
CSC A48 – Introduction to Computer Science - UTSC

CSC A48 – Unit 3 – Organizing, Storing, and Accessing Information

1.- The problem of Data

Now that we know enough about how to implement things in C, it's time to turn our attention to
the first of the really interesting ideas we will be studying in this course.

Our goal here is to understand how to approach a general problem: how to organize, store, and
access information in a computer-based system. Here are some of the things you may wish to store and
organize using computers:

- Text (documents, articles, books, etc.)
- Music (in general, sound files – interviews, documentaries, sound clips, etc.)
- Pictures (in multiple formats)
- Video
- Information about people – depending on your applications

e.g.
Student information in ACORN
Customer records for on-line stores
Personal information and patient history for hospitals
Browsing preferences (do you know what your browser knows about you?)
etc.

- Computation results
e.g.

Predictions (the weather tomorrow, stock market, election results)
Database queries (find all students enrolled in CSCA48, Lec0002)
The shortest route to drive from one place to another (e.g. in your favorite maps

 application).
Etc.

These are just a very small number of examples to give you an idea of the wide range of
situations in which we will find a need for thinking carefully about. In general, one of the first things
you have to do when solving a problem using a computer is to think carefully about:

- What type of information we have to store
- How much of it do we need to manage (handling a few hundred pictures in your cellphone is
 a different problem than handling hundreds of millions on Google image)
- How the data will be accessed and used, and by whom (efficiency, storage usage, security
 and access control, data backup and redundancy)
- How to organize the data so it is easy to manage in a program (the actual program-level
 representation and manipulation of the data)

What you will learn in this part of the course is the program-level organization and
manipulation of data. We will see how to use the simple data types provided by C in order to build
richer, more useful, more flexible, and easy to use data containers that can be used to store, organize,

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 1

CSC A48 – Introduction to Computer Science - UTSC

access, and manage pretty much anything you may wish to store inside a computer.

The concepts and techniques covered here will be the foundation you need if you later wish to
understand how to model information, and how the modeling of information affects the design of the
software written to handle it (this is one of the main topics of Software Design, CSCB07). It is also the
foundation on which databases are built. Nowadays, databases are needed almost for every application
– from a cooking recipe app (which will have some form of searchable recipe database), to customer
information systems for every kind of business both on-line and out. Databases are fascinating, so if
you're curious about how they work don't forget to check out our Intro to Databases CSCC43.

ASIDE: How much data is out there?

You may have heard the term 'big data' mentioned out there. It is a rather uninformative term in that it
really doesn't tell you how much data exactly qualifies as 'big', or why it should be that way. Here's a few facts
(mind that some estimates are one or two yeas old!) to give you an idea of how much data is out there in
different applications and for different uses.

1 - The Google codebase (2016) includes approximately one billion files and has a history of approximately 35
million commits spanning Google's entire 18-year existence. The repository contains 86TBa of data, including
approximately two billion lines of code in nine million unique source files.
(source: https://cacm.acm.org/magazines/2016/7/204032-why-google-stores-billions-of-lines-of-code-
in-a-single-repository/fulltext)

2 - How much data is stored by Google? Apparently the answer to this is: no-one (perhaps including Google?)
really knows. But here's a fairly interesting analysis: https://what-if.xkcd.com/63/ . The analysis provided
states 'Let's assume Google has a storage capacity of 15 exabytes, or 15,000,000,000,000,000,000 bytes'. This is
a not unreasonable estimate and was likely at the right order of magnitude for the actual storage available to
Google a couple years ago when this came out!

3 - Number of pictures uploaded to facebook each day. According to:
 https://www.omnicoreagency.com/facebook-statistics/
 '350 Million photos are uploaded every day, with 14.58 million photo uploads per hour, 243,000 photo
uploads per minute, and 4,000 photo uploads per second.'

 From the same site:
https://www.omnicoreagency.com/instagram-statistics/
 We find that:
 'More than 50 Billion photos have been uploaded to Instagram so far.'
 'Pizza is the most Instagrammed food globally, followed by Sushi.'

4 – How much new information is produced worlwide each day? According to Forbes:
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-
blowing-stats-everyone-should-read/#6a951bf860ba

 'There are 2.5 quintillion bytes of data created each day at our current pace'
 'On average, Google now processes more than 40,000 searches EVERY second (3.5 billion
 searches per day)!

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 2

https://cacm.acm.org/magazines/2016/7/204032-why-google-stores-billions-of-lines-of-code-in-a-single-repository/fulltext#FNA
http://www.internetlivestats.com/google-search-statistics/
https://www.domo.com/learn/data-never-sleeps-5?aid=ogsm072517_1&sf100871281=1
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/#6a951bf860ba
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/#6a951bf860ba
http://www.telegraph.co.uk/travel/foodandwineholidays/11739072/The-most-Instagrammed-foods-around-the-world.html
https://instagram.com/press/
https://www.omnicoreagency.com/instagram-statistics/
https://www.omnicoreagency.com/facebook-statistics/
https://what-if.xkcd.com/63/
https://cacm.acm.org/magazines/2016/7/204032-why-google-stores-billions-of-lines-of-code-in-a-single-repository/fulltext
https://cacm.acm.org/magazines/2016/7/204032-why-google-stores-billions-of-lines-of-code-in-a-single-repository/fulltext

CSC A48 – Introduction to Computer Science - UTSC

 'We send 16 million text messages' (every minute!)
 'Every minute there are 103,447,520 spam emails sent'
 Oh, and you should have a look here: http://www.everysecond.io/youtube)

Illustration 1: Illustration 1: This is what the inside of a data center looks like. Somewhere in the world a data
center similar to this one is storing a copy of this very document. Photo: Global Access Point, Public Domain

A brief note on sources and whether you should believe what you read:

You may have noticed that the 'facts' listed above come from very different sources. 1) comes from a
research publication, 2) and 3) are from on-line blogs/websites, and 4) from an on-line version of a magazine
article.

Always remember: Before you accept a statement you read – even in lecture notes! you should always
think about where it came from, and what evidence was provided to support it.

A good scientific journal or conference article is trustworthy: It has undergone a process of revision and
review by scientists who are not affiliated with the authors of the work they are reviewing . This means that big
mistakes or factual errors are usually caught and corrected before anything gets published.

Reputable publications are almost as trustworthy – they have a lot invested in keeping their reputation as
trusted sources of information

Blogs and websites should be taken with a grain of salt – you will notice that the websites I listed above
provide references and links to the sources from which they gathered facts and figures you should always look
for this. Any website, blog, or post that states a fact and has no reference to a reputable source such as a
scientific article, reputable publication or organization, or publicly available/verifiable survey must be taken
with a healthy dose of disbelief until you can verify the information independently.

You are training to become professionals in different fields – you must always make sure that the
information you accept and incorporate into what you know of how the world works is accurate, verifiable, and
as far as you can check, correct.

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 3

http://www.everysecond.io/youtube
http://www.iflscience.com/technology/how-much-data-does-the-world-generate-every-minute/

CSC A48 – Introduction to Computer Science - UTSC

2.- How to build a Bento Box

We know how to use the standard data types provided in C, however most interesting
applications will require keeping track of data that is a bit more complex than a few integers, or floats,
or even a few strings. The problem at hand is how to design and implement a new data type, something
that is not available in C, and can represent a much more rich unit of information.

As an analogy – a good meal is not composed of a single item like, broccoli (you should eat
broccoli by the way, it's good for you!), but instead it consists of many different components, put
together in a way that makes a good meal. The individual components are ingredients you may find at
any store, but the finished meal is much more interesting. If you have been to a Japanese restaurant,
then you may have already seen a meal that is a great example of the process we are now going to
apply to data types: The Bento Box.

Illustration 2: A Bento Box - the meal is composed of individual components,
each in its own container, arranged to complement each other and each of
them needed to complete the meal. Photo: miheco - Flickr, CC - SA 2.0

Our task here is to figure out how to represent information about an item, where this
information is more complex than what a single data type can hold. For example, if we are going to
write an application to store information about movies, we may need to store:

Information needed for each movie:
- Title
- Year
- Director
- Studio
- Rotten Tomatoes1 score
… etc.

There are several individual components, each of them has its own data type – there may be

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 4

http://www.rottentomatoes.com/

CSC A48 – Introduction to Computer Science - UTSC

strings, integers, floats, and so on. How could we do this in C?

Given what we know at this point, using only C's standard data types, we would need to create
separate arrays for each of the different components that make up a movie's information:

- One array of strings for the movie titles
- One array of integers for the year
- One array of strings for the director's names
- One array of strings for the studio
- One array of floats for the Rotten Tomatoes score

Now we can write code that allows a user to fill-up these arrays with information for movies.

Question: What do you think are the advantages and disadvantages of storing the information
we need in this way?

From a conceptual point of view, and also from the point of view of ease of implementing code
that works with data about complex entities such as movies, it would be much better if we could
bundle the information pertaining a single movie into a single data item that contains everything we
need to store about the movie.

In C, we can define our own composite data types, also known as compound data types which
are the program equivalent of a Bento Box: They are composed of a set of existing data types, each of
which provides needed information about a data item, and all of which are needed to describe our data
item.

Movies are fairly complex data items (if you look at the information on IMDB for a single
movie you will find out all kinds of things). So, for the examples in this section we will use a much
simpler example: Suppose we are writing a little app to keep track of restaurant reviews. Let's say we
are going to call our app Kelp.

The fundamental unit of information we need to keep track of is a single restaurant review
which consists of:

- Restaurant name (a string)
- Restaurant address (a string)
- Review score (an integer, let's say in 1-5)

Let's see how we can build a Bento Box in C that holds the information required to handle a
single restaurant review:

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 5

http://www.imdb.com/

CSC A48 – Introduction to Computer Science - UTSC

typedef struct Restaurant_Score // We are declaring a new type!
{
 char restaurant_name[1024];
 char restaurant_address[1024];
 int score;

} review; // Our new type will be named 'review'

The little snippet of code above works as follows:

typedef struct Restaurant_Score

this tells the compiler we are defining a new data type (typedef), that the data type is composite
(struct), that the composite's name will be 'Restaurant_Score', and that the new data type will be called
'Review'. This in effect defines a new bento box that contains two strings and an integer. Each of these
components or parts is called a field. So our new compound data types has three fields, a restaurant
name field, a restaurant address field, and a score field.

Thereafter, we can declare variables of this new composite type and use them in our program!

#include<stdio.h>
#include<stdlib.h>
#include<string.h>

#define MAX_STRING_LENGTH 1024

typedef struct Restaurant_Score // We are declaring a new type!
{
 char restaurant_name[MAX_STRING_LENGTH];
 char restaurant_address[MAX_STRING_LENGTH];
 int score;

} Review; // Our new type will be named 'review'

void main(void)
{

Review rev; // Declaring one variable of type 'Review'

// Let's assign values to the information in 'rev'
// Individual components of a compound data type are references using
// the '.' operator:

// Score is just an int, so we can do this:
rev.score=4;

// However, the address and name are strings, which means arrays. We

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 6

CSC A48 – Introduction to Computer Science - UTSC

// have to use a function from the string library to copy them over.
strcpy(rev.restaurant_name,"A nice restaurant with good food");
strcpy(rev.restaurant_address,"Somewhere in Scarborough");

printf("This review has: name=%s, address=%s, score=%d\n",\
rev.restaurant_name,rev.restaurant_address,rev.score);

}

A lot is going on in the program above, so let's take it one step at a time.

Firstly, notice the <include> statements at the top:

#include<stdio.h>
#include<stdlib.h>
#include<string.h>

The header stdio.h contains definitions for standard input/output functions, including the ones
we will use to read strings and integers from keyboard; stdlib.h should be familiar to you from the
previous section, it provides a number of standard functions and constant definitions (e.g. NULL is
defined here), and string.h is the string manipulation library.

The next line is something we haven't seen before:

#define MAX_STRING_LENGTH 1024

This line defines a constant called 'MAX_STRING_LENGTH'. In C, it is common to use a
'#define' statement near the top of your program to define any constants that will be used in your code.
Typically the names of these constants are all upper case. Thereafter, whenever the compiler finds
'MAX_STRING_LENGTH' in your code, it will replace '1024' and use that instead.

The next chunk is our typedef:

typedef struct Restaurant_Score // We are declaring a new type!
{
 char restaurant_name[MAX_STRING_LENGTH];
 char restaurant_address[MAX_STRING_LENGTH];
 int score;

} Review; // Our new type will be named 'review'

This will define our bento box with a string for the restaurant name, a string for the address, and
the integer that holds the review score. At any point after the typedef, we can declare variables of our
new data type just like we would any regular C types, e.g.

Review rev;
Review ten_reviews[10];

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 7

CSC A48 – Introduction to Computer Science - UTSC

Review *rp;

The examples above declare (in order), one 'Review' variable called 'rev'. An array of 10 reviews
called 'ten_reviews', and a pointer to a variable of type 'Review'.

The next part of our program declares a variable of type 'Review' called 'one_review'.

Review one_review;

This is how it would look like in memory:

The nice thing about C, is that once a new type is declared it gets treated just like any other
type. So, the 'Review' variable 'rev' gets a box – large enough to store what it needs, somewhere in
memory just like any other variable. That box is tagged 'rev' and it is of type 'Review'. The box contains
a collection of things now (we know there are two strings and an int in there) but otherwise it's just one
more box.

When we compile and run the code above, we get:

...\a.exe
This review has: name=A nice restaurant with good food, address=Somewhere
in Scarborough, score=4

Things to note from the example above:

- It is not difficult to define a new data type, with any mixture of types supported by C. We can
 use this to organize data for complex items (for example, movies, books, etc.) that our

 program will need to work with.
- Once we define a new data type, we can use it in our code like we would any other type. This
 includes using our new data type as part of an even more complex bento box. For example, we
 could define a new data type that contains items of type 'Review'. A box is a box. So for C this
 is perfectly fine.
- Assigning values, or accessing data within a variable of a compound type is done via the '.'
 operator.
- You may have noted that the line in the program with the printf() call is split into two, and that

 there is a '\' character at the end of the first line of this call. In C, you can split any statement
 into multiple lines by using a '\' character at the end of one line. It allows you to write long
 statements across multiple lines (which makes your code easier to read) instead of one very

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 8

60566053 6054

.empty empty

rev

char[]
char[]

intReview

9008

empty

CSC A48 – Introduction to Computer Science - UTSC

 long line.

Exercise: Write the definition of a compound data type that expands 'Review' to include the
 name of the person who submitted the review, the phone-number for the restaurant,
 and a link to the restaurant's webpage. Think carefully about the data types you will

 use for this, and about how these new pieces of information might be used in the
 reviewing app (which will have an effect on what data type you should use).

3.- Passing Compound Types Between Functions

Like any other variable, you will find you need to pass compound data types as parameters to
functions, and/or to return these compound types from functions. The way this is done is identical to
the way you pass standard C-types between functions.

Suppose we define a function as follows:

Review change_score(Review input, int new_score)
{
 input.score=new_score;
 return input;
}

This function takes as an input parameter a variable of type 'Review', an int called 'new_score',
and returns a result of type 'Review'. Now, suppose that in main() we do something like this:

Review rev1, rev2;

strcpy(rev1.restaurant_name,”The Home of Sushi”);
strcpy(rev1.restaurant_address,”555 Ellesmeadow Rd.”);
rev1.score=3;

rev2=rev1;

rev2=change_score(rev2,4);

Let's see what this does in memory. First, main() declares two variables of type 'Review' called
'rev1' and 'rev2'. As expected, this will reserve boxes of appropriate size in memory, and tag them with
the name of the variables:

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 9

6056 11068 11069

.empty empty

rev1

char[]
char[]

intReview

9012
rev2

char[]
char[]

intReview

CSC A48 – Introduction to Computer Science - UTSC

Then we assign values to the data inside 'rev1'.

