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Building Fault Tolerant Systems

One  particularly  important  problem in  Robotics  is  that  of  the  design  and  implementation  of
systems that have to perform an important, dangerous, time-sensitive, or otherwise critical task. Such
systems can not be allowed to fail or become unable to carry out their task because of common issues
such as component failures or software bugs.

The design and implementation of systems that can continue to perform their task in the presence
of  faults is all the more relevant in the face of increasing reliance in automation, and A.I. powered
systems  in  all  areas  of  daily  life.  Therefore  we should  become familiar  with  the  main  principles
involved so we can apply them consistently and wherever appropriate to any robotic or automated
systems we will be working with.

Common applications of fault-tolerant systems

These are only a few of the most common areas of application for fault-tolerant systems. You can
imagine that for each of these, the failure of a system to perform their function correctly would cause
significant harm to humans.

- Transportation: From airplane design and construction, to the software that powers cars with
varying degrees of automation, to delivery drones. 

- Medical applications: Medical scanning technology, robot-assisted or remote surgery, systems
that monitor the young or the elderly.

-  Energy production and distribution:  Consider  the  systems that  monitor  and control  critical
facilities such as nuclear power plants or electric grid load balancing systems.

- Telecommunications and on-line infrastructure:  Nowadays, a large portion of our technology
relies on systems that are hosted on-line, or that, in order to function, require a remote connection with
servers that support their function. Failures in cloud infrastructure can have an immediate and extensive
effect in our daily lives.

-  Banking and financial systems:  A significant portion of our economy is based on electronic
transactions, similar to failures with telecommunications or online platforms, failures of these systems
can easily have a significant economic impact and cause a major disruption to customers.

The above are only some of the major areas in which we find need for systems that will perform
correctly and continuously. Let’s think now about how these systems are built.

Fault tolerance is usually specified in terms of one, or a combination of, common measures of how
resilient  and robust a system is.  Common measures used in the study and design of fault  tolerant
systems include:
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Reliability: This is a measure of the probability that the system will perform its function correctly
over  a  specified  interval  of  time.  In  particular,  the  reliability  R(t) for  a  particular  system is  the
conditional probability that the system will perform its task correctly in the interval [t0, t], where t0 is
the initial time and we assume the system was performing correctly at this time. 

This measure is often used whenever we have a system for which even short periods of incorrect
behaviour are unacceptable (think, for example, of an airplane’s flight control system), or for which
repairs are impossible (e.g. planetary exploration robots). Such systems have to function with very high
probability throughout the entire duration of their mission. For an airplane’s flight control computers,
for  example,  this  could  be  the  duration  of  a  flight,  so  for  instance,  a  design  requirement  for  a
commercial airliner’s flight computers system may be that it have a reliability  R(t)=.999999 over an
interval of 6 hours.  

Availability:  The  availability  of  a  system  A(t) is  defined  as  the  probability  that  a  system is
performing correctly and is available to carry out its function at time t. It is not the same as reliability
because  it  involves  only  the  specific  time  instant.  This  is  a  measure  commonly  used  for  on-line
platforms – which we expect to be available pretty much continuously. 

Notice that  availability does not necessarily provide much information regarding  how often the
system is unavailable or for how long. A system may have frequent but short periods of unavailability
and  yet  have  an  overall  high  availability  value.  Similarly,  a  system  might  suffer  from  a  longer
continuous period of unavailability, and if this happens rarely, its availability figure can still be high.

Other measures exist and can be used depending on the application, see [1] for details on some of
these.

Measuring reliability

How are we to estimate the reliability of a system? In practice this is a fairly complicated problem,
most of the systems we may have to work with consist of a multiplicity of components, both hardware
and software, interact with external entities, receive information that is often noisy and contradictory,
and are subject to all kinds of disturbances.

However,  we can often look at  sets  of components, and consider what configurations of these
components would result in the most reliable system. This is done through what is called success trees.
As an example, consider the simple system shown below:
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The very simple system above contains 2 components, a computer module and a power source. For
the  system to  operate,  both  of  these  components have  to  be  working  at  any  given  time.  This  is
represented by the AND gate joining them to the status of ‘System OK’. We can use this very simple
diagram to model the reliability of the system above if we have information about the reliabilities of
each of the components.

