
Chapter 3 Organizing, Storing, and Accessing Information

Now that we have a strong enough understanding of our programming language, we can start our exploration
of the interesting problems and tools that are found throughout computer science. We will start by looking at the
fundamental problem of data and how to store it so that we can efficiently find the information we need, and
manipulate data as needed to solve whatever problem we are studying.

By data in this case, we usually mean large amounts of information. Organizing a few integers, or a couple
strings, or some floating point numbers is not challenging, interesting, or ultimately useful. Where things get
interesting is when we start looking at large collections of data items that our program needs to work with. A few
examples of the kind of data items our programs may eventually need to work with include:

Text documents - e.g. news articles, blog posts, web documents, pages from books, etc.
Music files - or sound clips, podcasts, newscasts, etc.
Pictures - collections of photos, digital archives, digital art collections, etc.
Video files - movies, clips, recordings of work meetings, etc.
Database records - for instance, the collection of information that represents each customer profile for a large
online store. There are endless variations of these, and the amount of information available can be staggering.
Results of computations - for example, the output of a program that does weather modelling will consist of
huge amounts of numerical data that has to be stored, and then processed and visualized to enable humans to
make sense of it.

In general, one of the first things you have to do when solving a problem using a computer is to carefully
consider:

What type of information we have to store, is it mostly numbers, text, a mixture of media, or something else?
How much of it do we need to be able to handle - for example, your phone’s photo app only needs to deal
with the images you have stored in your device, Google on the other hand needs to be able to organize and
search through billions of images available online, these are two very different problems.
How the data will be accessed and used, and by whom - this will have implications for choosing how the
information is organized and stored, and puts constraints on security measures we may need to put in place
to restrict access to it.
How to make the data easy to manage within a program - which is often different from making the information
easy to access by a human.

In this part of the book, we will learn about program-level organization and manipulation of data. We will
see how to use the simple data types provided by C in order to build richer, more useful, more flexible, and easy to
use data containers that can be used to represent, store, organize, access, and manage pretty much anything you
may wish to manipulate inside a computer.

The concepts and techniques covered here will be the foundation you will need later on in order to understand
how to model information, and how the modeling of information affects the design of the software written to handle

(C) F. Estrada 2024

it (this is one of the main problems studied in Software Design). It is also the foundation on which databases are
built. Nowadays, databases are needed almost for every application – from a cooking recipe app (which will have
some form of searchable recipe database), to customer information systems for every kind of business both on-line
and on-site. Databases are fascinating, so if you’re curious about how they work you should follow up by taking a
course or reading a book about them.

Note

Just how much data is out there? This is a simple question, but it doesn’t have a particularly easy answer as
it would appear no one really knows exactly just how much data is out there, or even how to measure what
is out there: do we count only publicly-accessible data? - which leaves out huge collections of information
available only to particular governments or corporations or organizations. Do we include data stored in user
devices? - as opposed to only what is stored in some internet-reachable server and thus possible accessible by
others. Do we include only meaningful data items? - that means, files and formats we can easily recognize
and make sense of, which leaves out large chunks of data that is just numbers and that we can’t understand
unless we are provided with a thorough description of what it means.
However we decide to count, the unavoidable fact is that there is a huge amount of information out there
and we should keep in our minds that programs and applications we write will, more often than not, need
to deal with fairly large amounts of data. Here are a few facts about data that will help you wrap your head
around just how much of it is stored out there.

The Google codebase in 2016 included approximately one billion files and had a history of approx-
imately 35 million commits spanning Google’s entire 18-year existence. The repository contained
86TB of data at the time, including approximately two billion lines of code in nine million unique
source files (source: https://cacm.acm.org/magazines/2016/7/204032-why-google-sto
res-billions-of-lines-of-code-in-a-single-repository/fulltext). By 2024 the
estimate is that the number of lines of code is in the tens-of-billions, but no official figure is available.
How much data is stored by Google? Apparently the answer to this is no-one (perhaps including
Google) really knows. But here’s a fairly interesting analysis: https://what-if.xkcd.com/63/
. The analysis provided states: Let’s assume Google has a storage capacity of 15 exabytes, or
15,000,000,000,000,000,000 bytes. This is a not unreasonable estimate and was likely at the right
order of magnitude for the actual storage available to Google when this post came out, several years
ago. At the present time it has been suggested Google’s total storage capacity may be in the order of
zettabytes (ZB) - a zettabyte is 1000 exabytes, so 1,000,000,000,000,000,000,000 bytes.
The number of pictures uploaded to facebook each day as of 2016 was closing on half-a-billion.
According to https://www.omnicoreagency.com/facebook-statistics/ "350 million photos
are uploaded every day, with 14.58 million photo uploads per hour, 243,000 photo uploads per minute,
and 4,000 photo uploads per second.". For Instagram, as of 2021, the figure was 95 million videos
and pictures being uploaded daily. Also from this site https://www.omnicoreagency.com/ins
tagram-statistics/ we find that "More than 50 Billion photos have been uploaded to Instagram
so far." and that "Pizza is the most Instagrammed food globally, followed by Sushi."

72

3.1 How to build a Bento Box (C) F. Estrada 2024

From https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-w
e-create-every-day-the-mind-blowing-stats-everyone-should-read/#6a951bf860b
a we find that "There are 2.5 quintillion bytes of data created each day", "On average, Google now
processes more than 40,000 searches EVERY second (3.5 billion searches per day)!", and "We send
16 million text messages (every minute!)". This was in 2018, by now those numbers will have grown
significantly.
You should have a look here https://everysecond.io/youtube to get a real-time sense of just
how much data is being produced and uploaded to some server every second of every day

These are just a few examples, but hopefully they drive home the point that storing, accessing, modifying,
and maintaining a collection of information is far from an easy or trivial problem.

Figure 3.1: This is what the inside of a data center looks like. Somewhere in the world, in a data center similar to
this one, a copy of this book is stored. Photo: Global Access Point, Public Domain

3.1 How to build a Bento Box

We know how to use the standard data types provided in C, however most interesting applications will require
keeping track of data that is a bit more complex than a few integers, or floats, or even a few strings. The problem
at hand is how to design and implement a new data type, something beyond what is already available in C, and
that can represent a much more interesting unit of information.