The line

rev2=rev1;

reads, “take the contents of the box tagged 'rev1' and copy them to the box tagged 'rev2'”. The
point to be made here is that assignments of this type make a copy of everything inside our compound
data type.

So now we have two identical boxes, each containing the same address, restaurant name, and
score. When the call to change_score() happens, space is reserved for the function's input parameters
and return value: The input parameters are one variable of type 'Review' called 'input', an integer
variable called 'new_score', and the return value of type 'Review'.

The space reserved for parameters and return type for change_score() is marked by a red box
above. Of course, initially it is all uninitialized. The line

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 10

6056 11068 11069

.empty empty

rev1

“The Home of Sushi”

“555 Ellesmeadow Rd.”

3Review

9012
rev2

char[]
char[]

intReview

6056 11068 11069

.empty empty

rev1

“The Home of Sushi”

“555 Ellesmeadow Rd.”

3Review

9012
rev2

“The Home of Sushi”

“555 Ellesmeadow Rd.”

3Review

12140 14204 16260

.empty
char[]
char[]

int

14196

empty

new_score

int

input

Review

<return>

char[]
char[]

intReview

change_score()

6056 11068 11069

.empty empty

rev1

“The Home of Sushi”

“555 Ellesmeadow Rd.”

3Review

9012
rev2

“The Home of Sushi”

“555 Ellesmeadow Rd.”

3Review

CSC A48 – Introduction to Computer Science - UTSC

rev2=change_score(rev2,4);

passes 'rev2' as 'input', and a value of '4' as 'new_score'. So, a copy of the contents of the box
tagged 'rev2' is made in the box tagged 'input', and stores a '4' in the box tagged 'new_score'.
Remember: input parameters are local variables with their own reserved box!

Now we have three copies of the same review. Each in its own box. The function
change_score() updates the score for 'input'.

input.score=new_score;

So, the score is updated in the 'input' variable:

The final line in change_score() returns the updated 'input' variable – this means making a copy
of it to the return value box:

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 11

6056 11068 11069

.empty empty

rev1

“The Home of Sushi”

“555 Ellesmeadow Rd.”

3Review

9012
rev2

“The Home of Sushi”

“555 Ellesmeadow Rd.”

3Review

12140 14204 16260

.empty
“The Home of Sushi”

“555 Ellesmeadow Rd.”

3

14196

4

new_score

int

input

Review

<return>

char[]
char[]

intReview

change_score()

6056 11068 11069

.empty empty

rev1

“The Home of Sushi”

“555 Ellesmeadow Rd.”

3Review

9012
rev2

“The Home of Sushi”

“555 Ellesmeadow Rd.”

3Review

12140 14204 16260

.empty
“The Home of Sushi”

“555 Ellesmeadow Rd.”

4

14196

4

new_score

int

input

Review

<return>

char[]
char[]

intReview

change_score()

CSC A48 – Introduction to Computer Science - UTSC

Finally,

rev2=change_score(rev2,4);

the value returned from change_score() is copied onto 'rev2'. Once again, this means copying
everything that is in the box labeled '<return>'.

Finally, the space reserved for change_score() is released.

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 12

6056 11068 11069

.empty empty

rev1

“The Home of Sushi”

“555 Ellesmeadow Rd.”

3Review

9012
rev2

“The Home of Sushi”

“555 Ellesmeadow Rd.”

3Review

12140 14204 16260

.empty
“The Home of Sushi”

“555 Ellesmeadow Rd.”

4

14196

4

new_score

int

input

Review

<return>

“The Home of Sushi”

“555 Ellesmeadow Rd.”

4Review

change_score()

6056 11068 11069

.empty empty

rev1

“The Home of Sushi”

“555 Ellesmeadow Rd.”

3Review

9012
rev2

“The Home of Sushi”

“555 Ellesmeadow Rd.”

4Review

12140 14204 16260

.empty
“The Home of Sushi”

“555 Ellesmeadow Rd.”

4

14196

4

new_score

int

input

Review

<return>

“The Home of Sushi”

“555 Ellesmeadow Rd.”

4Review

change_score()

CSC A48 – Introduction to Computer Science - UTSC

What you should take from this:

- Every time a variable from a compound data type is copied, either because of an assignment,
 or because they are being passed as input parameters or returned from a function; a copy is
 made of every field of the compound data type. It is never the case that individual
 fields of a compound type are copied, it's always the whole bento box!
- Compound data types behave just like any other C variable. However, note that you can not
 use comparison operators on compound data types. E.g. the expression

 if (rev2 < rev1)

 is not valid. C has no way to compare these two compound types. If you need to compare
 data types you have declared, you have to write a comparison function that takes two
 variables of this type as parameters, compares them in a way that makes sense given what
 the type represents, and returns a value that indicates how they should be ordered.

- Moving data around by copying compound data types can be slow. Just like arrays, we can
 easily create compound data types with a fairly large memory footprint (i.e. they contain a lot
 of data). Copying them into and out of functions can be time consuming, as well as taking up
 memory.

4.- Using pointers with compound data types

As we just saw, moving compound types around involves a large amount of duplication of
information. Much like arrays, what we often need is a way for a function to directly access and if
necessary change the contents of a compound type defined outside. Just like with arrays, the way to do
this is via the use of pointers. Let's see how we use pointers to handle compound data types:

Review rev;
Review *rp=NULL;

strcpy(rev.restaurant_name,”The Baking Sleuth”);

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 13

6056 11068 11069

.empty empty

rev1

“The Home of Sushi”

“555 Ellesmeadow Rd.”

3Review

9012
rev2

“The Home of Sushi”

“555 Ellesmeadow Rd.”

4Review

12140 14204 16260

.empty

14196

emptyempty empty

CSC A48 – Introduction to Computer Science - UTSC

strcpy(rev.restaurant_address,”221B Baker Street”);
rev.score=5;

rp=&rev;

rp->score=4;

The code above declares one variable of type 'Review' called 'rev', and a pointer 'rp' to a
variable of type 'Review'. Then we set the score for the review to a value of 3.

The next line

rp=&rev;

is read “take the address of 'rev' and store it in pointer 'rp'”. Thereafter, 'rp' contains the address
of our review, and we can use the pointer to access and modify the information contained in that
review. In memory, after the line above is executed, we would expect something like this:

Remember that to access the components of a compound data type we use the '.' operator. This
works only for variables of that type. With pointers, we use the '->' operator:

rp->score=4;

the above updates the score in 'rev' to 4 using the pointer we have for that variable. Similarly,
we could change the address using the pointer:

strcpy(rp->restaurant_address,”221A Baker Street”);

We will be using pointers with compound data types quite a bit, so practice accessing and
modifying data with these pointers until you're comfortable with the process.

Exercise: Write a little program such that main() declares a variable of type 'Review', but now it
calls a function fill_out_review() that takes a pointer to the review and fills out the name, address, and
score of the restaurant. This function does not have a return value since it modifies the review directly.
After the function returns, have main() print out the contents of the completed review.

5.- Getting user input

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 14

6056 11068 11069

.empty empty

rev

“The Baker Sleuth”

“221B Baker Street”

5Review

9012

6056

rp

Review*

CSC A48 – Introduction to Computer Science - UTSC

The program we wrote in section 2 to illustrate compound types is designed only to give you an
example of how to define a new data type, how to create variables of this type, and how to assign
and/or access information within these variables. However, for any interesting use of our new 'Review'
type, we need to be able to get user input for the fields of the review our app will store and manage.

Let's now review how to get inputs from the user into our program.

Numeric types – integers and floats

For numeric data, we use the scanf() function. This function takes a formatting string that
determines how the user's input is going to be converted into values that can be assigned to variables in
our program. The formatting string uses the same format specifiers as printf(). Let's see an example:

#include<stdio.h>

int main()
{
 int x,y;
 float pi;

 printf("Enter two integer numbers and one float on the same
line\n");
 printf("Separated by spaces\n");

 scanf("%d %d %f",&x,&y,&pi);
 getchar();

 printf("Read: %d, %d, %f\n",x,y,pi);

return 0;
}

Compiling and running the code above results in:

...\a.exe
Enter two integer numbers and one float on the same line
Separated by spaces
3 7 3.14159265
Read: 3, 7, 3.141593

 Things to note:

- The signature (standard definition) of main(). Note that we declared that main() returns an int.
 You may wonder why? and to where? - The reason we have main() return a value is that we
 assume a program written in C may be part of a script that does multiple things and runs

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 15

CSC A48 – Introduction to Computer Science - UTSC

 multiple processes on some data. The return value from a program is used by such a script to
 determine whether the program completed successfully or not. The convention is:

* main() returns 0 (zero) if it completed successfully
* main() returns a non-zero value if there was an error during execution

- The formatting string for scanf() specified we want “%d %d %f”, so, one int, one int, and
 one float. Whatever the user inputs will be interpreted as values to be assigned to these data
 types, in the order specified by the formatting string.
- There is a call to getchar() just after scanf() because scanf() will ignore the [enter] key the
 user pressed after inputting values. If we don't remove it, it will mess with further input.
- Because we want to read multiple values with one call to scanf(), we can not rely on the return
 value of scanf() to get our information. Instead, scanf() takes in pointers to the variables
 where we want to store the information read from the terminal:

 scanf("%d %d %f",&x,&y,&pi);

 The line above reads: scan from the terminal one int, one int, and one float, and store them at
 the address of 'x', the address of 'y', and the address of 'pi'.

 The data types for 'x', 'y', and 'pi' are int, int, and float which matches the formatting string we
 provided to scanf().

 Always make sure the formatting string and the variable types used to store the values read
from the terminal match. The scanf() function will not warn you if the types don't match, and you
will end up with junk values in your variables. Also remember that scanf() can not protect you from
the user typing junk, or providing values that don't match what is expected

To make sure you remember this, see what happens when we run the same program, but the
user is being unhelpful:

...\a.exe
Enter two integer numbers and one float on the same line
Separated by spaces
hafs kjas 5
Read: 32767, 0, 0.000000

That clearly makes no sense. You should always check that the user input is sane before using
it in your program. Checking that the input is reasonable is called input sanitization and involves
setting reasonable bounds on what the input values should be. For example, if we are reading a score
for a restaurant review, and we know that scores are in 1 to 5, we can check that the score read from the
terminal is valid, and if not, ask the user again to input a valid score.

Exercise: Write a little program that declares an int array with 10 entries, asks the user for the
values for each of these entries (these values should be in 0 to 100). And then computes and prints out

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 16

CSC A48 – Introduction to Computer Science - UTSC

the average of the values in the array (in effect, you're implementing the AVERAGE() function found in
most spread-sheet applications!)

Reading strings from the terminal

We can not use scanf() to read strings because scanf() interprets spaces as delimiters. Every
space in the input string would be taken to indicate a new value for a separate variable is being
provided. Instead, we will use a different library function called fgets() (the name comes from GET
String).

Here's how you use fgets() to read strings from the terminal:

#include<stdio.h>

int main()
{
 char my_string[1024];

 printf("Please type one string\n");
 fgets(my_string, 1024, stdin);

 printf("The input string is: %s\n",my_string);
 return 0;
}

The only new thing here is the call to fgets().

 fgets(my_string, 1024, stdin);

The first input parameter is the name of the string variable where to store what is read. The
second parameter specifies the maximum number of characters to read and must be less than, or equal
to the size of the character array for our string (note: fgets() will read one byte less than the specified
maximum number, because it needs to add the end-of-string delimiter '\0' to the string, so in the case
above it will read at most 1023 characters from the terminal). The final parameter specifies where to
read from. The function fgets() can be used to read from different sources of data, including files, the
name 'stdin' corresponds to the standard input, which is the terminal. We will see later how to use
fgets() to read strings from other sources.

Compiling and running the program above results in:

...\a.exe
Please type one string
Hello World!
The input string is: Hello World!

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 17

CSC A48 – Introduction to Computer Science - UTSC

Note: Be careful your string arrays are large enough to contain the information you will need,
and use fgets() carefully. Trying to store a string that is too long within a small array will crash your
program.

See what happens when we change the length of the character array to 10, but forget to change
the maximum number of characters to be read from the terminal:

#include<stdio.h>

int main()
{
 char my_string[10]; // This is now too small!

 printf("Please type one string\n");

 fgets(my_string, 1024, stdin); // fgets() thinks we have 1024
 // entries in my_string

 printf("The input string is: %s\n",my_string);
 return 0;
}

Let's compile and run the above program:

So just be careful with your strings and all will be well!

Exercise: Modify the program we wrote to declare and initialize a single restaurant review so
that this time it asks the user for the restaurant's name, address, and score, and then prints the resulting
information.

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 18

CSC A48 – Introduction to Computer Science - UTSC

6.- Handling a realistic amount of data

At this point we know how to create custom boxes to store information, it's time to turn our
attention to one of the fundamental ideas this course is about. To understand what we're going to do,
let's think a bit about what would happen if we wanted to implement the restaurant review app using
only what we know up to this point.

- We know how to implement a new data type to store information about reviews
- We know how to declare and use 'Review' type variables
- We know how to pass reviews between functions in our program
- We know how to get input from the user to fill-in a review's data

Question: How would our program be able to store multiple reviews in a way that makes the
information easy to access/modify?

Suppose we say we want to use an array (so far this is the only way we know of storing multiple
data items of a given type in C). So we go ahead and declare:

Review all_reviews[100];

This would reserve space for 100 reviews, they would be stored in consecutive boxes in
memory, and they would be easily accessible to our program.

Question: Can you see a possible problem with doing things this way?

So we chose a very small size for our array. We will likely run out of space to store reviews well
before we have information about even a small fraction of the restaurants out there. So, we think for a
bit and decide to be clever, at the top of our program we have:

#define MAX_REVIEWS 100000

And then at the place where we declare our array we have:

Review all_reviews[MAX_REVIEWS];

Now, this is better in that we are unlikely to run out of space where to store the reviews for our
city. And we may think we have solved all our problems. However, this solution turns out to have
problems of its own.

Question: What are the disadvantages of defining the array as we did just above?

- Suppose there are only 7500 restaurants in Toronto (actually this is accurate as of Dec. 2018).

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 19

CSC A48 – Introduction to Computer Science - UTSC

Illustration 3: Number of restaurants in Toronto, from the City of Toronto web portal:
https://www.toronto.ca/311/knowledgebase/kb/docs/articles/economic-development-and-culture/program-
support/number-of-restaurants-in-toronto.html

 Does it now look like a good idea to have an array with 100,000 entries?
- Suppose we want to expand our app to add a 'City' field to the reviews, and allow reviews
 from anywhere in the world. What can we expect will happen with our array at some point?
- Have we solved our storage problem?

What you should take from this:

- Arrays are wonderfully useful when you have a known amount of data to work with, and
 need a simple, easy to use way to store and manage this data. They are commonly used in
 data processing applications to represent and manipulate numeric data.
- They have the following limitations:

* Their size is fixed. They can't grow or shrink to accommodate your data needs
* Changing the array size would involve modifying your code and re-compiling it
* If we choose a very large array size to avoid running out of space we are likely to
 end up with a lot of unused space most of the time (this is bad because that space
 can't be used by other programs – or our own). We are wasting valuable space.