For instance, if Rc=.98 is the reliability of the computer module (and let’s assume here the figure
is over a period of one year, since reliability is measured in terms of specific time intervals), and if
Rp=.93 is the reliability of the power source.

 Then we have:

Notice that the reliability of the system is actually lower than that of the individual components.
This is what happens when we have multiple parts all of which have to work properly for the system to
function. Any fault in the parts will bring the complete system down. The more parts that are required
for the system to operate, the higher the likelihood any of of them will fail within some arbitrary time,
and render the system inoperable.

A collection  of  parts  is  thus  less  reliable  than  the  individual  parts  alone,  and high  reliability
requires individual parts with very high reliability themselves. 

Now consider the following setup for a highly reliable power source:

This highly reliable power source uses redundancy to achieve increased reliability. Two identical
batteries are combined into a single power source, as long as either of them is operational, the power
source will be operational – this is represented by the OR gate. To compute the reliability of the power
source we note that in order for it to fail, both batteries must fail at the same time. The probability that
one of the batteries fail is (1-Rp) = (1-.93). The probability that both fail is (1-.93)2, and therefore the

F. Estrada, 2023



CSC C85 – Fundamentals of Robotics and Automated Systems UTSC

probability that the power source remains operational is 1-(1-.93)2=.995.  Notice that this is
significantly higher than the reliability of either battery alone.

With a redundant power source, the reliability of our original system becomes

The use of a redundant power source greatly increases the reliability of the entire system. We could
similarly implement a redundant computing module and see how that changes the reliability of the
system:

The system above has a fairly high reliability – definitely much higher than our original system
with only two components. The cost of course is that now we have to include two computers and two
batteries (plus some hardware connecting everything together). Redundancy is limited often by cost,
and  sometimes  also  by  physical  constraints  (for  instance,  the  extra  weight  or  space  taken  by the
additional hardware). 

The representation shown above is an example of a success tree,  which allows us to inspect and
analyze the reliability of components, modules, and entire systems or sub-systems.

We can use  success trees to ask and answer questions regarding which configuration is optimal
when choosing among

a) Different configurations of the same base components or modules
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or 

b) Configurations that use different components constrained y a fixed budget

For instance, assume we are given 2 computers and 2 batteries with the reliability values shown
above – what is the optimal configuration for them? Is it a redundant battery module combined with a
redundant computing module (as shown above),  or is  it  better  to have a pair  of computer+battery
modules?

Let’s study the alternate configuration and see what its realibility would be:

which is not as good as having a redundant computing module and a redundant battery module, so
let’s  assume we decide to  implement  that  particular  system – now we can consider  the choice of
specific components to use in building the system. Consider the redundant power module, and suppose
that given our budget,  we can afford to use  two expensive batteries with Rp=.93 as  shown in the
diagrams  above,  or,  we  could  instead  use  three  less  expensive  batteries  with  Rp=.89.  Which
configuration would yield the higher reliability for the power module?

We can quickly see that for the same budget, having a larger number of cheaper,  less reliable
(individually) components provides a power module with higher overall realiability.

This  analysis  becomes  fairly  involved  for  systems  consisting  of  many  different  components
interacting in multiple and complicated ways, but there are software tools to help model and analyze
reliability. 

A similar analysis can be made for faults – that is, conditions that may occur that will cause the
system to fail. For each of the modules and/or components of a system, we can model the different
possible causes of failure using AND and OR gates, joining modules and components together as we
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did for the reliability modeling above, and eventually come up with a  failure tree for the system,
indicating for each module/component, and for the overall system, the probability of failure over some
specified interval of time. 

As an example,  consider  the  fault  tree  (shown below, in  a  separate  page)  for  Pressure  Tank
Rupture (courtesy of NASA, see [2] for details). As you can see, the tree can become quite complex
and this tree models only one type of possible failure. Similar trees would be used to characterize other
failure modes for the system we are studying, and together with the failure probabilities, it can be used
to model, estimate, and even simulate the probability and occurrence of different types of fault modes.