As an analogy – a good meal is not composed of a single item like, broccoli (you should eat broccoli by the
way, it’s good for you!), but instead it consists of many different components put together in a way that makes a
good meal. The individual components are ingredients you may find at any store, but the finished meal is much
more interesting. If you have been to a Japanese restaurant, then you may have already seen a meal that is a great

73

3.1 How to build a Bento Box (C) F. Estrada 2024

example of the process we are now going to apply to data types: The Bento Box (see Fig. 3.2).

Figure 3.2: Bento Box - the meal is composed of individual components, each in its own container, arranged to
complement each other and each of them needed to complete the meal. Photo: miheco - Flickr, CC - SA 2.0

Our task here is to figure out how to represent information about an item, where this information is more
complex than what a single data type can hold. For example, if we are going to write an application to store
information about movies, we may need to store:

The movie’s title
The year the movie came out
The name of the director
The name of the studio that produced it
The review score it received on Rotten Tomatoes
... and possibly a lot more

There are several individual pieces of information that we need to keep track of for each movie, and each of
them has its own data type – there may be strings, integers, floats, and so on. We will need to store information for
many movies (it is not particularly useful if we can only store a few, remember we are learning how to deal with
large collections of information).

Question: Given what we know at this point, how could we do this in C?

Using only C’s standard data types, we would need to create separate arrays for each of the different
components that make up a movie’s information (from now on, we will refer to a single movie’s information as a
movie record):

One array of strings for the movie titles
One array of integers for the year when the movie came out

74

3.1 How to build a Bento Box (C) F. Estrada 2024

One array of strings for the directors’ names
One array of strings for the studio
One array of floats for the Rotten Tomatoes score

Now we can design a program that allows users to fill-in these arrays with information for each of the movies
we’ll keep in our app, and that provides the functionality the user wants.

Question: What do you think are the advantages and disadvantages of storing movie records in this way?

In practical terms, the implementation with arrays has a number of disadvantages that we need to be aware of:

Because arrays in C have a fixed size, our application will be limited in the number of movie records that it
can store and manipulate. We can run out of space and not be able to store any more movies, or, if we choose
to make these arrays really huge to begin with, our app will be consuming a very large amount of memory
most of which may go unused. This is wasteful and would cause the app to take resources that other programs
may need.
Because we are storing information in several separate containers (each array is a container), all of our code
now needs to deal with multiple sources of data, and we must ensure that movie record information is kept
properly synchronized across all of these arrays at all times. This adds complexity to the program, increases
the likelihood of bugs, and makes testing of the app more complicated.
Conceptually something is not right - a movie record is a single unit of information and yet we are working
with it as if each part was its own thing. We have taken what should be a bento box and put each food item in a
separate box with nothing to hold the separate components together to indicate they should form a single unit.
This is not how we want to think of information, and it is not how we want programs to handle information.
Information that corresponds to a single item (a movie in this case) should be bundled together.

To make the above more concrete, here is an example in pseudocode of what a program may need to do if we
decide to use regular C arrays to store records, and we will compare that with a solution in which information is
bundled together rather than spread into multiple containers.
Example 3.1

// Using one array for each piece of information that makes up a single movie record

// Here is what a function that adds a single movie to our app might look like
// (in pseudocode)

addMovie()
Inputs:

- The new movie’s title
- The new movie’s year
- The new movie’s director
- The new movie’s studio
- The new movie’s Rotten Tomatoes score
- The app’s movie titles array
- The app’s movie years array
- The app’s movie directors array
- The app’s movie studios array
- The app’s movie scores array

75

3.1 How to build a Bento Box (C) F. Estrada 2024

- The number of movies currently stored

Returns:
- The number of movies after we inserted the new one

(it may not have changed if we were not able to add
the new movie!)

Procedure:

Check that there is space left in the arrays
if no space left, print an error message and
return the current number of movies unchanged

Fill in the new movie’s title in the titles array
Fill in the new movie’s year in the movie years array
Fill in the new movie’s director in the directors array
Fill in the new movie’s studio in the studios array
Fill in the new movie’s RT score in the scores array

Increment the number of movies in the database by 1
and return the updated number of movies

// Here’s what a function that deletes a movie from the app might look like (in pseudocode)
deleteMovie()

Inputs:
- The index of the movie we want to delete
- The app’s movie titles array
- The app’s movie years array
- The app’s movie directors array
- The app’s movie studios array
- The app’s movie scores array
- The number of movies currently stored

Returns:
- The updated number of movies after we deleted the

requested movie

Procedure:

Check that the requested movie index is valid (i.e. greater or
equal to zero, and less than the number of movies
currently stored)

If the index is not valid, print an error message and
return the current number of movies unchanged

Deletion:
If the index of the movie to delete is i, then starting
with index i+1

Move all entries in the movie titles array one space back
(e.g. entry k will move to entry k-1)

Move all entries in the movie years array one space back
Move all entries in the movie directors array one space back
Move all entries in the movie studios array one space back
Move all entries in the movie scores array one space back

Decrement the number of movies in the app by 1
and return the updated number of movies

76

3.1 How to build a Bento Box (C) F. Estrada 2024

Things you should note from the above example: Notice the large number of input arguments that each of our
functions will require. Because we have multiple pieces of information, and multiple containers, the argument list
for the functions will be unavoidably long. This makes the program more cumbersome to read and understand, and
therefore harder to maintain. Importantly if we need to add a new data item to a movie record, for example,
to store also the movie’s box office amount (how much money the movie made), we would need to modify the
argument lists of all functions in the app that deal with movies. That is not a great feature of our design
using separate arrays. Also, notice that each function is now performing the same operation multiple times on
different containers. The function that adds movies is adding information in multiple different places, the one that
deletes movies is now performing a shifting operation on each of several arrays. This makes the code repetitive,
cumbersome to maintain, harder to test, and it’s easier for a programmer to inadvertently introduce bugs because
repetitive code tends to look right even when it is not.

What would change if we could bundle information for each movie into a single movie record that contains
(in a single place) all the different pieces of data that we need to store?

