
An Algebraic Framework for Merging

Incomplete and Inconsistent Views

Mehrdad Sabetzadeh Steve Easterbrook

Department of Computer Science, University of Toronto

Toronto, ON M5S 3G4, Canada.

Email: {mehrdad,sme}@cs.toronto.edu

September 2004

Abstract

View merging, also called view integration, is a key problem in conceptual modeling. Large models
are often constructed and accessed by manipulating individual views, but it is important to be able
to consolidate a set of views to gain a unified perspective, to understand interactions between views,
or to perform various types of end-to-end analysis. View merging is complicated by incompleteness
and inconsistency of views. Once views are merged, it is useful to be able to trace the elements of
the merged view back to their sources. In this paper, we propose a framework for merging incomplete
and inconsistent graph-based views. We introduce a formalism, called poset-annotated graphs, which
incorporates a systematic annotation scheme capable of modeling incompleteness and inconsistency as
well as providing a built-in mechanism for ownership traceability. We show how structure-preserving
maps can capture the relationships between disparate views modeled as poset-annotated graphs, and
provide a general algorithm for merging views with arbitrary interconnections. We use the i∗ modeling
language [26] as an example to demonstrate how our approach can be applied to existing graph-based
modeling languages, especially in the domain of early Requirements Engineering.

1 Introduction

Model management is an important, but often neglected activity in requirements analysis and design. Large
models are often constructed and accessed by manipulating partial views. Keeping track of the relationships
between these views, and managing consistency as they evolve are major challenges [11]. Individual views
may represent information from different sources, or information relevant to different development concerns.
Developers analyze these views in various ways, and use the results of the analyses to improve them. Hence,
individual views may evolve over time. Multiple versions of some views may be created to explore alternatives,
or to respond to changing requirements. Hence, most of the time, the current set of views are likely to be
incomplete and inconsistent.

In this paper, we address the problem of merging multiple views. View merging is useful in any conceptual
modeling language, as a way of consolidating a set of views to gain a unified perspective, to understand
interactions between views, or to perform various types of end-to-end analysis. A number of approaches
for view merging have been proposed [3, 10, 19]. However, all these approaches assume the set of views are
consistent prior to merging them. This is fine if the views were carefully designed to work together. However,
for many interesting applications, the views are not likely to be consistent a priori. Hence, existing approaches
to view merging can only be used if considerable effort is put into detecting and repairing inconsistencies.

1

Recent work on consistency management tools [18] helps in this respect but does not entirely address the
problem because, as we will argue, it is not possible to determine whether two views are entirely consistent
until all the decisions are taken about exactly how they are to be merged. Consistency checking over a set
of views is only possible if the intended relationships between the views are stated precisely.

Our approach to view merging is based on the observation that in exploratory modeling, one can never be
entirely sure how the concepts expressed in different views should relate to one another. Each attempt to
merge a set of views can be seen as a hypothesis for how to put them together, in which choices have to
be made over which concepts overlap, and how the terms used in different views relate to one another. If a
particular set of choices yields an inconsistent result, it may be because we made poor choices, or because
there is a real disagreement between the views over the nature of the concepts being modeled. In any of
these cases, it is better to perform the merge and analyze the resulting inconsistencies, rather than restrict
the available merge choices.

In [22], we proposed category theory as a theoretical basis for representing structural mappings between views
that contain syntactic inconsistencies. The paper proposed a systematic scheme for annotating view elements
with labels denoting the amount of knowledge available about them. Relationships between views were
expressed using homomorphisms that respect constraints on the annotations. View merging was achieved
by colimit computation in an appropriate category.

In this paper, we demonstrate how those ideas can be used as a framework for model management in
Requirements Engineering, and to support the exploratory view merging process outlined above. We add
two crucial elements: the ability to use typing information as a constraint on how views can be interconnected,
and the ability to trace the elements of the merged view back to a source view, even when views are repeatedly
elaborated. We also provide algorithms for computing the merges. To illustrate the power of the approach,
we describe a novel application to the early requirements modeling language i∗ [26].

A key assumption in our work is that the view merging problem can be studied independently of any
particular conceptual modeling language. Our approach, inspired by categorical algebra [1], is to treat the
views as structured objects, and the intended relationships between them as structural mappings. Merging
views w.r.t. their interrelations can then be described using well-known categorical concepts. This treatment
offers both scalability to arbitrary numbers of views, and adaptability to different conceptual modeling
languages. Applications of our approach to view merging include early requirements modeling (as illustrated
in this paper), ontology integration, and schema integration.

To motivate the paper, we present a brief example of the view merging problem. Suppose a requirements
analyst, Sam, is developing a requirements model for a meeting scheduler [24], based on interviews with two
stakeholders, Bob and Mary. To ensure he adequately captures both contributions, Sam first models each
stakeholder’s view separately, using the i∗ notation [26]. He then merges the views to study how well their
contributions fit together.

Figures 1(a) and (b) show the initial views of Mary and Bob, expressed using i∗. At first sight, there appears
to be no overlap, as Mary and Bob use different terminology. However, Sam suspects there are some straight-
forward relationships. “Schedule meeting” in Mary’s view is probably the same task as “Plan meeting” in
Bob’s. “Available dates be obtained” in Mary’s view may be the same goal as “Responses be gathered” in
Bob’s. Sam also thinks it makes sense to treat “Email requests” in Mary’s view and “Send request letters” in
Bob’s view as alternative ways of satisfying an unstated goal, “Meeting requests be sent”. The “Consolidate
results” task in Bob’s view appears to make sense as a subtask of the “Agreeable slot be found” goal in
Mary’s view. Finally, in the light of the comparison between the views, Bob’s claim of a positive contribution
of “Send request letters” to the “Efficient” soft-goal looks dubious, although the “Efficient” soft-goal itself
seems to be important.

For a problem of this size, Sam would likely just draw his version of the merged views, with a result such
as Figure 1(c), and show this to Bob and Mary for validation. This manual merge process has a number of

2

meeting
Schedule

be obtained
Available dates Agreeable

slot be found
Email requests
to participants

Mary

Efficient Plan
meeting

Send request letters results
Consolidate

be gathered
Responses

Bob

meeting
Schedule

Agreeable
slot be found

Available dates
be obtained

Consolidate
results

Meeting requests
be sent

by email
Send requestsSend requests

by snail mail

Efficient

Merged View

+

(a) (b)

(c)

Figure 1: Motivating example

drawbacks:

• There is no separation between hypothesizing a relationship between the original views, and generating
a merged version based on that relationship. Hence, it is hard for Sam to test out alternative hypotheses,
and it will be very hard for Bob and Mary to check Sam’s assumptions individually.

• In a manual merge, Sam will naturally tend to repair inconsistencies implicitly. Hence, we lose the
opportunities to analyze inconsistencies that arise with a particular choice of merge. Previous work
has suggested analysis of inconsistency is a powerful means of uncovering conceptual disagreements [9].

• We have lost the stakeholders’ original vocabularies. If it is important to capture the stakeholders’
own vocabularies in the individual views, then it must be equally important to keep track of how those
terms get adapted into the merged view.