- Because of these limitations, they are really not the right tool for information storage and
 retrieval systems – you would not implement a database using arrays for your data.

Here's the problem we would like to solve:

We need to develop a way to:

- Provide way to store, keep organized, and update a collection of items that contain the
 data our program will manage (e.g. we would like to have a collection of reviews
 for our restaurant reviewing app).

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 20

https://www.toronto.ca/311/knowledgebase/kb/docs/articles/economic-development-and-culture/program-support/number-of-restaurants-in-toronto.html
https://www.toronto.ca/311/knowledgebase/kb/docs/articles/economic-development-and-culture/program-support/number-of-restaurants-in-toronto.html

CSC A48 – Introduction to Computer Science - UTSC

- Our solution should allow us to keep as few or as many instances of individual data items as
 we need. We don't know the number in advance, and it may change over time. We don't want
 to be constrained to a fixed number of items.
- Space should be reserved on-demand as new data items are added to our collection. This is to
 avoid wasting computer storage by pre-reserving large amounts of space. In other words, our
 storage solution should be extendible.
- Our solution should enable us to search for, access, modify, and delete any individual data
 items in our collection.

7.- Containers and Lists

A container is a construct (something we have built) that provides a means for storing,
organizing, and accessing a collection of data items of a given type. Notice that this is a very general
definition – it doesn't specify how the data will be organized, it doesn't specify how the data will be
stored in memory (or in disk if we want to make a persistent copy), and it doesn't say how we will
implement functions to access and modify data items in the collection.

An array is a very simple but limited container. We have discussed above the limitations that
encourage us to develop a better solution for storing data when we don't know in advance how much of
it our program will have to handle.

Let's have a look now at what is possibly the simplest container that:

- Allows us to keep a collection of data items.
- The collection size can grow or shrink over time.
- Memory for items is reserved on demand, only when needed to add a new item to the
 collection.
- It provides a means for finding specific items, as well as adding, deleting, or modifying
 existing ones.

The container we are talking about is called a List, and it has the following properties:

- It provides a means for storing a collection of data items of a given type.
- The data items are stored in sequential order, one after the other, and for every item we can
 tell what the next item is (if there is one).

This is also a fairly general definition – on purpose! The goal of this definition is to provide
only the basic definition of a list in a way that applies to any implementations you could write for it.
This is important because it doesn't matter how you implement the list, or in what programming
language, or what type of data it contains, it is still a list!

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 21

CSC A48 – Introduction to Computer Science - UTSC

Illustration 4: Two examples of lists. On the left we have a to-do list created with an app. On the right we
have Michelangelo's shopping list from the 16th century. Images: (left) Lubaouchan, Wikimedia Commons,
CC-SA 4.0; (right) Michelangelo, Wikimedia Commons, Public Domain

To make the point perfectly clear, in the picture above you can see two very different
implementations of lists – hand-written vs. computer-made, shopping list vs. to-do list, and Italian
language vs. English language. The details of how the list was created, or what it contains, do not
matter. They both share the same key properties of having a collection of items, sequentially ordered,
and so they both are examples of a list.

Let's take this concept a bit closer to a description of a list we could actually implement with a
computer.

List Abstract Data Type (List ADT)

The List Abstract Data Type extends our definition of a list container by specifying the
operations that the list must provide. That is, in addition to representing a collection of data items that
are sequentially ordered, the List ADT requires the following operations to be implemented:

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 22

https://en.wikipedia.org/wiki/Michelangelo

CSC A48 – Introduction to Computer Science - UTSC

- Declaring a new (empty) list
- Adding items to an existing list
- Removing items from a list
- Searching for a specific data item

The searching operation is needed so we can find and modify specific items in our collection.
For example, in our restaurant reviews app, we may want to update the score for a restaurant already in
the list. We should also check whether a restaurant for which we are entering a review is already
included in our collection.

There are variations on the definition above. You may find versions of the List ADT that include
other operations, for example, getting the length of the list, or inserting items at specific positions in the
list (common options include at the front vs. the end). The definition we provide here contains the
fundamental operations you will find on pretty much any list you will find or use while programming.

Why is this called an 'abstract' data type?

This is a particularly important point: The List ADT we defined above is called abstract because
it does not specify how the List ADT and its operations are to be implemented. There are many possible
ways in which we could build our list, and we could implement it in any programming language we
know of. Implementations of the List ADT could be completely different from one another, and yet,
anyone who knows what the List ADT includes will know what to expect: a collection of data items,
sequentially ordered, that supports declaring a new list, adding and deleting items, and search.

This is very important because it means that once you know how and when to use a List ADT to
store and organize data, you can do so using any of the implementations of the ADT, in any
programming language, without having to worry about the implementation details.

Abstract Data Types are a fundamental component of problem solving in computer science –
they allow you to think in terms of how data is organized, and what operations can be performed on
that data – so you can determine what is the optimal way to store and manage the information for any
specific problem you need to solve - without having to worry about implementation details.

If you are continuing in CS, you will learn a lot more about ADTs in your second year
Software Design (CSCB07), and Design and Analysis of Data Structures (CSCB63) courses. So do
not forget: ADTs define implementation-independent means for storing, accessing, modifying, and
organizing data.

How do we use an ADT?

When we are solving a problem, one of the key early decisions we have to make is how are we
going to store and organize the data our program needs to work with.

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 23

CSC A48 – Introduction to Computer Science - UTSC

This means you have to consider the different containers you know of, what properties they
have, what operations they provide, and how efficient they are; then choose the one that is most suitable
to your particular problem.

For instance, at this point you know how to use arrays, and now you know about the List ADT.
When deciding how to organize data for the restaurant review app, you would consider both of these,
figure out which is best suited for this particular task, and then use it. We have already seen that in this
case the array solution has many disadvantages and limitations, and it looks like the List ADT provides
the properties we need and the operations our app will require in order to work, so we would choose the
List ADT.

Once you have selected the ADT you want to use to solve a problem, you can continue working
on the solution assuming you can count on an implementation of the ADT that offers all the required
operations and storage characteristics.

Over time, you will learn many different ADTs each with their own properties, advantages, and
limitations, and each of which is better suited to specific types of problems. The issue of efficiency will
become very important (and in fact we will take a look at it soon!). Your task is to understand how
these ADTs work, when it’s best to use them, and what advantages/limitations they bring so you can
choose the best way to organize data for any problem you will need to solve.

For now, let’s assume we have decided to store our restaurant review using a List ADT. We will
now use the specification of the List ADT to come up with an implementation that we can use in our
program.

8.- Linked Lists

Perhaps the simplest implementation of the List ADT that has all the properties and operations
defined by the List ADT is the linked list. To understand how a linked list works, we can turn back to
our original analogy of memory being just a very large room full of numbered lockers.

Here’s a real-world example of the process we follow to build a linked list.

Suppose you arrive in Zurich for a little sight-seeing trip. Because you are only staying a few
hours, you don’t bother reserving a hotel room, and instead you decide to leave your bags in a locker at
the train station. So you find an empty locker, pay your fee, put your bags in the locker, and get your
numbered key (let’s say you got locker #1342).

You go our and start exploring the city. It’s a very interesting city and you buy a few things to
bring home. First, you buy some swiss chocolate, and to avoid it melting while you walk around you
decide to go back to the train station and leave it there in another locker. You find an empty one, pay
your fee, put the chocolates in there and take your numbered key (#0789).

Next you find some interesting pocket watches, buy one, and in order not to carry it around you

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 24

https://en.wikipedia.org/wiki/Z%C3%BCrich

CSC A48 – Introduction to Computer Science - UTSC

head back to the station and put it in its own locker (same process as before), and take the numbered
key (#3519).

The process repeats with you acquiring some books (left in locker #6134), a new digital camera
(you left the old one in locker #2156), some more chocolate! (locker #0178), and a few t-shirts (locker
#9781).

At this point, you notice that you’re walking around with a bunch of keys hung from your neck.
It’s not fun. So you you start to wonder: How could I store all my stuff (it doesn’t fit in fewer lockers)
in such a way that I need to carry only one key at any time, and yet I can still go and fetch any of my
items whenever I want?

After thinking about it for a while, you come up with this scheme:

Write down a list of all the lockers you have (in the order you got them):

#1342, #0789, #3519, #6134, #2156, #0178, #9781

Now, go to locker #0178 and put inside the key for locker #9781
Go next to locker #2156 and store there the key for locker #0178
Head to locker #6134 and leave there the key for locker #2156
Walk to locker #3519 and put there the key for locker #6134
Move to locker #0789 and leave there the key for locker #3519
Go to the first locker #1342 and store there the key for locker #0789
Now you can walk outside again, carrying only the key for locker #1342!

What you have accomplished here is to create an arrangement of lockers in which you only
have the key to the first one, and inside each locker you can find the key for the next one. This is a
linked list!

In this example, the links are the keys that open the next locker in the collection.

The first locker in the list, the one for which we carry the key is called the head of the list. The
last locker, the one with no key inside is called the tail of the linked list.

Let’s look at an illustration of the locker room to see what’s happening

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 25

CSC A48 – Introduction to Computer Science - UTSC

Important things to note in the diagram above:

- Lockers are ordered (but not in increasing order of locker number!). The order is given by
 when they were added to your collection.
- Each locker except for the last one has a unique successor whose numbered key is part
 of the locker’s contents.
- The last locker has no key.
- The first locker’s key is not stored in any locker, it’s kept by you.

Questions:

1) Would you ever expect the lockers to be ordered by increasing value of locker number?

2) Which locker is the successor of locker #6134?

3) Is the order of the lockers meaningful (does it provide any information about what’s
 stored in the locker)?

Looking for something?

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 26

CSC A48 – Introduction to Computer Science - UTSC

Suppose now that you have been walking for a while, snapping pictures. Your new camera runs
out of battery, but luckily you remember you bought a spare one and left it in the locker that contains
the old camera.

Question: What is the sequence of actions you have to take to retrieve the spare battery from
the locker with the old camera?

Because of the structure of a linked list, whenever we are looking for a specific item we need to
traverse the list, looking in each locker in sequence, until we find the item we are looking for, or we
reach the end of the list (in which case the item is not there!)

In this case, we would have to carry out the following actions:

- Use your key to locker #1342, look inside. This is not the locker you need, so use the key
 stored there to open the next locker #0789 (don’t forget to put the key back before closing
 #1342!)
- Look in locker #0789. Chocolates! But we need a battery, so use the key stored there to
 open the next locker, #3519.
- Look in locker #3519, the watch is not what we’re looking for, so use the key stored there
 to open the next locker, #6134.
- Look in locker #6134, it’s books! Not what we are looking for. So take the key there and
 use it to open locker #2156.
- Look inside locker #2156. It’s the old camera! Bingo! Fetch the spare battery, close the
 locker, and head out.

As you can tell, that took some work.

Remember: Whenever you are using a linked list to keep a collection of items, searching for
a specific item will require traversing the list until we find it. Unlike arrays, we can not simply go to
any arbitrary item in the list – we need the key, and the key is stored in another locker. The only way to
get to a particular item is to follow the links from one locker to the next until we arrive at the one that
contains what we’re looking for.

Exercise: Turns out all that walking has left you a bit sweaty, so you decide to change your
shirt. Write down the sequence of actions that would be required for you to fetch a clean t-shirt from
your collection of lockers.

What if we need to store more things?

Suppose that you find a nice painting of a Swiss landscape that you want to bring home. You
buy it, and you bring it back to the station.

Question: How can we insert (add) another locker to our collection?

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 27

CSC A48 – Introduction to Computer Science - UTSC

There are several ways in which we can add new items to our collection. Whichever one we
choose, we must carry out at the very least these three steps:

- Get a new locker to store things in, we will get the key to this locker.
- Put whatever we need to store in the newly acquired locker.
- Link the new locker to our collection. This is the crucial step for making sure our linked list
 remains connected.
- How to link the new locker to the list depends on where in the list we want to insert it.

Example: Let's store our newly bought painting in a locker, and insert the new locker in our
collection at the head of the linked list.

- Reserve a new locker (#4451).
- Put the painting in the locker (we're lucky, it just fits!).
- Link the new locker to the existing linked list at the head.

* This means the new locker will become the first locker in our list, the new head.
* The current head will become the second locker in the list.
* We have the key for the current head (#1342) with us.

So the process is

Store the key for the current head (#1342) in the new locker (#4451)
Locker #4451 is now the head of the list so we keep the key with us.
Done!

Carrying out the above steps leaves our collection looking as shown in the figure below (the
new link added from the new head of the linked list to the old head of the linked list is shown in
green).

The same process would allow us to add any number of items at the head of the list. The list
will grow from the front end.

Exercise: Starting with an empty list, show a diagram of what the linked list looks like after we
insert chocolates (locker #2215), swiss cheese (locker #0117), a coo-coo clock (locker #4152), and a
bunch of postcards (locker #1890), in that order, by inserting each item a the head of the list.

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 28

CSC A48 – Introduction to Computer Science - UTSC

Inserting a new item at the tail of the list

Inserting at the head is the most straightforward (least effort) way to insert a new item into the
list. However it is not the only option. We can, with a bit more work, insert a new item at the tail of the
list, so the list grows from the tail-end.

Suppose we wanted to add the new locker with our painting (#4451) not at the head but at the
tail of the list. We would have to:

- Get the key for our locker (#4451).
- Store the painting in the locker, note that this locker will contain no key since it will be the
 last one in the list.
- Traverse the linked list until we reach the last locker (recognized because it has no key in it)
 in the case above, that would be locker #9781. This locker is the current tail of the list.
- Put the key to the new locker inside the current tail of the list.

The newly added item becomes the tail of the list. If we had chosen to add the new locker to the
tail instead of the head of the list, our list would look as shown below:

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 29

CSC A48 – Introduction to Computer Science - UTSC

Don't forget: Adding an item at the tail of the list involves traversing the entire list. This can
be a lot of work! So why would we ever want to do this? Think about this little problem for a bit, and
we will see shortly applications where adding items at the end of a list makes perfect sense.

Exercise: Starting with an empty list show what the linked list would look like if you carried
out the following operations (the lockers you get are indicated for each item):

- Insert chocolates (#0008) at the head of the list
 (is this the same as inserting chocolates at the tail at this point?)
- Insert a bag with croissants (#9501) at the tail of the list
- Insert a bag of books (#0546) at the head of the list
- Insert a pair of t-shirts (#6121) at the head of the list
- Insert a pair of shoes (#2222) at the tail of the list

Questions:
After the above operations are performed,
- What is the head of the list? (locker number:)

 - What is the tail of the list? (locker number:)

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 30

CSC A48 – Introduction to Computer Science - UTSC

Inserting at a location in-between existing items

The last option for inserting new items involves placing them somewhere in-between existing
things in our list. This is the most involved operation (though as we will see every step makes sense if
you think about how the lockers need to be organized). Like inserting at the tail, this is a type of
insertion that makes sense for particular applications. Let's see how it's done.

