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THE RELATIVE EFFICIENCY 
OF PROPOSITIONAL PROOF SYSTEMS 

STEPHEN A. COOK AND ROBERT A. RECKHOW 

?1. Introduction. We are interested in studying the length of the shortest proof 
of a propositional tautology in various proof systems as a function of the length of 
the tautology. The smallest upper bound known for this function is exponential, 
no matter what the proof system. A question we would like to answer (but have not 
been able to) is whether this function has a polynomial bound for some proof 
system. (This question is motivated below.) Our results here are relative results. 

In ??2 and 3 we indicate that all standard Hilbert type systems (or Frege systems, 
as we call them) and natural deduction systems are equivalent, up to application of 
a polynomial, as far as minimum proof length goes. In ?4 we introduce extended 
Frege systems, which allow introduction of abbreviations for formulas. Since these 
abbreviations can be iterated, they eliminate the need for a possible exponential 
growth in formula length in a-proof, as is illustrated by an example (the pigeon- 
hole principle). In fact, Theorem 4.6 (which is a variation of a theorem of Statman) 
states that with a penalty of at most a linear increase in the number of lines of a 
proof in an extended Frege system, no line in the proof need be more than a con- 
stant times the length of the formula proved. The most difficult result is Theorem 
4.5, which states that all extended Frege systems, regardless of which set of con- 
nectives they use, are about equivalent, as far as minimum proof length goes. 
Finally, in ?5 we discuss the substitution rule, and show that Frege systems with 
this rule can simulate extended Frege systems. 

Some of our results here appeared earlier in the conference proceedings [1], and 
Reckhow's Ph. D. thesis [2]. (These two papers also establish and report non- 
polynomial lower bounds on some proof systems more restricted than the ones 
mentioned above.) 

To motivate the study of propositional proof systems, let us briefly review some 
of the theory of 9 and X9 (see [3], [4], and Chapter 10 of [5]). By convention, 9 
denotes the class of sets of strings recognizable by a deterministic Turing machine 
in time bounded by a polynomial in the length of the input. X9 is the same for 
nondeterministic Turing machines. If we let TAUT denote the set of tautologies 
over any fixed adequate set of connectives, then the main theorem in [3] implies 
that 9 = XV if and only if TAUT is in g. Now 9- = X9A not only would imply 
the existence of relatively fast algorithms for many interesting and apparently 
unfeasible combinatorial algorithms in X9 (see [4]), it would also have an in- 
teresting philosophical consequence for mathematicians. If 9 = X9, then there 
is a polynomial p and an algorithm &/ with the following property. Given any 
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proposition S of set theory and any integer n, &/ determines within only p(n) steps 
whether S has a proof of length n or less in (say) Zermelo-Fraenkel set theory. To 
see that the existence of Q/ follows from g = X9, observe that the problem solved 
by &/ is in X9A. In fact, a nondeterministic Turing machine can write any string 
of length n on its tape and then verify that the string is a proof of the given proposi- 
tion. For any reasonable logical theory, this verification can be performed within 
time bounded by some polynomial in n. 

Hence the importance of showing g : X9 (or 9 = XgA ?). A related important 
question is whether X9 is closed under complementation, i.e. C* - L is in X9 
whenever L is in XgV. (Here we use the notation 2* for the set of all finite strings 
over the finite alphabet 2 under consideration, and the assumption L c C*. This 
notation will be used throughout.) If X9 is not closed under complementation, 
then of course 9 :A X9A. On the other hand, if X9 is closed under complementa- 
tion, this would have interesting consequences for each of the combinatorial prob- 
lems in [4]. Hence the following result is important. 

1.1. PROPOSITION. X9 is closed under complementation if and only if TAUT is 
inX. 

1.2. Notation. Y is the set of functions f:Z* -- 2 21, ,2 any finite alphabets, 
such that f can be computed by a deterministic Turing machine in time bounded 
by a polynomial in the length of the input. 

PROOF OF 1.1. The complement of the set of tautologies is in X9, since to verify 
that a formula is not a tautology one can guess at a truth assignment and verify 
that it falsifies the formula. Conversely, suppose the set of tautologies is in X9?. By 
the proof of the main theorem in [3], every set L in X9 is reducible to the com- 
plement of the tautologies in the sense that there is a functions in Y such that for 
all strings x, x e L ifff(x) is not a tautology. Hence a nondeterministic procedure 
for accepting the complement of L is: on input x, computef(x), and accept x if 
f(x) is a tautology, using the nondeterministic procedure for tautologies assumed 
above. Hence the complement of L is in X9A. D 

The question of whether TAUT is in X9 is equivalent to whether there is a 
propositional proof system in which every tautology has a short proof, provided 
"proof system" and "short" are properly defined. 

1.3. DEFINITIONS. If L c 27*, a proof system for L is a functions: * -- L for some 
alphabet 21 and f in Y such that f is onto. We say that the proof system is poly- 
nomially bounded iff there is a polynomial p(n) such that for all y e L there is x e 2 
such that y = f(x) and Jxl < p(jyl), where Jzj denotes the length of a string z. 

If y = f(x), then we will say that x is a proof of y, and x is a short proof of y if in 
addition lxi < p(jyl). Thus a proof systemf is polynomially bounded iff there is a 
bounding polynomial p(n) with respect to which every y e L has a short proof. 