Achieving Fault Tolerance Through Redundancy

Fault tolerance is not the same as reliability. Reliability is just an estimate of how likely it is that a
system will  perform its  work correctly over an interval of time,  fault  tolerance is  a property of a
system that allows it to handle faults – a fault is an imperfection, a deviation from what is expected, a
problem or flaw, an unexpected condition in the operation of a system. It can be caused by hardware
(e.g. a component failure, incorrect or unexpected behaviour, etc.), or by software (typically a bug, or
the result of erroneous information being processed).

Fault tolerance is the property of a system that allows it to handle a certain number of flaws while
still fulfilling its correct function. Fault tolerance and reliability are complementary to each other – if
we could build a system whose every component is 100% reliable,  then we would not need fault-
tolerance. This is impossible, so instead we put a lot of effort into ensuring a critical system won’t be
disabled by possible faults, and in doing so, will increase the overall reliability of the system beyond
what can be expected just from its components.

Fault tolerance needs to consider:  the hardware the system consists of,  the software that we are
using to operate and run the system, and any information or data that the system uses and/or produces
during its operation. 

Hardware Fault Tolerance

Hardware fault tolerance often is equivalent to redundancy. As we saw above, building modules
that  contain  replicated  components each  of  which  can  independently  provide some  required
functionality can greatly increase reliability.

One  common approach,  which  is  often  taken  as  the  gold  standard for  building  fault-tolerant
modules is called triple modular redundancy. This approach is a passive approach to redundancy, and
relies on modules that contain  three independent  components each of which is  separately able to
provide the desired function (for instance, the redundant power module we saw above, with 3 identical
batteries). 

The TMR approach includes an additional step of voting. To understand what this means, consider
a  common  situation  in  which  triple  modular  redundancy  is  used  to  provide  reliability  and  fault-
tolerance: Designing and implementing reliable sensor modules for devices such as airplanes or cars. 
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Sensors are an essential  component of transportation systems. Airplanes in particular require a
wide  variety  of  measurements  to  determine  whether  everything  is  working  as  it  should,  what  the
parameters  of  flight  are,  and  to  maintain  the  aircraft’s  integrity  and  safety  despite  the  constantly
changing external forces as well as pilot inputs.

But we know that sensors are noisy, and we know that sensors fail and can give widely erroneous
readings either spuriously or continuously. It should not be difficult to see that having a single sensor in
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charge of providing some critical piece of information required for the plane to operate safely would be
a bad design choice and would provide a single point of failure that could endanger the plane should
the sensor fail.

For this reason, critical sensors in airplanes are typically tripled:

(Image shows the triplicate pitot tube sensor arrangement in an A380 – pitot tubes provide airspeed measurements, critical for safe flight.
Image courtesy of the Australian Transportation Safety Board ATSB)

Getting back to the TMR design, the  voting  component has the function of determining  which
measurement  to  use among  the  three  readings  taken  by  the  sensors.  This  is  not  a  completely
straightforward process because:

- Sensor readings will be different sue to noise
- Sensor readings will be different because the sensors are physically separated so they are reading
   information from different locations
- Sensors can not be read at exactly the same time, so the readouts will also differ because of
   the time-varying characteristics of whatever is being measured

Overall, the voting module has the task of taking the separate readings from the three sensors, and
outputting a consensus value – this can be a majority vote (if the sensor is measuring something that
can be quantized into a small number of discrete values), ir can be a median value (which is common
in the airline industry, just take the middle value amongst the three being provided), or it can be a more
complicated function of sets of rules defined for how the data should be used.

Regardless of how it is used, the TMR module allows for the  detection of faulty sensors – it is
reasonably  straightforward  to  determine  if  one  sensor  is  registering  readings  that  are  significantly
different from the other two. It can also determine whether the whole suite of sensors is faulty, which
happens when all three sensor measurements are significantly different. 
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TMR can be applied to many kinds of hardware components, and can also be applied to complete
sub-systems,  not  just  components.  For  instance,  the  flight  control  systems for  all  current  airliners
involve triple redundancy in the the components that power, actuate, and effect changes in the attitude
of the plane (i.e. the systems that actually control how the plane is flying):

s(Airbus redundant flight control schematic. Notice three separate (color coded) control paths with their own hydraulic and electronic
components, as well as multiple flight computers. Image reproduced from [3])

As with all redundancy-based systems, the factors that place limits on what we can replicate, and
to what degree we can replicate components and sub-systems are cost, and physical limitations such as
weight  or  space  availability.  These  have  to  be  balanced  against  the  safety  implications  of  not
replicating a component. 

