
CSC C85 – Fundamentals of Robotics and Automated Systems UTSC

Building Fault Tolerant Systems

One particularly important problem in Robotics is that of the design and implementation of
systems that have to perform an important, dangerous, time-sensitive, or otherwise critical task. Such
systems can not be allowed to fail or become unable to carry out their task because of common issues
such as component failures or software bugs.

The design and implementation of systems that can continue to perform their task in the presence
of faults is all the more relevant in the face of increasing reliance in automation, and A.I. powered
systems in all areas of daily life. Therefore we should become familiar with the main principles
involved so we can apply them consistently and wherever appropriate to any robotic or automated
systems we will be working with.

Common applications of fault-tolerant systems

These are only a few of the most common areas of application for fault-tolerant systems. You can
imagine that for each of these, the failure of a system to perform their function correctly would cause
significant harm to humans.

- Transportation: From airplane design and construction, to the software that powers cars with
varying degrees of automation, to delivery drones.

- Medical applications: Medical scanning technology, robot-assisted or remote surgery, systems
that monitor the young or the elderly.

- Energy production and distribution: Consider the systems that monitor and control critical
facilities such as nuclear power plants or electric grid load balancing systems.

- Telecommunications and on-line infrastructure: Nowadays, a large portion of our technology
relies on systems that are hosted on-line, or that, in order to function, require a remote connection with
servers that support their function. Failures in cloud infrastructure can have an immediate and extensive
effect in our daily lives.

- Banking and financial systems: A significant portion of our economy is based on electronic
transactions, similar to failures with telecommunications or online platforms, failures of these systems
can easily have a significant economic impact and cause a major disruption to customers.

The above are only some of the major areas in which we find need for systems that will perform
correctly and continuously. Let’s think now about how these systems are built.

Fault tolerance is usually specified in terms of one, or a combination of, common measures of how
resilient and robust a system is. Common measures used in the study and design of fault tolerant
systems include:

F. Estrada, 2023

CSC C85 – Fundamentals of Robotics and Automated Systems UTSC

Reliability: This is a measure of the probability that the system will perform its function correctly
over a specified interval of time. In particular, the reliability R(t) for a particular system is the
conditional probability that the system will perform its task correctly in the interval [t0, t], where t0 is
the initial time and we assume the system was performing correctly at this time.

This measure is often used whenever we have a system for which even short periods of incorrect
behaviour are unacceptable (think, for example, of an airplane’s flight control system), or for which
repairs are impossible (e.g. planetary exploration robots). Such systems have to function with very high
probability throughout the entire duration of their mission. For an airplane’s flight control computers,
for example, this could be the duration of a flight, so for instance, a design requirement for a
commercial airliner’s flight computers system may be that it have a reliability R(t)=.999999 over an
interval of 6 hours.

Availability: The availability of a system A(t) is defined as the probability that a system is
performing correctly and is available to carry out its function at time t. It is not the same as reliability
because it involves only the specific time instant. This is a measure commonly used for on-line
platforms – which we expect to be available pretty much continuously.

Notice that availability does not necessarily provide much information regarding how often the
system is unavailable or for how long. A system may have frequent but short periods of unavailability
and yet have an overall high availability value. Similarly, a system might suffer from a longer
continuous period of unavailability, and if this happens rarely, its availability figure can still be high.

Other measures exist and can be used depending on the application, see [1] for details on some of
these.

Measuring reliability

How are we to estimate the reliability of a system? In practice this is a fairly complicated problem,
most of the systems we may have to work with consist of a multiplicity of components, both hardware
and software, interact with external entities, receive information that is often noisy and contradictory,
and are subject to all kinds of disturbances.

However, we can often look at sets of components, and consider what configurations of these
components would result in the most reliable system. This is done through what is called success trees.
As an example, consider the simple system shown below:

F. Estrada, 2023

CSC C85 – Fundamentals of Robotics and Automated Systems UTSC

The very simple system above contains 2 components, a computer module and a power source. For
the system to operate, both of these components have to be working at any given time. This is
represented by the AND gate joining them to the status of ‘System OK’. We can use this very simple
diagram to model the reliability of the system above if we have information about the reliabilities of
each of the components.

For instance, if Rc=.98 is the reliability of the computer module (and let’s assume here the figure
is over a period of one year, since reliability is measured in terms of specific time intervals), and if
Rp=.93 is the reliability of the power source.