1.4. PROPOSITION. A set L is in X9 if L = 0 or L has a polynomially bounded 
proof system. 

The analogous statement for recursive function theory is that L is recursively 
enumerable iff L = 0 or L is the range of a recursive function. The proof of the 
present proposition is straightforward. If L e X9, then some nondeterministic 
Turing machine M accepts L in polynomial time. If L : 0, we define f such that 
if x codes a computation of M which accepts y, then f(x) = y. If x does not code an 
accepting computation, then f(x) = y0 for some fixed y0 e L. Then f is clearly a 
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polynomially bounded proof system for L. Conversely, if f is a polynomially 
bounded proof system for L, then a fast nondeterministic algorithm for accepting 
L is, on input y, guess a short proof x of y and verifyf(x) = y. L1 

Putting Propositions 1.1 and 1.4 together we see that X9 is closed under com- 
plementation if and only if TAUT has a polynomially bounded proof system, in 
the general sense of Definition 1.3. It is easy to see (and is argued below) that any 
conventional proof system for tautologies can naturally be made to fit the defini- 
tion of proof system in 1.3. Although it is doubtful that every general proof system 
for TAUT is natural, nevertheless this general framework helps explain the moti- 
vating question of this paper: Are any conventional propositional proof systems 
polynomially bounded? 

We cannot answer that question directly (except negatively for certain restricted 
systems: see [1] and [2], and also [8]), but at least we can put different proof 
systems into equivalence classes such that the answer is the same for equivalent 
systems. We conjecture that the answer is always no. 

1.5. DEFINITION. Iff1: * -- L and f2: 12 - L are proof systems for L, then f2 
p-simulates fi provided there is a function g: 1 -? 2 such that g is in A, and 
f2(g(x)) = fi(x) for all x. 

Thus g translates a proof x of y in the system f into a proof g(x) of y inf2. It is 
easy to see, using the fact that Y'4s closed under composition, that p-simulation is a 
transitive reflexive relation, so that its symmetric closure is an equivalence relation. 

1.6. PROPOSITION. If a proof system f2 for L p-simulates a polynomially bounded 
proof system f1 for L, then f2 is also polynomially bounded. 

This is an immediate consequence of the definitions of "proof system" and 
"polynomially bounded", and the fact that every function in Y is bounded in 
length by a polynomial in the length of its argument. C] 

We close this section by establishing some notation and terminology specific 
for propositional proof systems which will be used in the rest of this paper. The 
letter X will always stand for an adequate set of propositional connectives which are 
binary, unary, or nullary (have two, one, or zero arguments). Adequate here means 
that every truth function can be expressed by formulas built up from members of K. 

A formula refers to a propositional formula built up in the usual way from atoms 
(propositional variables) and connectives from some set K, using infix notation. 
(We speak of a formula over X if its connectives are from x.) If Al, ..., A", B are 
formulas, then we write Al, ..., An l= B if B is a logical consequence of Al, ..., An 
(i.e. every truth assignment satisfying Al, ..., An, satisfies B). Each of our proposi- 
tional proof systems will be defined relative to some connective set K, and will be 
capable of proving all tautologies over X by proofs using formulas over K. A 
derivation (from zero or more lines called hypotheses) in such a system is a finite 
sequence of lines, ending in the line proved. A line is always a formula, except in 
the case of natural deduction systems (?3). Each line must either be a hypothesis, 
or follow from earlier lines by a rule of inference. (In case the rule itself has no 
hypothesis, the rule is an axiom scheme.) If the derivation has no hypothesis, it 
is called a proof. 

Thus to specify a propositional proof system for our purposes, it is only neces- 
sary to specify K, the definition of a line, and a finite set of rules of inference. To 
make this notion of proof system be an instance of our abstract Definition 1.3, we 
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note first of all that formulas can be naturally regarded as strings over a finite al- 
phabet. The only problem is that an atom itself must be regarded as a string (say 
the letter P followed by a string over {O, 1}) in order that there be an unlimited 
supply of atoms. Then a proof X in the propositional system which is, say, a se- 
quence of formulas, can naturally be regarded as a string over a finite alpha- 
bet which includes the comma as a separator symbol, as well as the symbols 
necessary to specify the formulas. The function f which abstractly specifies the 
system would be given by f(z) = A if r proves A, and f(z) = AO for some fixed 
tautology AO if z is a string not corresponding to a proof in the system. 

The notation Al, ..., An, K B means that z is a derivation of B from hypotheses 
Al, ..., An in the proof system Y. (The notation K-y means that there is some der- 
ivation z in the system Y.) We use the following notation for various length 
measures: 

l(A) is the number of occurrences of atoms and nullary connectives in a formula 
(or sequence) A. 

A(z) is the number of lines in a derivation z. 
p(z) = maxil(Ai), if z is (A1, ..., A). 
Izn or JAl is the length of z or A as a string. 

?2. Frege systems. In the most usual propositional proof systems the rules of 
inference are formula schemes, and an instance of the scheme is obtained by 
applying a substitution to the scheme. We shall call such systems Frege systems, 
after Frege [6]. 

Throughout this section we assume that all formulas are over some fixed ade- 
quate connective set K. The following terms are defined relative to K. 

2.1. DEFINITIONS. If D1, ..., Dk are formulas and P1, ..., Pk are distinct atoms, 
then of = (D1, ..., Dk)/(P1, ..., Pk) is a substitution, and uA is the formula which 
results by simultaneously replacing Pi by Di, i = 1, ..., k, in formula A. A Frege 
rule is a system of formulas (C1, ...,CQ)/D, where C1, ..., Cn, l= D. If n = 0, the 
rule is an axiom scheme. For any substitution of we say that uD follows from 
u C1, ..., u Cn by the rule(C1, ..., CI)/D. An inference system is a finite set of Frege 
rules. The notions of derivation and the symbol F- for F are defined as in the end 
of ? 1, where now a line in a derivation is a formula. By our condition on the defini- 
tion of Frege rule, it is clear that if Al, ..., A, F-g B then Al, .. ., A, l= B. 

2.2. DEFINITIONS. An inference system F is implicationally complete if Al, ..., An 
Kg B whenever Al, ...An, l= B. A Frege system is an implicationally complete in- 
ference system. 

In fact, Frege's original system in [6] does not fit the above definition, because 
it has axioms instead of axiom schemes, and tacitly includes the substitution rule 
(see ?5). According to Church [12, p. 158], the idea of axiom schemes used to 
replace the substitution rule is due to von Neumann [13]. If we modify Frege's 
system to be a Frege system, the result has connectives X = { D, v }, and the rule 

A, A DDB 

B 

and the six axiom schemes 

A D(BDA), (CD(BDA)) D ((CDB)D(CDA)), 
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(D D(B DA)) D (B D (D vDA)), (B DA) D (-AA :-B), 

-i--IA D A, A D -i--A. 