Suppose we wanted to have the painting right after the books (or, what amounts to the same
thing, right before the old camera). The process would look like this:

- Acquire a new locker for the painting (#4451).
- Store the painting in that locker.
- Traverse the linked list until we find the locker that contains the books (#6134)

* At this point, we need to make sure the lockers end up in this order:
 #6134 (books) → #4451 (painting) → #2156 (old camera)
* We have the key for #4451 (we got it when we reserved the locker)
* Locker #6134 contains the key for locker #2156

So:

- We take the key for locker #2156 (old camera) from locker #6134 (books)
- We store the key for locker #4451 (painting) in locker #6134 (books)
- We store the key for locker #2156 (old camera) in locker #4451 (painting)

That's it. Notice that we don't have to do anything with the contents of locker #2156, as
far as that locker is concerned, nothing happened!

The only part of the process where we have to be really careful is when we're moving the keys
around. However, if you take a moment to really understand why the steps above work, you'll be able
to figure out the steps whenever needed, and you won't need to memorize anything!

If we carried out the steps above to add the painting to our collection, our linked list would look
as shown below (the updated links are shown in green).

Exercise: List the steps needed to insert a bag of swiss decaf coffee into our collection in-
between the chocolates and the t-shirts. Make sure to list every step, and show what the resulting list
looks like.

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 31

CSC A48 – Introduction to Computer Science - UTSC

Things that you should be comfortable with at this point:

- How a linked list is organized.
- How to search for a specific item in a linked list.
- How to insert a new item at the head, tail, or in-between existing items.

There is one final operation that we can perform on a linked list that we should look at, and then
we can go ahead and write an implementation of a working linked list in C.

Removing (deleting) items from our collection

All the work of walking around acquiring things and storing them in lockers in a well organized
linked list has made you very hungry. You decide to eat all the chocolates in one of your lockers, you
remember there's two of them, and you're very hungry indeed so you decide to eat the first ones you
find in your collection.

- You head back to the lockers, and traverse your linked list until you find chocolates:
* Start at locker #1342 (luggage), get key for locker #0789
* Go to locker #0789 (chocolates). Found them! Eat all the chocolates!

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 32

CSC A48 – Introduction to Computer Science - UTSC

After you've eaten the chocolates, the locker is empty, so you decide to return the key to the
locker rental office, but first you have to make sure the remaining lockers are still a linked list!

The situation we have at this point is like this:

#1342 (luggage, key for #0789) → #0789 (no items, key for #3519) → #3519 (watch ….)

If we remove #0789, we need to make sure that locker #1342 becomes linked to #3519 which is
the locker immediately after the chocolates that were eaten.

So to remove an item from the list we

- Go to the predecessor of the item we are removing (the item immediately before)
- Replace the link in the predecessor with the link to the successor of the item we're removing
 (this link is stored with the item we're removing!)

In the case above, we need to take the key from #0789 which is being removed, and store it in
locker #1342. This will result in the following situation:

#1342 (luggage, key for #3519) → #3519 (watch ….)

The locker #0789 is no longer part of our list, and we can return the key to the rental office so
the locker can be re used.

Because our linked list is all about acquiring lockers on demand, and being able to acquire as
many as we need to store our items, we should be good citizens and never forget to return a locker we
no longer need so it can be re-used, by others, or by ourselves at a later time.

If we removed the locker with the chocolates our list would look as shown below.

Questions:
Does the same process work if we are removing the tail of the linked list?
Does the same process work if we are removing the head of the linked list?

You got through the entire example of implementing a linked list with lockers! You may be
wondering why we did it this way – without any actual code. The reason is that the same process
applies to linked lists independent of what language you're programming with, or what items you're
storing there. So, understanding how the list works independently of code will allow you to implement
a linked list in any language, for any application, and for storing any type of data. This is precisely the
kind of understanding you should always try to achieve. Implementing the linked list will help refine
and solidify your understanding, but do not forget: The concept, process, and organization of the
linked list are more important than any specific implementation.

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 33

CSC A48 – Introduction to Computer Science - UTSC

9.- Implementing a Linked List in C

Up to this point, we have been discussing linked lists at a conceptual level, as an Abstract Data
Type that can be implemented in any programming language, and in many different ways. It is now
time for us to look at an actual implementation of the linked list ADT.

A specific implementation of an ADT is called a data structure. The difference is important:
There may be many different ways to implement a particular ADT (even using the same programming
language), and the implementation of the same ADT in different languages may look completely
different. The data structure on the other hand is programming-language specific, and implementation
dependent. Both the data structure and the ADT describe the same way of organizing the data, and
the operations that can be performed on that data.

What we are about to do is create a linked list data structure in C. This involves the following
steps:

- Setting up a new data type to store one item in the list. Each individual item is
 usually called a node in the list.
- Setting up a pointer to keep track of the head of the list.
- Writing a function to create a new empty node on demand.

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 34

CSC A48 – Introduction to Computer Science - UTSC

- Writing a function to insert new nodes onto the list.
- Writing a function to search for a specific item.
- Writing a function to remove items from the list.

It seems like a bit of work, but as we shall see the process is identical independently of what the
linked list contains, so once you know how to do this for items of one type, you can do it for items of
any other type!

Let's start with the node data type.

The general structure of a node in a linked list is

| DATA |
| |
link to next---------->

As you can see the node is just a box, and this box has 2 parts. The first part, the DATA part
consists of the information you actually want to store in the linked list. It can be:

- A simple data type, such as int, float, or string
- A compound data type, such as the Review data type we defined earlier
- A combination of multiple data types (in effect, it can define a new compound data type)
- A pointer to information stored elsewhere

The point to make here is that the way we build and work with the linked list is the same
regardless of what data is stored in it.

The second component in the node is the link to the next node in the list (remember the key to
the next locker in our long example above!). In C, this is just a pointer variable that contains the
address of the next node in our list.

We have to use pointers because as we have learned

- We don't know where in memory a new node will be placed.
- We will request space for nodes on demand, and will request as many as we need but no more.
- In C, we need pointers to allow functions to access/change variables declared outside their
 scope. All the functions that work on the linked list will have to do this, so we need the

 pointers.

Let's see how we define a linked list node for a simple data type.

Example: Define a linked list node where each node stores a single int value.

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 35

CSC A48 – Introduction to Computer Science - UTSC

typedef struct int_list_node
{

int stored_integer; // DATA
struct int_list_node *next; // Link to next entry

} int_node;

We have already seen that we use typedef to create new data types. A linked list node is a new
data type and is defined in exactly the same way. The first line

typedef struct int_list_node

tells the compiler we're defining a new compound data type called int_list_node (a node for a
linked list containing integers).

The next couple lines

int stored_integer; // DATA
struct int_list_node *next; // Link to next entry

Define the contents of this node: one int value called stored_integer, and a pointer to the next
node in the linked list (which is of type int_list_node). The final line

} int_node;

tells the compiler we want to call our new data type int_node. Thereafter we can go ahead and
declare variables for nodes in our linked list by doing

int_node a; // A variable of type int_node
int_node *head; // A pointer to an int_node

Let's see how we'd use our new data type in a little program!

#include<stdio.h>
#include<stdlib.h>

typedef struct int_list_node
{

int stored_integer; // DATA
struct int_list_node *next; // Link to next entry

} int_node;

int main()
{
 int_node a_node;
 int_node *node_ptr=NULL;

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 36

CSC A48 – Introduction to Computer Science - UTSC

 a_node.stored_integer=21;
 a_node.next=NULL;

 node_ptr=&a_node;
 node_ptr->stored_integer=17;

 printf("The value contained in the node is %d\n",\
node_ptr->stored_integer);

 return 0;
}

Compiling and running the code above we get:

...\a.exe
The value contained in the node is 17

Let's see what this does in memory to fully understand out little program.

First, main() declares two variables

 int_node a_node;
 int_node *node_ptr=NULL;

The first one is a linked list node called 'a_node', the second one is a pointer to a variable of
type 'int_node'. In memory, this will reserve one box of the right size to hold an int_node, and one box
for a pointer as shown below

Note that:
- The box containing the list node has two parts: an int, and a pointer to an int_node so we can
 link this box into a list.
- The node_ptr on the other hand is just a pointer, it doesn't have two components despite
 being a pointer to a variable of type int_node. Initially it is NULL indicating it's not
 pointing to anything.

Next, the program fills-in the data in 'a_node'.

 a_node.stored_integer=21;

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 37

60566053 6054

.emptyNULL

a_node
9008

empty
int

int_node *
int_node

node_ptr

int_node*

CSC A48 – Introduction to Computer Science - UTSC

 a_node.next=NULL;

In memory now we have something like this:

Note that:
- We set the value of a_node.next to NULL to indicate this node is currently not linked to
 anything.

Always make sure the pointer(s) inside a newly created list node are set to NULL , otherwise,
as you know, the actual memory reserved for the node will contain junk and your code will take this
junk to be an actual pointer. This will create a hard-to-fix bug in your code!

Next we get a pointer to our newly created node, use it to change the value of the data in the
node, and print out the node's data contents:

 node_ptr=&a_node;
 node_ptr->stored_integer=17;

 printf("The value contained in the node is %d\n",\
node_ptr->stored_integer);

The first line is read as “get the address of 'a_node' and store it in 'node_ptr'”, then we access
the node's content using our pointer (remember, when we have a pointer to a compound data type, we
can access its different parts using the '->' operator). In this case the line reads “make the value of the
'stored_integer' at the node whose address is in 'node_pointer' equal to 17”. The last line prints out the
node's stored integer (using the pointer to access it!). As expected, it prints out 17. In memory we now
have

You can see that 'node_ptr' contains nothing more than the address for 'a_node', if we had a
function that needs to access/modify the data in 'a_node', we could pass to it 'node_ptr'.

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 38

60566053 6054

.emptyNULL

a_node
9008

empty
21

NULL
int_node

node_ptr

int_node*

60566053 6054

.empty6053

a_node
9008

empty
17

NULL
int_node

node_ptr

int_node*

CSC A48 – Introduction to Computer Science - UTSC

The example above is to show you how we define a node data type, and how we can declare
variables and pointers of this type, and use them to access and modify data in the node. However, we
started this section by saying we want to be able to create nodes on-demand, as new data items are
added to a collection. We can not do this with variable declarations that are written into the code!

Next, we will see how to create nodes on-demand (this is called dynamic memory allocation,
which is nothing other than a fancy term for getting space for data whenever you need it). We will see
that the only way to deal with such data is by using pointers. At this point we should be thinking of our
original restaurant review app, so let's apply what we know to create a linked list of restaurant reviews,
and see how we can generate new restaurant reviews on-demand to put in our list.

Declaring a linked list node for reviews

Remember our Review data type (we have already seen how it works and how to use it):

#define MAX_STRING_LENGTH 1024

typedef struct Restaurant_Score
{
 char restaurant_name[MAX_STRING_LENGTH];
 char restaurant_address[MAX_STRING_LENGTH];
 int score;

} Review;

Let's now build a node for storing reviews in a linked list. Just like before, our node will contain
two parts: A variable to hold one Review, and a pointer to the next node in a linked list.

typedef struct Review_List_Node
{

Review rev;
struct Review_List_Node *next;

} Review_Node;

This will create a new data type called 'Review_Node' that contains one Review, and a pointer to
the next entry in a linked list.

Take a moment to compare this node definition with the one for the int_list_node above, and
you will see that the only change is the data component of the node is now a variable of type Review.
Other than that it works exactly the same way. This shows that creating a node for a linked list works
the same way for any data type.

Creating nodes on-demand

Since we must be able to create nodes on-demand, we need to write a little function that will

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 39

CSC A48 – Introduction to Computer Science - UTSC

- Reserve space for a new 'Review_Node'.
- Initialize the contents of the newly reserved node.
- Provide our program with a pointer to the new node so we can access/modify data inside it,
 and so we can link it to a list.

Here is how we would do that for review nodes, but note that the same process will apply to
nodes containing any other data type.

Review_Node *new_Review_Node(void)
{

Review_Node *new_review=NULL; // Pointer to the new node

new_review=(Review_Node *)calloc(1, sizeof(Review_Node));

// Initialize the new node's content with values that show
// it has not been filled. In our case, we set the score to -1,
// and both the address and restaurant name to empty strings ""
// Very importantly! Set the 'next' pointer to NULL

new_review->rev.score=-1;
strcpy(new_review->rev.restaurant_name,"");
strcpy(new_review->rev.restaurant_address,"");
new_review->next=NULL;
return new_review;

}

Let's look at the code above in detail – it's important because it shows how you will be
creating nodes on-demand for any linked list you will write in C (as well as for many other data
structures).

First, the function declaration:

Review_Node *new_Review_Node(void)

This states that the function called 'new_Review_Node' has no input parameters, and returns a
pointer to a Review_Node.

Inside the function's body, we have one variable declaration:

Review_Node *new_review=NULL; // Pointer to the new node

This is just a pointer to a 'Review_Node' and it's initially set to NULL to indicate it's un-
assigned.

The actual work of allocating a new 'Review_Node' is done here:

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 40

CSC A48 – Introduction to Computer Science - UTSC

new_review=(Review_Node *)calloc(1, sizeof(Review_Node));

The syntax here requires a bit of care to understand. The function calloc() is a library function
that is used to reserve memory on-demand. It takes in two parameters:

calloc(# of items , size of each item in bytes)

In the case above, we are requesting one item whose size is the size of a Review_Node. Luckily
for us we have a helpful sizeof() function that returns the size in bytes of any data type known to our
program!

What does calloc() do?

- It finds an available place in memory that has the requested capacity
- It reserves the exact amount of space we asked for
- It wipes-out the contents of that memory space with zeros
- It returns a pointer to our reserved chunk of memory

The function calloc() returns a pointer without any attached data type, so the line

new_review=(Review_Node *)calloc(1, sizeof(Review_Node));

takes the returned pointer, type-casts it to a pointer for a variable of type Review_Node, and
stores it in our pointer variable 'new_review'.

That's a lot to take in! So let's review it slowly in steps:

- We declared a pointer to a new_review
- We used calloc() to reserve memory space for the new_review node. It gives us a pointer
 to our newly reserved node.
- We store that pointer so we know where our node is

We will see how all of this works in memory in a moment! Let's just finish going through the
new_Review_Node() function. The last part of this function initializes (fills-in) the values of our newly
acquired Review_Node with values that show the node has not been updated with actual data.

This is an important step and helps us avoid bugs caused by accessing information in nodes that
have been created but still contain no valid information.

In the case above, the code sets the 'score' to '-1', and initializes the restaurant's name and
address to empty strings (“”). It then sets the 'next' pointer to NULL. This is an essential step as it
ensures you will not mistake junk left over in memory by something else for a valid pointer to a node in
a linked list. Always initialize pointers in newly created nodes to NULL.

To fully understand what the function above does, let's see what happens in memory if we run a

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 41

CSC A48 – Introduction to Computer Science - UTSC

little program that creates a single Review_Node, fills the new node with information, and prints that
information out.