Example 3.2
// Given a data-type that can store all the information of a single movie as a single movie
// record

// Here’s what the function that adds a movie to the app might look like (in pseudocode)

addMovie()
Inputs:

- The filled-in movie record for the new movie
- The array that contains the movie records for all movies in the app
- The number of movies currently stored

Returns:
- The updated number of movies

Procedure:

- Check that there is space left in the array that stores movie records
if no space left, print an error message and return the current
number of movies unchanged

- Copy the new movie record onto the movie records array at the end
- Increment the current number of movies by 1 and return it

// Here’s what the function that deletes a movie from the app might look like
deleteMovie()

Inputs:
- The index of the movie we want to delete
- The array that contains the movie records for all movies in the app
- The number of movies currently stored

Returns
- The updated number of movies

Procedure:
- Check that the index is valid (greater or equal to zero, less than

the current number of movies)
if the index is not valid, print an error message and return

77

3.1 How to build a Bento Box (C) F. Estrada 2024

the current number of movies unchanged

Deletion:
If the index of the movie to delete is i, then startint at i+1

Move all existing entries in the movie records array up by 1

Decrement the number of movies stored by 1, and return the updated
number of movies

This is already better even in pseudocode. Note that the argument list for the functions in the program is now
much smaller and easier to understand. Now compare the body of the functions: With bundled movie records
the functions are cleaner, shorter, easier to understand for someone reading through the procedure, and there is no
duplication of work because everything happens in a single array rather than multiple ones. Additionally, if we
decided we need to add the box office total for the movies, we would not need to modify the function’s argument
list at all! and the body of the functions would either not change or change only in a minimal way. This is a huge
advantage in terms of building programs that are easier to understand, test, debug, maintain, and expand.

The example above motivates the need for a way to bundle information together so that each data item
represents the totality of the information that we need to manage for a single entity (movies in the examples above)
that our program will need to manage.

3.1.1 Compound Data Types (CDTs)

In C, we can define our own compound data types (CDTs) which are the programming equivalent of a Bento
Box: They are composed of a set of simpler data types, each of which provides needed information about a single
item or entity our program needs to handle.

Movies are fairly complex data items (if you look at the information on IMDB for a single movie you will find
out all kinds of things). So, for the examples in this section we will use a much simpler example: Suppose we are
writing a little app to keep track of restaurant reviews. Let’s say we are going to call our app Kelp.

The fundamental unit of information we need to keep track of is a single restaurant review. A restaurant
review record consists of:

The restaurant’s name (this is a string)
The restaurant’s address (this is also a string)
The review score (let’s say this is an integer in 1-5)

Here’s how we would build a compound data type in C that could store all the information required for one
restaurant review record:

typedef struct Restaurant_Score
{

char restaurant_name[1024];
char restaurant_address[1024];
int score;

} Review;

78

3.1 How to build a Bento Box (C) F. Estrada 2024

Let’s have a look at how this declaration works, since we will be using this throughout the book to declare
our own data types. The first line:

typedef struct Restaurant_Score

tell the compiler several things. First typedef tells the compiler we are defining a new data type. The next part
struct Restaurant_Score tells the compiler that our new data type is a compound data type (in C this is known
as a struct), and that the name of the struct will be Restaurant_Score. The general form for defining a new CDT
is typedef struct [_struct_name_].

After the typedef, and encased by curly braces, is the list of fields (which are the individual data elements)
that are bundled into the CDT we are creating. In the case above you can see the restaurant name, the restaurant
address, and the review score; each with an appropriate data type. In the case of the two strings, we specified a
length of 1024. This is arbitrary, but should suffice to store any reasonable restaurant name and any reasonable
address.

The last line, with the closing curly bracket is also important:
} Review;

This line completes the declaration of the new CDT by giving it a name we can use to create variables of this
type. In this case, the name we have selected is Review. Please note that this is different from the struct name that
was used in the very first line of the declaration for the new CDT. Now we can use the new CDT in a program and
create reviews for restaurants just as we would create other C data types - let’s look at an example:

Example 3.3
#include<stdio.h>
#include<stdlib.h>
#include<string.h>

#define STR_LENGTH 1024 // A convenient constant to use
// in our program

// Here’s our new CDT declaration, discussed above
typedef struct Restaurant_Score
{

char restaurant_name[STR_LENGTH];
char restaurant_address[STR_LENGTH];
int score;

} Review;

int main(void)
{

Review rev; // Declaring one variable of type ’Review’

// Let’s assign values to the information in ’rev’
// Individual components of a compound data type are accessed by using
// the ’.’ operator:

// Score is just an int, so we can do this:
rev.score=4;

79

3.1 How to build a Bento Box (C) F. Estrada 2024

// However, the address and name are strings, which means arrays. We
// have to use a function from the string library to copy them over.
strcpy(rev.restaurant_name,"Best Salads Ever");
strcpy(rev.restaurant_address,"777 Wonderful Street");

printf("This review has: name=%s, address=%s, score=%d\n",\
rev.restaurant_name,rev.restaurant_address,rev.score);

return 0;
}

The program above is a very simple example of how we would declare and use variables that are of compound
type. In the example, main() declares a single variable called ’rev’ which is of type Review. As we discussed just
above, the Review CDT contains three fields needed to represent the information of a single restaurant review
record; so our variable ’rev’ has 3 fields, and each individual field can be accessed as needed by using the ’.’
operator. In Example 3.3, all that we do is assign values to the different fields of the CDT, and then print out the
information we just stored there.

Question: What happens in the memory model when we declare a variable that is of compound type? Recall
that by defining CDTs we wanted to be able to bundle information so that we could treat each record for a complex
entity (like movies or restaurant reviews) as a single box that contains all the things we need. So, in the memory
model we will represent CDT variables as a single box which contains space for the different parts that comprise
the CDT. This is illustrated in Fig. 3.3

Figure 3.3: Memory model for the program in Exercise 3.3. Note that there is only 2 boxes, one for the Review
variable called ’rev’ which is of compound type, and one for main()’s return value

Note

Remember this: Variables that are compound type correspond to individual units of meaning in our
program. So we treat them as a single box in the memory model. Importantly this is a conceptual
representation, part of our memory model’s abstractions so we can think about how information moves
around in our programs in the correct way. How the pieces of information inside the CDT are represented,
stored, and organized in the actual computer memory is a lot more complicated - but happily we do not need
to worry about that, the compiler takes care of everything so we can use CDTs as bento boxes, with each of
the parts we specified always bundled together.