2.3. THEOREM. For any two Frege systems iF and F2 over K there is afunctionf 
in S and constant c such that for all formulas Al, ..., An, B and derivations zc, if 
A1, ..., An~ Ks B then Al, ..., An Wf2) B, and A(f(z)) < ca(zc) and pff(iz)) < 
cp(z). (See the end of ?1 for notation.) 

2.4. COROLLARY. Any two Frege systems over K p-simulate each other. Hence one 
Frege system over X is polynomially bounded if all Frege systems over X are. 

The corollary is an immediate consequence of the theorem and Proposition 1.6. 
Reckhow [2] proves a generalization of the corollary to cover the case of Frege 
systems with different connective sets simulating each other, even when some of the 
connectives have arity greater than two. His proof is much more complicated than 
our proof of Theorem 2.3 given below, largely because of the difficulty of simulat- 
ing systems using the connectives _ and $ by systems without these connectives. 
Fortunately, Corollary 4.6. below, concerning extended Frege systems, makes 
Corollary 2.4 and Reckhow's generalization less important than they might appear 
at first, since extended Frege systems seem to be more natural than Frege systems 
when measuring proof lengths. 

The lemma below is used in the proof of Theorem 2.3. (The notation u(7) means 
uA1, ..., UAk, if z is a derivation Al, ..., Ak.) 

2.5. LEMMA. If iZ is a derivation of A from B1, ..., Bk in a Frege system F, then 
q(7c) is a derivation of qA from uBl, ..., uBk in F, for any substitution I. 

The proof is an easy induction on the length of z. D 
To prove Theorem 2.3, assume 91 and F2 are Frege systems over K. For each rule 

R = (C1, ..., Cm)/D in Fl, let ZCR be a derivation of D from C1, ..., Cm in F2. Now 
suppose z is a derivation of B from Al, . . ., An in F, and suppose y = (B1, ..., Bk). 
To construct the F2-derivationf(z) from a, if Bi follows from earlier Bj's by the 

Fl-rule Ri and substitution ui, simply replace Bi by the derivation Ui(JRj) (with 
hypotheses deleted). According to Lemma 2.5, Ui(JCRj) is a derivation of Bi from the 
same earlier B 's. Clearly 2(f(tz)) < cl2(z), where cl is the number of lines in the 
longest derivation ZCR, as R ranges over the finite set of rules of Y1. Finally, p(ftz)) 
< c2p(W), where c2 is an upper bound on l(A) as A ranges over all formulas in all 
the derivations ZCR, R a rule of F1. D1 

?3. Natural deduction systems. The purpose of this section is to indicate the 
sense in which natural deduction systems are equivalent to Frege systems. Rather 
than presenting a specific natural deduction system, such as one appearing in 
Prawitz [7], we shall introduce a general definition analogous to our general 
notion of Frege system. To make the classical proposition system of Prawitz fit our 
definition, it is necessary to allow Prawitz's notion of proof to be a more general 
directed acyclic graph, rather than a tree. That is, once a formula is derived from a 
set of assumptions, we do not require that it be derived again if it is used twice. 

Alternatively, we could stick to Prawitz's tree proofs, provided that if a formula 
occurred several times in a proof with the same assumptions, it be counted only 
once in measuring the length of the proof. In fact, we shall present our natural 
deduction proofs as sequences of lines, and each line will have the form Al, ..., A, 
-+ A, where Al, .. An are assumptions which imply A. Thus our proofs require re- 
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peating the assumptions for a formula with each step, which makes them a little 
longer and harder to write down, but easier to analyze. For convenience, we allow 
only the right-most formula An to be discharged. Reckhow [2] gives a more general 
treatment of natural deduction systems, as well as Gentzen's sequent systems. 

Part of the appeal of a natural deduction system is that it allows the "deduction 
theorem" to be used as a rule. According to the deduction theorem, from a deriva- 
tion w in a Frege system F showing Al, ..., Am F- B we can construct a derivation 
w' in F showing Al, ..., Am,- K Am D B. The trouble is that a' may be twice as 
long as w, so that if a natural deduction derivation has m nested uses of this deduc- 
tion rule and they are eliminated sequentially to obtain a Frege derivation, the 
result might be longer by a factor of 2m than the original derivation. Fortunately, 
they can be eliminated simultaneously, as shown by the construction fr(X) below. 

The following definitions are relative to a given adequate connective set K. 
3.1. Notation. Even if 'or V is not in a, formulas N(P) and O(P, Q) over X can 

always be found such that N(P) and O(P, Q) are equivalent to -P and P V Q, 
respectively, and such that P and Q each has at most one occurrence in each of N(P) 
and O(P, Q). A fixed "dummy" atom PO may occur several times, however. For 
example, if K is {E, D } then N(P) could be (P * (Po D PO)) and O(P, Q) could be 
((P E (Po D Po)) D Q). (See ?5. 3.1.1 of [2] for an argument showing how this 
can be done in general.) Thus we will take -iA or A V B to mean N(A) or O(A, B), 
respectively, if or V is not in K. We use V (A1, ..., Am) to stand for ( ...(A1 V A2) 
* VAm) (association to the left), and V'(A1, , Am) to stand for (A1 v 

(Am-, v Am) .) (association to the right). 
3.2. DEFINITIONS. A naturnal deduction line (or just line) is a pair r -? A, where 