 Then we have:

Notice that the reliability of the system is actually lower than that of the individual components.
This is what happens when we have multiple parts all of which have to work properly for the system to
function. Any fault in the parts will bring the complete system down. The more parts that are required
for the system to operate, the higher the likelihood any of of them will fail within some arbitrary time,
and render the system inoperable.

A collection of parts is thus less reliable than the individual parts alone, and high reliability
requires individual parts with very high reliability themselves.

Now consider the following setup for a highly reliable power source:

This highly reliable power source uses redundancy to achieve increased reliability. Two identical
batteries are combined into a single power source, as long as either of them is operational, the power
source will be operational – this is represented by the OR gate. To compute the reliability of the power
source we note that in order for it to fail, both batteries must fail at the same time. The probability that
one of the batteries fail is (1-Rp) = (1-.93). The probability that both fail is (1-.93)2, and therefore the

F. Estrada, 2023

CSC C85 – Fundamentals of Robotics and Automated Systems UTSC

probability that the power source remains operational is 1-(1-.93)2=.995. Notice that this is
significantly higher than the reliability of either battery alone.

With a redundant power source, the reliability of our original system becomes

The use of a redundant power source greatly increases the reliability of the entire system. We could
similarly implement a redundant computing module and see how that changes the reliability of the
system:

The system above has a fairly high reliability – definitely much higher than our original system
with only two components. The cost of course is that now we have to include two computers and two
batteries (plus some hardware connecting everything together). Redundancy is limited often by cost,
and sometimes also by physical constraints (for instance, the extra weight or space taken by the
additional hardware).

The representation shown above is an example of a success tree, which allows us to inspect and
analyze the reliability of components, modules, and entire systems or sub-systems.

We can use success trees to ask and answer questions regarding which configuration is optimal
when choosing among

a) Different configurations of the same base components or modules

F. Estrada, 2023

CSC C85 – Fundamentals of Robotics and Automated Systems UTSC

or

b) Configurations that use different components constrained y a fixed budget

For instance, assume we are given 2 computers and 2 batteries with the reliability values shown
above – what is the optimal configuration for them? Is it a redundant battery module combined with a
redundant computing module (as shown above), or is it better to have a pair of computer+battery
modules?

Let’s study the alternate configuration and see what its realibility would be:

which is not as good as having a redundant computing module and a redundant battery module, so
let’s assume we decide to implement that particular system – now we can consider the choice of
specific components to use in building the system. Consider the redundant power module, and suppose
that given our budget, we can afford to use two expensive batteries with Rp=.93 as shown in the
diagrams above, or, we could instead use three less expensive batteries with Rp=.89. Which
configuration would yield the higher reliability for the power module?

We can quickly see that for the same budget, having a larger number of cheaper, less reliable
(individually) components provides a power module with higher overall realiability.

This analysis becomes fairly involved for systems consisting of many different components
interacting in multiple and complicated ways, but there are software tools to help model and analyze
reliability.

A similar analysis can be made for faults – that is, conditions that may occur that will cause the
system to fail. For each of the modules and/or components of a system, we can model the different
possible causes of failure using AND and OR gates, joining modules and components together as we

F. Estrada, 2023

CSC C85 – Fundamentals of Robotics and Automated Systems UTSC

did for the reliability modeling above, and eventually come up with a failure tree for the system,
indicating for each module/component, and for the overall system, the probability of failure over some
specified interval of time.

As an example, consider the fault tree (shown below, in a separate page) for Pressure Tank
Rupture (courtesy of NASA, see [2] for details). As you can see, the tree can become quite complex
and this tree models only one type of possible failure. Similar trees would be used to characterize other
failure modes for the system we are studying, and together with the failure probabilities, it can be used
to model, estimate, and even simulate the probability and occurrence of different types of fault modes.

Achieving Fault Tolerance Through Redundancy

Fault tolerance is not the same as reliability. Reliability is just an estimate of how likely it is that a
system will perform its work correctly over an interval of time, fault tolerance is a property of a
system that allows it to handle faults – a fault is an imperfection, a deviation from what is expected, a
problem or flaw, an unexpected condition in the operation of a system. It can be caused by hardware
(e.g. a component failure, incorrect or unexpected behaviour, etc.), or by software (typically a bug, or
the result of erroneous information being processed).