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#define MAX_STRING_LENGTH 1024

typedef struct Restaurant_Score
{
 char restaurant_name[MAX_STRING_LENGTH];
 char restaurant_address[MAX_STRING_LENGTH];
 int score;

} Review;

typedef struct Review_List_Node
{

Review rev;
struct Review_List_Node *next;

} Review_Node;

Review_Node *new_Review_Node(void)
{

Review_Node *new_review=NULL; // Pointer to the new node

new_review=(Review_Node *)calloc(1, sizeof(Review_Node));

// Initialize the new node's content with values that show
// it has not been filled. In our case, we set the score to -1,
// and both the address and restaurant name to empty strings ""
// Very importantly! Set the 'next' pointer to NULL

new_review->rev.score=-1;
strcpy(new_review->rev.restaurant_name,"");
strcpy(new_review->rev.restaurant_address,"");
new_review→next=NULL;
return new_review;

}

int main()
{
 Review_Node *my_node=NULL;

 my_node=new_Review_Node();

 strcpy(my_node->rev.restaurant_name,"Veggie Goodness");
 strcpy(my_node->rev.restaurant_address,"The Toronto Zoo, Section C");

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 42

CSC A48 – Introduction to Computer Science - UTSC

 my_node->rev.score=3;

 printf("The review node contains:\n");
 printf("Name=%s\n",my_node->rev.restaurant_name);
 printf("Address=%s\n",my_node->rev.restaurant_address);
 printf("Score=%d\n",my_node->rev.score);
 printf("Link=%p\n",my_node->next);

 free(my_node);
 return 0;
}

Compiling and running the code above produces:

...\a.exe
The review node contains:
Name=Veggie Goodness
Address=The Toronto Zoo, Section C
Score=3
Link=(nil)

Let's see exactly what is happening when we run the code above. First, main() declares a
pointer variable to a 'Review_Node'. This means whatever memory address is stored here, we can
expect at that location to find all the information that makes up a 'Review_Node'.

Things to note

- The pointer 'my_node' is the only variable declared in main()
- It is not a 'Review_Node'
- It's initialized to NULL to indicate it's unassigned
- Let’s not forget about main()’s return value!

Next we have a call to new_Review_Node(),

 my_node=new_Review_Node();

this function declares a single pointer variable to a 'Review_Node', and also has a return value
that is a pointer to a 'Review_Node'. These need to be reserved in memory:

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 43

60566053 6054

.emptyNULL empty

6057

empty

my_node

Review_Node*

main()
<return>

int

CSC A48 – Introduction to Computer Science - UTSC

Things to note:
- All the space reserved for main() is inside the green box
- All the space reserved for new_Review_Node() is in the red box
- Neither of these functions has declared a Review_Node variable!

Within new_Review_Node(), memory is reserved for the new node, and we get a pointer to the
newly reserved space

new_review=(Review_Node *)calloc(1, sizeof(Review_Node));

In memory, the result would look like this:

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 44

61046102 6103

.NULLempty empty

6105

empty

60566053 6054

.emptyNULL empty

6057

empty

my_node

Review_Node*

main()

new_review

Review_Node*

<return>

Review_Node*

new_review_node()

<return>

int

111029871 11101

.emptyempty

11103

empty

61046102 6103

.9871empty empty

6105

empty

60566053 6054

.emptyNULL empty

6057

empty

my_node

Review_Node*

main()

new_review

Review_Node*

<return>

Review_Node*

new_review_node()

rev

*next
Review_Node

<return>

int

CSC A48 – Introduction to Computer Science - UTSC

Things to note:

- The newly reserved Review_Node is shown inside the purple box.
- It doesn't have a name tag because it is not a variable we declared in the program.
- Because it doesn't have a name tag, the only way to get to it is by having its address
 (#9871) in a pointer. That's why the call to calloc()
 new_review=(Review_Node *)calloc(1, sizeof(Review_Node));
 returns the address of the newly reserved space. Our pointer 'new_review' has the
 address of the newly created node.
- The new node does not belong to any function. It is not a local variable.
- The new 'Review_Node' has two fields, as expected: one field of type Review that
 we called 'rev', and a pointer to the next node in a linked list, we called that pointer 'next'.

The next few lines in new_Review_Node() initialize the contents of the new node to show that
it's not been filled with valid data

new_review->rev.score=-1;
strcpy(new_review->rev.restaurant_name,"");
strcpy(new_review->rev.restaurant_address,"");
new_review->next=NULL;

This will change the contents of the new node in memory

As you can see in the diagram above, 'rev' has its three fields and all of these are initialized to
reasonable values that show the node has not been updated with real data.

Finally, new_Review_Node() returns a pointer to the newly created node. This means copying
the address of the node to the return value, and then assigning that to 'my_review' from main()

my_node=new_Review_Node();

So the contents of memory at the moment the call to new_Review_Node() returns the pointer to
the new node look like:

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 45

111029871 11101

.emptyempty

11103

empty
rev

NULL

restaurant_name=””

restaurant_address=””

Score=-1

Review_Node

CSC A48 – Introduction to Computer Science - UTSC

So now main() has a pointer to the newly allocated 'Review_Node'. Finally, the space reserved
by new_Review_Node() is released for re-use (you know this happens after a function ends).

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 46

61046102 6103

.9871empty empty

6105

9871

60566053 6054

.empty9871 empty

6057

empty

my_node

Review_Node*

main()

new_review

Review_Node*

<return>

Review_Node*

new_review_node()

111029871 11101

.emptyempty

11103

empty
rev

NULL

restaurant_name=””

restaurant_address=””

Score=-1

Review_Node

<return>

int

61046102 6103

.emptyempty empty

6105

empty

60566053 6054

.empty9871 empty

6057

empty

my_node

Review_Node*

main()

111029871 11101

.emptyempty

11103

empty
rev

NULL
Review_Node

<return>

int

CSC A48 – Introduction to Computer Science - UTSC

Things to note:

- Once the call to new_Review_Node() is completed, we have a new 'Review_Node' somewhere
 in memory, initialized to show it's currently empty of actual data.
- main() has a pointer to this node so it can access and change information within
- Even though the new node was created by new_Review_Node(), it doesn't get removed when
 that function ends. The new node does not belong to any function, and it's not a local variable.
 It will stick around until we decide to release the space it uses.
- Because the new node doesn't have a name tag, the only way to get to it is with a pointer.
- As a result, if we lose the pointer, we can never find this node again.

The next few lines in main() use the pointer we have to assign meaningful values to the fields of
the restaurant review stored in the node. Let's look at just one of them:

my_node->rev.score=3;

The notation here deserves a moment of attention. First, 'my_node' is a pointer to a
'Review_Node'. The review node has two fields: 'rev' which is the actual review, and 'next' which is the
pointer to the next node in a list. We want to update the contents of the review in 'rev', and we are using
a pointer, so to access 'rev' we use

my_node->rev

but that is not enough because 'rev' itself has three fields: restaurant name, restaurant address,
and score. Because 'rev' is a variable (not a pointer!) we use the dot '.' operator to access its fields. So,
putting everything together, the line

my_node->rev.score=3;

can be read as “go to the 'rev' field of the node whose address stored in my_node, update the
'score' field within 'rev' to be equal to 3”.

Have a look at how main() updates the restaurant name and address, and how it prints the
contents of the review. All using the pointer we have to this node.

Once main() is done working with the node, there's one little detail left to take care of. Just
before main() exits, we need to return the memory that was reserved for our 'Review_Node'.

 free(my_node);

This tells the computer we are done using the space reserved at the address stored in 'my_node'
and want to release this space. You should always make sure you release (free) all the memory you
have requested with calloc(). Not releasing memory you acquired is called a 'memory leak' and can get
you in trouble by using up your computer's memory.

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 47

CSC A48 – Introduction to Computer Science - UTSC

Summary up to this point

- We have created a compound data type called 'Review' to store restaurant reviews.
- We have created a 'Review_Node' data type which can be used to build a linked list of
 restaurant reviews
- We have implemented a function to reserve space for new 'Review_Nodes' on-demand,
 and we have seen in detail how this function works, how space is reserved, and how
 we use pointers to access memory that has been reserved on-demand.

Why did we bother with so much detail? In a different course, the code we wrote may have
been explained in a much more compact way. In particular, the line

my_node=new_Review_Node();

could just have been explained by saying 'the function new_Review_Node() allocates a new
Review_Node, and returns its address'. This is an accurate statement, but it doesn't help you really
understand what is going on when we reserve memory on-demand, or the process you have to follow if
you ever have to (and you will have to!) write code that creates and initializes different types of data
items. So, it's worth going through the entire process once, in great detail, and making sure you see
that you can understand every single step, that the steps all make sense, follow logically from what
needs to be accomplished, and that you can visualize what is happening in memory as you are going
through the process of allocating and initializing a new data item on-the-fly.

At this point, given all the examples we have done of how variables, pointers, compound types,
and function calls are processed, you should have a pretty good understanding of what happens when
you perform a sequence of operations in C. So, from now on, we will spend less time looking at the
very low-level detail of how things change in memory when we run code, and start looking at
programs at a higher level focusing on the conceptual aspects of what we're doing – this is unavoidable
since we will be looking at more complex programs and looking at every single step in them would
take more than the entire length of your degree!

But do not forget – C is a very simple and straightforward language that doesn't do anything
you didn't ask it to do. You can always figure out exactly what is going on if you think in terms of
boxes in memory that correspond to the data your program is working with, and operations on these
boxes. Whenever you're not sure what's happening, take a blank sheet and a pencil and draw a
memory diagram, and make sure you understand what your code is doing!

Exercise: Write a little program that
- Creates a int_node data type, which represents a node in a linked list where the data items are
 single integer values.
- Has a function to allocate and initialize a new_int_node().
- Creates a new int_node while in main(), and uses a pointer to update its integer value to 42.
- Uses the pointer to print out the contents of the int_node.
- Releases the memory for the int_node before exiting.

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 48

CSC A48 – Introduction to Computer Science - UTSC

Building a linked list of reviews

At this point we have all we need to create a linked list of restaurant reviews:

- We know how to define a compound data type to store the data for a single review
- We know how to define a linked list node type we can use to link reviews into a list
- We know how to write a function that allocates new review nodes on-demand, and returns
 a pointer to the newly created nodes so we can access/modify information within.
- We know how to read user input from the terminal, so we can obtain information to fill our
 reviews.

It's time we put everything together into a little program that is able to read review information
from the terminal, fill-in the information typed in by the user into review nodes allocated on-demand,
and link these nodes to form a linked list.

In order to complete this program we will need:

- Code to initialize a new (empty) linked list
- Code to insert a newly created review node in the linked list
- Code to print the reviews in the list whenever we want
- Code in main() to allow the user to input as many reviews as desired

We will be looking at this code at a higher, more conceptual level, and stop only to look at
details when such details illustrate a new idea we haven't seen before.

Exercise: Write in pseudocode the steps we need to implement in main() so that our program

- Gives the user a choice of
a) Entering a new review
b) Printing out all the reviews entered thus far
c) Exiting the program

- If the user chooses a) the program should carry out all the steps needed to add the new
 review to the linked list of reviews.

- If the user chooses b) the program will traverse the list printing out each review in turn.

- If the user chooses c) the program releases all memory allocated to the linked list, and
 exits.

Let's have a look at how we would implement the steps above in main().

int main()
{

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 49

CSC A48 – Introduction to Computer Science - UTSC

Review_Node *head=NULL;
Review_Node *one_review=NULL;
char name[MAX_STRING_LENGTH];
char address[MAX_STRING_LENGTH];
int score;
int choice=1;

while (choice!=3)
{

printf("Please choose one of the following:\n");
printf("1 - Add a new review\n");
printf("2 - Print existing reviews\n");
printf("3 - Exit this program\n");

 scanf("%d",&choice);
getchar();

if (choice==1)
{
 // Here we need code to add a new review to the linked list
}
else if (choice==2)
{
 // Here we will add code to print the existing reviews
}

}

// User chose #3 – Release memory and exit the program.
}

The code above is not complete. It contains the different sections we need to complete to
implement all the functionality requested. However, it does two important things:

- It declares a new, empty linked list. The line

Review_Node *head=NULL;

declares a pointer to a 'Review_Node', and it sets that pointer to NULL. This is how we create
an empty linked list in C!

Question: How do we check if a linked list is empty?

- It provides a loop that prompts the user to choose a number from 1 to 3. Depending on the
 user's choice, different code is executed. If the user chooses '3', the loop exits.

Question: What does the loop do if the user inputs anything other than values in 1-3?

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 50

CSC A48 – Introduction to Computer Science - UTSC

So the core of our program is already there.

When you are writing a complicated program, it is a good idea to write a little driver program
that has a loop like the one above, and allows you to test different components of the program
separately, and to choose which one gets tested, in what order to test the components, and what
information to pass to each of them.

Let's now fill-in the details. First, let's have a look at the code for option '1', it should insert a
new review into our linked list.

if (choice==1)
{
 // Get a new review node
 one_review=new_Review_Node();

 // Read information from the terminal to fill-in this review
 printf("Please enter the restaurant's name\n");
 fgets(name, MAX_STRING_LENGTH, stdin);
 printf("Please enter the restaurant's address\n");
 fgets(address, MAX_STRING_LENGTH, stdin);
 printf("Please enter the restaurant's score\n");
 scanf("%d",&score);
 getchar();

 // Fill-in the data in the new review node
 strcpy(one_review->rev.restaurant_name,name);
 strcpy(one_review->rev.restaurant_address,address);
 one_review->rev.score=score;

 // Insert the new review into the linked list
 head=insert_at_head(head,one_review);
}

The code above uses the function we wrote before, new_Review_Node() to allocate and
initialize a new 'Review_Node'. You already know how this function works, and what happens in
memory when we call it. In the code above, we can simply assume that we obtain a pointer to a newly
allocated 'Review_Node'.

The next step is to obtain information from the user to fill-in the review. Once we have this data,
we can update the fields inside the 'rev' variable contained in the 'Review_Node'. Remember! We have
bento boxes inside bento boxes: The 'Review_Node' contains a 'Review' called 'rev', and that review
contains a name, and address, and a score for the restaurant.

The final step is to insert the new node into the linked list. For this we have a function (not yet
implemented!) called insert_at_head(). Remember we talked above about three different ways in which
we can insert a node into a list: at the head, at the tail, or in between existing nodes.

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 51

CSC A48 – Introduction to Computer Science - UTSC

Here we will insert new nodes at the head because our program does not require the reviews to
be ordered in some meaningful way. That means the order of the nodes in the list is not important, and
we know that inserting a node at the head is the least amount of work.

Let's see how we can implement the insert_at_head() function by looking at an example of
inserting a couple of nodes into an initially empty list.

Example: Show in a diagram what the linked list looks like after we insert two reviews. The list
is initially empty.

1) Initial state:

We have a pointer to the head of the list, but initially it is NULL so the list is empty.

2) Inserting the first review node.

Our program will allocate and fill-in data for a new review

the new 'Review_Node' already contains a valid review, input by the user. We need to link it to
the list. Remember the process for linking a new node at the head of the list:

- We copy the address currently in the head pointer to the 'next' pointer in the new node
- We copy the address of the new node (we got a pointer to it!) to the head pointer.

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 52

head
NULL

head
NULL

#1521

Review data

next=

CSC A48 – Introduction to Computer Science - UTSC

We now have a linked list! It has a single node, the head node, but it is a proper linked list.

Things to note:

- The 'next' pointer in our head node is NULL because we copied the previous head pointer
 which was NULL onto it.
- The head pointer is not a node in the list, it is just the address of the first node in the list.
- Do not confuse the head pointer with the head node!

Important Note: Ensuring that the last node in the list has a 'next' pointer that is NULL is
crucial. If it contains junk, or a previous pointer value, then any program using the linked list will
believe there are more nodes and go looking for them at whatever address it finds in the 'next' pointer.
This is a bad type of bug – it will produce unpredictable behaviour or, if you're lucky, crash your
program. If you are having weird behaviour in code that uses linked lists check that the list is properly
terminated.

3) Insert a second review into the list.