F is any finite sequence of formulas, and A is a formula. If r is empty, the line is 
written simply -? A. Associated with a line L = (A1, ..., Am) A are two equiva- 
lent formulas L* = V ( A1, . . , - Am, A) and LO = V'( A1, ..., IAm, A). (If m = 
0, the L* = LP = A.) The line L takes on the same truth value under a truth assign- 
ment as formulas L* and LO, so that the concepts of validity, logical consequence, 
etc. are well defined for lines. If a is a sequence B1, ..., B, of formulas and L is the 
line (Al, ..., Am) -+ A, then /JL is the line (B1, ..., ByI Al, ..., Am) -+ A. If A is a 
set of lines, L is a line, a is a sequence of formulas, and of is a substitution, then A 
I= L implies that zk(A) I= Ju(L), where the operations a and of are extended to 
sets of lines in the natural way. If A is a finite set of lines and L is a line such that 
A 1= L, then the system R = A/L is a natural deduction rule. Line L' follows from 
A' by rule R provided for some substitution of and sequence z, A' = J1(A), and 
L' = (4L). A natural deduction system is a finite set of natural deduction rules 
which is implicationally complete (implicationally complete being defined in a 
manner analogous to that for Frege systems). A formula A is represented in a 
natural deduction system X by the line -+ A. This convention allows us to speak 
of proofs of formulas and derivations of a formula from formulas in X, and thus 
write for example A1, ..., An , B instead of A1, ..., A n - B. 

If L = (A1, ..., A*) A is a line, then l(L) = I(A1) + ... + l(Ak) + I(A). If Z is 
a derivation, then A(z) is the number of lines in a, and p(z) is the maximum of l(L), 
for all Lin z. 

An example of a natural deduction rule, which embodies the deduction theorem, 
is R1 = (P -+ Q)/(-- -iP V Q). This rule together with its converse R2 = 

(- 'P V Q)/(P -+ Q) can turn any Frege system F into a natural deduction sytem 
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nd(F), provided we reinterpret every rule R = (C1, ..., CJ)/D of the Frege system 
to be R' = (ACE ..., -CE)/ --D. In fact, if A 1= L, then to deduce L from A 
in nd(F), we first observe that every hypothesis M in A can be changed to -M 

by repeated use of the rule R1. By the implicational completeness of F, we can 
derive --ELM in nd(F) from these lines --AMP. Now L can be derived from --LP 
by repeated use of the rule R2. 

Notice that every derivation in F, of say B from Al, ..., A", can be turned into a 
derivation of B from Al, ..., An in nd(F) simply by adding the symbol -+ to the 
left of every formula in the derivation. 

Conversely, every natural deduction system X can be turned into a Frege 
system fr(X), where the rules of fr(X) consist of the two rules R' and R" for every 
rule R of X. To explain R' and R" we need to recall the notation M* for V(- Al, 
..., IAm, A) and introduce the notation(PM)* for V(P, --Al, ..., -1Am, A), where 
M is a line (Al, ..., Am) -? A and P is an atom. If R = AXL, then R' = A*/L* and 
R" = (PA)*/(PL)*, where P is some atom not occurring in A or L, and we have 
extended the * notation to sets A of lines in the obvious manner. It is easy to see 
that the rules R' and R" are sound if R is sound. 

Now if z = L1, ..., L,, is any derivation in X, then we claim that Z* = L* 
L* is a derivation in fr(X). For suppose Li follows from earlier L 's by the the rule 
R = AXL in X. Then for some substitution of and sequence z, Li is JI(L) and the 
earlier L 's comprise the set J1(A). If a is empty, the Lie follows from earlier 
Lx's by the Frege rule R' = A*/L* by a, since for any line M, (q(M))* = (M*). 
If J is not empty, then LiP follows from earlier Lj*'s by the Frege rule R" = 

(PA)*/(PL)* and substitution a', where a' is the substitution obtained by simul- 
taneously applying the substitution of and V( A1, ..., -A,*)/P, where a is (A1, 
...I Ak). We need the fact that for any line M with no occurrence of P, u'((PM)*) = 

(Juf(M))*. 
Thus z* is a derivation in fr(X) for every derivation z in X. Notice that since 

(--HA)* = A, if z is a derivation in X of B from Al, ..., Al, then il* is a derivation 
in fr(X) of B from AI, ..., Al. Further, notice that ,(ii*) = {(ic) and p(ii*) < cp(ic), 
where the constant c depends only on the underlying connective set K. 

Although the constructions above allow us to translate back and forth between 
Frege and natural deduction systems, the following result still needs a separate 
proof 

3.3. THEOREM. Given natural deduction systems X1 and X2 over K there is afunction 
f in S and a constant c such that for all lines L1, ..., L, L and derivations ic, if 
L1 ... Ln 7r L, then L1, ..., L, Kf: L, and 2Af(ic)) < c4(7c) and p(f(tz)) < 

cp(7z). 
The proof is very similar to the proof of Theorem 2.3. Lemma 2.5 is replaced by 

the statement that if z is a derivation in X of line M from lines M1, ..., Mk, then 
Jo(z) is a derivation of JI(M) from JI(Ml), ..., ZI(Mk). D 

3.4. COROLLARY. Let K be any adequate set of connectives. All Frege and natural 
deduction systems over X p-simulate all other Frege and natural deduction systems 
over K. Hence one such system over X is polynomially bounded if and if all such 
systems over X are polynomially bounded. 

The corollary follows immediately from Theorems 2.3 and 3.3, together with the 
constructions nd(F) and fr(X) given above. D 
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Reckhow [2] treats a kind of natural deduction system in which r in a line r -+ 

A is regarded as a set of formulas rather than a sequence of formulas. Such a sys- 
tem might allow for shorter proofs, since in effect there are implicit rules which 
allow r to be reordered. In [2] it is shown that the above corollary holds for this 
system, and that the second part holds even when the systems have different con- 
nective sets. 

The corollary also holds for Gentzen systems with cut, provided a Gentzen proof 
is considered to be a sequence of sequents, so that a given occurrence of a sequent 
can be used more than once in a proof, as opposed to the more usual definition 
that a Gentzen proof is a tree of sequents. When a Gentzen proof is defined to be 
a tree, an exponential lower bound for the number of sequents in a minimum cut- 
free proof of a formula follows from an unpublished result of Statman. More 
recently, Cook and Rackoff have an unpublished result showing an exponential 
lower bound for Gentzen proofs considered as sequences, provided both the cut 
and thinning rules are disallowed. 

