
CSC C85 – Fundamentals of Robotics and Automated Systems UTSC

Controlling a Robot’s Actions
Finite-State Machines and Robot Behaviour

The last component of our course ties together everything we have learned up to this point, and
provides a framework for getting our robot to perform complex tasks using a fairly simple, yet flexible
and powerful form of Artificial Intelligence – Finite State Machines.

FSMs are often used in gaming, to provide interesting and complex behaviour for non-playable
characters. In the context of robotics, FSMs allow for the implementation of a rich set of behaviours
that are:

- Dependent on the state of the robot
- Reactive to changes in state either of the robot or the environment
- Easy to implement and extend as needed
- Easy to simulate, which is an advantage when designing and testing a new system
- Predictable, which for many robotics applications is a requirement

In order to understand how an FSM can be used to control a robotic system, we first need to have a
look at the different components of a robot’s control/decision/action loop. Such a look is shown in the
figure below.

Sensor data acquisition

As we have discussed at length, this step requires the robot to use any available sensors to obtain
estimates of the relevant data required to make decisions and complete its task. In this step we have to
be mindful of

- Noise
- Sampling rate issues
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The sensing step should take care to apply denoising if appropriate given the type of data being
measured, and the sensors available. Denoising must be time-efficient, since the robot is now acting
within a loop of sequential operations, any delays in the sensor measurement stage will impact the
succeeding steps of processing.

Keep in mind the sampling rate. As noted during our discussion of control systems, if the sampling
rate of the system is too low, it will not be possible to implement a controller that successfully brings
the system into agreement with the reference.

The issue here is that because of the sequential nature of the loop, sensor measurements can only
take place once the rest of loop has finished its work. It is  essential that all steps in the process are
implemented as efficiently as possible, minding code optimization and profiling, and ensuring there are
no unnecessary computation steps that could delay the completion of the loop.

The maximum sampling rate achievable is a function of the time it takes to complete the loop.
Effort must be made to identify and remove any bottlenecks. 

State Estimation

This  step  takes  care  of  the  fundamental  problem of  determining  reliable  values  for  the  state
variables, and can make use of any appropriate methods for improving on the data provided by sensors,
or for estimating values from noisy, incomplete, or indirectly measured data. This includes

- Using estimation methods such as the Kalman Filter
- Using a sampling based estimator, such as a particle filter
- Using physics, as in the case of inertial navigation (possibly together with Kalman Filters)
- Using Machine Learning to implement a regression method that estimates state variables

These are only a handful of examples of what the state estimation step may need to do. What is
actually required will depend on the particular application, the sensors available, whether or not the
sensors’ measurements directly relate to state variables, and speed/power requirements (e.g. we can’t
run a powerful machine learning algorithm on a low-powered, portable robotic platform). 

Regardless of what is implemented here, the same warning about computation speed that applies
to the sensing step also applies here. Any delays caused by the state estimation process will impact the
performance of the robot control loop.

Event Detection and FSM-based decision making

In order to understand how the last two steps in the loop work, first we should review what the
components of an FSM are, and how they can be used to implement robot behaviours.

An FSM consists of a set of states, and a set of state-transitions. The states correspond to actions a
robot may need to perform to achieve its goal. The state-transitions are triggered by events, and they
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correspond to decisions the robot takes regarding what action much be performed at any given point in
time.

Let us consider the case of the localization problem you solved using histogram localization on a
colour-coded map of streets and intersections. An FSM to control a robot performing this task may look
like the model shown below (note this is only one possible implementation, multiple ways to do this
are possible).

A few things are worth noting from the diagram. First, there is always a start state which takes care
of  any  initialization  required  for  the  robot  (in  this  case,  setting  up  initial  probabilities  for  each
intersection, and figuring out if the robot is or is not on a street at the beginning of the process). There
is also an end state which is reached once the robot has achieved its (or one of its) goal(s).

Secondly, the diagram illustrates several types of events (the conditions indicated with each of the
state transition arrows).  There are events  that  are directly  derived from sensor input  (e.g.  reached
intersection which can easily be decided from looking at the input from the colour sensor); there are
events that require processing and are the result of applying a particular algorithm to the current and
possibly  also  historical  state  variables  (e.g.  localization  successful which  requires  us  to  carry  out
histogram localization and determine if the robot knows where it is); there are also stochastic events
that depend on some random outcome (e.g. coin flip which effectively takes a random number between
0 and 1 and chooses one of two outcomes based on this). 