80

3.1 How to build a Bento Box (C) F. Estrada 2024

Compiling and running the code above produces
>./a.out
This review has: name=Best Salads Ever, address=777 Wonderful Street, score=4

One very nice thing about CDTs is that once we have created them, we can use them just like we would use
any other of the standard data types supported by the language. Here are some of the things we can do with CDTs:

Review rev1, rev2; // Declare individual variables of this type whenever we like
Review many_reviews[100]; // Create arrays in which each entry is a CDT
Review *rp; // Declare and use pointers to access information in CDTs

rev2=rev1; // We can copy CDT variables onto each other, this would
// copy the values in each of the fields in ’rev1’ onto
// the corresponding field in ’rev2’

rev1.score=4; // We can access individual fields in a CDT by using the
// ’.’ operator

rp=&rev2; // We can get the address (locker number) of a CDT variable
// and store it in a pointer

rp->score=3; // And we can easily use a pointer to access information
// in a CDT variable by using the ’->’ operator. This
// particular instruction is exactly equivalent to
// rev2.score=3;

We will practice all of the above as we look at how to pass CDT variables into and out of functions.

3.1.2 Passing compound types between functions

Like any other variable, we will find we need to pass CDTs as input arguments to functions, and/or to return
a CDT from a function. The way this is done is identical to the way we pass standard C-types between functions.
For example, let’s define a very short function that updates the score for a restaurant review

Review change_score(Review old_rev, int new_score)
{

old_rev.score=new_score;
return old_rev;

}

This function takes as an arguments a CDT of type Review called ’old_rev’, an int called ’new_score’; and
returns a CDT also of type Review. Let’s now see an example of how we would use this function, and what
happens in memory when we call change_score()
Example 3.4

int main()
{

Review rev1, rev2;

strcpy(rev1.restaurant_name,"The Home of Sushi");
strcpy(rev1.restaurant_address,"555 Ellesmeadow Rd.");
rev1.score=3;

rev2=rev1;

rev2=change_score(rev2,4);
}

81

3.1 How to build a Bento Box (C) F. Estrada 2024

The first thing the program does is create two CDT variables to hold restaurant reviews (Fig. 3.4). As expected,
this creates two boxes each of which contains space for the different parts of each of the reviews.

Figure 3.4: Memory model for the program in Example 3.4 just after memory has been reserved for main().

The next three lines fill-in the information in ’rev1’, which in the memory model looks as shown in Fig. 3.5.

Figure 3.5: Memory model for the program in Example 3.4 after filling-in information for rev1.

The line ’rev2=rev1;’ makes a complete copy of the contents of the box tagged ’rev1’ onto the box tagged
’rev2’. This means that each field is duplicated exactly. Needless to say, both boxes have to be exactly of exactly
the same type (Review) for this to work. The result is shown in Fig. 3.6.

Figure 3.6: Memory model for the program in Example 3.4 after the instruction ’rev2=rev1;’.

At this point we have two identical boxes, each containing the same address, restaurant name, and score. With
the instruction ’rev2=change_score(rev2,4);’ several things happen. First, space is reserved for the function’s input
arguments and return value. The input arguments are one variable of type Review called ’old_rev’, and an integer
variable called ’new_score’. Additionally space is reserved for the return value which is of type Review. As part
of the process, the value of the CDT rev2 being passed to the function is copied into the function’s old_rev
argument, and the value 4 is copied into the function’s argument ’new_score’. The situation is shown in Fig. 3.7.

The essential fact to keep in mind here is that passing a CDT into a function involves making a copy of the
CDT into the corresponding input argument. Compound data types are passed by value just like regular data types

82

3.1 How to build a Bento Box (C) F. Estrada 2024

Figure 3.7: Memory model for the program in Example 3.4 after the instruction ’rev2=new_score(rev2,4);’ has
reserved space for the function’s input arguments and return value, and copied the input arguments into their
corresponding boxes.

int, float, and char.
Once the function’s memory has been reserved and the input arguments have been set up, the program continues

with the instructions inside the body of the function. This very simple function only updates the score for the input
movie review. Note that the score being change is in the old_rev CDT. Nothing has changed in the original
variable ’rev2’ which belongs to main() and which we intended to update by calling this function. This is shown
in Fig. 3.8

Finally, the ’return old_rev;’ statement completes the function call and does the following: First, the value of
old_rev is copied onto the function’s return value box (because we said that is the variable we want to return), and
then the function returns control to main(). At that point, the return value of the function is copied onto rev2 as
directed by the original instruction ’rev2=change_score(rev2,4);’. Only at this point is the score in ’rev2’ actually
updated. This is illustrated in Fig. 3.9.

Once the return statement has done its work, the space reserved for change_score() is released.

The above process seems unnecessarily tedious, but it is important to see it at least once in detail so as to
properly understand that

CDTs are treated just as regular data types, and are passed by value (by making a copy) into and out of
functions.
The only thing that changes is the amount of information being copied.
The information inside a CDT is always treated as a bundle, and the entire bundle is copied when necessary.
The fields inside the CDT are never split from the bundle or left behind when the CDT is passed around the
program.
If the CDT contains a large amount of information and many different fields, the process of making copies
of it could cause significant overhead (i.e. it can be slow). This can be important if many function calls are

83

3.1 How to build a Bento Box (C) F. Estrada 2024

Figure 3.8: Memory model for the program in Example 3.4 after updating the score for the old_rev CDT.

Figure 3.9: Memory model for the program in Example 3.4 showing the effect of the function’s return statement.

84

3.1 How to build a Bento Box (C) F. Estrada 2024

required to get work done.
To avoid the overhead of copying large CDTs, we often prefer to use pointers to access and modify
information stored inside Compound Data Types. This is the same reason we don’t make copies of arrays,
and instead use pointers to access and modify array contents.

3.1.3 Using pointers with Compound Data Types

As we just saw, passing compound types around could involve a large amount of duplication of information.
Much like arrays, what we often need is a way for a function to directly access and if necessary change the contents
of a CDT defined outside. Just like with arrays, the way to do this is through the use of pointers. Let’s see how we
use pointers to handle compound data types:
Example 3.5

int main()
{

Review rev;
Review *rp=NULL; // Remember to always initialize pointers to NULL when

// you declare them!

strcpy(rev.restaurant_name,"The Baking Sleuth");
strcpy(rev.restaurant_address,"221B Baker Street");
rev.score=5;

rp=&rev; // Get the address of ’rev’ and store it in our pointer

rp->score=4; // Use the pointer to change data stored in ’rev’

return 0;
}

The code above declares one variable of type Review called ’rev’, and a pointer ’rp’ to a variable of type
Review. The next couple of lines fill-in the information for the review. The next line ’rp=&rev;’ is read as take the
address of rev and store it in pointer rp. Thereafter, ’rp’ contains the address of our review variable, and we can
use the pointer to access and modify the information contained in that review. In our memory model, this would
look as shown in Fig. 3.10.