Case study: fault-tolerance done wrong

The by now well known case of the Boeing 737-MAX illustrates how failure to build proper fault-
tolerance into a critical system can have disastrous consequences. The airplane’s design includes two
Angle of Attack (AOA) sensors. This in itself is common in the airline industry, and not a design issue
though it should be clear that if either sensor fails, we can detect the failure, but can’t tell which of
them is faulty.

The difference between the MAX and other airliners with two AOA sensors is that the MAX was
provided with a software system programmed to use AOA sensor information to push the nose of the
plane down if the sensor indicated the plane was in danger of stalling (to be fair, this was just one of
many things the software system was designed for). Crucially –  this system relied on input from a
single sensor,  did not check whether the alternate sensor disagreed (thereby indicating a potential
sensor failure), and did not check other flight parameters, sensors, or sources of information before
deciding to take action. To cap this off, pilots were not properly informed regarding the presence or
capabilities of the system, and were not provided clear and effective training on how to use and if
necessary disable this system to regain control of their plain in case of system failure.
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The result was a single point of failure should the AOA sensor give the wrong readings. Which it
did with disastrous consequences. You can find documentaries and reports describing in detail how this
came to be. What’s important for us here is to realize that, from the very simple description above, it
should be clear  that  this  system could not  be fault-tolerant,  and therefore should never  have been
allowed onto a production plane. Any decision taken thereafter, by anyone who was involved with any
aspect putting this system into a production plane was the wrong decision.

Software Fault Tolerance

Suppose  we  have  designed  and  built  a  fault-tolerant  computing  system  consisting  of  triple-
modular-redundant computing resources, and therefore can be reasonably certain the hardware is solid.
However the hardware is not particularly useful unless the software running the system is also reliable
and fault-tolerant.

What particular considerations must we keep in mind when designing fault-tolerant software?

- Fault-tolerant software must be able to detect and compensate for faults. Both in hardware
  components as well as within the software itself
- Fault-tolerant software must be as free of bugs as is humanly possible to achieve
- Fault-tolerant software must be able to handle erroneous input in a way that does not cause
  an unsafe situation to arise

We can not  achieve  software  fault  tolerance  simply  by replicating  the  same software  to  each
computer within a TMR computing module. Any bug present in the software will affect all redundant
copies and result in incorrect behaviour that can not be compensated for.

The design and implementation of fault-tolerant software includes

1) A thorough, careful, and detailed process for acquiring, analyzing, and detailing specifications
for what the system must be able to do.  This process will  also list  and categorize possible failure
modes, their likely causes, and their severity – using, for example, fault trees as discussed earlier.

2) Implementation of the system using  N-version programming. This means having N separate
teams implement the system software independently based on the completed specification. Much like
having redundant hardware and a voting mechanism, we can then run these N versions of the software
on reliable computing platforms and vote on the results to determine what the system must do next.

Each  of  the  separate  versions  must  undergo  its  very  own  rigurous  testing  process to  ensure
compliance with the specification, and to detect and eliminate as many software problems and bugs as
is possible before any of the software goes into operation. 

The purpose of having independently designed versions of the software is to greatly reduce the
chance that any specific bug will affect all our copies of the software at any given time. We should note
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that  it  is  still  possible for the N versions to contain the same issue,  if  the issue arises from an
incomplete or incorrect specification. 

N-version programming is costly – we are basically replicating the time, effort, and cost required
to develop a piece of complex software N times. 

However, the end result, combined is a software system that is incredibly reliable. 

3) Consistency checking: This means implementing sof tware logic that actively and continuously
checks input data, sensor readings, intermediate results, and outputs for the system for consistency –
i.e. the system must produce reasonable results for every particular situation. This may involve using a
model for the system to  predict what the state of the system will be and to  check  that the system’s
results agree to a reasonable degree with these predictions.