• We have also lost the ability to trace conceptual contributions. Such traceability may become important
if we repeatedly merge and evolve views over a period of time. If we later want to change the priority
(or credibility!) attached to a particular stakeholder’s contributions, we have no way of discovering
how that stakeholder’s view was incorporated into the model.

The framework we describe in this paper addresses these problems. The remainder of the paper is structured
as follows: Section 2 explains the intuition behind our proposed merge framework. Sections 3 and 4 cover
the mathematical background for the paper. Section 5 introduces poset-annotated graphs, the underlying
formalism for views in our framework, and describes how they can be merged. Section 6 demonstrates how
poset-annotated graphs can model incompleteness and inconsistency, and provide a means for ownership
traceability. Section 7 discusses some pragmatic issues concerning our framework. Section 8 presents a
summary of related work. Finally, Section 9 presents conclusions and future work.

2 An Abstract Merge Framework

The view merging framework proposed in this paper is based on a category-theoretic concept called colimit
[1]. The intuition behind colimits is that they put structures together with nothing new added, and nothing

3

left over: “For a given species of structure, say widgets, the result of interconnecting a system of widgets
to form a super-widget corresponds to taking the colimit of the diagram of widgets in which the morphisms
show how they are interconnected.” [14]. This principle works irrespective of the exact nature of widgets and
morphisms. In fact, each of the merge algorithms discussed in this paper corresponds to colimit computation
in the respective class of widgets and morphisms.

If we wish to merge a set of views, we first need to know how they are interconnected. One of the simplest
interconnection patterns is three-way merge, used when we have two views A and B, along with a third view
C that describes just their common parts:

C

A B

......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
............................

f
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
................
............

g

In the above interconnection diagram, two morphisms f and g specify how the common part C is represented
in each of A and B. Intuitively, a morphism expresses how the contents of one view are embedded in another
view. The result of a three-way merge is a new view, P , and three morphisms δA : A → P , δB : B → P ,
δC : C → P . The view P is the union of A and B such that the common part, specified in C, is included
only once. The morphisms δA, δB , and δC respectively show how A, B, and C are embedded into P . In
three-way merge, δC can be left implicit because δC = δA ◦ f = δB ◦ g by definition.

In practice, we may have more complex interconnection diagrams than that of three-way merge. Figure 2
shows two examples used later in this paper: 2(a) captures the relationships between the i∗ meta-model
fragments in Figure 10 and 2(b) captures the relationships between the views in Figure 18.

• •

• • •

• • •

...............................

......
.
.....
......
.

...............................

......
.
.....
......
.

.....................................
.

............
......................................

...........
.

.....

.....

.....

.....

.....

.............

............

.....

.....

.....

.....

.....

.............

............

.....

.....

.....

.....

.....

.............

............

(a)

•

• •

• •
•

.....................................
....

............
...

....

...............................

......
.
.....
......
.

...............................

......
.
.....
......
.

...........
...........

.....................

..............
...........
...........
.......................
............

(b)

Figure 2: Examples of interconnection diagrams

In general, an interconnection diagram1 is given by a (possibly empty) family w1, . . . , wn of views; and a
(possibly empty) family m1 : wr1

→ wt1 , . . . ,mk : wrk
→ wtk

of morphisms such that for every 1 ≤ i ≤ k

we have: ri ∈ {1, 2, . . . , n} and ti ∈ {1, 2, . . . , n}. More intuitively, an interconnection diagram is given by
n views and k morphisms such that the domain (resp. the codomain) of each morphism is one of the
given views. Computing the colimit of an interconnection diagram results in a view P , and morphisms
δ1 : w1 → P, . . . , δn : wn → P showing how each w1, . . . , wn is embedded into P . We call P the merged view
and call δ1, . . . , δn the embedding maps.

In the remainder of this paper, we will not directly use category theory. Instead, we take an algorithmic
approach to explaining the merge operations and skip their category-theoretic underpinnings. [22] provides
a detailed exposition of the category-theoretic details. Merging sets (Subsection 3.1) is based on the con-
structive proof of finite cocompleteness for an arbitrary category [1, 21]; merging graphs and typed graphs
(Subsection 3.2) is based on colimit construction in comma categories [21]. Merging poset-annotated sets
(Subsection 4.3) is based on colimit construction in indexed categories [23] by noticing that for a poset Q,

1The notion of interconnection diagram in category theory is slightly more general than what is given here (cf. e.g. [1]), but
the extra generality is unnecessary in our work.

4

the category of Q-annotated sets is isomorphic to the category of discrete diagrams in Q. Merging poset-
annotated graphs (Subsection 5.2) is based on colimit construction in comma categories and noting the
colimit preservation property given by Lemma 3.6 in [22].

3 Merging Sets and Graphs

In this section, we explain the algorithms for merging sets and graphs. These algorithms will be referred to
in later sections where we discuss merging poset-annotated sets and poset-annotated graphs.

3.1 Merging Sets

A system of interconnected sets is given by a diagram in which the widgets are sets and the morphisms
are total functions. Strictly speaking, a morphism uniquely identifies its domain and its codomain; in other
words, we cannot treat functions as general mapping rules for arbitrary sets. In the examples given in this
paper, we will represent functions by their mapping relations but we always make sure that the domain and
the codomain of each function are clear from the context.

The algorithm for merging sets hinges on two basic operations: disjoint union, and the smallest equivalence
relation induced by a given pair of parallel functions. We first review these operations and then give the
merge algorithm for sets.

Disjoint Union (
⊎

)

The disjoint union of a family of sets S1, S2, . . . , Sn, denoted S1] S2] . . .] Sn, is (isomorphic to) the follow-
ing: S1 × {1} ∪ S2 × {2} ∪ . . . ∪ Sn × {n}. For convenience, we construct the disjoint union by subscripting
the elements of each set with the name of the set and then taking the union. For example, if S1 = {x, y}
and S2 = {x, t}, we write S1] S2 as {xS1

, yS1
, xS2

, tS2
} instead of {(x, 1), (y, 1), (x, 2), (t, 2)}. For each Si,

1 ≤ i ≤ n, there is a function αi : Si → S1] S2] . . .] Sn, called the injection at Si, mapping every ele-
ment of Si to its image in the disjoint union. In the above example, the injection at S1 is the function
α1 = {x 7→ xS1

, y 7→ yS1
}.

Smallest Equivalence Relation (unifier)

Given a pair of parallel functions f : X → Y and g : X → Y , unifier computes the smallest equivalence
relation induced by them. This is done as follows: consider an undirected graph G whose node-set is Y

and whose (undirected) edge-set is given by the following relation: R =
{(

f(a), g(a)
)

| a ∈ X
}

. That is, for
every a ∈ X, there is an undirected edge between f(a) and g(a) in G. Applying unifier to f and g yields a
set U and a function q : Y → U where U is the (canonical) set of G’s connected components and q : Y → U

is the function taking every y ∈ Y to the connected component of G to which y belongs. Strictly speaking,
unifier need only yield q because every function uniquely identifies its domain and codomain; however, we
found it more intuitive to include U as an output of unifier .