Fault tolerance is the property of a system that allows it to handle a certain number of flaws while
still fulfilling its correct function. Fault tolerance and reliability are complementary to each other – if
we could build a system whose every component is 100% reliable, then we would not need fault-
tolerance. This is impossible, so instead we put a lot of effort into ensuring a critical system won’t be
disabled by possible faults, and in doing so, will increase the overall reliability of the system beyond
what can be expected just from its components.

Fault tolerance needs to consider: the hardware the system consists of, the software that we are
using to operate and run the system, and any information or data that the system uses and/or produces
during its operation.

Hardware Fault Tolerance

Hardware fault tolerance often is equivalent to redundancy. As we saw above, building modules
that contain replicated components each of which can independently provide some required
functionality can greatly increase reliability.

One common approach, which is often taken as the gold standard for building fault-tolerant
modules is called triple modular redundancy. This approach is a passive approach to redundancy, and
relies on modules that contain three independent components each of which is separately able to
provide the desired function (for instance, the redundant power module we saw above, with 3 identical
batteries).

The TMR approach includes an additional step of voting. To understand what this means, consider
a common situation in which triple modular redundancy is used to provide reliability and fault-
tolerance: Designing and implementing reliable sensor modules for devices such as airplanes or cars.

F. Estrada, 2023

CSC C85 – Fundamentals of Robotics and Automated Systems UTSC

Sensors are an essential component of transportation systems. Airplanes in particular require a
wide variety of measurements to determine whether everything is working as it should, what the
parameters of flight are, and to maintain the aircraft’s integrity and safety despite the constantly
changing external forces as well as pilot inputs.

But we know that sensors are noisy, and we know that sensors fail and can give widely erroneous
readings either spuriously or continuously. It should not be difficult to see that having a single sensor in

F. Estrada, 2023

CSC C85 – Fundamentals of Robotics and Automated Systems UTSC

charge of providing some critical piece of information required for the plane to operate safely would be
a bad design choice and would provide a single point of failure that could endanger the plane should
the sensor fail.

For this reason, critical sensors in airplanes are typically tripled:

(Image shows the triplicate pitot tube sensor arrangement in an A380 – pitot tubes provide airspeed measurements, critical for safe flight.
Image courtesy of the Australian Transportation Safety Board ATSB)

Getting back to the TMR design, the voting component has the function of determining which
measurement to use among the three readings taken by the sensors. This is not a completely
straightforward process because:

- Sensor readings will be different sue to noise
- Sensor readings will be different because the sensors are physically separated so they are reading
 information from different locations
- Sensors can not be read at exactly the same time, so the readouts will also differ because of
 the time-varying characteristics of whatever is being measured

Overall, the voting module has the task of taking the separate readings from the three sensors, and
outputting a consensus value – this can be a majority vote (if the sensor is measuring something that
can be quantized into a small number of discrete values), ir can be a median value (which is common
in the airline industry, just take the middle value amongst the three being provided), or it can be a more
complicated function of sets of rules defined for how the data should be used.

Regardless of how it is used, the TMR module allows for the detection of faulty sensors – it is
reasonably straightforward to determine if one sensor is registering readings that are significantly
different from the other two. It can also determine whether the whole suite of sensors is faulty, which
happens when all three sensor measurements are significantly different.

F. Estrada, 2023

CSC C85 – Fundamentals of Robotics and Automated Systems UTSC

TMR can be applied to many kinds of hardware components, and can also be applied to complete
sub-systems, not just components. For instance, the flight control systems for all current airliners
involve triple redundancy in the the components that power, actuate, and effect changes in the attitude
of the plane (i.e. the systems that actually control how the plane is flying):

s(Airbus redundant flight control schematic. Notice three separate (color coded) control paths with their own hydraulic and electronic
components, as well as multiple flight computers. Image reproduced from [3])

As with all redundancy-based systems, the factors that place limits on what we can replicate, and
to what degree we can replicate components and sub-systems are cost, and physical limitations such as
weight or space availability. These have to be balanced against the safety implications of not
replicating a component.