?4. Extended Frege systems. The previous sections have indicated that certain 
standard proof systems for the propositional calculus are about equally power- 
ful. We now look for natural extensions of these systems which might be more 
powerful, in the sense that they yield shorter proofs. To motivate this search, 
we try to use Frege systems to simulate an informal proof of the "pigeon-hole 
principle". 

One statement of the pigeon-hole principle is that no injective function maps 
{1, 2, ..., n} to {1, 2, ..., n - 1}, n > 2. For each value of n, this statement may be 
formalized in the propositional calculus as follows. Let Pi1, 1 < i < n, I < j < 
n - 1, be a set of atoms, whose intended meaning is "i is mapped to j". Let wn be 
the set (or sometimes the conjunction of the formulas in the set) {Pi ... V Pi, _1 I 
1 < i < n} U {_-1Pik V -PijI 1 < i < n, 1 <k< n- 1}. If atruthassign- 
ment were given for which each formula in Yn is true then one could define a 
function f which by the first set of disjunctions is from {1, 2, ..., n} to {1, 2, .... 
n - 1} and which by the second set is injective. Thus the formula An = n is a 
tautology. 

An informal proof of the pigeon-hole principle proceeds by induction on n. 
It is obvious for n = 2. In general, iff: {1, ..., n} {1, ..., n - 1}, then let f': 
{1, ..., n - 1} -+ {1, ..., n - 2} be defined by f'(i) =f(i) iff(i) o n - 1; other- 
wise f'(i) = f(n). Iff is injective, it is easy to see thatf' is also, contradicting the 
induction hypothesis. 

To mimic this proof in a Frege system, we try to deduce Yn-1 from Yn. For each 
i, j, we introduce a formula Bij which means f'(i) = j. Bij = Pii V (Pin-I & 
Pnj), 1 < i < n-i 1 < j < n -2. Let aUn- be the substitution Bij/Pij (1 < i < 
n - 1 1 <j ? n - 2). The argument that finjective implies f' injective shows 
y # i n-1(yn-1). By completeness, OYn F- aUn-l(5yn-0 Similarly, 5Yn-1 K 

Un-2G5"n-2), so by Lemma 2.5, there is a derivation of the same number of lines 
showing Un-l(>"n-1) K an-l Jn-2(G9n-2), SO Yn K an-1 Un-2(yn-2). Proceeding this 
way, we finally obtain a derivation showing Y5n F An- 1 -1 (2(52) But Y"2 is 

{P11, P21, -iP11 V -P21}, from which a contradiction is easily derived, so by the 
deduction theorem, F- --lyn; i. e. F- An 
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It is not hard to see that by choosing the rules of our Frege system conveniently, 
the derivation of gn-iGy'n-l) from Yn'n has 0(n3) lines. Hence the entire proof of 
An has 0(n4) = O(N4/3) lines, where N is OAnI. On the other hand, each application 
of a substitution vi triples the length of a formula, so the longest formulas in the 
proof of An grow exponentially in n. 

A simple device to reduce the formula length in the above proof is to introduce 
new atoms which abbreviate the formulas Bij. Thus the atom Q! ; has a defining 
formula Qb (Pij V (Pis, 1 & PO)), 1 < i < n - 1 1 < j < n- 2. From these 
defining formulas and the formulas Yn, the formulas Z~n-iGy'n-l) are easily derived, 
where ZCn-1 is the substitution Qb-/Pij (I < i < n-1 1 < j < n -2). In general, 
a new atom Qk*l is introduced for gn-1 ... an-k(Bij) with defining formula Qk*J1 _ 
(Q-j V (Q, n-k-l & Qn-k,j)), and the formulas Vn-k-1l(yn-k-l) are easily derived 
from these defining formulas and the formulas Vn-kGy'n-k) where rn-k is the sub- 
stitution Q4l/Pij (1 < i < n - k, 1 < j < n - k - 1). In this way, a contradiction 
is derived from Yn'n in 0(n4) lines, where now each formula has length only 0(n). 
Hence An has a proof of length 0(n5) in this framework. This kind of proof system 
can be formalized as follows: 

4.1. DEFINITION. An extended Frege system over a connective set K is a proof sys- 
tem which consists of a Frege system Y over X together with the extension rule 
which allows formulas of the form P _ A to be added to a derivation, where A 
is any formula over K, and P is any "new" atom. (P must not occur in A, in any 
lines preceding P A, or in any hypotheses to the derivation. P can occur in later 
lines, but not in the last line.) We say P is a defined atom and P A is its defining 
4 
formula. If is not in a, we choose some short formula P Q over X which is 
equivalent to P _ Q, and let P A be the defining formula for P. The extended 
Frege system based on F is denoted by eY. 

(The extension rule was first suggested by Tseitin [8], in the context of resolution 
proofs.) 

4.2. PROPOSITION(SOUNDNESS OF eY). If A1, ..., An KeF B, then A1, ..., An 1 B. 

PROOF. Let z- be any truth assignment to the atoms of Al, ..., An and B which 
satisfies Al, ..., An. Then z- can be extended to make each line in the derivation 
true. In particular, if P _ A is a defining formula, then P has not occurred earlier 
in the derivation, so we are free to extend z so z(P) = z(A). Hence z(B) is true, 
since B is the last line of the derivation. D1 

Although the extension rule apparently allows the lengths of formulas in a 
derivation to be greatly reduced, the following result shows the number of lines in 
a proof cannot be much reduced. 

4.3. Proposition. If zc is a derivation of B from Al, ..., An in eF, then there is a 
derivation iz' of B from A1, ..., An in Y with A(ic') < A(ic) + cm where c depends 
only on Y, and m is the number of defining formulas in iz. 