Figure 3.10: Memory model for the program in Example 3.5 after the line ’rp=&rev;’.

Remember that to access the different fields of a CDT we use the ’.’ operator. This works only for variables
of that type. With pointers, we use the ’->’ (arrow) operator instead:

rp->score=4;

85

3.2 Getting user input (C) F. Estrada 2024

This line updates the score field in our CDT variable ’rev’ to 4. The nice thing about using pointers to access
information stored in CDTs is that the syntax is much easier to manage (remember that with regular type variables,
we need to use the ’*’ operator, which can lead to clunky and hard to read code). With pointers to CDTs we use
the arrow operator ’->’ to select fields we want to access and/or update. Say, for instance, that we wanted to update
the address of the restaurant, we could do so by using the pointer with the following line of code:

strcpy(rp->restaurant_address,"222A Baker Street");

Let’s see how things change in the memory model if we take the program from Example 3.4, and modify the
change_score() function to use pointers.
Example 3.6

void change_score(Review *rp, int new_score)
{

rp->score=new_score;
}

int main()
{

Review rev1, rev2;

strcpy(rev1.restaurant_name,"The Home of Sushi");
strcpy(rev1.restaurant_address,"555 Ellesmeadow Rd.");
rev1.score=3;

rev2=rev1;

change_score(&rev2,4);
}

The first thing to note in Example 3.6 is the declaration for the function ’void change_score(Review *rp, int
new_score)’. It now takes as input argument a pointer to a Review type variable instead of a copy of a Review
variable (as it did in Example 3.4). It also has no return value since this time around the function will directly
update information stored in the CDT variable owned by main().

Let’s look at the memory model at the point where the program calls change_score() and the function updates
the review score. The compiler will reserve two boxes for function change_score(), the first one is a pointer to a
Review type variable, and the second one is an int (there is no return value, so no box is reserved for that). The
function itself consists of a single line ’rp->score=new_score;’ which directly updates the score in variable rev2.
The situation in memory after the score is updated is shown in Fig. 3.11.

Compare the memory model in Fig. 3.11 against the original one in Fig. 3.9, and you can see that
If we use a pointer, there is no duplication of information - the contents of rev2 are never copied into the
function. The version without pointers had to make a copy of the entire CDT three times.
The memory model for the function with pointers is cleaner and easier to understand.

Hopefully this shows that even with a small CDT and a simple program, there are definite advantages to using
pointers to access and modify information stored in CDT variables. This is one of the main reasons we will be
using pointers throughout most of the programs we will write for the rest of the book.

86

3.2 Getting user input (C) F. Estrada 2024

Figure 3.11: Memory model for the program in Example 3.6 after the call to change_score() has been set up.

3.2 Getting user input

From this point onward, we will be working with information units that are more interesting, and writing
programs that handle larger amounts of information. As a result we will often need to request input from the user.
Let’s see how to do that in C.

3.2.1 Numeric types - integers and floats

For numeric data, we use the scanf() function. This function takes a formatting string that determines how
the user’s input is going to be converted into values that can be assigned to variables in our program. The formatting
string uses the same format specifiers as printf(). Let’s see an example:
Example 3.7

#include<stdio.h>

int main()
{

int x,y;
float pi;

printf("Enter two integer numbers and one float on the same line\n");
printf("Separated by spaces\n");

scanf("%d %d %f",&x,&y,&pi);
getchar();

printf("Read: %d, %d, %f\n",x,y,pi);

return 0;
}

Compiling and running the code above results in:

87

3.2 Getting user input (C) F. Estrada 2024

>./a.out
Enter two integer numbers and one float on the same line
Separated by spaces
2 3 1.2
Read: 2, 3, 1.200000

Things to note:

The formatting string for scanf() specified that we want ’%d, %d, %f’, so, one int, one int, and one float.
Whatever the user inputs will be interpreted as values to be assigned to these data types, in the order specified
by the formatting string. Remember that scanf() does not validate input. If the user inputs anything other
than the expected data types, the resulting values will be junk.
Because we want to read multiple values with one call to scanf(), we can not rely on the return value of
scanf() to get our information. Instead, scanf() takes in pointers to the variables where we want to store
the information the user provided. The pointers have to correspond to variables of the correct data type,
and in the exact same order as specified by the formatting string. If we try to store information into the
wrong data type, the result will be junk.
There is a call to getchar() just after scanf() because scanf() will ignore the [enter] key the user pressed after
inputting values. If we don’t remove it, it will mess with any further input that our program requires.

To illustrate the point that scanf() does not provide any checking for what the user inputs, or whether it matches
the data types we expected, see what happens when we run the same program but the user doesn’t type-in the
requested information and instead inputs gibberish.

>./a.out
Enter two integer numbers and one float on the same line
Separated by spaces
ahsga tsafhsgah 3
Read: 21893, 408739536, 0.000000

That clearly makes no sense. You should always check that the user input is reasonable before using it in
your program. Checking that the input is reasonable is called input sanitization and involves setting reasonable
bounds on what the input values should be. For example, if we are reading a score for a restaurant review, and we
know that scores are in 1 to 5, we can check that the score read from the terminal is valid, and if not, ask the user to
input a valid score.

� Exercise 3.1 Write a little program that declares an int array with 10 entries, it asks the user for the values for each
of these entries (these values should be in 0 to 100); and then computes and prints out the average of the values
in the array (in effect, you’re implementing the average() function found in most spread-sheet applications!)

3.2.2 Reading strings from the terminal

We can not use scanf() to read strings because scanf() interprets spaces as delimiters. Every space in the
input string would be taken to mean that a new value for a separate variable is being provided. Instead, we will use
a different library function called fgets() (the name comes from GET String).