Once again, our program will allocate and fill-in a new 'Review_Node' with data. Just before we
link the new node to the list, we have this situation:

Once again we
- Take the address in the current head pointer and copy that to the new node's 'next' pointer
- Then we copy the address of the new node to the head pointer

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 53

head
#1521

#1521

Review data

next=NULL

head
#1521

#5612

Review data

next=

#1521

Review data

next=NULL

CSC A48 – Introduction to Computer Science - UTSC

This leaves our list looking like this:

The same process will allow us to add as many nodes as we want to our linked list.

Exercise: Show what the list would look like after we insert two more reviews, the first one has
an address #3141, and the second one has an address #9811.

 Having understood how the insertion process works, let's write a function to insert a new node
into the list.

Review_Node *insert_at_head(Review_Node *head, Review_Node *new_node)
{
 // This function adds a new node at the head of the list.
 // Input parameters:
 // head: The pointer to the current head of the list
 // new_node: The pointer to the new node
 // Returns:
 // The new head pointer

 new_node->next=head;
 return new_node;
}

As you can see, it's a pretty short function! - It copies the current head node's address to the
new node's 'next' pointer (using the '->' operator because 'new_node' is a pointer). Then it returns the
address of the new head node – which is contained in the pointer 'new_node'.

Exercise: Draw a memory diagram that shows what happens when we call the insert_at_head()
function. Your diagram should show

- The head pointer variable from main()
- The current head node somewhere in memory
- The new_node pointer variable from main()
- The new node somewhere in memory
- The parameters and return value for insert_at_head()
- The final values for all pointers (after the call to insert_at_head() is completed)

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 54

head
#5612

#5612

Review data

next=1521

#1521

Review data

next=NULL

CSC A48 – Introduction to Computer Science - UTSC

That completes option '1', inserting a node into the list. Let's see now how we could implement
option '2' – printing all the reviews currently in the list.

The process we have to carry out for implementing option '2' is one of the most common
operations you will have to do with linked lists: Traversing the linked list, while carrying out some
particular operation at each node. The operation here is simply printing out the contents, but in more
complex applications, where your linked list contains all kinds of complex information, the operation
itself may be fairly involved. Regardless of what operation is being carried out, the list traversal
process is identical. Make sure you fully understand how it works!

Traversing a linked list

The process requires you to:

- Set up a pointer that will be updated as we travel down the list to point to the node currently
 being processed.
- Initializing the traversal pointer to the address of the head node for the list.
- Writing a loop that:

* Processes the node whose address is in the current traversal pointer
* Updates the traversal pointer to point to the next node in the list
* The loop ends when the traversal pointer is NULL. This indicates the end
 of the list has been reached.

Let's apply the above to write a small function that prints out all the reviews in the list.

void print_reviews(Review_Node *head)
{
 Review_Node *p=NULL; // Traversal pointer

p=head; // Initialize the traversal pointer to
// point to the head node

while (p!=NULL)
{

 // Print out the review at this node
 printf("Restaurant Name: %s\n",p->rev.restaurant_name);
 printf("Restaurant Address: %s\n",p->rev.restaurant_address);
 printf("Restaurant Score: %d\n",p->rev.score);

 // Update the traversal pointer to point to the next node
 p=p->next;
}

}

This deserves a bit of thought. Let's see how it works with the example linked list we were
using above:

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 55

CSC A48 – Introduction to Computer Science - UTSC

The print function declares a traversal pointer called 'p', and initializes it to point to the head
node (the address of which was provided by the head pointer: #5612).

Now the function goes into a loop:
- Print out the contents of the node 'p' points to (#5612)

<information for one restaurant is printed>
- Then it updates 'p' with the address in the 'next' pointer at the node (#1521)

So we have:

We go through the loop again:
- Print out the contents of the node 'p' points to (#1521)

<information for a different restaurant is printed>
- Then it updates 'p' with the address in the 'next' pointer at the node (NULL)

And now we have:

At that point the loop exits (we have reached the end of the list).

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 56

head
#5612

#5612

Review data

next=1521

#1521

Review data

next=NULL

p
#5612

head
#5612

#5612

Review data

next=1521

#1521

Review data

next=NULL

p
#1521

head
#5612

#5612

Review data

next=1521

#1521

Review data

next=NULL

p
NULL

CSC A48 – Introduction to Computer Science - UTSC

What you should take from this:

- Traversing a linked list involves using a traversal pointer that is updated to point to each
 consecutive node in the list.
- The traversal process is straightforward:

* Initialize the traversal pointer to the head node's address
* Loop until the traversal pointer is NULL

- Carry out the desired operation on the node
- Update the traversal pointer to point to the next node

You will be doing this a lot! So it pays to make sure you have a very solid understanding of the
traversal process.

Question: What happens if we pass an empty list to the print function? Does it work just fine or
will it crash our program?

The final part of our little program involves option '3', when the user wishes to exit. This would
be trivial were it not for the little detail of releasing all the memory we have requested for reviews in
our list.

As it turns out, releasing memory for a linked list is just another application of the list traversal
process we discussed just above! Except in this case, instead of printing the contents of the node, we
will release the memory allocated to that node. Here's a little function that cleans up after our program.

void delete_list(Review_Node *head)
{

Review_Node *p=NULL;
Review_Node *q=NULL;

p=head;
while (p!=NULL)
{
 q=p->next;
 free(p);
 p=q;
}

}

You should recognize all the steps of the list traversal process. The only odd detail is that we
have two pointers, 'p', and 'q'. Why is this needed?

- The loop will free the memory allocated to the node whose address is in 'p'.
- However, the address of the next node is stored in the node we are about to remove!
- If we tried to access 'p->next' after we free the memory for this node, our program
 would crash!

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 57

CSC A48 – Introduction to Computer Science - UTSC

- So we use 'q' to temporarily store the address of the next node in the list. We can
 then remove the node, and update the traversal pointer with the address we saved
 in 'q'.

Putting everything we have built above into a complete program, we get the listing below.

/*
 CSC A48 - Unit 3 - Containers, ADTs, and Linked Lists

 This program implements a linked list of restaurant reviews.
 The program allows the user to enter as many reviews as needed,
 to print the existing reviews, and when finished, it releases
 all memory allocated to the list before exiting.

 (c) 2018 - F. Estrada & M. Ahmadzadeh.
*/

#include<stdio.h>
#include<stdlib.h>
#include<string.h>

#define MAX_STRING_LENGTH 1024

typedef struct Restaurant_Score
{
 char restaurant_name[MAX_STRING_LENGTH];
 char restaurant_address[MAX_STRING_LENGTH];
 int score;

} Review;

typedef struct Review_List_Node
{

Review rev;
struct Review_List_Node *next;

} Review_Node;

Review_Node *new_Review_Node(void)
{

Review_Node *new_review=NULL; // Pointer to the new node

new_review=(Review_Node *)calloc(1, sizeof(Review_Node));

// Initialize the new node's content with values that show
// it has not been filled. In our case, we set the score to -1,
// and both the address and restaurant name to empty strings ""
// Very importantly! Set the 'next' pointer to NULL

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 58

CSC A48 – Introduction to Computer Science - UTSC

new_review->rev.score=-1;
strcpy(new_review->rev.restaurant_name,"");
strcpy(new_review->rev.restaurant_address,"");
new_review→next=NULL;
return new_review;

}

Review_Node *insert_at_head(Review_Node *head, Review_Node *new_node)
{
 // This function adds a new node at the head of the list.
 // Input parameters:
 // head : The pointer to the current head of the list
 // new_node: The pointer to the new node
 // Returns:
 // The new head pointer

 new_node->next=head;
 return new_node;
}

void print_reviews(Review_Node *head)
{
 Review_Node *p=NULL; // Traversal pointer

p=head; // Initialize the traversal pointer to
// point to the head node

while (p!=NULL)
{

 // Print out the review at this node
 printf("**\n");
 printf("Restaurant Name: %s\n",p->rev.restaurant_name);
 printf("Restaurant Address: %s\n",p->rev.restaurant_address);
 printf("Restaurant Score: %d\n",p->rev.score);
 printf("**\n");
 // Update the traversal pointer to point to the next node
 p=p->next;
}

}

void delete_list(Review_Node *head)
{

Review_Node *p=NULL;
Review_Node *q=NULL;

p=head;
while (p!=NULL)
{

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 59

CSC A48 – Introduction to Computer Science - UTSC

 q=p->next;
 free(p);
 p=q;
}

}

int main()
{

Review_Node *head=NULL;
Review_Node *one_review=NULL;
char name[MAX_STRING_LENGTH];
char address[MAX_STRING_LENGTH];
int score;
int choice=1;

while (choice!=3)
{

printf("Please choose one of the following:\n");
printf("1 - Add a new review\n");
printf("2 - Print existing reviews\n");
printf("3 - Exit this program\n");

 scanf("%d",&choice);
getchar();

if (choice==1)
{
 // Get a new review node
 one_review=new_Review_Node();

 // Read information from the terminal to fill-in this review
 printf("Please enter the restaurant's name\n");
 fgets(name, MAX_STRING_LENGTH, stdin);
 printf("Please enter the restaurant's address\n");
 fgets(address, MAX_STRING_LENGTH, stdin);
 printf("Please enter the restaurant's score\n");
 scanf("%d",&score);
 getchar();

 // Fill-in the data in the new review node
 strcpy(one_review->rev.restaurant_name,name);
 strcpy(one_review->rev.restaurant_address,address);
 one_review->rev.score=score;

 // Insert the new review into the linked list
 head=insert_at_head(head,one_review);
}
else if (choice==2)

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 60

CSC A48 – Introduction to Computer Science - UTSC

{
 print_reviews(head);
}

}

// User chose #3 – Release memory and exit the program.
delete_list(head);
return 0;

}

What we have accomplished up to this point

At this point, you know how to build a linked list to contain items of a compound data type.
This is a big deal – there is a huge number of applications out there that rely on linked lists to organize
and process information! You will find linked lists in a variety of flavours, and in different
programming languages. So, remember the following:

- The organization of a linked list is the same regardless of what it contains, what programming
 language you're using, and what application it's meant to support.
- The same is true for the process of inserting new nodes into the list. The actual implementation
 will change depending on your programming language, but the steps are the same.
- The process of list traversal is also independent of programming language, list contents, or
 application.

So, make sure you have understood the concepts and process behind these three things, they are
the most important part of the work we've done up to now.

You should be comfortable with the code for the program we developed above. Make sure you
understand what is going on at each step, and how each of the functions there works. A good way to
check you understand is to explain how the code works to someone else, or to write a summary in
your own words, for yourself, explaining what the code is doing and why.

What's next?

There are two major operations on linked lists that we have yet to learn: searching for a
specific item, and deleting items from the list. Let's have a look at those to complete our study of linked
lists.

10.- Searching for specific items in large data collections

We started this section with the goal of understanding how to organize, store, and manipulate a
large collection of information. Perhaps the most important aspect of doing this is being able to search
through a collection of data for items of interest. Consider how many times this term you have:

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 61

CSC A48 – Introduction to Computer Science - UTSC

- Used Google to look for a document, class notes, news, or images
- Used the search function in an on-line retail shop to find an item you wanted
- Search for a particular music video by song title, or by artist name

A very large number of real-world applications have a built-in search function that allows you
to find and explore specific data items stored within a large collection. To a large degree, the usefulness
of these applications is tied to how efficiently and accurately they are able to find the information a
user needs.

Within computer science, a very large effort has been invested in figuring out what are the
optimal ways to organize information so that we can quickly search through very large collections. In
this course, we will begin looking at this problem, see how far we can get with linked lists, and
understand just how much work is needed to search through a large collection that has been organized
as a linked list.

This will open the door for us to start thinking in terms of the efficiency of a particular
algorithm, or a particular data structure, and thus allow us to choose between different data structures
that implement the same ADT, and/or between different ADTs for the one that provides the best
performance (and as we will see, the definition of performance depends on what we want to achieve
with our program).

Searching through a linked list

The search process on a linked list is just a form of list traversal. We have already seen how a
list traversal works, and the only difference when we are searching is that the operation carried out at a
node is a comparison between a search key, and a value stored in the list node. The search process will
either

- Find the requested search key and return a pointer to the node that contains it
- or -

- Go through the entire list without finding the key, and return NULL

Let's see how we would write a search function for our linked list of restaurant reviews so that
we can update the score of a specific restaurant already in the list. The search function should accept a
restaurant name as search key, and return a pointer to the node that contains the review for that
restaurant, or else return NULL to indicate there is no restaurant with that name in our list.

Review_Node *search_by_name(Review_Node *head, const char name_key[])
{

// Look through the linked list to find a node that contains a
// review for a restaurant whose name matches the 'name_key'
// If found, return a pointer to the node with the review. Else
// return NULL.

 Review_Node *p=NULL; // Traversal pointer

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 62

CSC A48 – Introduction to Computer Science - UTSC

p=head;
while (p!=NULL)
{
 if (strcmp(p->rev.restaurant_name,name_key)==0)
 {
 // Found the key! Return a pointer to this node

 return p;
 }

 p=p->next;
}
return NULL; // The search key was not found!

}

The code above looks through the linked list, at each node, it compares the restaurant name in
the review stored at the node with the search key, and if they are equal, it returns the pointer to that
node.

Notes:

1- This is one example of code in which it makes perfect sense to exit a loop early – as soon as
we find the search key we return the pointer to the node where we found it. Imagine a list with millions
of entries, it would make no sense to keep traversing each of those nodes after we have found what we
were looking for.

2- You may have noticed the function declaration has a keyword we haven't seen before:

Review_Node *search_by_name(Review_Node *head, const char name_key[])

the part where we declare the search key to be 'const char name_key[]'. As you know, strings
are just arrays of chars, so we can pass a string into the search function by declaring a parameter 'char
name_key[]'. However, you also know that if we give a function a pointer to an array, the function can
go and change the contents of that array!

Since we expect the search function to not modify the search key, it is good programming
practice to write the function so that it declares its input parameter to be 'const char name_key[]'. The
'const' keyword specifies that the contents of that array are constant and can not be changed within the
function (this idea should be familiar to you from A08 and Python – a data item declared 'const' in C is
immutable. However, in C no data type is inherently mutable or immutable, it's up to you to decide
when and how to use 'const').

Making the array constant achieves two things:
- It guarantees to anyone using your code that the search_by_name() function will not change
 any string you pass into it.
- It makes sure you don't introduce a bug by changing an input argument that is not meant

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 63

CSC A48 – Introduction to Computer Science - UTSC

 to be modified by your function.

The 'const' keyword can be used with any data type, including compound types declared by
you.

We can now modify our original program – the one that handles restaurant reviews, so that it
allows the user the option of updating a review that has already been added to the list. This requires us
to change a bit the option listing in main():

printf("Please choose one of the following:\n");
printf("1 - Add a new review\n");
printf("2 - Print existing reviews\n");
printf("3 - Update review for one restaurant\n");
printf("4 - Exit this program\n");

 scanf("%d",&choice);
getchar();

and we need to add code to use our search function to look for a specific restaurant, and update
its score:

else if (choice==3)
{
 printf("Which restaurant's score do you want to update?\n");
 fgets(name,MAX_STRING_LENGTH,stdin);
 one_review=search_by_name(head,name);
 if (one_review==NULL)
 {
 printf("Sorry, that restaurant doesn't seem to be in the

list\n");
 }
 else
 {
 printf("Please enter the new score for the restaurant\n");
 scanf("%d",&one_review->rev.score);
 getchar();
 }
}

Adding these improvements to our code allows us to update reviews for restaurants already
added to our linked list. The complete program listing appears below:

/*
 CSC A48 - Unit 3 - Containers, ADTs, and Linked Lists

 This program implements a linked list of restaurant reviews.
 The program allows the user to enter as many reviews as needed,

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 64

CSC A48 – Introduction to Computer Science - UTSC

 to print the existing reviews, and when finished, it releases
 all memory allocated to the list before exiting.