PROOF. Suppose Pi Ci, 1 < i < m, are the defining formulas in iz (given in 
the order in which they occur in ir). Then iz is a derivation in F of B from 
Al, ..., An, P1 C1, ..., Pmn Cm. Now let a be the composed substitution 

Cm Cm-I 0 
C1 

0 _C 
Pm m-1 P1 

By Lemma 2.5, u(iz) is a derivation of aB from uA1 , ..., BAnM U(P1 C1), ... 
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u(Pm Cm). By the restrictions on the defined atoms Pi, (iz) is a derivation in F of 
B from Al, ..., A, u, - .., Cm -Cm. But Q Q has some fixed proof 
in F of some number of lines (say c lines), so by Lemma 2.5, each aCi -C, 
has a proof in F of c lines. Also A(o(iz)) = A(iz). Hence we construct lz' from 
o(iz) together with these m proofs, and the proposition follows. D1 

Of course the formulas of lz' can grow exponentially in m, even if the formulas 
of iz are short, as shown by the pigeon-hole example at the beginning of this sec- 
tion. 

We mentioned that Reckhow [2] strengthened Theorem 2.3 to cover the case of 
different connective sets, but the proof was complicated by the difficulties of find- 
ing a short translation for a formula containing into one containing, say, just 
&, v, and -i. In the case of extended Frege systems, this difficulty can be circum- 
vented. Theorem 4.5 below states that if the number of lines in the shortest proof of 
a tautology A is bounded by some function L(l(A)) in some extended Frege system, 
then essentially the same is true of any extended Frege system over any connective 
set, and furthermore the lengths of the formulas in a proof need not be much longer 
than the formula proved. (The latter is in sharp contrast to the apparent situation 
for Frege proofs without extension.) 

4.5. THEOREM. Suppose eY and eY' are extended Frege systems over K and K', re- 
spectively, and suppose L(n) > nis a natural numberfunction such that every tautology 
A over K has a proof iz in eY with A(ic) < L(l(A)). Then every tautology A' over 
K' has a proof iz' in eY' such that A(ic') < cL(cl(A')) and p(z;') < cl(A'), where the 
constant c depends only on F and Y'. 

4.6. THEOREM (STATMAN)1. For any extended Frege system eY and tautology A, 
if z is a proof of A in eY, then there is a proof iz' of A in eY such that A(ic') < 
c(A(ic) + I(A)) and p(ic') < cl(A), where the constant c depends only on F. 

4.7. COROLLARY (TO THEOREM 4.5). A given extended Frege system is polynomially 
bounded if and only if all extended Frege systems over all connective sets are poly- 
nomially bounded. Also, an extended Frege system eY is polynomially bounded if 
and only if there is a polynomial bound on the number of lines in proofs in eSF. Hence, 
if 9 A X9, then there is no polynomial bound on the number of lines in proofs in 
extended Frege systems, Frege systems, or (by ?3) natural deduction systems. 

Propositions 4.5, 4.6, and 4.7 are evidence that the extended Frege systems are 
a very natural class of proof system. Further evidence is provided by results in 
[11], which show that extended Frege system proofs can simulate the proof of any 
theorem of a certain number theory system PV. ("Simulate" here means something 
similar to the way in which extended Frege proofs simulate the proof of the pigeon 
hole principle in the example given at the beginning of this section.) The same 
paper [11] shows that extended Frege systems are the most efficient systems whose 
soundness is provable in PV. 

The remainder of this section is devoted to proving Theorems 4.5 and 4.6. Let us 

'After proving a version of Theorem 4.5 without the bound on p(7r') in course notes [9], the 
first author received an earlier version of Statman [10] and realized the proof in the notes could be 
strengthened to yield the present Theorems 4.5 and 4.6. Statman's theorem in [10] has a more 
general setting than 4.6, but a weaker bound on A(7r'). The authors wish to thank Martin Dowd for 
helpful discussions concerning Theorem 4.6. 
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start by showing that a bound on proof length in an extended Frege system gives 
us a bound on derivation length. 

4.8. LEMMA. Suppose eF and L(n) satisfy the hypotheses of Theorem 4.5. If A1, 
Am, B are formulas over /c such that Al, ..., Am 1 B, then there is a derivation 

X in eY of B from A1, ..., Am with A(X) < cL(cn), where n = l(A1) + * + l(Am) + 
1(B), and c depends only on F. 

PROOF. Suppose first that the connective set c of F contains V and --. Since Al, 
I Am F= B, we have 1 (-A1(-A2 V . V(-Am) VB) ...)). Hence this formula 

has a proof iz' in eY with A(iz') < L(n), n = l(A1) + ... + l(Am) + I(B). If we 
assume Y has the cut rule 

PF --P V Q 
Q 

then by appending m applications of this rule to lt', we obtain a derivation iz of B 
from Al, ..., Am satisfying the lemma, with A(iz) < 2L(n). If the cut rule is not in 
Y, then by Theorem 2.3 the rule can be simulated to produce a derivation l: with 
A(1z) < cL(n). 

If V or 'is not in K, one can check that nevertheless there are formulas O(P, Q) 
and N(P) over X equivalent to P v Q and 'P. respectively, such that O(P, Q) and 
N(P) have at most one occurrence each of P and Q (see 3.1). In this case we obtain 
the bound A(iz) < cL(cn). El 

To prove Theorems 4.5 and 4.6 we need the notion of a defining set of formulas 
def(A) for a formula A. We assume that every formula B (over any connective set) 
has associated with it an atom PB such that PQ is Q for any atom Q. and distinct 
nonatomic formulas have distinct associated atoms. To be definite, we could let 
PB be the string consisting of the letter P followed by the string B, if B is nonatomic. 
In any case, we shall also assume for convenience later, that there are infinitely 
many atoms P, called admissible atoms, which are not of the form PB for any non- 
atomic B. 