Case study: fault-tolerance done wrong

The by now well known case of the Boeing 737-MAX illustrates how failure to build proper fault-
tolerance into a critical system can have disastrous consequences. The airplane’s design includes two
Angle of Attack (AOA) sensors. This in itself is common in the airline industry, and not a design issue
though it should be clear that if either sensor fails, we can detect the failure, but can’t tell which of
them is faulty.

The difference between the MAX and other airliners with two AOA sensors is that the MAX was
provided with a software system programmed to use AOA sensor information to push the nose of the
plane down if the sensor indicated the plane was in danger of stalling (to be fair, this was just one of
many things the software system was designed for). Crucially – this system relied on input from a
single sensor, did not check whether the alternate sensor disagreed (thereby indicating a potential
sensor failure), and did not check other flight parameters, sensors, or sources of information before
deciding to take action. To cap this off, pilots were not properly informed regarding the presence or
capabilities of the system, and were not provided clear and effective training on how to use and if
necessary disable this system to regain control of their plain in case of system failure.

F. Estrada, 2023

CSC C85 – Fundamentals of Robotics and Automated Systems UTSC

The result was a single point of failure should the AOA sensor give the wrong readings. Which it
did with disastrous consequences. You can find documentaries and reports describing in detail how this
came to be. What’s important for us here is to realize that, from the very simple description above, it
should be clear that this system could not be fault-tolerant, and therefore should never have been
allowed onto a production plane. Any decision taken thereafter, by anyone who was involved with any
aspect putting this system into a production plane was the wrong decision.

Software Fault Tolerance

Suppose we have designed and built a fault-tolerant computing system consisting of triple-
modular-redundant computing resources, and therefore can be reasonably certain the hardware is solid.
However the hardware is not particularly useful unless the software running the system is also reliable
and fault-tolerant.

What particular considerations must we keep in mind when designing fault-tolerant software?

- Fault-tolerant software must be able to detect and compensate for faults. Both in hardware
 components as well as within the software itself
- Fault-tolerant software must be as free of bugs as is humanly possible to achieve
- Fault-tolerant software must be able to handle erroneous input in a way that does not cause
 an unsafe situation to arise

We can not achieve software fault tolerance simply by replicating the same software to each
computer within a TMR computing module. Any bug present in the software will affect all redundant
copies and result in incorrect behaviour that can not be compensated for.

The design and implementation of fault-tolerant software includes

1) A thorough, careful, and detailed process for acquiring, analyzing, and detailing specifications
for what the system must be able to do. This process will also list and categorize possible failure
modes, their likely causes, and their severity – using, for example, fault trees as discussed earlier.

2) Implementation of the system using N-version programming. This means having N separate
teams implement the system software independently based on the completed specification. Much like
having redundant hardware and a voting mechanism, we can then run these N versions of the software
on reliable computing platforms and vote on the results to determine what the system must do next.

Each of the separate versions must undergo its very own rigurous testing process to ensure
compliance with the specification, and to detect and eliminate as many software problems and bugs as
is possible before any of the software goes into operation.

The purpose of having independently designed versions of the software is to greatly reduce the
chance that any specific bug will affect all our copies of the software at any given time. We should note

F. Estrada, 2023

CSC C85 – Fundamentals of Robotics and Automated Systems UTSC

that it is still possible for the N versions to contain the same issue, if the issue arises from an
incomplete or incorrect specification.

N-version programming is costly – we are basically replicating the time, effort, and cost required
to develop a piece of complex software N times.

However, the end result, combined is a software system that is incredibly reliable.

3) Consistency checking: This means implementing sof tware logic that actively and continuously
checks input data, sensor readings, intermediate results, and outputs for the system for consistency –
i.e. the system must produce reasonable results for every particular situation. This may involve using a
model for the system to predict what the state of the system will be and to check that the system’s
results agree to a reasonable degree with these predictions.

Sources of information for consistency checking:

- A model for the system, which is a common building block in dynamical systems. The model
 can be used to make predictions about the immediate future state of the system given the
 current state and any inputs being provided to the system. This can be used to check any

 sensor measurements, or to predict the effect actions that the automated systems are considering

- Alternate sensors: Losing a sensor for a specific parameter does not necessarily mean we have
 zero information regarding the parameter with the failed sensor. Often, the system will have
 additional sensors whose measurements are related to the value we are missing in a way that
 allows us to estimate the missing value to a reasonably good level of accuracy. The simplest
 example is the set of sensors that measure acceleration and velocity in a moving vehicle.
 A missing velocity value can be computed from the acceleration measurements, and vice-
 versa. Estimating missing parameters does not allow a system to operate safely for a long
 interval – the estimated values drift away from the correct ones, and will sooner or later become
 too inaccurate to use. However, we can gain enough information in the interval immediately
 following a sensor failure so as to enable the system to safely stop.