As an example, let X = {a, b, c} and Y = {u, v, w, t}; and let functions f : X → Y and g : X → Y be
given as follows: f = {a 7→ u, b 7→ v, c 7→ w} and g = {a 7→ u, b 7→ w, c 7→ w}. Then, unifier(f, g) yields
U =

{

{u}, {v, w}, {t}
}

and q =
{

u 7→ {u}, v 7→ {v, w}, w 7→ {v, w}, t 7→ {t}
}

. The induced graph G is de-
picted in Figure 3.

5

u v w t

Figure 3: Computation of connected components

The Merge Algorithm

The idea behind the merge algorithm is simple: given an interconnected system of sets, we initially start
with the disjoint union of all the sets as the largest possible merged set and iteratively refine it by grouping
the elements that get unified by the interconnections. This is continued until all the interconnections are
accounted for.

Let S1, . . . , Sn be sets; and let f1 : Sr1
→ St1 , . . . , fk : Srk

→ Stk
be functions where ri ∈ {1, 2, . . . , n} and

ti ∈ {1, 2, . . . , n} for all 1 ≤ i ≤ k. The result of merging S1, . . . , Sn w.r.t. f1, . . . , fk is the set P along with
the functions δ1 : S1 → P, . . . , δn : Sn → P as computed by the algorithm in Figure 4.

Merge-Sets:

P = S1] . . .] Sn; /* initialize the merged set to the disjoint union */

for i = 1 to n do
δi = αi; /* initialize the embedding map at Si to

the injection at Si */

od

for j = 1 to k do /* the unification loop */

P, q = unifier(δtj
◦ fj , δrj

); /* fj has Srj
as domain and

Stj
as codomain */

for i = 1 to n do
δi = q ◦ δi; /* adjust the embedding map at Si */

od
od

Figure 4: Algorithm for merging sets

An important property of the merge algorithm in Figure 4 is that the merged set and the embedding functions
it generates are insensitive (up to isomorphism) to the orderings on S1, . . . , Sn and f1, . . . , fk. This results
from the universality [1] of colimits.

Figure 5 shows an example of three-way merge for sets when A = {x, y, w}, B = {x, y, t}, and C = {z, w}
with f : C → A and g : C → B given as follows: f = {z 7→ x,w 7→ w} and g = {z 7→ y, w 7→ t}.

In Figure 6, we illustrate execution of the merge algorithm on our example: 6(a) shows the configuration
just before entering the unification loop; and 6(b)–(c) respectively show the configurations after the first
and the second iteration of this loop. We have used superscripts for P , q, δA, δB , and δC to differenti-
ate between the values of the variables at each stage. The algorithm starts with P 0 = A] B] C. In
the first iteration, P 1 and q1 are computed by a call to unifier(δ0

A ◦ f, δ0

C); and in the second iteration
P 2 and q2 are computed by a call to unifier(δ1

B ◦ g, δ1

C). The embedding maps are adjusted accord-
ingly in each iteration of the unification loop. Note that nesting caused by successive unifications can

6

g

{z, w}

{x, y, t}{x, y, w}

C =

A = B =

δA δB

{

{xA, yB, zC}, {yA}, {wA, tB, wC}, {xB}
}

P =

f

Figure 5: Three-way merge example for sets

(a)

(c)

(b)

δ0

A
= {x 7→ xA, y 7→ yA, w 7→ wA}

δ0

B
= {x 7→ xB, y 7→ yB, t 7→ tB}

P 0
= {xA, yA, wA, xB, yB, tB, zC , wC}

δ0

C
= {z 7→ zC , w 7→ wC}

zC 7→ {xA, zC}, wC 7→ {wA, wC}
}

q1
= {xA 7→ {xA, zC}, yA 7→ {yA}, wA 7→ {wA, wC},

δ1

A
=

{

x 7→ {xA, zC}, y 7→ {yA}, w 7→ {wA, wC}
}

δ1

C
=

{

z 7→ {xA, zC}, w 7→ {wA, wC}
}

P 1
=

{

{xA, zC}, {yA}, {wA, wC}, {xB}, {yB}, {tB}
}

xB 7→ {xB}, yB 7→ {yB}, tB 7→ {tB},

δ1

B
=

{

x 7→ {xB}, y 7→ {yB}, t 7→ {tB}
}

P 2
=

{

{xA, yB, zC}, {yA}, {wA, tB, wC}, {xB}
}

q2
=

{

{xA, zC} 7→ {xA, yB, zC}, {yA} 7→ {yA},

δ2

A
=

{

x 7→ {xA, yB, zC}, y 7→ {yA}, w 7→ {wA, tB, wC}
}

δ2

B
= {x 7→ {xB}, y 7→ {xA, yB, zC}, t 7→ {wA, tB, wC}}

δ2

C
=

{

z 7→ {xA, yB, zC}, w 7→ {wA, tB, wC}
}

{wA, wC} 7→ {wA, tB, wC}, {xB} 7→ {xB},
{yB} 7→ {xA, yB, zC}, {tB} 7→ {wA, tB, wC}

}

Figure 6: Execution of the merge algorithm

be ignored. Therefore, we wrote the merged set as
{

{xA, yB , zC}, {yA}, {wA, tB , wC}, {xB}
}

instead of
{

{{xA, zC}, {yB}}, {{yA}}, {{wA, wC}, {tB}}, {{xB}}
}

– the two sets are isomorphic.

This example clearly shows that simply taking the union of two sets A and B is not the right way to merge
them because this may cause name-clashes (e.g. according to the interconnections, the y elements in A and
B are not the same although they share the same name) or duplicates for equivalent but distinctly named
elements (e.g. according to the interconnections, w in A and t in B are the same although they have distinct
names).

Name Mapping

For assigning a name to each element of the merged set in Figure 5, we took the union of the names of all
those elements in A, B, and C that are mapped to it. For example, the name “{xA, yB , zC}” indicates that
the element is the image of x in A, y in B and z in C. A more concise way to name the elements of the
merged set is giving priority to the element names in C because C plays the role of a connector between A

and B. Then, we may write the merged set in our example as {zC , yA, wC , xB}. This assumption is of no
theoretical significance; but, it can be viewed as an ad-hoc solution to the name mapping problem. Generally
speaking, we can assume that the choice of names in connector objects, i.e. objects solely used to describe
the relationships between other objects, has a higher priority in determining the names of elements in the
merged object. In the rest of this paper, with the exception of Figure 14, we will use this assumption for
naming the elements of merged objects.

7

Compute-src-tgt:

for i = 1 to n do
for every edge e in Gi do

srcP (γi(e)) = βi(srci(e));
tgtP (γi(e)) = βi(tgti(e));

od
od

Figure 7: Computation of srcP and tgtP

3.2 Merging Graphs

In this subsection, we introduce graphs and explain how they can be merged.

Definition 3.1 A graph is a tuple G = (N,E, src, tgt) where N is a set of nodes, E is a set of edges, and
src, tgt : E → N are functions respectively giving the source and the target of each edge.

Definition 3.2 Let G = (N,E, src, tgt) and G′ = (N ′, E′, src′, tgt′) be graphs. A graph homomorphism
h : G → G′ is a pair of functions h = 〈hnode : N → N ′, hedge : E → E′〉 such that for all e ∈ E, if e′ is
the image of e under hedge then the source and the target of e′ are respectively the images of the source and
the target of e under hnode; that is: hnode ◦ src = src′ ◦hedge and hnode ◦ tgt = tgt′ ◦hedge.