Many events will be combinations of the three types described above. The event detection step in
the main robot control loop is in charge of evaluating the truth value for every possible event in our
FSM. Once these events have been processed, the FSM take action step determines what action must
be performed. This is a very simple process:
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- Look at the current state for the robot
- Based on the events that have been determined to be true choose an appropriate
  transition to the next state (if no transition is indicated, next state=current state)
- Send the appropriate commands to the robot that correspond to what it needs to
  do when in next state.
- Update the state so current-state = next state
- Return to the top of the robot control loop (Sensor data acquisition)

As you can see, the process is straightforward. There are however a few fine points that need to be
taken into consideration:

- States (which amount to actions) can themselves correspond to complicated tasks. For instance,
   Return to previous intersection involves a sequence of actions the robot must perform. To 
   implement such a state, we can create a smaller FSM that correspond to the sequence of actions

          the robot performs to complete ‘return to previous intersection’. We can thus have multiple
   levels of detail represented by FSMs that get triggered as needed. This is called hierarchical

          FSM and allows us to model our system making use of abstraction at the highest level, while
   still being able to model and simulate each simple action the robot must eventually perform.

- Fall-backs are critical – notice the ‘got lost’ events in the diagram above. They are there to
  prevent a situation in which the robot is expected to complete a particular task (e.g. scan an
  intersection) but for reasons due to the normal uncertainties involved in robot operations,

         the robot is now in a situation where it is no longer possible for it to complete the task 
  specified by its current state. Without a fallback, that is, a condition that allows the robot to
  exit the current state without having completed the task, the robot would be stuck in a loop.
  If you have problems while implementing an FSM and your robot gets stuck in a specific
  state, the first thing to consider is whether you have missed any conditions that would make
  the robot unable to complete its task, and that should be covered by an appropriate fallback.

- The level of detail in the FSM is not specified anywhere. As a designer you are free to build
   your FSM using any level of abstraction that is reasonable for your task. However, for the
   FSM to be actually helpful, your design should be detailed enough that it can easily be
   mapped into an implementation of the software that is needed to provide the functionality
   specified by a state. As an example, an FSM with a single state called ‘Perform Histogram
   Localization Process’ is correct, but does not help anyone actually implement the required
   software. 

- For the above reasons, it is usually a good idea to have your FSM reviewed by a colleague that
   is not directly involved with its development. The process can help spot imprecisions, missing
   transitions, missing fallbacks, or places where the state description is too general to be of
   use.

Implementing FSMs
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The  implementation  of  an  FSM  is  straightforward.  The  simplest  implementation  (though  not
elegant by any means) consists of a set of if-then-else statements that check for each possible state and
each event detected to be true what the corresponding transition should be. The state is then updated as
needed, and a corresponding function implementing the actions required by the state is called.

A more elegant implementation uses  a state transition table. In this table there is  one row per
state, and  one column per event. Given the transition table  T,  the value of  T(i,j)  gives the state that
results if event  j is  TRUE and the  current state  is  i. For example, suppose that  i=5 corresponds to
‘scan intersection’ in the FSM above, and that the  ‘end state’ has index  6.  Suppose that the event
‘localization successful’ is represented by column 2 in the transition matrix T. Then we would have

T(5,2)=6

From state #5 (scan intersection), if we find that event #2 (localization successful) is true, the next
state is state #6 (end state). The state transition table provides a very compact and elegant way to
represent and handle the FSM without very long and involved sequences of  if statements. It is also
much better in terms of performance – as it avoids having to evaluate long sequences of conditional
statements (with the associated performance penalties due to branch mispredictions).

However,  notice  that  if  we  are  using  a  state  transition  table,  each  distinct  event  must  be
represented by a column. Composite events which consist of multiple simpler events joined together by
logical operators (e.g. in the FSM above we may have an event ‘turn completed && on street’ which
directly transitions to ‘follow street’) would need to be stored as distinct events, with their own column
in the transition matrix.

Important note: However the FSM is implemented, the functions that control the robot’s actions
can not contain wait loops. For example, if we have a robot facing a particular direction, and want the
robot to align itself with a different, reference direction, we may be tempted to write something like
this:

while (current_dir != reference_dir)
{

rotate_left();
}

This simple, harmless loop will fail to do what we expect. The reason is very simple – while the
program is stuck in this loop, no sensor measurements are being taken, so ‘current_dir’ is not being
updated and the condition will never fail.

Recall that the sensor measurement step takes place after the FSM has decided on, and taken an
action. But the action itself can not contain a wait loop that relies on a condition that depends on sensor
measurements because no sensing happens until the FSM action step is complete.

So instead, the correct implementation will look more like

F. Estrada, 2023



CSC C85 – Fundamentals of Robotics and Automated Systems UTSC

if (|current_dir-reference_dir|>threshold)
rotate_left();

if (|current_dir-reference_dir|<=threshold)
stop_rotation();

Notice that now the FSM decides that the robot needs to turn, it  sends the command to start
turning and continues without any wait loop.

This allows the sensor update to take new measurements, the robot will continue turning as long as
the  reference  direction  is  different  enough  from  the  current  direction,  but  once  once  the  current
direction is close enough to the reference direction, the FSM instructs the robot to stop turning.