- Human in the loop: This seems to have been overlooked as of late, with emphasis being placed
 on automation. But many safety critical systems include a human operator as a central part of
 the operation. A qualified human, presented with sufficient information regarding an existing
 problem, can quickly and accurately determine if a measurement, or an action being considered
 makes sense or not.

Any or all of the above should be used to the greatest possible extent to ensure that no decisions or
actions are being taken with possibly inconsistent information, and without checking that the resulting
actions are consistent with the safe operation of the system.

In the case of the 737-MAX, the software failed to check for consistency between the sensor
reading it was using and the alternate sensor, or between this reading and and the previous values of
flight parameters. It failed to account for possible ways in which the AOA reading may change over

F. Estrada, 2023

CSC C85 – Fundamentals of Robotics and Automated Systems UTSC

time (it did not attempt to check whether the observed change in AOA was physically possible using a
model of how the plane behaves), did not check for consistency between the AOA readings and all
other on-board sensors (including inertial navigation units which provide acceleration and rotation
measurements), and did not check that its output – namely commanding the plane’s nose down)
resulted in a safe configuration for the flight (it should never have produced a configuration in which
the altitude of the plane is quickly decreasing) – it also, importantly disregarded continued and
consistent inputs by the pilots trying to push the nose of the plane back up (a clear and unequivocal
signal that what the automation was doing was wrong!).

While it is clear that the MCAS system in the 737-MAX did not go through a proper process of
specification, design, testing, and validation, the absence of any form of consistency checking in this
particular function is a glaring failure to implement basic, well known principles of fault-tolerant
design for critical systems.

Consistency checking is difficult and requires considerable thought, adds complexity to the
software that runs the system, and therefore adds a significant cost in terms of development, testing,
and validation. But done correctly will make a difference between dumb decisions being taken where
sufficient information was available to avoid them, and smart decisions being taken by software that is
able to determine that what it is doing makes sense and that it will result in the safe and correct
operation of the system.

4) Recovery blocks: Sometimes, instead of a voting process to select outputs based on what is
being produced by the N versions of the system’s software, we instead implement what is called a
recovery block. In a recovery block, there is an acceptance test block that checks the output of the
software. The system uses the 1st version of the software as long as it passes the acceptance test. If the
acceptance test fails, then the system moves on to using the 2nd version of the software – it will keep
using that version as long as it passes the acceptance test. If the 2nd version fails the test, the system
moves on to version 3, and so on.

Voting-out Reconfiguration

For systems that rely on TMR hardware redundancy as well as muti-version software redundancy,
a commonly used technique to detect and remove from usage faulty modules is what is called voting-
out reconfiguration.

The principle is fairly simple: A set of redundant hardware/software modules are continuously run
and a voting module continuously compares their outputs and determines which of these is used to run
the system.

In addition to this, whenever one of the redundant modules is found to produce output that is
significantly different from the rest, it gets voted out and is taken offline. This is slightly different from
keeping the faulty module on-line because as long as it remains on-line, it will contribute its own vote
and could lead (in the presence of additional faults in other modules) to the wrong output being picked.

F. Estrada, 2023

CSC C85 – Fundamentals of Robotics and Automated Systems UTSC

As a simple example, given 5 redundant modules and without voting-out reconfiguration, 3
modules failing in sequence over time may cause the wrong output to be selected. With voting-out
reconfiguration, we need to have 4 failed modules to get to the point where we don’t know what to do
(but we still know there is a fault and we don’t have information regarding which output to choose
among the last remaining modules).

Information Fault Tolerance

Even if we have carefully designed, built, and programmed a fault-tolerant computing system, it is
still possible for the entire system to fail if the data it is working with is corrupted or erroneous. This
includes not only the actual information being processed, but also the software itself – which is subject
to corruption just the same as any other piece of digital information.

It is therefore important that we consider the problem of information redundancy or, more aptly,
how to make the information our system works with fault tolerant.