88

3.2 Getting user input (C) F. Estrada 2024

Here’s how you use fgets() to read strings from the terminal:

Example 3.8
#include<stdio.h>

int main()
{

char my_string[1024];

printf("Please type one string\n");
fgets(my_string, 1024, stdin);

printf("The input string is: %s\n",my_string);
return 0;

}

The only new thing here is the call to fgets()
fgets(my_string, 1024, stdin);
// ^------- This specifies we want to read from the STanDard INput
// (the terminal)
// ^------------ This is the maximum length of the string we expect to read
// ^--------------------- And this is the name of the string where we will store
// user input

Note that the maximum length we specify for fgets() must be less than, or equal to the length of the char
array where we are storing the user input. In reality, if we specified that the maximum length is N, then fgets() will
read at most N-1 characters from the user’s input, because we need to reserve one character in order to store the
end-of-string delimiter ’\0’. While for many of our programs we will be reading input from stdin, the function
fgets() can be used to read from other sources of data, such as files, network sockets, etc.

Compiling and running the program above produces:
> ./a.out
Please type one string
Here is one string the user typed-in!
The input string is: Here is one string the user typed-in!

Note

Be careful your string arrays are large enough to contain the information you will be reading, and use
fgets() carefully. Trying to store a string in an array that is too small for it will crash your program.

To make the above point more clear, here is what happens when we change the program in Example 3.8 so
that the my_string array has a size of only 10 chars, and then we compile and run the code again and let the user
type-in what they want:
$./a.out
Please type one string
This string will not fit within a 10 entry array, something bad may happen!
The input string is: This string will not fit within a 10 entry array, something bad may happen

!

89

3.3 Handling realistic amounts of data (C) F. Estrada 2024

*** stack smashing detected ***: terminated
Aborted (core dumped)

The specific way the program crashes (remember that with array indexing, or pointer+offset problems the result
may be different on different computers, operating systems, or even the same computer at different times) is not
important. What is important is for you to remember that you can not control what, or how much the user will
type, so your program has to be written in such a way that whatever the user types-in you will not get in trouble.
This includes input sanitization as discussed above for numeric data types, as well as careful use of string arrays
and making sure that fgets() never reads more than can fit in them.

3.2.3 Practice Exercises

Let’s take a moment to practice what we have learned up to this point regarding CDTs and reading user input.
Take some time to try solving the following exercises before moving on to the next Section.

� Exercise 3.2 Write a small program that:
Declares a CDT that can store restaurant reviews. The CDT must include the three fields we used above
in the examples, but also include the average cost of a meal at the restaurant, and whether or not it does
delivery. You are free to decide what data types to use for the new fields.
Declares one or two Review variables in main() so we can store information for one or two restaurants.
Has a function called fill_in_review() that receives the information for each of the fields of a single review (as
separate data items), and fills-in the corresponding values in a Review CDT. The function must use pointers
to access/modify information in the CDT without making unnecessary copies.
Calls the fill_in_review() function to fill-in the review variable(s) in main().
Prints out the information stored in the review(s).

� Exercise 3.3 Modify the program from Exercise 3.2 so that
It declares an array for 10 Review CDTs.
It uses the function fill_in_reviews() to fill-in the information for each of 10 restaurants.
The function fill_in_review() asks the user to input the information it needs for an individual restaurant, and
reads that information from the terminal.
It prints out the review information for the 10 restaurants.

3.3 Handling realistic amounts of data

At this point we know how to create custom boxes to store information, and it is time to turn our attention to
one of the fundamental ideas this book is about. To understand what we’re going to do, let’s think a bit about what
would happen if we wanted to implement the restaurant review app using only what we know up to this point:

We know how to implement a new CDT to store information about reviews
We know how to declare and use Review type variables

90

3.3 Handling realistic amounts of data (C) F. Estrada 2024

We know how to pass reviews between functions in our program, both by copying them, and by using pointers
We know how to get input from the user to fill-in a review’s data

Question: How would our program be able to store multiple reviews in a way that makes the information
easy to access/modify?

Suppose we say we want to use an array (so far this is the only container we know for storing multiple items
of a given data type in C); so we go ahead and declare:

Review all_reviews[100];

This would reserve space for 100 reviews, they would be stored in consecutive boxes in memory (as is always the
case with arrays of any data type), and they would be easily accessible to our program.

However, as was noted earlier in the Chapter, the fixed size of the array becomes a limitation, further, if later
on we decide to change the size of the array, we will need to go through the entire program and change the size
wherever it is being used. This makes maintaining the program more time consuming and increases the likelihood
there will be a bug introduced over time when we forget to change the size somewhere.

But suppose we decide to be a bit smarter, and we do the following:
// At the top of the program, we have
#define MAX_REVIEWS 100000

// Then later on (maybe in main())
Review all_reviews[MAX_REVIEWS]

// Similarly, anywhere the program needs to
// use the array size, it can simply use
// MAX_REVIEWS. Changing the size of the
// array becomes easy

The version above is better in that we now have a very large array, we’re unlikely to run out of space at
least for a while, and changing the size of the array can be easily accomplished by changing the definition of
’MAX_REVIEWS’. However, the array may be mostly empty for a good part of the time. Because space for
arrays is reserved all at the same time, the program will obtain one hundred thousand boxes for restaurant reviews,
and keep them around even if it is using only a much smaller number of them to actually store information.

For example, as of 2024, there are approximately 7,500 restaurants in the city of Toronto (see Fig. 3.12).
This means that for even a large city with a wide variety of places to eat, declaring the all_reviews array to have
100,000 entries will result in a significant waste of space. Over 90% of the array will be empty. Even if we consider
future growth, it seems 100000 may be too big. However, if we instead think about the total number of restaurants
in Canada, we find that the number may be somewhere between 70,000 and 100,000 and our array will barely fit
them all.

What we should remember from the above
Arrays are wonderfully useful when we have a known amount of data to work with, and need a simple, easy
to use container for storing and managing the data. They are commonly used in data processing applications
to represent and manipulate numeric data.

91

3.3 Handling realistic amounts of data (C) F. Estrada 2024

Figure 3.12: Toronto is a good place to be, if you like food!. Image from:
https://www.destinationtoronto.com/restaurants/

Because they have fixed size, they could end up being too small to store the information we need. Conversely
if we define them to be very large from the start, they will likely waste a lot of space that may or may not ever
be used.
Because of these limitations, they are not the right tool for implementing an information storage/retrieval
system that is intended to work on a large collection of data whose size is both changing constantly, and
not known inadvance.