Let us call a formula A admissible if all its atoms are admissible. If A is admis- 
sible, then every truth assignment z- to the atoms of A has a unique extension a' to 
the atoms PB, B any subformula of A, such that 'Z'(PB) = z(B). We shall define 
def(A) such that any extension z" of z satisfies def(A) iff z" agrees with .' on the 
atoms PB. For example, if A is Q V (R & S), then def(A) might be {(P(R&S) 
(R & S)), (PA Q V P(R&S))} In fact, it is useful to more generally define def(), 
where T is any adequate set of connectives, perhaps different from the set of con- 
nectives appearing in A. 

4.9. DEFINITION. Let Tj and KT2 be connective sets. Corresponding to each null- 
ary connective (constant) K1 in Tj we associate a fixed formula K2 over KT2 equivalent 
to K1; corresponding to each unary connective u1 over A, we associate a fixed for- 
mula u2P over K2 equivalent to ujP, and corresponding to each binary connective 
01 in x, we associate a fixed formula P 02 Q over K2 equivalent to P oi Q. We assume 
the formulas P 1 Q over Tj and P 2 Q over T2 are each equivalent to P Q. 
For each formula Al over x, we associate a set def,2(Al) of formulas over KT2 defined 
by induction on the length of Al as follows: 

def,2(P) = 0 (the empty set) for each atom P. 

def,9(K1) {PK1 2 K2} for each constant K1 in xj. 
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def,2(uA) = def,2(A) U {PUqA -2 U2PA}, for each unary connective u1 in K,. 
def,2(AoB) = def12(A) U def12(B) U {PA?1B 2 PA 02 PB}, for each binary con- 

nective o1 in xi. 
In case xi = K2, we assume K1 = K2, ul = u2, and ol = ?2 It is easy to check that 

the total number of occurrences of atoms in def12 (A) is bounded by a linear function 
of l(A). 

4.10. LEMMA. Suppose eY is an extended Frege system over X, A is an admissible 
formula over X, and def,(A) K-F PA. Then for some I' we have Add A, where 
AGz') < A(X) + cl(A) and p(z') < (p(z) + c)l(A), and c depends only on y. 

PROOF. Let a be the simultaneous substitution EIPE for all nonatomic subfor- 
mulas E of A, so in particular JPA = A. Then every formula in o(def,(A)) is an 
instance of P P, and each of these instances will have a proof in Y of some fixed 
number of lines, and a number of atoms bounded by a constant times l(A). These 
proofs, together with o(iz), comprise ir'. F] 

4.1 1. LEMMA. If eY and eF' are extended Frege systems over K and K' respectively, 
A' is an admissible formula over I', and def,(A') KXF PA,, then for some derivation 
Z', def,,(A') KX PA,, where A(z') < cA(z) and p(z') < d, and the constants 

c and d depend only on Y and Y'. 
PROOF. Suppose l: is B1, ..., Bin. We may assume, by renaming if necessary, that 

all atoms of each Bi are admissible, except possible those which occur in the hypo- 
theses or conclusion of l: (i.e. except those of the form Pct where C' is a subformula 
of A'). We shall construct the derivation lz' in eY' by filling out the skeleton deri- 
vation PB1, ., PBm. (Notice that PBm is PA, since Bm is PA, and in general PQ = Q 
for any atom Q.) In fact, we shall show that for some constants c and d depending 
only on Y and Y', each PB, can be derived from earlier PB1's and def,,(A') in at 
most c lines by formulas C with l(C) < d. 

To see how to derive PB, in lz' we consider three cases, depending on how Bi was 
obtained in lz. For each of these cases we assume that some of the formulas of 
def,,(Bi) are available in lt', either because they are among the hypotheses def,,(A') 
of ir' or because they are introduced at the beginning of lz' by the extension rule. 
The defining formula for Pc, where C is a subformula of Bj, is in def,,(A') if C is 
also a subformula of A'. If C is not a subformula of A', then the defining formula 
for PC can legally be included in lz' by the extension rule. 

Case I. Bi is a hypothesis for lz, so Bi is in def,(A'). We may assume Bi has the 
form PC (PD' ? PE'), where C', D', E' are subformulas of A', P o Q is the fixed 
formula over X equivalent to P o' Q, and C' is D' o' E'. (The cases of unary and 
0-ary connectives are similar.) Then PC -a' (PD' ?' PE') is in def,,(A'), and so is a 
hypothesis of lt'. Let H(o') be the formula P (Q o R) over x. Note that H(o') 
depends only on the connective o', and not otherwise on Bi. Then the rule 

P P '(Q o' R), def,,(H(o')) R = n 

PH(-') 

is sound, so by Theorem 2.3 we may assume it is a rule of Y'. Let a be an extension 
of the substitution 
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such that o(def,,(H(o'))) = def,,(Bi). Then PB, follows in one step by R and a from 
def,,(A') and defK,(Bi). 

Case II. Bi is introduced in l: by the extension rule. Then Bi has the form P C, 
where P is a new defined atom. The constraints governing the use of the extension 
rule imply that P does not occur in the hypotheses or conclusion of lZ, and by our 
assumption at the beginning of this proof, P is admissible. Therefore, P does not 
occur in the hypotheses or conclusion of lt'. We note that the formula P -' PC, 
together with any subset of the formulas of def,,(Bi) not introduced earlier could be 
introduced by the extension rule in iz', after any necessary formulas of def,,(Bi-1) 
and before formulas of def,,(Bi+,) are introduced. The order of introduction could 
be def,,(C), P -' Pc, followed by one or more formulas whose conjunction is 
equivalent to PB, '(P -' Pc). This last formula itself will be in def,,(Bi) if _ is 
in K, in which case Bi is P _ C. In this case, it follows from Theorem 2.3 that PB 

can be deduced in a bounded number of bounded steps in ir' from P - ' PC and 

PBS -' (P -' Pc). If -is not in X, there are nevertheless a bounded number of 
formulas in def,,(Bi) which imply PB, -' (P -' PC), and the number and structure 
of these formulas depends only on the way is represented in X and K'. Hence 
again PB, can be deduced in lz' from defK,(Bi) and P -' PC by a bounded number of 
bounded formulas. 