We call hnode the node-map component and call hedge the edge-map component of h.

Merging graphs is done component-wise for nodes and edges: let G1 = (N1, E1, src1, tgt1), . . . , Gn =
(Nn, En, srcn, tgtn) be graphs; and let h1 : Gr1

→ Gt1 , . . . , hk : Grk
→ Gtk

be graph homomorphisms with
ri ∈ {1, 2, . . . , n} and ti ∈ {1, 2, . . . , n} for all 1 ≤ i ≤ k.

Let NP along with β1 : N1 → NP , . . . , βn : Nn → NP be the result of merging N1, . . . , Nn w.r.t. the node-
map components of h1, . . . , hk; let EP along with γ1 : E1 → EP , . . . , γn : En → EP be the result of merging
E1, . . . , En w.r.t. the edge-map components of h1, . . . , hk; and let the functions srcP , tgtP : EP → NP be
given by the algorithm in Figure 7.

The result of merging G1, . . . , Gn w.r.t. h1, . . . , hk is the graph P = (NP , EP , srcP , tgtP) along with the graph
homomorphisms δ1 = 〈β1, γ1〉, . . . , δn = 〈βn, γn〉 mapping every Gi to P . Outside a categorical setting, it is
not trivial to prove that srcP and tgtP as computed by the algorithm make P a graph and make δ1, . . . , δn

graph homomorphisms. Figure 8 shows an example of three-way merge for graphs. In the figure, we have
visualized every graph homomorphism by drawing directed dashed lines from the elements of the source
graph to their images in the target graph.

Enforcement of Types

Graph-based modeling languages typically have typed nodes and edges. The definitions of graph and graph
homomorphism given earlier do not support types; therefore, we need to augment them for typed graphs.
We can then restrict the admissible homomorphisms to those that preserve types. In [6], a powerful typing
mechanism for graphs has been proposed using the relation between the models in a graph-based language
and the meta-model for the language. Assuming that the meta-model for the language of interest is given
by a graph M, every model is described by a pair 〈G, t : G → M〉 where G is a graph and t is a graph
homomorphism, called the typing map, assigning a type to every element in G. Notice that a typing map is a
graph homomorphism and hence more structured than an arbitrary pair of functions one assigning types to

8

e3

e2

n1 n3n2

x1 x3

x2

B

P

f

g

p1

p2

e1

e3 n3

e2

p2

x3

δA δB

u1

u2

v1

u1
v1 u2

C

A

Figure 8: Example of merging graphs

Interface1 Class1 Class2

ClassInterface
implements

extends extends

Class1 Class2

(b)(a)

Interface1

M

t

G

Figure 9: Example of typed graphs

nodes and the other assigning types to edges. A typed graph homomorphism h : 〈G, t〉 → 〈G′, t′〉 is simply
a graph homomorphism h : G → G′ that preserves types, that is: t′ ◦h = t.

This typing mechanism is illustrated in Figure 9: 9(a) shows a Java class diagram in UML notation and
9(b) shows how it can be represented using a typed graph. The graph M in 9(b) is the extends–implements
fragment of the meta-model for Java class diagrams.

The meta-model for a graph-based language can be much more complex than that for the class diagram
example in Figure 9. Figure 10 shows some fragments of the i∗ meta-model extracted from the visual syntax
description of i∗’s successor GRL [15]. Rather than showing the whole meta-model in one graph, we have
broken it into a number of views each of which describes a particular type of relationship (means-ends,
decomposition, etc.) Our graph merging framework described above allows us to describe the meta-model
without having to show it monolithically: the i∗ meta-model, denoted Mi∗ , is the result of merging the
interconnection diagram in Figure 10. To describe the relations between the meta-model fragments, a number
of connector graphs (shaded grey) have been used. Each morphism (shown by a thick solid line) is a graph
homomorphism giving the obvious mapping. Notice that the connector graphs are discrete since no two

9

Task Goal

Goal
Soft Resource

Task

Goal Resource

ResourceGoal

Task GoalTask

Goal
Soft Resource

Actor

Resource
Goal
Soft

Task Goal
Goal
Soft

Task

Goal
Soft

Task

Goal
Soft

Task

Contributions

Contributions

Dependency

Means−Ends
Decomposition

∧∨

+−

− +

+
•

+
•

∨, ∧

+, −,

+
•

Figure 10: Some meta-model fragments of i∗

meta-model fragments share common edges of the same type.

The ∧- and ∨-contribution structures in i∗ convey a relationship between a group of edges. To capture
this, we introduced helper nodes (shown as solid boxes) in the meta-model to group edges that should be
related by ∧ or ∨. Structures conveying relationships between a combination of nodes and edges can be
modeled similarly. Figure 11(a) shows how we normally draw an ∨-contribution structure in an i∗ model
and Figure 11(b) shows the adaptation of the structure to typed graphs. Relationships between nodes and
edges are modeled similarly.

Merging Typed Graphs

The typing mechanism just described provides a way to assign types to graph elements, and makes the
interconnections more structured by requiring them to preserve types. The merge operation for typed
graphs is exactly the same as that for untyped graphs. The only additional step required is assigning types
to the elements of the merged graph: each element in the merged graph has the same type as that of the
elements mapped to it by the embedding maps. In a category-theoretic setting, it can be proven that every
element of the merged graph is assigned a unique type in this way and that a typing map can be established
from the merged graph to the meta-model.

10

(a) (b)
∨

.

Figure 11: Adaptation of ∨-contribution

4 Annotating Sets with Posets

In this section, we review poset-annotated sets and explain how they can be merged. Poset-annotated
sets serve as the basic building blocks for poset-annotated graphs to be introduced in the next section. In
addition, we discuss the notion of poset-annotated powerset which will be exploited in Section 6 for devising
a traceability mechanism.

4.1 Lattice Theory

We assume the reader is familiar with basic concepts of partially-ordered sets (posets) and lattices. Below,
we briefly review some definitions and lemmas to establish notation. An excellent introduction to partial
orders and lattices is [7].

Definition 4.1 Let Q be a poset; and let A ⊆ Q. An element q ∈ Q is an upper bound of A if ∀a ∈ A :
a ≤Q q. If q is an upper bound of A and q ≤Q x for all upper bounds x of A, then q is called the supremum
of A. Dually, an element q ∈ Q is a lower bound of A if ∀a ∈ A : q ≤Q a. If q is a lower bound of A and
x ≤Q q for all lower bounds x of A, then q is called the infimum of A. We write

⊔

Q A (resp.
d

Q A) to
denote the supremum (resp. infimum) of A ⊆ Q, when it exists.

Definition 4.2 Let Q be a poset. If both
⊔

Q{a, b} and
d

Q{a, b} exist for any a, b ∈ Q, then Q is called a
lattice. If both

⊔

Q A and
d

Q A exist for any A ⊆ Q, then Q is called a complete lattice.

Lemma 4.3 Every complete lattice has a bottom (⊥) and a top (>) element. Every finite lattice is complete.

