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Kalman Filters

Consider what we have learned thus far: Sensors are noisy, imperfect, and often measure state
variables indirectly. Similarly, actuators and moving components in all automated systems are noisy
and imperfect, and at best can accomplish requested actions to within a small margin or error. Finally,
the environment whithin which a robot is operating is complex and often poorly modelled (if at all). All
the sources of uncertainty compound each other and the result is that, for particular applications which
require cotinued tracking of state variables, the accumulated error may render our estimates useless.

For instance, consider the problem of keeping track of the position of a car that is moving along a
straight line (a very simple situation). If all we have access to is the sensor that measures the car’s
velocity (which is usually the case), and we use this sensor to estimate the car’s position, we will run
into the same problem inertial navigation systems: drift will make our positione stimate less and less
accurate over time, eventually becoming useless for practical purposes.

What we need is an estimator. A process that will combine information provided by our sensors, a
model of how our system evolves over time as a result of actions, information about the amount of
noise in our sensor measurements as well as in the results of actions performed, and puts everything
together into an estimate of our state variables that is significantly better than could be obtained directly
even if we carefully denoise sensor input.

One such estimator that is extensively used in practice is the Kalman Filter. 

The Kalman filter relies on the following idea:

- Use a model of the system to predict what the state variables will be at the next time instant
- Acquire information about the state variables by using the sensors
- Combine both of these sources of information accounting for noise in sensing and actions so as
  to obtain a better estimate than we could get from either source alone.

We have encountered the idea of prediction before – it has been used in particle filters to simulate
what different particles will do and thus create a cloud of particles that progressively approximate the
robot’s true state. It can be used as a sanity check on sensor inputs – e.g. by checking if the sensor
measurements disagree in a significant way from the prediction. And now we will see that it can be
used to obtain a more accurate estimate of state variables in the presence of noise and uncertainty.

Prediction  requires  a  model –  another  idea  we  have  encoutered  before  in  control  systems,
localization, and management of sensor noise. Similarly to control systems, the Kalman Filter will use
a  linear  model to  represent  the  robot.  The  linearity  requirement  is  important  because  it  makes
derivation of the Kalman Filter’s updates manageable. Most of the systems we will have to deal with in
practice are not actually linear, but even so the Kalmaf Filter works well in a surprisingly wide range of
situations. We will come back to this linearity requirement later.

The Kalman Filter
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The material  in this  section has been adapted from an excellent write-up by Ramsey Faragher
(https://ieeexplore.ieee.org/document/6279585).

The Kalman Filter (KF) is based on the following assumptions about the system:

- The system is represented by a linear model, the model includes a noise term
- Sensors provide a noisy estimate of state variables, we have a linear model relating state

   variables to sensor observations, and the model includes a noise term
- The noise in both the system model and the sensor model is zero-mean Gaussian

The system and sensor models used in the KF will look familiar from what we already studied in
control systems. The system model is given by

Here the vector    contains the state variables, vector    represents any inputs to the system, and
vector    represents zero mean Gaussian with covariance Q. Matrix A is the state transition matrix,
relating the current and previous values of the state variables; matrix B relates state variables to control
inputs applied to the system. 

Along with our model for the system, we will need a sensor model that describes how the values of
state variables are related to the sensor readings obtained by our system. The sensor model is linear and
given by

Here the vector    represents zero-mean Gaussian noise with covariance  R. Keep in mind that
unlike our models used while studying control systems, for the KF we explicitly allow the linear model
to change over time, hence the dependence on t for the matrices in the above equations.

Finally, the KF keeps track of the process covariance P – this matrix describes the uncertainty in
the state variable estimates, and changes over time. Intuitively, if we do nothing other than apply our
linear model to obtain estimates for our state variables, uncertainty should grow over time. Each update
is affected by random noise, and the noise at time t=c will be factored into every update for t>c. Noise
compounds over time, and thus uncertainty grows.

The KF consists of two steps

Prediction

Obtain an estimate for the state variables using the linear model, and obtain an estimate for the
process covariance also from the linear model. Notation: In what follows, we use

- the actual value of the state variables
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- the predicted value of the state variables from the KF’s first step
- the final estimate of the state variablesafter completing both steps of the KF

The equations that yield the predictions for the first step of the KF are

(1)

(2)

Notice  that  the  predicted  state  variables  at  time  t use  the  final  Kalman  estimate  of  the  state
variables at time  t-1. Similarly, the prediction for the  process covariance  at time  t uses the Kalman
estimate of the process covariance at time t-11.

Equation  (1)  simply  applies  the  linear  system to  our  previous  Kalman  estimate  for  the  state
variables, including any control inputs applied at time t. Notice there is no noise term, we’re not trying
to simuluate the effect of the Gaussian noise on the state variables here.

Measurement Update

Given the prediction from step 1, the KF uses sensor measurements to update the estimates for our
state variables, the update is given by

(3)

(4)

Let’s take a moment to understand what is going on here.  In equation (3), the second term is
comparing the difference between the sensor measurements we obtained at time  t, and the  predicted
value of the sensor measurements that we obtain from using our estimate from equation (1) and the
sensor model (without the noise term). This difference is then scaled using the Kalman gain given by
matrix K. 

The Kalman gain is updated at every step, and balances the uncertainty in the process with the
uncertainty in the sensor readings giving more weight to whichever of these has smaller uncertainty. In
equation  (3)  if  the  difference  between  our  predicted  state  variables  and  the  corresponding  sensor
measurements is small, the adjustment will be small. Conversely, if the difference is large, then a more
significant adjustment will be carried out.

The Kalman gain is given by

1 The derivation of the update for the process covariance (2) is not so straightforward, for reference, please see equations
2.5 through 2.13 in https://www.control.utoronto.ca/people/profs/kwong/ece1639/2010/notes/chap2.pdf
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This is derived by optimizing over the error covariance of the Kalman estimate2 so as to obtain the
estimate that is closest to the true value of the state variables. 

Finally,  equation  (4)  reflects  the  expectation  that  the  measurement  update  will  reduce  the
uncertainty in our process. 

Summary

The Kalman Filter is a powerful estimator for state variables in dynamical systems. It relies on a
linear model to predict the values of the state variables, and performs an adjustment based on sensor
measurements in an amount that is determined by taking into account the uncertainties in the process
and the measurements.

The KF is  implemented as a loop – given the initial  estimates for the state  variables,  process
covariance (this can be a matrix with all zeroes), and the covariances for noise in the process and
measurement, the KF carries out the prediction and measurement update for each succeeding step.

Limitations

The KF relies on the assumptions of zero-mean Gaussian noise, and a linear system. In practice the
latter  assumption is  often  not  accurate.  Despite  this,  the  KF remains  useful  over  a  wide range of
problems, including some non-linear ones.

If bad performance is encountered due to nonlinearities, the extended Kalman filter (EKF) may be
of use. The EKF linearizes the system around the current mean and covariance, and then performs
estimation.  Implementing  an  EKF  can  be  non-trivial.  As  an  alternative,  particle  filters  (already
discussed for linearization) can be used to estimate the state of highly non-linear systems.

2 See Welch & Bishop “An Introduction to the Kalman Filter”, SIGGRAPH 2001 course notes, section 4.1.2
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