 (c) 2018 - F. Estrada & M. Ahmadzadeh.
*/

#include<stdio.h>
#include<stdlib.h>
#include<string.h>

#define MAX_STRING_LENGTH 1024

typedef struct Restaurant_Score
{
 char restaurant_name[MAX_STRING_LENGTH];
 char restaurant_address[MAX_STRING_LENGTH];
 int score;

} Review;

typedef struct Review_List_Node
{

Review rev;
struct Review_List_Node *next;

} Review_Node;

Review_Node *new_Review_Node(void)
{

Review_Node *new_review=NULL; // Pointer to the new node

new_review=(Review_Node *)calloc(1, sizeof(Review_Node));

// Initialize the new node's content with values that show
// it has not been filled. In our case, we set the score to -1,
// and both the address and restaurant name to empty strings ""
// Very importantly! Set the 'next' pointer to NULL

new_review->rev.score=-1;
strcpy(new_review->rev.restaurant_name,"");
strcpy(new_review->rev.restaurant_address,"");
new_review→next=NULL;
return new_review;

}

Review_Node *insert_at_head(Review_Node *head, Review_Node *new_node)
{
 // This function adds a new node at the head of the list.
 // Input parameters:
 // head : The pointer to the current head of the list
 // new_node: The pointer to the new node
 // Returns:
 // The new head pointer

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 65

CSC A48 – Introduction to Computer Science - UTSC

 new_node->next=head;
 return new_node;
}

void print_reviews(Review_Node *head)
{
 Review_Node *p=NULL; // Traversal pointer

p=head; // Initialize the traversal pointer to
// point to the head node

while (p!=NULL)
{

 // Print out the review at this node
 printf("**\n");
 printf("Restaurant Name: %s\n",p->rev.restaurant_name);
 printf("Restaurant Address: %s\n",p->rev.restaurant_address);
 printf("Restaurant Score: %d\n",p->rev.score);
 printf("**\n");
 // Update the traversal pointer to point to the next node
 p=p->next;
}

}

void delete_list(Review_Node *head)
{

Review_Node *p=NULL;
Review_Node *q=NULL;

p=head;
while (p!=NULL)
{
 q=p->next;
 free(p);
 p=q;
}

}

Review_Node *search_by_name(Review_Node *head,\
 const char name_key[MAX_STRING_LENGTH])
{

// Look through the linked list to find a node that contains a
// review for a restaurant whose name matches the 'name_key'
// If found, return a pointer to the node with the review. Else
// return NULL.

 Review_Node *p=NULL; // Traversal pointer

p=head;
while (p!=NULL)
{
 if (strcmp(p->rev.restaurant_name,name_key)==0)
 {
 // Found the key!

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 66

CSC A48 – Introduction to Computer Science - UTSC

 return p;
 }

 p=p->next;
}
return NULL; // The search key was not found!

}

int main()
{

Review_Node *head=NULL;
Review_Node *one_review=NULL;
char name[MAX_STRING_LENGTH];
char address[MAX_STRING_LENGTH];
int score;
int choice=1;

while (choice!=4)
{

printf("Please choose one of the following:\n");
printf("1 - Add a new review\n");
printf("2 - Print existing reviews\n");
printf("3 - Update review for one restaurant\n");
printf("4 - Exit this program\n");

 scanf("%d",&choice);
getchar();

if (choice==1)
{
 // Get a new review node
 one_review=new_Review_Node();

 // Read information from the terminal to fill-in this review
 printf("Please enter the restaurant's name\n");
 fgets(name, MAX_STRING_LENGTH, stdin);
 printf("Please enter the restaurant's address\n");
 fgets(address, MAX_STRING_LENGTH, stdin);
 printf("Please enter the restaurant's score\n");
 scanf("%d",&score);
 getchar();

 // Fill-in the data in the new review node
 strcpy(one_review->rev.restaurant_name,name);
 strcpy(one_review->rev.restaurant_address,address);
 one_review->rev.score=score;

 // Insert the new review into the linked list
 head=insert_at_head(head,one_review);
}
else if (choice==2)
{
 print_reviews(head);
}

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 67

CSC A48 – Introduction to Computer Science - UTSC

else if (choice==3)
{
 printf("Which restaurant's score do you want to update?\n");
 fgets(name,MAX_STRING_LENGTH,stdin);
 one_review=search_by_name(head,name);
 if (one_review==NULL)
 {
 printf("Sorry, that restaurant doesn't seem to be in the

list\n");
 }
 else
 {
 printf("Please enter the new score for the restaurant\n");
 scanf("%d",&one_review->rev.score);
 getchar();
 }
}

}

// User chose #3 – Release memory and exit the program.
delete_list(head);
return 0;

}

Exercise: Compile and run the code above, insert a few reviews, print the reviews in the list,
and then modify one of the reviews. Be sure to test what happens when:

- You try to print a list that is empty
- You try to change a review for a restaurant that does not exist (yet) in the list
- You choose an option not in 1-4 when prompted

Try to break the program. See what you can do to make it act weirdly or crash, and then think
about how you would prevent a user from breaking the program in that way.

Exercise: Write a search function search_by_address() that allows you to modify a restaurant's
score by searching for that restaurant's address. Add an option to the menu in main() to allow the user
to do this, and implement the code that updates the score. Test your code and make sure it's solid,
updates the correct review, and doesn't break if the user enters a non-existent address.

Exercise: Write a search function that prints all restaurants with a review score >= than the
specified search key value. This would be useful if a user wanted to check out restaurants with a score
equal to or greater than a specified value.

Question: Suppose we are searching for a specific restaurant by name in a list with 1,000,000
nodes. In the worst possible case (i.e. the case for which our program has to do the most work!), how
many nodes will we have to examine before we find the desired restaurant or determine it's not in the
list?

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 68

CSC A48 – Introduction to Computer Science - UTSC

How does that number change if the list has 10,000,000 nodes? What about 100,000,000 nodes?

What you should take from the above:

- Searching on a linked list is just a list traversal, checking each node for the search key
- Because it is a list traversal, we may have to go through the entire list looking for a node
- This means the amount of work we have to do during search grows with the length of the list
 (remember the steps you had to do to find the t-shirts in your collection of lockers in Zurich!)
- We say that the search operation has linear complexity on a linked list. That means that the
 amount of work done by the search function can be described by k*n where k is some constant
 and n is the number of nodes in the list.

An algorithm or function with linear complexity is not too bad as far as things go, but if you
think about very large collections of data (e.g. the millions upon millions of documents indexed by
Google), it should be clear to you that a linked list will simply not be a fast enough data structure for
organizing data. Imagine how long it would take if every time you input a search keyword in Google it
had to go through a list billions of nodes long looking for it!

We will need a faster way to do search on large collections. Unfortunately, there's little we can
do to make searching on linked lists faster, so we'll have to come up with smarter data structures. That's
a little later on though. For now, let's set down a few more important thoughts related to search that will
have importance later on (for example, if you choose to spend time studying and working with
databases).

Thoughts on search

We should spend a bit of time thinking about the search key we are using to look through our
list of reviews.

Question: What should be the properties of a good search key?

Think about the restaurant name. At first glance this may look like a good choice and it worked
for our little program with a few reviews entered by a single user. But think about this:

- What if the user typed in “MacDonald's” as a search key?
* Would we expect there to be a single node for MacDonald's?
* Would we expect to find multiple entries? (e.g. one for each different location)
* If there are multiple matches to a search key what should the program do?

Update them all one by one?
Ask for more information to single out one location?
Give up and refuse to update?

The point to make here is that though we can search for information using any field, a good
search engine will have a way to uniquely identify each entry in a collection.

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 69

CSC A48 – Introduction to Computer Science - UTSC

One of the fundamental tasks that have to be carried out when designing a database, is figuring
out the schema of the database – that is, the list of fields that contain the information the database will
record and manipulate, and the list of keys that can be used to search for information within the
database.

Generating unique keys that identify each item in a database is crucial for maintaining
information consistency – there is a reason you get a unique student number when you join the
University!

You can learn a lot more about keys, records, and databases if you take our database course
CSC C43. For the time being, it is enough for you to think about what your program should do if the
user wants to insert multiple reviews that have the same restaurant name (at different addresses), or
different name but same address.

11.- Deleting nodes from a linked list

The last operation we need to implement to complete our linked list is the delete or remove
operation. As the name implies, it removes a specific node from a list. Because it looks for a specific
item, it involves a slightly modified search process – so it is in essence a list traversal operation.

Let's first have a look at a diagram that shows what we need to do if we want to remove a
particular node in a linked list:

Suppose we want to delete the node that contains the item “Z”. We will do this using a slightly
modified list traversal that uses two pointers to find the node we want to remove, and its predecessor.
We need to keep track of a node's predecessor because we need to link it to the node just past the one
being removed. In the example above, we are removing the node with “Z”, and we need to link its
predecessor (the node with “F”) to its successor (the node with “D”).

The traversal starts with the traversal pointers as shown below:

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 70

head
#8712

#5612

“Z”

next=1521

#1521

“D”

next=NULL

#0718

“F”

next=5612

#8712

“A”

next=0718

CSC A48 – Introduction to Computer Science - UTSC

The predecessor pointer 'pre' points to the head node, the traversal pointer 'tr' points one node
after 'pre'.

We then loop until we find the node we want, or 'tr' is NULL

- Check if the node at 'tr' contains the item we want to remove
* if it does, we remove the node and exit the loop

- Otherwise, move both 'pre' and 'tr' to the next node.

In the case above, we are looking for the node with “Z”, it's not at 'tr' so we move both pointers
to the next node:

Now we have the node with “Z” at 'tr' so we proceed to remove the node. This involves:

- Copying the 'next' pointer from the node at 'tr' to the 'next' pointer at 'pre'. In the example
 above, it copies #1521 to the 'next' field at the node with the “F”. This effectively links the
 predecessor and the successor of the node being deleted.
- We then free the node being deleted.
- We exit the loop.

This leaves our list in the following state:

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 71

head
#8712

#5612

“Z”

next=1521

#1521

“D”

next=NULL

#0718

“F”

next=5612

#8712

“A”

next=0718

pre
#8712

tr
#0718

head
#8712

#5612

“Z”

next=1521

#1521

“D”

next=NULL

#0718

“F”

next=5612

#8712

“A”

next=0718

pre
#8712

tr
#0718

CSC A48 – Introduction to Computer Science - UTSC

The list remains properly linked, and the deleted node is shown in red.

The process works for any nodes other than the head node. The head node is a special case
because it doesn't have a predecessor!

Question: What is the process for removing the head node of the list?

Let's see what the function for removing a node looks like:

Review_Node *delete_by_name(Review_Node *head, const char name_key[])
{
 // This function removes the node from the link list that contains
the

// review with a matching restaurant name.

Review_Node *tr=NULL;
Review_Node *pre=NULL;

if (head==NULL) return NULL; // Empty linked list!

// Set up the predecessor and traversal pointers to point to the
first

// two nodes in the list.
pre=head;
tr=head->next;

// Check if we have to remove the head node
if (strcmp(head->rev.restaurant_name, name_key)==0)
{
 free(pre); // Delete the first node in the list
 return tr; // Return pointer to the second node (new head!)
}

while(tr!=NULL)
{
 if (strcmp(tr->rev.restaurant_name, name_key)==0)

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 72

head
#8712

#5612

“Z”

next=1521

#1521

“D”

next=NULL

#0718

“F”

next=1521

#8712

“A”

next=0718

pre
#8712

tr
#0718

CSC A48 – Introduction to Computer Science - UTSC

 {
 // Found the node we want to delete

 pre->next=tr->next; // Update predecessor pointer
 free(tr); // remove node

 break; // Done!
 }
 tr=tr->next;
 pre=pre->next;
}
return head; // Head did not change

}

The code above implements the list traversal we looked at, with a predecessor pointer and a
traversal pointer. It checks whether we're deleting the head node and if so, it returns the updated head
node pointer. Otherwise it proceeds through the loop that finds and removes the node that contains the
specified search key.

All that remains to complete our little program for storing, organizing, and updating restaurant
reviews is to add one more option to main() allowing the user to delete a review for the specified
restaurant. This means one more choice from the menu, and code to call the delete function:

else if (choice==4)
{
 printf("Which restaurant's review do you want to delete?\n");
 fgets(name,MAX_STRING_LENGTH,stdin);
 head=delete_by_name(head,name);
}

The complete listing for the program can be found at the end of the notes for this section. Try it
out!

Exercise: Write a delete function that allows a user to delete reviews by specifying the
restaurant address.

Exercise: Write a delete function that allows a user to delete all reviews that have the specified
score (e.g. we may want to remove from our list all restaurants with really bad scores, like 1).

12.- A variation on the List ADT

Before we close this section, it's worth exploring an important variation of the List ADT. It
provides the right form of organization for a wide range of interesting applications.

Queue ADT

A Queue ADT defines a collection in which items are sequentially ordered (like in a list). The
collection supports the following operations:

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 73

CSC A48 – Introduction to Computer Science - UTSC

- Enqueue (insert) – adds a new item at the end of the queue
- Dequeue (remove) – removes the item currently at the front of the queue for processing

In addition, other operations are often defined as well, for example, getting the length of the
queue.

Queues are ubiquitous (they appear everywhere!). For instance, a network printer will have a
job queue. Print jobs can arrive at any time, from any of a possibly large number of users. Jobs are
printed in the order in which they arrive.

Queues are also important in software that simulates scheduling operations. For example, Air
Traffic Control software will have queues for departing flights, inbound flights, and aircraft that are
slotted for landing.

Finally, queues are essential for applications that use graphs to represent and process
information. Graphs are data organization/storage structures in which items are represented by nodes,
and nodes can be linked to each other in a way that encodes specific relationships between data items.
One example are social networks, these have nodes for users, and the links indicate connections
between users.

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 74

CSC A48 – Introduction to Computer Science - UTSC

Illustration 5: A sample of a professional network, showing connections between one user and others, colour
coded by domain. Photo: Dave Wallace, Flickr, CC-SA 2.0

Processing information in graphs often involves placing nodes in a queue. Artificial Intelligence
search methods also use queues to accomplish tasks such as path-finding (think about the Maps
application in your cellphone), scheduling, finding solutions to constrained optimization problems, and
so on.

You will have a chance to explore many more applications of queues, so do not forget what the
Queue ADT looks like!

And now for the best part of this section: You already know how to implement a Queue ADT!

Exercise: Think about how you would implement a Queue ADT using the linked list data
structure we developed for the List ADT.