Here’s the problem we would like to solve:

We need to develop a way to
Store, keep organized, and update a large collection of items that represents the data our program will
manage (e.g. the collection of reviews in our restaurant reviewing app).
Our solution should allow us to keep as few or as many instances of individual data items as we need.
We don’t know the number in advance, and it may change over time. We don’t want to be constrained by a
fixed number of items.
Space should be reserved on-demand as new data items are added to our collection. This is to avoid wasting
computer storage by pre-reserving large amounts of space. In other words, our storage solution should be
extendible.
Our solution should enable us to search for, access, modify, and delete any individual data item in our
collection.

The above is a fairly general description of what a database is. Indeed, the definition of what a database is,
directly from Oracle reads: A database is an organized collection of structured information, or data, typically
stored electronically in a computer system.

92

3.4 Containers and Lists (C) F. Estrada 2024

Of course a modern-day database is incredibly complex and very powerful. In what remains of the Chapter
we will start exploring the ideas, principles, tools, and problems that arise when we consider the problem of
maintaining an organized collection of structured information.

3.4 Containers and Lists

A container is a construct (something we have built) that provides a means for storing, organizing, and
accessing a collection of data items of a given type. Notice that this is a very general definition - it doesn’t specify
how the data will be organized, it doesn’t specify how the data will be stored in memory (or on a hard drive if we
want to make a persistent copy), and it doesn’t say how we will implement functions to access and modify data
items in the collection.

An array is a very simple but limited container. We have discussed above the limitations that encourage us
to develop a better solution for storing data when we don’t know in advance how much of it our program will have
to handle.

Let’s have a look now at what is possibly the simplest container that:

Allows us to keep a collection of data items
The collection size can grow or shrink over time
The data is organized in a simple, easy to understand way that allows us to find what we need

The container we are talking about is called a List, and its main property is that The data items are stored in
sequential order, one after the other, and for every item we can tell what the next item is (if there is one).

This is also a fairly general definition - on purpose! The goal of this definition is to provide only the basic
properties of a list in a way that applies to any implementations you could write for it. This is important because it
doesn’t matter how you implement the list, or in what programming language, or what type of data it contains, a list
is still a list.

To make the point perfectly clear, in Fig. 3.13 you can see two very different implementations of lists - hand-
written vs. computer-made, shopping list vs. to-do list, and Italian language vs. English language. The details of
how the list was created, or what it contains, do not matter. They both share the same key properties of storing a
collection of items, sequentially ordered, and so they both are examples of a list.

3.4.1 List Abstract Data Type (List ADT)

The List Abstract Data Type extends our definition of a list container by specifying the operations that the
list must provide. That is, in addition to representing a collection of data items that are sequentially ordered, the
List ADT requires the following operations to be implemented:

Creating a new (empty) list
Adding items to an existing list
Removing items from a list
Searching for a specific data item

93

3.4 Containers and Lists (C) F. Estrada 2024

Figure 3.13: Two examples of lists. On the left we have a to-do list created with an app. On the right we have
Michelangelo’s shopping list from the 16th century. Images: (left) Lubaouchan, Wikimedia Commons, CC-SA 4.0;
(right) Michelangelo, Wikimedia Commons, Public Domain.

The search operation is needed so we can find, modify, and view the contents of specific items in our collection.
For example, in our restaurant reviews app, we may want to update the score for a restaurant already in the list.
Search is also needed to check whether a specific item is already in the collection (i.e. we need it in order to avoid
duplicating information).

There are variations on the definition above. We may find versions of the List ADT that include other
operations, for example, getting the length of the list, or inserting items at specific positions in the list (common
options include at the front vs. the end). The definition we provide here contains the fundamental operations we
will find on pretty much any list we will encounter in the future.

3.4.2 Why is this called an ’abstract’ data type?

This is a particularly important point: The List ADT we defined above is called abstract because it does
not specify how the List ADT and its operations are to be implemented. There are many possible ways in
which we could build our list, and we could implement it in any programming language we know of. Two actual
implementations of the List ADT could be completely different from one another, and yet, anyone who knows
what the List ADT includes will know to expect a collection of data items, sequentially ordered, that supports
declaring a new list, adding and deleting items, and search.

This is useful because it means that once you know how and when to use a List ADT to store and organize data,
you can do so using any of the implementations of the ADT, in any programming language, without having to
worry about the implementation details.

94

3.5 Linked Lists (C) F. Estrada 2024

Note

Abstract Data Types are a fundamental component of problem solving in computer science - they allow us
to think in terms of how data is organized, and what operations can be performed on that data, so we can
determine the optimal way to store and manage the information for the specific problem we need to solve
without having to worry about implementation details.

3.5 Linked Lists

One of the most common implementations of the List ADT is the linked list. To understand how a linked list
works, we can turn back to our original analogy of memory being just a very large room full of numbered lockers.

Here’s a real-world example of the process we follow to build a linked list:

Suppose you arrive in Lausanne (Switzerland, lovely city! see Fig. 3.14) for a little sight-seeing trip. Because
you are only staying a few hours, you don’t bother reserving a hotel room, and instead you decide to leave your bags
in a locker at the train station. So you find an empty locker, pay your fee, put your bags in the locker, and get your
numbered key (let’s say you got locker #1342).

Figure 3.14: A view of Lausanne, Switzerland. Looking southward across the lake is France. Image: Switzerland
Tourism, CC BY-NC 2.0 DEED.

You go our and start exploring the city. It’s a very interesting city and you buy a few things to bring home.
First, you buy some Swiss chocolate, and to avoid it melting while you walk around you decide to go back to the
train station and leave it there in another locker. You find an empty one, pay your fee, put the chocolates in there
and take your numbered key (#0789).

95

3.5 Linked Lists (C) F. Estrada 2024

Next you find some interesting pocket watches, buy one, and in order not to carry it around you head back to
the station and put it in its own locker (same process as before), and take the numbered key (#3519).

The process repeats with you acquiring some books (left in locker #6134), a new digital camera (you left the
old one in locker #2156), some more chocolate! (locker #0178), and a few t-shirts (locker #9781).