Event-driven programming

Implied in the design of the robot control loop is the premise that the system is event driven. What
the robot will do depends on its current state, and whatever events are taking place at any given time.
This is the same kind of programming framework that is the foundation for graphical used interfaces
and other kinds of interactive systems.

The key property of these systems is that they must react quickly to events. That is not a precise
statement, and if we want to make it precise, we have to delve into the field of real-time systems and
real-time operating systems. That is beyond the scope of this unit, however, we can certainly introduce
the fundamental ideas that form the basis for the design and implementation of real-time systems.

Real-time constraints

In real-time systems, the central idea is that events and tasks have deadlines. That means that in
terms of actual real-world clock time, the system has only a  limited amount of time during which
appropriate action must be taken to  handle an event or  complete a task.  If the system misses the
deadline, we consider it a failure. 

There are several flavours of real-time operations:

- Hard real-time, in which a single failure to meet a deadline causes the entire system to fail.
  E.g. consider a car’s ABS braking system, either it kicks in on time when needed, or the
   result can be catastrophic.

- Firm real-time, occasional failures to meet a deadline are tolerable but if too many occur
  or they happen too often the system fails. E.g. consider an automated red-light camera, if it
  misses a driver running a light every now and then, this is bad but not catastrophic. However
  too many misses makes the system useless.

- Soft real-time, missed deadlines cause a degradation of service. For example, on-line video
  conferencing. Occasional video/audio hiccups are tolerable, but too many make the system
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difficult and annoying to use.

Real time systems usually employ one or several of the following techniques to achieve their tasks
while meeting the specified deadlines:

- Partitioning: Different critical tasks are assigned a fixed pool of system resources (e.g. memory,
  CPU time, access to devices). The partitions are fixed and ensure each critical task has enough
  resources to complete within the specified deadline. The downside of such a system is that it often
  requires more resources than an equivalent non-partitioned system, and some of the resources
  available may be heavily under-utilized.

- Priority-based multi-tasking: Makes use of a job-scheduling policy that gives higher priority to
  real-time tasks whose deadlines are near. Any task in the system can make use of the resources
  available, but any running task can be pre-empted if a higher priority task with a near deadline
  needs to be completed. The scheduler is the central component of such a system, and many 
  algorithms exist to implement it, providing various guarantees about the ability of the system
  to respond to events within a deterministic time frame.

The constraints of real-time operation imply that our regular desktop operating systems are not
well suited for use in real-time applications. Instead, specialized real-time Operating Systems (RTOS)
are  preferred  in  robotics  applications.  Once again,  the  design  and implementation  of  an  RTOS is
beyond  the  scope  of  our  unit,  but  we  can  note  a  couple  of  critical  differences  between  regular
desktop/server O/S and an RTOS.

Deterministic latency

Because robotics systems need to respond to events that happen asynchronously, and because such
events are usually signaled and handled via interrupts and system calls, a real-time O/S needs to have
guaranteed latency for:

- Interrupt handling
- Job context switching
- Job scheduling
- System calls

The important idea here is that if we have a guarantee for how long it will take the O/S to perform
the basic function of  swapping a current running job out, handling an interrupt or system call, and
swapping the next job to be run in, we can design our application with deadlines that can be met given
the system’s guaranteed latencies. Desktop O/S do not have guaranteed latency bounds for these critical
components.  Notice  the  additional  requirement  that  job  scheduling has  to  take  place  within  a
guaranteed amount of time.

Microkernels
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Most desktop O/S consist of what is commonly called a monolithic kernel. The kernel is he core
of the O/S, and in most desktop systems it includes all kinds of functionality related to peripherals and
devices that are attached to the system – for instance, there will be components running that are part of
the kernel and whose job it is to listen for incoming network connections, there are device drivers
running for any hardware attached to the system, there may be processes related to printing, or disk
management, etc.

Because these services are all part of the kernel, they have the highest system priority and can not
be pre-empted by a user application regardless of its priority. You may see where this could create
problems: A high-priority real-time task may have to wait for a kernel process that is updating a print
queue, for instance. 

To  resolve  this,  many  RTOS are  built  on  a  micro-kernel which  contains  only  the  most
fundamental  parts  of  the  O/S,  namely:  memory  and  CPU  management,  scheduling,  and  inter-
process communication. All other system services are run in user-space, as applications that can be
pre-empted if a high priority, real-time task requires attention.

Examples of RTOS commonly used in robotics include VxWorks by Wind River systems, used in
aviation and in NASA’s planetary exploration rovers and probes, and QNX (Neutrino) by Blackberry,
which is extensively used in transportation systems, and LynxOS often used in the aviation industry.

This  is  just  a  very  general  overview  of  what  is  a  complex  and  wide  area  of  research  and
application,  if  you are interested in this,  you should pick up a text or two on real-time Operating
Systems and learn more.

 

F. Estrada, 2023