Sources of information for consistency checking:

- A model for the system, which is a common building block in dynamical systems. The model
         can be used to make predictions about the immediate future state of the system given the
         current state and any inputs being provided to the system. This can be used to check any

  sensor measurements, or to predict the effect actions that the automated systems are considering

- Alternate sensors: Losing a sensor for a specific parameter does not necessarily mean we have
   zero information regarding the parameter with the failed sensor. Often, the system will have
   additional sensors whose measurements are related to the value we are missing in a way that
   allows us to estimate the missing value to a reasonably good level of accuracy. The simplest
   example is the set of sensors that measure acceleration and velocity in a moving vehicle.
   A missing velocity value can be computed from the acceleration measurements, and vice-
   versa. Estimating missing parameters does not allow a system to operate safely for a long
   interval – the estimated values drift away from the correct ones, and will sooner or later become
   too inaccurate to use. However, we can gain enough information in the interval immediately
   following a sensor failure so as to enable the system to safely stop.

- Human in the loop: This seems to have been overlooked as of late, with emphasis being placed
  on automation. But many safety critical systems include a human operator as a central part of
  the operation. A qualified human, presented with sufficient information regarding an existing 
  problem, can quickly and accurately determine if a measurement, or an action being considered
  makes sense or not. 

Any or all of the above should be used to the greatest possible extent to ensure that no decisions or
actions are being taken with possibly inconsistent information, and without checking that the resulting
actions are consistent with the safe operation of the system. 

In the case of the 737-MAX, the software  failed to check for consistency between the sensor
reading it was using and the alternate sensor, or between this reading and and the previous values of
flight parameters. It failed to account for possible ways in which the AOA reading may change over
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time (it did not attempt to check whether the observed change in AOA was physically possible using a
model of how the plane behaves), did not check for consistency between the AOA readings and all
other  on-board sensors  (including inertial  navigation  units  which  provide acceleration  and rotation
measurements),  and  did  not  check  that  its  output  –  namely  commanding  the  plane’s  nose  down)
resulted in a safe configuration for the flight (it should never have produced a configuration in which
the  altitude  of  the  plane  is  quickly  decreasing)  –  it  also,  importantly disregarded  continued  and
consistent inputs by the pilots trying to push the nose of the plane back up (a clear and unequivocal
signal that what the automation was doing was wrong!). 

While it is clear that the MCAS system in the 737-MAX did not go through a proper process of
specification, design, testing, and validation, the absence of any form of consistency checking in this
particular  function  is  a  glaring  failure  to  implement  basic,  well  known principles  of  fault-tolerant
design for critical systems.

Consistency  checking  is  difficult  and  requires  considerable  thought,  adds  complexity  to  the
software that runs the system, and therefore adds a significant cost in terms of development, testing,
and validation. But done correctly will make a difference between dumb decisions being taken where
sufficient information was available to avoid them, and smart decisions being taken by software that is
able to determine that  what it  is  doing makes sense and that it  will  result  in  the safe and correct
operation of the system.

4) Recovery blocks: Sometimes, instead of a voting process to select outputs based on what is
being produced by the N versions of the system’s software, we instead implement what is called a
recovery block. In a recovery block, there is an  acceptance test  block that checks the output of the
software. The system uses the 1st version of the software as long as it passes the acceptance test. If the
acceptance test fails, then the system moves on to using the 2nd version of the software – it will keep
using that version as long as it passes the acceptance test. If the 2nd version fails the test, the system
moves on to version 3, and so on.

Voting-out Reconfiguration

For systems that rely on TMR hardware redundancy as well as muti-version software redundancy,
a commonly used technique to detect and remove from usage faulty modules is what is called voting-
out reconfiguration.

The principle is fairly simple: A set of redundant hardware/software modules are continuously run
and a voting module continuously compares their outputs and determines which of these is used to run
the system.

In addition to this, whenever one of the redundant modules is found to produce output that is
significantly different from the rest, it gets voted out and is taken offline. This is slightly different from
keeping the faulty module on-line because as long as it remains on-line, it will contribute its own vote
and could lead (in the presence of additional faults in other modules) to the wrong output being picked.
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As  a  simple  example,  given  5  redundant  modules  and  without  voting-out  reconfiguration,  3
modules failing in sequence over time may cause the wrong output to be selected. With voting-out
reconfiguration, we need to have 4 failed modules to get to the point where we don’t know what to do
(but we still know there is a fault and we don’t have information regarding which output to choose
among the last remaining modules).