4.2 Poset-Annotated Sets

A poset-annotated set is a set whose elements are annotated with values drawn from a partial order. The
definitions given in this subsection are borrowed from [13] where fuzzy set theory has been formulated in a
category-theoretic setting. We prefer to use the term “poset-annotated” rather than “fuzzy” to signify the
fact that the posets we deal with in our work differ in nature from the linearly ordered real interval [0, 1]
commonly used in fuzzy set theory.

Definition 4.4 Let Q be a poset. A Q-annotated set is a pair (S, σ) consisting of a set S and a function
σ : S → Q. We call S the carrier set of (S, σ) and call Q the annotation universe of σ.

Definition 4.5 Let Q be a poset; and let (S, σ) and (T, τ) be Q-annotated sets. A Q-respecting map
f : (S, σ) → (T, τ) is a function f : S → T such that σ ≤Q τ ◦ f , i.e. for every s in (S, σ), the Q-value
annotating s is no larger than the Q-value annotating f(s) in (T, τ). The function f : S → T is called the
carrier function of f.

As an example, suppose the annotation universe is the lattice Q in Figure 12. Then,
(

{s1, s2}, {s1 7→ a, s2 7→ b}
)

and
(

{t1, t2, t3}, {t1 7→ d, t2 7→ b, t3 7→ c}
)

are Q-annotated sets and the function f : {s1 7→ t1, s2 7→ t2} is an
Q-respecting map because σ(s1) ≤Q τ(f(s1)) and σ(s2) ≤Q τ(f(s2)).

11

a

b c

d

@
@

@

�
�
�

�
�
�

@
@

@

Figure 12: The lattice Q

Compute-ρ:

for every p ∈ P do
ρ(p) = ⊥Q; /* initialize ρ(p) to ⊥Q */

od

for i = 1 to n do
for every s ∈ Si do

ρ(δi(s)) =
⊔

Q{ρ(δi(s)), σi(s)};
od

od

Figure 13: Computation of ρ

4.3 Merging Poset-Annotated Sets

The merge operation for an arbitrary system of interconnected Q-annotated sets requires that the supremum
exist for every A ⊆ Q (cf. [22]). To ensure that Q has this property, we assume Q is a complete lattice.

Let (S1, σ1), . . . , (Sn, σn) be Q-annotated sets; and let f1 : (Sr1
, σr1

) → (St1 , σt1), . . . , fk : (Srk
, σrk

) → (Stk
, σtk

)
be Q-respecting maps with ri ∈ {1, 2, . . . , n} and ti ∈ {1, 2, . . . , n} for all 1 ≤ i ≤ k.

Let the set P along with the functions δ1, . . . , δn be the result of merging S1, . . . , Sn w.r.t. the carrier
functions of f1, . . . , fk; and let the function ρ : P → Q be given by the algorithm in Figure 13. The result
of merging (S1, σ1), . . . , (Sn, σn) w.r.t. f1, . . . , fk is the Q-annotated set (P, ρ) along with δ1, . . . , δn when
viewed as Q-respecting maps.

Figure 14 shows an example of three-way merge for Q-annotated sets where Q is the lattice shown in Fig-
ure 12. The carrier function of each Q-respecting map f, g, δA, δB, and δC is the same as the corresponding
function in Figure 6.

(A, σA)

{(x, c), (y, b), (w, c)}

{(

{xA, yB, zC}, d
)

,
(

{yA}, b
)

,
(

{wA, tB, wC}, c
)

,
(

{xB}, a
)}

(P, ρ)

{(x, a), (y, b), (t, c)}

(B, σB)
{(z, a), (w, c)}

(C, σC)

δA δB

δC

gf

Figure 14: Example of merging poset-annotated sets

12

{(x, G)} {(y, G)}

{(x,)} {(x, G), (y, G)}

{(x, G), (y,)}

{(y,)}

{(x,), (y,)}

{(x,), (y, G)}

∅

G

Figure 15: Example of powerset lattice

The function ρ has been computed by the algorithm in Figure 13. For example, the annotation for the
element “{xA, yB , zC}” is

⊔

Q
{⊥Q, σA(x), σB(y), σC(z)} = d.

To make Figure 14 concise, we have depicted every annotated set (S, σ) as a set of tuples
{(

s, σ(s)
)

| s ∈ S
}

.
The same convention will be used in Figure 15.

4.4 Poset-Annotated Powersets

In Section 6, we will develop an annotation scheme which allows decorating each view element with the
decisions of multiple stakeholders. Assuming that the decisions are drawn from a poset Q, the annotation
for each view element can be represented by a Q-annotated set (S, σ) where S denotes the set of involved
stakeholders and σ : S → Q associates a Q-value to every s ∈ S. To describe the annotation universe for
this annotation scheme, we need to introduce the notion of poset-annotated powerset:

Definition 4.6 Let Q be a poset; and let (Z, µ) be a Q-annotated set. The Q-annotated powerset induced
by (Z, µ) is the set of all Q-annotated sets (S, σ) such that S ⊆ Z and for every s ∈ S we have: σ(s) ≤ µ(s).

Lemma 4.7 [13] When Q is a complete lattice, so is the powerset induced by any Q-annotated set.

Proof (sketch) [13] For an index set I, the supremum of an I-indexed family
〈

(Si, σi)
〉

i∈I
of powerset

elements is a Q-annotated set (X, θ) where X =
⋃

i∈I Si and θ : X → Q is a function such that for every
element x ∈ X we have: θ(x) =

⊔

Q{σi(x) | x ∈ Si; i ∈ I}. The infimum is computed dually.

As an example, suppose Q is the two-point lattice {G, } with G < . Then, the Q-annotated powerset
induced by

(

{x, y}, {x 7→ , y 7→ }
)

is the lattice shown in Figure 15.

5 Annotating Graphs with Posets

This section introduces poset-annotated graphs and gives a merge algorithm for them. Poset-annotated
graphs augment typed graphs by adding poset annotations to them. The key observation making it possible
to use poset-annotated graphs for modeling incompleteness and inconsistency is the capability of posets to
capture a notion of “knowledge degree” and possible ways in which knowledge can evolve. This concept will
be explained and exemplified in Section 6.

13

5.1 Poset-Annotated Graphs

Let I and J be fixed posets; and let M be a fixed graph.

Definition 5.1 An M-typed (I, J)-annotated graph G is a tuple
(

(N,σ), (E, τ), src, tgt, t
)

where

• (N,σ : N → I) is an I-annotated set of nodes;

• (E, τ : E → J) is a J-annotated set of edges;

• src, tgt : E → N are functions respectively giving the source and the target of each edge;

• t, called the typing map, is a graph homomorphism from G = (N,E, src, tgt) to M.

We call G = (N,E, src, tgt) the carrier graph of G.

Definition 5.2 Let G and G′ be (I, J)-annotated graphs. An M-typed (I, J)-respecting homomorphism
h : G → G′ is a pair h = 〈hnode,hedge〉 where hnode is an I-respecting map from the node-set of G to the
node-set of G′ and hedge is a J-respecting map from the edge-set of G to the edge-set of G′ such that the
pair h = 〈hnode, hedge〉 given by the carrier functions of hnode and hedge has the following properties:

• h is a graph homomorphism from the carrier graph of G to that of G′;

• h preserves types, that is: h ◦ t′ = t where t and t′ are respectively the typing maps of G and G′.