Data corruption can occur because of multiple factors:

- Data transmission errors, including bit flips, dropouts, or malicious interference
- Corruption because of noise and electromagnetic interference in circuits
- Corruption due to aging or failure of storage media (e.g. degradation of ‘permanent’
 storage)

This topic goes well beyond fault tolerant systems, and is a big area of research and application in
distributed systems, cloud computing, archival technologies, and even your own personal computing
devices. The issue is not so much that the probability of an error occurring is high – current memory
technology is pretty reliable, but given the massive amounts of information stored the occurrence of
errors is a certainty.

Here, we will focus on two problems that need to be carefully considered when building
information fault tolerance into a system:

1) Error detection – which allows us to determine a fault has occurred and we need to do
 something about it, and is analogous to software fault detection, and hardware fault detection.

2) Data replication/redundancy – which allows the system to continue operating until it is safe to
 stop, even if there are faults in the data storage/retrieval components we are using.

Error detection involves encoding information in such a way that we can determine an error has
occurred. There are several techniques for doing this, from the simplest such as parity checking and
checksums to more advanced (and costly in terms of space and computation) error correcting codes.
The choice of which of these to implement depends on the type of system being used and the severity
of potential errors for the operation of the system. But in general, a fault tolerant system needs to be
protected against data corruption and errors from any of the sources described above.

F. Estrada, 2023

CSC C85 – Fundamentals of Robotics and Automated Systems UTSC

Data corruption was the root cause of an incident involving a Qantas flight (Flight 72) from
Singapore to Perth. The plane suddenly dived for no apparent reason during the cruise phase of the
flight causing injuries to passengers and crew. The cause of the incident was erroneous AOA data being
provided to the flight control computers (a similar but much less catastrophic problem to what was seen
in the 737 MAX above). The erroneous data was the result of data corruption in the CPU of the units in
charge of estimating flight parameters.

The plane had built-in software safeties to handle unexpected variations in flight parameters (so it
did not simply act on the erroneous readings as they arrived, unlike the MAX), but the nature of the
failure interacted with these safeties in such a way that eventually the flight control computers
determined the data was real and proceeded to act on it.

One should again question the degree to which consistency checking should have been used in this
case, but the root cause – data corruption, motivates the need for the use of error detection and/or error
correction codes in all the data used by a safety-critical system.

Data duplication – in terms of data storage, the need for reliable backup systems should be evident
if we wish to achieve fault tolerance. All storage media are subject to aging and data degradation,
mechanical failure, or damage because of environmental factors. Failure of data storage can result in
catastrophic failure.

Data duplication is a commonly used technique, and many different schemes exist that can be
easily built into a system. As usual the main limitations in this regard are the additional cost, and the
physical space requirements of the data duplication system.

Data replication introduces issues similar to those encountered with redundant sensor modules or
with redundant computing systems: Given a set of copies of a particular piece of information, we can
check for errors by comparing the value of the data across the multiple copies, and some mechanism
must be in place to determine which copy to use in the case of discrepancies. Voting, recovery blocks,
and/or voting-out reconfiguration may be used depending on the needs of the system.

One more technique that is often used in achieving information fault tolerance is checkpointing.
This technique involves the creation of periodic checkpoints with the property that the information
stored at these checkpoints corresponds to a point in time at which data, outputs, and the state of the
system were known to be correct. If at some point a fault is detected, and we estimate there is a
probability that erroneous results or information have been produced, we can roll-back to the nearest
checkpoint and then reconstruct the correct sequence of processing having accounted for the detected
fault.

Checkpoints are commonly used in operating systems to protect against unforeseen problems with
software and system updates – if something goes wrong, the system can simply go back to its previous
state hopefully without any loss of important data.

F. Estrada, 2023

CSC C85 – Fundamentals of Robotics and Automated Systems UTSC

References:

[1] Johnson, Barry, “An Introduction to the Design and Analysis of Fault-Tolerant Systems” - available
online from ResearchGate.

[2] Fault Tree Handbook with Aerospace Applications, NASA Office of Safety and Mission Assurance,
2002

[3] Sghairi, et.al., “Architecture Optimization Based on Incremental Approach for Airplane Digital
Distributed Flight Control System”, Advances in Electrical and Electronic Engineering.

F. Estrada, 2023