Information Fault Tolerance

Even if we have carefully designed, built, and programmed a fault-tolerant computing system, it is
still possible for the entire system to fail if the data it is working with is corrupted or erroneous. This
includes not only the actual information being processed, but also the software itself – which is subject
to corruption just the same as any other piece of digital information.

It is therefore important that we consider the problem of information redundancy or, more aptly,
how to make the information our system works with fault tolerant.

Data corruption can occur because of multiple factors:

- Data transmission errors, including bit flips, dropouts, or malicious interference
- Corruption because of noise and electromagnetic interference in circuits
- Corruption due to aging or failure of storage media (e.g. degradation of ‘permanent’
   storage)

This topic goes well beyond fault tolerant systems, and is a big area of research and application in
distributed systems, cloud computing, archival technologies, and even your own personal computing
devices. The issue is not so much that the probability of an error occurring is high – current memory
technology is pretty reliable, but given the massive amounts of information stored the occurrence of
errors is a certainty.

Here,  we  will  focus  on  two  problems  that  need  to  be  carefully  considered  when  building
information fault tolerance into a system:

1) Error detection – which allows us to determine a fault has occurred and we need to do
      something about it, and is analogous to software fault detection, and hardware fault detection.

2) Data replication/redundancy – which allows the system to continue operating until it is safe to
     stop, even if there are faults in the data storage/retrieval components we are using.

Error detection involves encoding information in such a way that we can determine an error has
occurred. There are several techniques for doing this, from the simplest such as  parity checking and
checksums to more advanced (and costly in terms of space and computation) error correcting codes.
The choice of which of these to implement depends on the type of system being used and the severity
of potential errors for the operation of the system. But in general, a fault tolerant system needs to be
protected against data corruption and errors from any of the sources described above.
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Data  corruption  was  the  root  cause  of  an incident  involving a  Qantas  flight  (Flight  72)  from
Singapore to Perth. The plane suddenly dived  for no apparent reason during the cruise phase of the
flight causing injuries to passengers and crew. The cause of the incident was erroneous AOA data being
provided to the flight control computers (a similar but much less catastrophic problem to what was seen
in the 737 MAX above). The erroneous data was the result of data corruption in the CPU of the units in
charge of estimating flight parameters.

The plane had built-in software safeties to handle unexpected variations in flight parameters (so it
did not simply act on the erroneous readings as they arrived, unlike the MAX), but the nature of the
failure  interacted  with  these  safeties  in  such  a  way  that  eventually  the  flight  control  computers
determined the data was real and proceeded to act on it. 

One should again question the degree to which consistency checking should have been used in this
case, but the root cause – data corruption, motivates the need for the use of error detection and/or error
correction codes in all the data used by a safety-critical system.

Data duplication – in terms of data storage, the need for reliable backup systems should be evident
if we wish to achieve fault tolerance. All storage media are subject to aging and data degradation,
mechanical failure, or damage because of environmental factors. Failure of data storage can result in
catastrophic failure.

Data duplication is a commonly used technique, and many different schemes exist that can be
easily built into a system. As usual the main limitations in this regard are the additional cost, and the
physical space requirements of the data duplication system. 

Data replication introduces issues similar to those encountered with redundant sensor modules or
with redundant computing systems: Given a set of copies of a particular piece of information, we can
check for errors by comparing the value of the data across the multiple copies, and some mechanism
must be in place to determine which copy to use in the case of discrepancies. Voting, recovery blocks,
and/or voting-out reconfiguration may be used depending on the needs of the system.

One more technique that is often used in achieving information fault tolerance is  checkpointing.
This technique involves the creation of periodic  checkpoints with the property that the information
stored at these checkpoints corresponds to a point in time at which data, outputs, and the state of the
system were known to be  correct.  If at  some point a  fault  is detected,  and we estimate there is a
probability that erroneous results or information have been produced, we can roll-back to the nearest
checkpoint and then reconstruct the correct sequence of processing having accounted for the detected
fault.

Checkpoints are commonly used in operating systems to protect against unforeseen problems with
software and system updates – if something goes wrong, the system can simply go back to its previous
state hopefully without any loss of important data.
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