicated Bivariate Gaussian

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3 Var(xi) = 1, i = 1, . . . , 20

Cov(x2j−1, x2j) = 0.99

ǫ = 0.11.

Green points are an i.i.d.

sample from π(x).

Black points show 600

transitions of the Markov

chain

Rejection rate (last 90%)

is 0.39. Red lines point to

rejected proposals

Langevin’s scaling with dimensionality is better than for simple

Metropolis, but worse than for HMC.

Langevin Monte Carlo with Persistent Momentum
[Horowitz, 1991]

A transition from (x, p) to the next state has three steps:

1) Update p to αp +
√
1− α2 n, where α is slightly less than 1 and

n is a N(0, I) random variable.

2) Propose a new state by doing one leapfrog step from (x, p) and

then negating p. Accept or reject this proposal the usual way.

3) Negate p.

All steps leave the desired distribution invariant and are reversible.

Their sequential combination leaves the desired distribution invariant

but is not reversible.

For α near 1, Step (1) only slightly changes p. If Step (2) accepts, the

negation in the proposal is canceled by the negation in Step (3). But a

rejection will reverse p, and the chain will almost double back on itself.

Illustration: Persistent Langevin for Bivariate Gaussian

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3 Var(x1) = Var(x2) = 1

Cov(x1, x2) = 0.99

ǫ = 0.062, α = 0.94

Green points are an i.i.d.

sample from π(x).

Black points show 250

transitions of the Markov

chain

Rejection rate (last 90%)

is 0.044. Red lines point to

rejected proposals

By only slightly changing p each iteration, persistent Langevin can

suppress random walk behaviour. Unfortunately, for this to work, the

rejection rate must be small (comparable to or less than 1−α).

Persistent Langevin for Replicated Bivariate Gaussian

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3 Var(xi) = 1, i = 1, . . . , 20

Cov(x2j−1, x2j) = 0.99

ǫ = 0.045, α = 0.95

Green points are an i.i.d.

sample from π(x).

Black points show 345

transitions of the Markov

chain

Rejection rate (last 90%)

is 0.035. Red lines point to

rejected proposals

As dimensionality increases, ǫ must be made even smaller in order to

keep the rejection rate very small.

Avoiding Reversals ⇒ Inefficient Small Stepsize

Unfortunately, though persistent Langevin can avoid random walks, it

does so only only if the rejection rate is small. This requires a small ǫ,

which slows speed of exploration.

So it’s not as good as Hamiltonian Monte Carlo, which can use a

comparatively large ǫ even when the number of leapfrog steps, L,

needs to be quite large in order to avoid random walks.

The new innovation: As well as the non-reversibility from

not completely replacing p, also introduce non-reversibility into

the acceptance decision.

Non-Reversible Form of the Acceptance Decision

To decide on accepting a Metropolis proposal to move from x to x∗,

we can check if u < π(x∗)/π(x), with u a random uniform over [0, 1].

Equivalently, we can check whether π(x∗) > s, where s is a random

uniform over [0, π(x)].

Rather than choosing s randomly, we can make it, or u = s/π(x), part

of the state, and update it in any way that leaves the joint distribution

invariant.

One possible update: For some constant δ, add/subtract δs to s,

reflecting off the boundaries at 0 and π(x).

Implementation details: We let s = π(x)|v|, with v having the

uniform(−1,+1) distribution. We update v by adding δ, and then

subtracting 2 if v > 1. If x changes to x′, we make a corresponding

change of v to v′ = vπ(x)/π(x′), which keeps s unchanged.

Non-Reversible Acceptance Can Cluster Rejections,

Avoid Random Walks at a Higher Rejection Rate

If the rejection rate is not high, π(x∗)/π(x) will usually be close to one.

So u will mostly change as a result of adding δ (reflecting off 0 and 1).

If δ is small, u will be near 0 for a while, then near 1 for a while, etc.

Rejections will tend to be clustered, and acceptances will be too.

(Overall rejection rate will be same as for the standard method.)

Clustering of rejections produces less random walk behaviour.

Compare: If each accept moves d in same direction, each reject

randomizes direction, then 20K iterations of the following form:

4 accepts, 1 reject, 4 accepts, 1 reject, . . .

move on average a distance of 4d
√
4K = 8d

√
K.

But 20K iterations of the form:

16 accepts, 4 rejects, 16 accepts, 4 rejects, . . .

move on average a distance of 16d
√
K.