We call hnode the node-map component and call hedge the edge-map component of h. The pair h =
〈hnode, hedge〉 is called the carrier homomorphism of h.

5.2 Merging Poset-Annotated Graphs

Merging poset-annotated graphs is similar to merging graphs in that it is done component-wise for nodes
and edges. The difference is that the node-sets and edge-sets are poset-annotated sets rather than plain sets.
To ensure soundness of the merge operation for the node-sets and the edge-sets of poset-annotated graphs,
we require that the annotation universes be complete lattices (cf. [22]). In the rest of this section, we assume
that poset-annotated graphs are untyped. Extending the arguments to the typed case is identical to that
for plain graphs (cf. Subsection 3.2).

Let I and J be fixed complete lattices.
Let G1 =

(

(N1, σ1), (E1, τ1), src1, tgt1
)

, . . . ,Gn =
(

(Nn, σn

)

, (En, τn), srcn, tgtn
)

be (I, J)-annotated graphs;
and let h1 : Gr1

→ Gt1 , . . . ,hk : Grk
→ Gtk

be (I, J)-respecting homomorphisms with ri ∈ {1, 2, . . . , n} and
ti ∈ {1, 2, . . . , n} for all 1 ≤ i ≤ k.

Let the I-annotated set (NP , σP) along with the I-respecting maps β
1
, . . . ,βn be the result of merging

(N1, σ1), . . . , (Nn, σn) w.r.t. the node-map components of h1, . . . ,hk; let the J-annotated set (EP , τP) along
with the J-respecting maps γ

1
, . . . ,γn be the result of merging (E1, τ1), . . . , (En, τn) w.r.t. the edge-map

components of h1, . . . ,hk; and let the functions srcP , tgtP : EP → NP be given by the algorithm in Figure 7
by letting each βi (resp. γi) be the carrier function of βi (resp. γi) for 1 ≤ i ≤ n.

Merging G1, . . . ,Gn w.r.t. h1, . . . ,hk yields P =
(

(NP , σP), (EP , τP), srcP , tgtP
)

along with the (I, J)-
respecting homomorphisms δ1 = 〈β

1
,γ

1
〉, . . . , δn = 〈βn,γn〉 mapping every Gi to P. Proving that P is an

(I, J)-annotated graph and δ1, . . . , δn are (I, J)-respecting homomorphisms is non-trivial outside a category-
theoretic context (cf. [22]).

14

c c c
cd

a

a

a

a

a

a

c
cc c

c

a

b

c

c

a
a

n3

x3

u1 u2

p2

v1 e3

e2

P

u1

u2

v1

C

B

n1 n3n2
e3e1

e2

x1 x3

x2

p1

p2

A

δA

g

δB

f

Figure 16: Example of merging poset-annotated graphs

Figure 16 shows an example of three-way merge for untyped (Q,Q)-annotated graphs where Q is the lattice
shown in Figure 12. The carrier homomorphism of each f, g, δA, and δB is the same as the corresponding
graph homomorphism in Figure 8. The annotation associated with each element is attached to it in an
annotation box.

6 Merging Requirements Views

In this section, we show how incompleteness and inconsistency can be modeled by an appropriate choice of
annotation universe. Using the motivating problem in the introduction, we demonstrate how partial and
inconsistent views can be described, interconnected, and merged. Furthermore, we show how the results in
Section 4.4 can be used as an annotation mechanism that makes it possible to trace the elements of the
merged view back to the contributing stakeholder(s).

For modeling incompleteness and inconsistency, we use a “knowledge-ordering” lattice as the annotation
universe. A knowledge-ordering lattice allows us to specify the amount of knowledge we have about each
view element. The idea of knowledge ordering was first described by Belnap [2], and later generalized by
Ginsberg [12].

One of the simplest and arguably the most useful knowledge-ordering lattices is Belnap’s four-valued lat-
tice [2]. The lattice K shown in Figure 17 is a variant of this: assigning ! to an element means that the
element has been proposed but it is not known if the element is indeed well-conceived; ✘ means that the
element is known to be ill-conceived and hence repudiated ; ✔ means that the element is known to be well-
conceived and hence affirmed ; and � means there is disagreement as to whether the element is well-conceived,
i.e. the element is disputed.

An upward move in a knowledge-ordering lattice denotes an increase in the amount of knowledge. In K, the
value ! denotes uncertainty; ✘ and ✔ denote the desired (i.e. decisive) amounts of knowledge; and � denotes
an inconsistency, i.e. too much knowledge – we can infer something is both ill-conceived and well-conceived.

15

!

✘ ✔

�

@
@@

�
��

�
��

@
@@

Figure 17: The knowledge-ordering lattice K

As an example, we show how to merge the i∗ views of Figure 1. We assume these views are typed using
the i∗ meta-model, Mi∗ , and we will annotate nodes and edges of the views using K. We therefore express
relationships between views using Mi∗ -typed (K,K)-respecting homomorphisms. Figure 18 depicts one
way to express the relationships between Mary’s and Bob’s views in Figures 1(a) and 1(b). For convenience,
we treat ‘proposed’ (!) as a default annotation for all nodes and edges, and only show annotations for the
remaining values. For example, some edges in the revised versions of Bob and Mary’s views are annotated
with ✘ to indicate they are repudiated.

The interconnections in Figure 18 were arrived at as follows. First, Sam creates a connector view “Connector
I” to identify synonymous elements in Mary’s and Bob’s views. To build this connector, Sam merely needs
to declare which nodes in the two views are equivalent. Because i∗ does not allow parallel edges of the
same type between any pair of nodes, the edge interconnections are identified automatically once the node
interconnections are declared. For example, when “Schedule meeting” and “Available dates be obtained” in
Mary’s view are respectively unified with “Plan meeting” and “Responses be gathered” in Bob’s view, it can
be inferred that the decomposition links between them in the two views should also be unified.

Next, Sam elaborates each of Bob’s and Mary’s views to obtain “Mary Revised” and “Bob Revised”. In
these views, Sam has repudiated the elements he wants to replace, and proposed additional elements that he
needs to complete the merge. Sam could, of course, affirm all the remaining elements of the original views,
but he preferred not to do so because the models are in very early stages of elicitation. Finally, Sam identifies
the common parts between the newly-added elements in the revised views, using another connector view,
“Connector II”.

With these interconnections, the views in Figure 18 can be automatically merged, to obtain the view shown
in Figure 19. For presentation, we may want to mask the elements annotated with ✘. This would result in
the view shown in Figure 1(c).

In the above scenario, we treated the original elements of Mary’s and Bob’s views as being at the proposed
level, allowing Sam to freely make further decisions about any of the corresponding elements in the revised
views. At any time, Mary or Bob may wish to insist upon or change their minds about any elements in
their views. They can do this by elaborating their original views, affirming (or repudiating) some elements.
In this case, we simply add the new elaborated views to the interconnection diagram of Figure 18, with the
appropriate mappings from Mary’s or Bob’s original views. Such mappings are valid as long as the amount
of knowledge does not decrease along morphisms. When we recompute the merge, the new annotations may
result in disagreements. For example, if Mary affirms an element x in her view and Bob repudiates an element
y in his, but x and y were found to be the same element by the interconnections, it would be annotated with
� in the merged view.