13.- Wrapping up and summary

What you should have learned after studying these notes and completing all the exercises

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 75

CSC A48 – Introduction to Computer Science - UTSC

- You should be able to explain why we need to think carefully about how to store and organize
 collections of data.
- You should be able to explain why we need to be able to reserve space for data items
 on-demand (i.e. you should know what the limitations of arrays are and why we can't use
 them for applications where the amount of data is not specified at the start).
- You should know how to create compound data types (bento boxes!) for data so we can
 represent complex items.
- You should know how to create and manipulate variables and pointers for complex data types.
- You should be able to explain what a container is, and how we use it to store, organize, and
 access collections of items.
- You should know what a List ADT specifies, how it organizes data, and what operations it
 supports.
- You should understand how a linked list works, conceptually. What it takes to search for an
 item, add an item, and delete an item in a linked list.
- You should be able to implement a linked list data structure in C. This includes:

* Defining compound data types to hold the information we need
* Define a node data type that we can use to build the list
* Implementing the insert function, at head, at tail, or in-between nodes
* Implementing the search function to find and update specific items
* Implementing the delete function to remove nodes as needed
* Releasing memory we allocated to nodes in the list

- You should understand how much work is involved in list traversal. You should be able to
 explain why we say that the amount of work for traversal is linear w.r.t. the number of nodes

 in the list.
- You should be able to explain the difference between an ADT and a data structure.
- You should be able to go through the program listing at the end of this section and understand
 everything it's doing.
- In addition to that you should have learned the aspects of C implementation that we used to
 implement the restaurant reviews app:

* How to read input from the terminal
* How to allocate memory for a list node on-demand using calloc()
* How to write a little driver program that allows you to test parts of your code
* How and when to pass and return pointers so functions can work on linked lists

Make sure you have achieved all of the above learning goals for this section. If anything is not
clear, please visit your TA or course instructor during office hours and bring all your questions!

Why this section is important

We started this section needing a way to:

- Store, organize, and manage a possibly large collection of complex data items
- Be able to obtain space for data items on-demand
- Be able to search for specific items, and to grow or shrink our collection as needed

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 76

CSC A48 – Introduction to Computer Science - UTSC

We discussed the idea of collections, which is a general principle that applies to information
storage for pretty much every application that uses computers to manage information. Then we looked
at a particular container type – the List ADT, we saw how to use a linked list to implement a List ADT,
and we spent time working out the implementation of a linked list data structure.

We now have a working linked list implementation, and we can create variations of this list to
handle pretty much any data type we may ever need to store and keep organized! This is our first
achievement for this part of the course.

Indeed, linked lists or variations of them will appear on a large majority of applications. To give
you a couple examples you may find amusing:

- Graphics rendering programs keep lists for most data items used to create images:
 objects to be rendered, light sources, textures, animation key-frames, etc.
- Music synthesizers keep a list of notes being played, to be fed to the sound synthesis
 engine. There are also lists of digital effects, and even entire songs kept in a list in
 memory for playback
- A shopping cart for an on-line retailer can quickly and easily be implemented with
 a linked list

These are only a couple applications, there are many, many more. However, at this point you
also know that linked lists have the disadvantage that search (and thus updating information for specific
nodes), deletion, and list traversal take a fair amount of work – we may have to go through the entire
list checking each node in turn to find what we want.

This means that for applications that will handle very large amounts of data, linked lists would
result in an unacceptably long wait for basic operations that need to be carried out thousands of times.

So, while lists provide us with a way for satisfying the data organization and storage goals we
set out to fulfill at the start of the section, we now know we need to find a smarter way to organize data
if we want to ensure the fastest possible access to possibly very large amounts of data.

This will be the topic of the next unit of the course. For now, let's see what kinds of problems
we can solve having learned about containers and lists!

Problem Solving

As we said at the start of the course, A48 is about learning general techniques used for solving
problems in computer science. In this unit, we learned about containers and lists. Our motivation in
doing this was the need to understand how we can organize, store, and manage a possibly large amount
of complex information so as to make it useful within a program.

The problems below give you a chance to test your understanding of the material in this section,

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 77

CSC A48 – Introduction to Computer Science - UTSC

and to practice problem solving.

A suggested approach to solving programming-related problems in CS

- Read the problem description carefully. If there is something in the problem's statement that is
 unclear, make sure to ask your TA or course instructor.
- Consider the input for the problem – that means, what data will you be working

 with, whether you know how much of it there will be from the start, or whether the amount
 will change (and likely grow) over time, as well as any particular characteristics of the
 input data. Consider as well whether user input will be required.
 Write down your assumptions about the data!

* Data types you think will be needed, new compound types you'll have to create
* Special conditions (e.g. range of input values, or description of valid inputs)
* Uniqueness constraints (e.g. If an input field contains values that must be unique, such
 as student numbers)
* Amount of data you may expect to deal with
* What kind of storage structure you think will be needed (e.g. arrays vs. lists)

- Consider the task the problem requires you to solve: In order to find a good programming
 solution, you need to understand what will happen to the input data once it's in your program,
 make a note of what operations or processing will be performed on the input data, and
 whether it will be applied to all or most of the data or individual items.
- Consider the output for the problem: This means thinking about what needs to be computed
 or produced by your solution. Is the output used only for display (e.g. to be printed to the
 terminal), or is it going to be the input for a different part of a program. Depending on this,
 you need to think about how to store the output.
 Write down your assumptions about the output!
- Write down the solution in plain language (not code). At this point you want to make sure you
 understand the solution for the problem and can think of every step involved.
- Design and implement the solution. The design must be informed by your analysis of the input
 and output to the program, as well as what processing will be done on the input data.
- TEST your solution thoroughly, make sure it solves the problem with reasonable input. That
 may involve running your code multiple times with different possible inputs, carefully
 chosen to cover different possible but valid inputs to the program. It must work every time.
 Address any issues discovered during testing.
- TEST your solution for special cases, e.g. empty or missing input values, input that is the
 wrong data type, input that breaks your initial assumptions about the data (that's why we
 wrote them down!). Resolve any issues identified in testing.
- Now try to break the program. See if you can come up with input that causes your program to
 crash or do the wrong thing. This may include invalid input, empty fields, using special

 characters, and so on. The goal here is to identify potential problems, and think about how to
 make your solution more robust.
- Finally – if the output of your solution is going to be used as input for a different part of the
 program, TEST that the output is properly accessed by whichever code needs it.

The process is important – hacking away at a solution without having fully understood the

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 78

CSC A48 – Introduction to Computer Science - UTSC

problem will most likely

- Make it harder for you to come up with a good solution
- Make you think C is difficult - because you're having a hard time implementing the solution,
 the problem is not the language, it's the fact you haven't thought what the solution should be!
- Produce solutions that are of lower quality
- Produce a solution that is less organized, and is harder to test and maintain
- Produce a solution that needs to be re-worked because it doesn't do what it's supposed to do
- Lead to code that is fragile, and easy to break

Get used to working through a solution methodically, and thinking carefully about every aspect
of your solution before you start coding.

Remember: Being able to come up with a solid, well thought solution to a problem is much
more valuable than just being able to implement an already existing solution.

What to do when you run intro trouble:

- Figure out what part of the material you're having trouble with.
- Review that material in the notes, carefully. Check you understand things by writing down an

 explanation for someone other than yourself.
- When you get stuck with something, come and talk to us in office hours! We're there to help!

Note: We will not provide solutions to all the problems below. They are supposed to be for you to work
out. However, some of the problems will be discussed in tutorial, and we will provide all the help you
need while you're working on your solution. The weekly practical sessions in the lab are the perfect
space for you to work on them, with access to a TA that can help clarify any parts of the problem you're
having trouble with, or can assist you with technical aspects of implementing your solution. Make the
most of the practical sessions! But do not ask your TA for the solution, and do not post solutions to the
forum.

Remember: these problems are intended to make you think, and figure out what material you still
haven't mastered! – DO NOT STRESS if they seem challenging. They are, but with a bit of guidance
and focused studying you will be able to think of a way to approach, and eventually solve them.

Problems involving containers and lists

P0 – In practice, we often need to find out the length of a linked list (we need to know, for example,
how many restaurant reviews we have in our system at a given time).

Part a) Computing the length of a linked list

Write a small C function that takes as input the head of a linked list, and returns the length of
the list (zero if the list is empty). Assume nodes in the list have a pointer 'next' to the next entry in the

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 79

CSC A48 – Introduction to Computer Science - UTSC

list, just like all the examples we did above.

P1 – You are working on a checkout module for an on-line store's shopping cart. Because typical users
will only add a few things to the cart in any one visit, the store's on-line system keeps the items
currently in the cart in a linked list. Each 'Item_Node' in the linked list contains:

Item item_info;
Item_Node *next;

The 'Item' itself contains

int item_id; // A unique identifier for each item
char name[1024]; // The item's name
float price; // The item's price
float discount_pct; // Discount percentage in [0, .5] (0% up to 50%)
int quantity; // Item quantity in the cart

Part a) Complete the definition of the 'Item' and 'Item_Node' in C

This is basically to practice your grasp of the syntax needed for defining new data types.

Part b) Implement the function that computes the total price for items in the shopping cart

First write down the steps of the solution in plain language, and check that your solution makes
sense, and computes the correct total considering the 'quantity', and 'discount_pct' for each item.

Then write an implementation in C for a function that computes and returns the total price for
items currently in the shopping cart. You may assume the function will take-in a pointer to the head of
the linked list for the shopping cart.

P2 – You have found a summer job at the central Toronto Public Library. The library has been
expanding its digital collection that includes eBooks, movies, audio recordings, and photographs. The
library's digital collection is stored in a central server, and you have a linked list of items available.

Each 'Item_Node' in the library's list contains:

typedef struct Item_List_Node{
int item_id; // Unique identifier
char title[1024]; // Title for this item
int type; // Type of resource

// 0 – eBook, 1 – video,
// 2 – music, 3 – photograph

// Here there are many more fields we don't need for this problem

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 80

CSC A48 – Introduction to Computer Science - UTSC

struct Item_List_Node *next; // Pointer to next node in the list
} Item_Node;

Your problem is as follows: Each local branch of the library houses its own collection of video,
and music (these are in the form of actual DVDs and CDs). They are now seldom accessed since most
users would rather access the same content electronically on their handheld devices. So the library has
decided to remove from each branch any videos or music recordings that are already part of the
central digital collection.

Library personnel has already cataloged the content at each branch, and stored it in a (you
guessed it!) linked list.

Part a) Finding duplicate content

Write down the steps of an algorithm that takes as input two linked lists of 'Item_Nodes' (one for
the central digital collection, one for a local branch collection), and prints out any duplicate videos or
music entries so the duplicates can be removed from the local branch collection.

Be sure to write down any assumptions you are making regarding the fields in the item node.

Write your solution in plain language, with enough detail that someone else could implement it
in C.

Once you're satisfied with your solution, write an implementation in C.

Part b) Think about the data representation

Note that whoever designed the data representation for the library's linked list, didn't bother to
build a separate data type for each item's information. Instead, they put everything into the 'Item_Node'.
Write down what you believe would be:

Advantages of representing items in this way:

Disadvantages of representing items in this way:

P3 – You're working on an open source project for a web browser that provides the user with full
control over the amount and type of personal information that is made available to websites. One of the
key components of any web browser is the bookmarks section. For simplicity, the bookmarks are
organized as a simple linked list. New bookmarks are inserted at the head of the list.

However, the user can choose to organize the bookmarks in many different ways. In particular,
they may choose to sort the bookmarks by url by pressing a button on the browser's main window.

Part a) Implementing a function that builds a sorted linked list

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 81

https://en.wikipedia.org/wiki/Open-source_software

CSC A48 – Introduction to Computer Science - UTSC

Write down the steps required to
- Take an un-sorted linked list of bookmarks
- Create a new, linked list where the bookmarks are sorted by url by inserting each node from
 the original input list into the sorted list at the right location according to its sorting order.
 (you may want to review insertion sort, or ask a TA to do a demo with playing cards!)

Use plain language, but do make sure your solution is detailed enough that someone else could
implement it in C.

Illustrate with a diagram how your solution works.

Now, assuming that the linked list nodes contain:

char url[1024];
Url_Node *next;

Write a function in C that takes as input the head of an un-sorted linked list of 'Url_Nodes',
builds a sorted linked list of 'Url_Nodes', and returns a pointer to the head of the sorted list. You can
assume you have already written a function

Url_Node *copyUrlNode(Url_Node orig);

that takes as input a pointer to a 'Url_Node' and creates a new node with the same URL but with
the 'next' pointer set to NULL (so you can insert it into the growing, sorted linked list).

Part b) more challenging – Implement a function that takes an un-sorted input linked list of
URLs, and sorts it without making a new list.

As in part a), you should write your solution steps first in plain language, draw a diagram to
show how the process works on one node of the input list, and finally write an implementation in C.

P4 – You have been hired for a Co-Op placement at the University Health Network. Having seen that
you learned C during your A48 course, they decide to give you the task of designing the storage
framework for a new system keeping track of the sequence of patients to be seen at an emergency
room.

What you will achieve by solving this problem:

- You'll have gone through the full process of designing and implementing a solution to a
 data organization/storage/management problem that applies to a real world situation.
- You will find any gaps in your understanding of this unit's material
- You will practice every concept covered in this unit, and apply it to problem solving
- You will practice implementing in C code that deals with compound data types, and
 data collections.

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 82

CSC A48 – Introduction to Computer Science - UTSC

You are asked to:

- Develop a suitable data representation to keep track of each patient's information as captured
 by the triage nurse.
- Develop the storage framework (what data structure to use to keep the information), and the
 functionality required to:

- Add patients as they arrive
- Remove patients once they have been seen by a doctor, or if they leave
- Search for specific patients by name
- Print out a list of patients in the order they expect to be seen by a doctor

Part a) – Designing the data representation for patients

The nurse at the triage station will capture the following information:
- Patient's name (Last, First, and Middle)
- Patient's street address
- Patient's postal code
- Phone number
- Health card number
- Body temperature in degrees Celsius
- A short description of the problem

Design a data representation model that would allow your program to organize and store
information for one patient. This model will be the foundation of your triage system.

1) Show a list of the data fields and their data type. You should justify (explain) why
 the data type is appropriate to each field. If you added fields beyond what the
 nurse captured, explain why these are needed and how they will be used.
2) Indicate special constraints you can identify for each field (e.g. range of values,

 uniqueness constraints, etc).
3) Mark which field(s) will be used for searching for specific items, e.g. to remove
 specific items, or to implement functionality required by the system
4) Write an implementation in C of your data representation model.

Part b) – Design the core of the triage patient management system

Required functionality:

- The system must allow you to add patients as they arrive at triage
* Patients should be seen in the order they arrive.
* Unless their body temperature is > 40.5C, in which case they must
 be seen first.
* A nurse must be able to bump a patient to the front of the list at any
 point if they believe the patient needs immediate attention.

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 83

CSC A48 – Introduction to Computer Science - UTSC

* Patients must be removed from the system once they've been seen, or
 if they leave (they may, or may not notify the nurse).
* The current list of patients in the order they will be seen is printed to
 a screen so the triage nurse can keep track of what's happening at all times.

You need to provide:

- An overall description of the solution:
* What data structure(s) you will use, explaining why you need those
* How you will break your solution into modules that can be implemented
 as separate functions.
* A pseudocode description of the main function showing what happens

- when a patient arrives
- when a patient is seen or leaves
- when a nurse bumps a patient to the front of the list

* A pseudocode description of the part of your solution that adds a new patient
* A pseudocode description of the part of your solution that moves a patient to
 the front of the list.

At this point you have solved the problem! What remains is implementing the solution.

Part c) – Implement and test your solution!

You can bring your implementation (or partial implementation) to a practical session to show
to (or get help from) your TA.

(c) 2018 - Paco Estrada, Marzieh Ahmadzadeh 84