Illustration: Persistent Langevin with Non-Reversible
Acceptance for Bivariate Gaussian

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3 Var(x1) = Var(x2) = 1

Cov(x1, x2) = 0.99

ǫ = 0.12, α = 0.92, δ = 0.05

Green points are an i.i.d.

sample from π(x).

Black points show 250

transitions of the Markov

chain

Rejection rate is 0.13;

red lines point to rejected

proposals

Compare to standard acceptance, with ǫ = 0.062 and rejection rate

of 0.044. Here, random walks are mostly suppressed despite a rejection

rate of 0.13, and the larger ǫ of 0.12 leads to more movement.

Persistent Langevin with Non-Reversible Acceptance
for Replicated Bivariate Gaussian

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3 Var(xi) = 1, i = 1, . . . , 20

Cov(x2j−1, x2j) = 0.99

ǫ = 0.08, α = 0.94, δ = 0.05

Green points are an i.i.d.

sample from π(x).

Black points show 345

transitions of the Markov

chain

Rejection rate is 0.11;

red lines point to rejected

proposals

A smaller ǫ is needed in higher dimensions, then α needs to be closer

to 1 for the same random walk suppression. Choosing δ to be roughly

1−α seems about right. Performance here seems comparable to HMC.

Changes to u and Clustering of Rejections

Plots of u values for each accept/reject decision, with values leading to

rejection in red, for sampling from replicated bivariate Gaussian:

0 50 100 150 200 250 300 350

0.
0

0.
4

0.
8

Persistent Langevin

0 50 100 150 200 250 300 350

0.
0

0.
4

0.
8

Persistent Langevin with non-reversible update of u

Advantage for Models with Discrete Variables

With non-reversible acceptance, persistent Langevin can be made

about as efficient as HMC. But does it have any advantage over HMC?

It can be better when the state consists of both continuous and

discrete variables — then HMC or Langevin updates must be

combined (eg, in sequence) with updates such as Gibbs sampling for

the discrete variables.

If HMC does L leapfrog steps, the discrete variables can be updated

only once every L steps. But a Langevin method can update them

more often — possibly after every step, though a bigger interval may

sometimes be better.

Advantage for Models with Variance Hyperparameters

Langevin’s advantage over HMC of allowing more frequent updates

of other sorts also applies to Bayesian models with variance

hyperparameters — eg, prior variances for groups of weights in a

Bayesian neural network model.

Even though variance hyperparameters are continuous, they can cause

problems if updated with other continuous variables. Consider:

yi | xi, β, σ ∼ N(βTxi, σ
2)

β | τ ∼ N(0, τ2I)

τ, σ ∼ . . . something . . .

Using an HMC or Langevin method for sampling β alone, with σ and

τ temporarily fixed, can work well, perhaps using an ǫ that is set

based on the current σ and τ . But including σ and τ (or their logs)

in the state makes setting ǫ very difficult. It may be better to update

them separately (eg, with Gibbs sampling or Metropolis).

References
Duane, S., Kennedy, A. D., Pendleton, B. J., and Roweth, D. (1987) “Hybrid Monte Carlo”, Physics

Letters B, vol. 195, pp. 216-222.

Gelfand, A. E. and Smith, A. F. M. (1990) “Sampling-based approaches to calculating marginal

densities”, Journal of the American Statistical Association, vol. 85, pp. 398-409.

Horowitz, A. M. (1991) “A generalized guided Monte Carlo algorithm”, Physics Letters B, vol. 268,

pp. 247-252.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953) “Equation of

state calculations by fast computing machines”, Journal of Chemical Physics, vol. 21, pp. 1087-1092.

Neal, R. .M. (1994) Bayesian Learning for Neural Networks, PhD thesis, University of Toronto.

Neal, R. M. (2003) “Slice sampling” (with discussion), Annals of Statistics, vol. 31, pp. 705-767.

Neal, R. M. (2010) “MCMC using Hamiltonian dynamics”, in the Handbook of Markov Chain Monte

Carlo, S. Brooks, A. Gelman, G. L. Jones, and X.-L. Meng (editors), Chapman & Hall / CRC

Press, pp. 113-162. Also available at arxiv.org/abs/1206.1901

Neal, R. M. (2020) “Non-reversibly updating a uniform [0,1] value for Metropolis accept/reject

decisions”, arxiv.org/abs/2001.11950

Rossky, P. J., Doll, J. D., and Friedman, H. L. (1978) “Brownian dynamics as smart Monte Carlo

simulation”, Journal of Chemical Physics, vol. 69, pp. 4628-4633.