Direct use of K for annotating the view elements causes two problems: first, every input view can include
the perspective of only a single stakeholder. This is because our knowledge-ordering labels do not indicate
whose knowledge; we have to assume all annotations within a view represent a single stakeholder. Second, it
is not possible to distinguish the contributions of individual stakeholders in the merged view. This effectively
makes it infeasible to perform any type of analysis over the merged view that needs to distinguish between

16

Plan
meeting

Send request letters Responses
be gathered results

Consolidate

Efficient

+

Mary
Bob

Email requests
to participants be obtained

Available dates Agreeable
slot be found

meeting
Schedule

Connector I

Connector II

meeting
Schedule

Available dates
be obtained

Agreeable
slot be found

meeting
Schedule

Meeting requests
be sent

be obtained
Available dates Agreeable

slot be found

meeting
Schedule

Meeting requests
be sent

by email
Send requests

Mary Revised Bob Revised

Efficient Plan
meeting

Responses
be gathered

results
Consolidate

Agreeable
slot be found

Meeting requests
be sent

Send requests
by snail mail

+
✘

✘
✘

✘

Figure 18: Interconnecting the views

Meeting requests
be sent

Consolidate
results

meeting
Schedule

by email
Send requestsSend requests

by snail mail

Efficient

Agreeable
slot be found

Available dates
be obtained

Merged View

+
✘

✘

✘ ✘

Figure 19: The merged view

17

the contributions of individual stakeholders. To address these problems, we introduce a more elaborate
annotation scheme that allows multiple stakeholders to annotate the same view.

Consider the K-annotated powerset P induced by
(

{Sam,Bob,Mary}, {Sam 7→ �,Bob 7→ �,Mary 7→ �}
)

(cf. Definition 4.6). Since K is a complete lattice, by Lemma 4.7, P is also a complete lattice. This allows
us to describe the views by Mi∗ -typed (P ,P)-annotated graphs and use Mi∗ -typed (P ,P)-respecting
homomorphisms to interconnect them. Sam may now revise the original views of Bob and Mary directly
because the annotations keep track of the decision each stakeholder makes about an element. The new
system of interconnected views is shown in Figure 20. We use a concise notation to represent the P-value
annotating each element. For example, B:!;S:✘ means

(

{Bob,Sam}, {Bob 7→ !,Sam 7→ ✘}
)

and M:!;B:!

means
(

{Mary,Bob}, {Mary 7→ !,Bob 7→ !}
)

. Note that in the “Connector” view in Figure 20, the
elements have no stakeholder annotations, indicated using the bottom element of P , denoted ∅.

Merging the interconnected views in Figure 20 yields the merged view shown in Figure 21. The annotation
for each element of this view reflects the decisions made about the element by the involved stakeholders. The
supremum of the annotations on each element in Figure 21 results in the value annotating the corresponding
element in Figure 19.

Our example involved only three stakeholders. The annotation universe for n stakeholders s1, . . . , sn is de-
fined similarly: given a (complete) knowledge-ordering lattice L, the annotation universe is the L-annotated
powerset induced by

(

{s1, . . . , sn}, {s1 7→ >L, . . . , sn 7→ >L}
)

where >L denotes the top element of L. If the

set of stakeholders is not known beforehand, we can use the L-annotated powerset induced by
(

N, {n 7→ >L | n ∈ N}
)

where N is the set of natural numbers. We can then add more stakeholders as needed by binding each new
stakeholder to a natural number not already taken by another stakeholder.

7 Discussion

In this section, we discuss some pragmatic considerations concerning our proposed merge framework.

7.1 Sanity Checks

The typing mechanism discussed in Subsection 3.2 can capture many classes of typing constraints that we
may have to enforce; however, it has some limitations. Most notably, it cannot capture constraints whose
formulation involves multiplicities or relies on the semantics of the modeling language. In the class diagram
example discussed in Subsection 3.2, we could not express the constraint that a Java class cannot have
multiple parent classes, or that a class cannot extend its subclasses: in both cases, a typing map could be
established even though the resulting class diagrams were unsound. To express the former constraint, we
would have to require that the class inheritance hierarchy be a many-to-one relation; and to express the
latter, we would have to require that the inheritance hierarchy be acyclic.

Finding algebraic methods for enforcing multiplicities over graphs is, to a large extent, an open prob-
lem. Some preliminary work in this direction has been reported in [16]. Dealing with constraints that
require semantics-dependent reasoning has been found to be inherently non-generic [19], and hence formalism-
dependent.

Due to these limitations, a number of sanity checks may be needed both on the input views, and on the
merged view to ensure their soundness w.r.t. a desired set of semantic constraints. Even if the input
views are sound w.r.t. such constraints, this does not imply that the merged view is sound, because the
interconnections do not necessarily respect such additional constraints. If the input views are sound but the
merged view is unsound, then there is a problem with how the input views have been interconnected.

18

Connector

Agreeable
slot be found

meeting
Schedule

Meeting requests
be sent be obtained

Available dates

Mary + Revisions

be obtained
Available dates

meeting
Schedule

Meeting requests
be sent

by email
Send requests

Agreeable
slot be found

Bob + Revisions

Responses
be gathered

Agreeable
slot be found

Send requests
by snail mail

Meeting requests
be sent

Efficient

results
Consolidate

Plan
meeting

+

∅

∅

∅∅ ∅

B:!;S:✘

B:!;S:✘

∅∅

M:!

M:!

M:!

M:!

M:!

M:!;S:✘S:!

S:!

S:!

M:!

S:!

S:!

S:!

S:!

S:!

B:!

B:!

B:!

B:!

B:!

B:!

S:!

B:!;S:✘

Figure 20: Interconnecting powerset-annotated views

Meeting requests
be sent

Consolidate
results

meeting
Schedule

by email
Send requestsSend requests

by snail mail

Agreeable
slot be found

Efficient

Merged View

Available dates
be obtained

+

B:!;S:✘

M:!;S:!

M:!;S:!

M:!;B:!

M:!;B:!

B:!;S:✘

B:!;S:✘

M:!;B:!

B:!

B:! M:!

S:! S:!

S:!

S:!
M:!;S:✘

B:!

S:!

Figure 21: The powerset-annotated merged view

Another facet to sanity checks is detecting the potential anomalies caused by the annotations. For example,
in Section 6, it was possible for a view to have a non-repudiated edge with a repudiated end. In such a
case, we would be left with dangling edges if we mask repudiated elements. The detection of such anomalies
depends on the interpretation of the elements of the annotation universes being used.

19

7.2 Identification of Interconnections

Our focus in this paper was devising a framework for describing the relationships between incomplete and
inconsistent views and merging them once the interconnections are specified. In the example in Section 6,
the interconnections were identified manually by an analyst. The natural question to ask now is to what
extent we can automate the role that the analyst plays in establishing the interconnections. The answer to
this question has a significant impact on how our framework scales to realistically large problems.