Case III. Bi follows from earlier formulas in l: by a rule R = (C1, ..., Ck)ID in 
Y by the substitution a. Then C1, ..., Ck F D, so the rule 

R' = def,,(D), def,,(C1), ..., def,,(Ck), PC1, PCk 

PD 

is sound, and by Theorem 2.3 we may assume it is a rule of Y'. We may assume all 
formulas C1, . . ., C*, D are admissible. Let a' be the composition of the substitutions 
a(E)!PE for all subformulas E of formulas in the set {C1, ..., C*, D}. Then 

9'(def,,(Cj)) c defv,(a(Cj)), 1 < j < k, and u'(def,,(D)) c def,,(a(D)). Of course 
each a(Cj) is some B1, 1 < i, and v(D) is Bi. By the induction hypothesis Pa(C,) 

occurs earlier in lt'. Hence PB, follows by R' and a' from earlier formulas ic' and a 
bounded number of formulas from defK,(B,), for various B,. 

This completes the proof of Lemma 4.11. 
Now assume the hypotheses of Theorem 4.5, and let A' be any valid formula over 

t'. We may assume A' is admissible, for if not, we may rename the atoms in A' so 
that it is admissible, find a suitable proof of the result, and then rename all atoms 
in the proof to obtain a suitable proof of A'. Then def,(A') # PA', so by hypothesis, 
the bounds on l(def,(A')), and Lemma 4.8, there is a derivation iz in eF of PA' 

from defK(A') such that A(iz) < c1L(c1l(A')). By Lemma 4.11, there is a derivation 
iZ' in eY' Of PA' from def,,(A') such that A(iZ') < c2L(c1l(A')) and p(-z') < d. 
Theorem 4.5 now follows by Lemma 4.10. 

To prove Theorem 4.6, we may assume as above that A is admissible. By in- 
duction on the length of B, it is easy to see that for every admissible formula B over 
K there is a derivation iCB in Y of PB B from def,(B) such that Az(B) < c1l(B) 
and P(ZB) < c21(B), where x is the connective set of F. By putting together iCA with 
iz in the theorem, we obtain a derivation lz of PA from def,(A) such that A(zl) < 

C3(AiAZ) + 1(A)) and p(zl) < C41(Z). We now apply Lemma 4.11 with a' = X, 
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eY' = eY, and z = lz to modify lz so its formulas have bounded length, and 
finally apply Lemma 4.10 to the resulting derivation. El 

?5. The Substitution Rule. Frege's original propositional proof system [6] tacitly 
assumed the following: 

5.1. Substitution Rule. From A conclude uA, for any substitution o in the no- 
tation of the system. 

5.2. DEFINITION. A Frege system with substitution, s., is obtained from a Frege 
system F by addition of the substitution rule. Hypotheses are not allowed in 
derivations in s,. 

The reason hypotheses are not allowed in s.-derivations is that in general not 
A l= uA. Thus the substitution rule is unsound in this sense. On the other hand, if 
l= A then l= uA, so if -F A then l= A. In other words, sF is a sound system for 
proving tautologies, but not for deriving formulas from hypotheses. 

The theorem below shows that Frege systems with substitution can p-simulate 
extended Frege systems. The converse may be false, however. (We conjecture 
Frege systems with substitution are not p-verifiable in the sense of [11], whereas 
extended Frege systems are p-verifiable.) 

5.3. THEOREM. Given an extended Frege system e,9F there is a function f in Y and 
constant c such that for all proofs iz and formulas A, if H. A, then Kf (1) A, 
and A(flz)) < cA(c)p(2) and p(f(z)) < cA(2)p(c). 

PROOF. Suppose P1 C1, ..., Pk - Ck are the defining formulas introduced by 
extension in iz. As discussed before Theorem 3.3, F can be turned into a natural 
deduction system X by including the rules 

R, - 
P p 

VQ Q and R2 = p Q 

Let us assume in addition that X has the rules 

3 P. R Q 
4and R4= RP 

Q 

and the axiom P-+ P. Then for each i, 1 < i < k, the line E1, ...,Ek -+E can be 
derived from the axiom and k - 1 uses of R3 and R4, for any formulas E1, ..., E*. 
The derivations of these k lines, together with iz, describe a derivation gz in X of 
E, ..., Ek-+ A, where now Ei is the defining formula Pi Ci, and A(zl) < A(Z) + 
k2 and P(zl) < (k + l)p(z). Now by adding k applications of rule R1, we obtain a 
derivation in X of B, where B is --E1 V (-iE2 V * V (--E-, V A) ...). Hence not- 
ing k < A(z), we have by the proof of corollary 3.4 a derivation s in 5 of B, 
where A(Z2) < c1(({Z))2 and P(1Z2) < cli(z)p(z). Now assume the defining formulas 
P1 C1, .., Pk1 Ck are numbered in reverse of the order in which they appear 
in iz. Then P1 C1 appears last, so P1 has no occurrence in any Ci or in A. By 
applying the substitution rule to B with the substitution C1/Pl, and applying the 
Frege rule (-i(P-P) V Q)/Q, we can derive --E2 V ... V (-- EkvA)...) from B. 
By k - 1 further applications of the substitution rule and this Frege rule, each 
of the Ei's can be pruned, and we obtain a proof of A in s5J which satisfies the 
conditions of the theorem. Cl 

By combining the above theorem with Theorem 4.5, we obtain the following. 
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5.4. COROLLARY. If there exists a polynomially bounded extended Frege system, 
then all Frege systems with substitution over all connectives sets are polynomially 
bounded. D 

A result similar to Theorem 4.5 can be proved for Frege systems with substitu- 
tion, using the methods in that proof and in the above argument. In particular, one 
Frege system with substitution is polynomially bounded if and only if all such 
systems over all connective sets are polynomially bounded. Reckhow [2] proves 
this result by different methods. 
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