To our knowledge, little work has been done in Requirements Engineering on automating the identification
of view interconnections, even in cases where inconsistency management has not been an issue. However, the
subject has attracted considerable attention in the Database community for merging database schemata [20].
There, the identification of interconnections is referred to as schema matching. Unfortunately, schema
matching is largely ad-hoc and intertwined with the particular semantic concerns of ER diagrams. We are
performing a number of case-studies on some popular graph-based formalisms including conceptual modeling
languages such as i∗ and (the declaration-level graphical syntax of) KAOS [25], state-machines, and UML
to investigate how schema matching techniques can be tailored to graph-based structures other than ER
diagrams.

7.3 Tool Support

We have implemented a proof-of-concept Java tool for merging views. The tool is essentially a library for
computing colimits in poset-annotated graph categories. We have used the tool for merging i∗ models, ER
diagrams, and state-machines. The tool can also be used for developing algebraic graph transformation
systems for poset-annotated graphs, but we have not explored this application yet.

8 Related Work

Inconsistency management has become an important topic in Requirements Engineering due to its central role
in model management. A number of approaches to inconsistency management have been proposed, in general
based on the success of the ViewPoints framework [11, 9, 18]. The main questions in this work center on
appropriate notations for expressing consistency rules, and automated support for resolving inconsistencies.
In much of this work, view merging is treated as an entirely separate problem, because of the desire to
maintain viewpoints as loosely coupled distributed objects [11].

The use of multi-valued logics for merging inconsistent views was first proposed in [8]. Our work at that time
focused primarily on support for automated reasoning in the presence of inconsistency, and we developed a
multi-valued model checker [4]. The central idea in this work was that merged state-machine models might
contain inconsistencies, and a multi-valued model checker could be used to determine which properties are
affected by the inconsistencies.

In [10], a colimit-based approach has been given for merging consistent views. In that approach, viewpoints
are described by graph transformation systems and colimits are employed to integrate them. However, this
work cannot handle inconsistent views.

Merging is crucial to the Database community for schema integration [3, 19]. This is the subject of an active
research area. Our approach generalizes the syntactic aspects of the merge operation proposed in the cited
references.

Poset-annotated graphs bear some similarity to fuzzy graphs [17]. What distinguishes our work from the
body of work done on fuzzy graphs is our emphasis on algebraic structural relationships rather than graph-

20

theoretic analysis techniques.

9 Conclusions and Future Work

We have proposed a flexible and mathematically rigorous framework for merging incomplete and inconsistent
views. Our merge framework is general and can be applied to a variety of graphical modeling languages.
In this paper, we presented the core algorithms for computing merges, showed how the framework can
handle typing constraints, and how our annotation scheme can be used to trace contributions in the merged
view back to their sources. We have implemented the algorithms described in the paper, and used the
implementation to merge views in a number of different notations.

An advantage of our framework is the explicit identification of interconnections between views prior to the
merge operation rather than relying on naming conventions to give the desired unification. We believe this
offers a powerful tool for exploring inconsistency during exploratory modeling, as it allows an analyst to
hypothesize possible interconnections for a set of views, compute the resulting merged views, and trace
between the source views and the merged views to analyze these results.

The work reported here can be continued in many directions. Automating the identification of potential
interconnections between views may be an important step for applying the work to large scale conceptual
modeling. Another interesting area is studying whether our framework can be used for relating the behaviors
of models. The interconnections used in our approach are based on graph homomorphisms and the fact that
graph homomorphisms have been employed in various abstraction frameworks [5] for relating behaviors of
models poses many interesting questions as to what logical properties can be preserved when models are
merged. Adding support for hierarchical structures is yet another area that can be studied. We also plan
to develop a more useable version of the tool to investigate how well it supports collaborative conceptual
modeling, and especially stakeholder negotiation during requirements analysis.

Acknowledgments. We thank John Mylopoulos for suggesting the example and Linda Liu for help with
the i∗ notation. We thank the members of the Formal Methods, Database, and the EarlyRE groups at the
University of Toronto for their insightful comments on this work. Financial support was provided by NSERC,
MITACS, and Bell University Labs.

References

[1] M. Barr and C. Wells. Category Theory for Computing Science. Les Publications CRM Montréal, third
edition, 1999.

[2] N. Belnap. A useful four-valued logic. In Modern Uses of Multiple-Valued Logic, pages 5–37. Reidel,
1977.

[3] P. Buneman et al. Theoretical aspects of schema merging. In EDBT, pages 152–167, 1992.

[4] M. Chechik et al. Multi-valued symbolic model-checking. TOSEM. To appear.

[5] E. Clarke et al. Model checking and abstraction. TOPLAS, 19(2), 1994.

[6] A. Corradini et al. Graph processes. Fundamenta Informaticae, 26(3–4):241–265, 1996.

[7] B. Davey and H. Priestley. Introduction to Lattices and Order. Cambridge University Press, second
edition, 2002.

21

[8] S. Easterbrook and M. Chechik. A framework for multi-valued reasoning over inconsistent viewpoints.
In ICSE, pages 411–420, 2001.

[9] S. Easterbrook and B. Nuseibeh. Using viewpoints for inconsistency management. Software Eng. J.,
11:31–43, 1996.

[10] H. Ehrig et al. A combined reference model- and view-based approach to system specification. Intl. J.
of Software Eng. and Knowledge Eng., 7(4):457–477, 1997.

[11] A. Finkelstein et al. Inconsistency handling in multi-perspective specifications. TSE, 20:569–578, 1994.

[12] M. Ginsberg. Bilattices and modal operators. In TARK, pages 273–287, 1990.

[13] J. Goguen. Concept representation in natural and artificial languages. Intl. J. of Man-Machine Studies,
6:513–561, 1974.

[14] J. Goguen. A categorical manifesto. Mathematical Structures in Computer Science, 1:49–67, 1991.

[15] The GRL ontology. http://www.cs.toronto.edu/km/GRL.

[16] R. Heckel and A. Zündorf. How to specify a graph transformation approach. In ENTCS, volume 44,
2001.

[17] J. Mordeson and P. Nair. Fuzzy Graphs and Fuzzy Hypergraphs. Physica-Verlag, 2000.

[18] C. Nentwich et al. Flexible consistency checking. TOSEM, 12:28–63, 2003.

[19] R. Pottinger and P. Bernstein. Merging models based on given correspondences. In VLDB, pages
862–873., 2003.

[20] E. Rahm and P. Bernstein. A survey of approaches to automatic schema matching. VLDB J., 10(4):334–
350, 2001.

[21] D. Rydeheard and R. Burstall. Computational Category Theory. Prentice Hall, 1988.

[22] M. Sabetzadeh and S. Easterbrook. Analysis of inconsistency in graph-based viewpoints. In ASE, pages
12–21, 2003.

[23] A. Tarlecki et al. Some fundamental algebraic tools for the semantics of computation, part III. TCS,
91:239–264, 1991.

[24] A. van Lamsweerde et al. The meeting scheduler system – problem statement.
ftp://ftp.info.ucl.ac.be/pub/publi/92.

[25] A. van Lamsweerde et al. Goal-directed elaboration of requirements for a meeting scheduler. In RE,
pages 194–203, 1995.

[26] E. Yu. Towards modeling and reasoning support for early-phase requirements eng. In RE, pages 226–235,
1997.

22