At this point, you notice that you’re walking around with a bunch of keys making noise in your pockets.
It’s not fun. So you you start to wonder: How could I store all my stuff (it doesn’t fit in fewer lockers) in such a
way that I need to carry only one key at any time, and yet I can still go and fetch any of my items whenever I
want?

After thinking about it for a while, you come up with this scheme:

Write down a list of all the lockers you have (in the order you got them): #1342, #0789, #3519, #6134, #2156,
#0178, #9781.

Then you do the following (starting at the next-to-last locker and working backwards):
Go to locker #0178 and put it inside the key for locker #9781 (together with the chocolates stored there, the
key is small so it fits).
Go next to locker #2156 and store there the key for locker #0178 (along with your old digital camera).
Head to locker #6134 and leave there the key for locker #2156 (together with the books).
Walk to locker #3519 and put there the key for locker #6134 (sharing the locker with the pocket watch).
Move to locker #0789 and leave there the key for locker #3519 (together with the chocolates you bought first).
Go to the first locker you got, #1342 and store there the key for locker #0789 (next to your luggage).
Now you can walk outside again, carrying only the key for locker #1342.

You have just created an arrangement of lockers in which you only have the key to the first one, and inside
each locker you can find the key for the next one. This is a linked list. In this example, the links are the keys
that open the next locker in the collection.

Definition 3.1

♣

The first locker in the list, the one for which we carry the key is called the head of the list. The last locker,
the one with no key inside is called the tail of the linked list.

If we draw a map of the items as they are stored in the locker room, we would expect it to look like Fig. 3.15.

Important things to note in the map in Fig. 3.15:
Lockers are ordered (but not in increasing order of locker number!). The order is given by when they were
added to your collection, and whatever locker happened to be available when you added each item.
Each locker except for the last one has a unique successor whose numbered key is part of the locker’s
contents.
The last locker (the tail of the list) has no key stored in it.
The key to the first locker (the head of the list) is not stored in any locker, it’s kept by you.

96

3.5 Linked Lists (C) F. Estrada 2024

Figure 3.15: Map of the locker room at the train station after organizing all the items stored there into a linked list.

Questions:
Would you ever expect the lockers to be ordered by increasing value of locker number?
Which locker is the successor of locker #6134?
Is the order of the lockers meaningful (does it provide any information about what’s stored in the locker)?

3.5.1 Looking for something?

Suppose now that you have been walking for a while snapping pictures. Your new camera runs out of battery,
but luckily you remember you bought a spare one and left it in the locker that contains the old camera.

Question: What is the sequence of actions you have to take to retrieve the spare battery from the locker with
the old camera?

Because of the structure of a linked list, whenever we are looking for a specific item we need to traverse the
list, starting at the head, and using the key in in each locker to open the next one in the list until we find the item
that we want.

In this case, we would have to carry out the following actions:
Use your key to locker #1342, look inside. This is not the locker you need, so use the key stored there to open
the next locker #0789 (don’t forget to put the key back before closing #1342).
Look in locker #0789. Chocolates! But we need a battery, so use the key stored there to open the next locker,
#3519.
Look in locker #3519, the watch is not what we’re looking for, so use the key stored there to open the next
locker, #6134.

97

3.5 Linked Lists (C) F. Estrada 2024

Look in locker #6134, it’s books! Not what we are looking for. So take the key there and use it to open locker
#2156.
Look inside locker #2156. It’s the old camera! Bingo! Fetch the spare battery, close the locker, and head out.

As you can easily see, that took some time and work. We will return to this later on.

Note

Remember: Whenever you we are using a linked list to keep a collection of items, searching for a specific
item will require traversing the list until we find it. Unlike arrays, we can not simply go to any arbitrary
item in the list – we need the key, and the key is stored in another locker. The only way to get to a particular
item is to follow the links from one locker to the next until we arrive at the one that contains what we’re
looking for (or we reach the end of the list).

� Exercise 3.4 Turns out all that walking has left you a bit sweaty, so you decide to change your shirt. Write down
the sequence of actions that would be required for you to fetch a clean t-shirt from the ones you stored at the train
station.

3.5.2 What if we need to store more things?

Suppose that you find a nice painting of a Swiss landscape that you want to bring home. You buy it, and you
bring it back to the station.

Question: How can we insert (add) another locker to our collection?

There are several ways in which we can add new items to our collection. Whichever one we choose, we must
carry out at the very least these three steps:

Get a new locker to store things in, we will get the key to this locker.
Put whatever we need to store in the newly acquired locker.
Link the new locker to the rest of our collection. This is the crucial step for making sure our linked list works
as intended as we add more items to it.
How to link the new locker to the list depends on where in the list we want to insert it, and will affect how
much work we need to do to add each item to the list.

Example 3.9 Let’s store our newly bought painting in a locker, and insert the new locker in our collection at the
head of the linked list:

Reserve a new locker (we got #4451).
Put the painting in the locker (we’re lucky, it just fits!).
Link the new locker to the existing linked list at the head. This means the new locker will become the
first locker in our list, in effect, it will become the head. Locker #1342 which was previously the head will
become the second locker in the list.

98

3.5 Linked Lists (C) F. Estrada 2024

So we take the key we are currently carrying for locker #1342 (our original head of the list) in the new locker.
Locker #4451 is now the head of the list so we take the key for it with us. Done!

After we completed the process above, our map for the locker room will look as shown in Fig. 3.16. The new
link joining the locker we just acquired for our painting to the rest of the list is shown in green.

Figure 3.16: Map of the locker room after we add an item (a painting) to our collection at the head of the list.
.

The same process would allow us to add any number of items at the head of the list as long as there are
unused lockers at the train station. The list will grow from the front end.

� Exercise 3.5 Starting with an empty list, show a diagram of what the linked list looks like after we insert chocolates
(locker #2215), Swiss cheese (locker #0117), a coo-coo clock (locker #4152), and a bunch of postcards (locker
#1890), in that order, by inserting each item at the head of the list.

3.5.3 Inserting a new item at the tail of the list

Inserting new items at the head of the list is the most straightforward (least effort) way to insert a new item
into the list. However it is not the only option. We can, with a bit more work, insert a new item at the tail of the
list, so the list grows from the tail-end.
Example 3.10 Suppose we wanted to add the new locker with our painting (#4451) at the tail of the list (instead
of at the head of the list). We would have to:

Get the new locker #4451 and its key.
Store the painting in the locker, note that this locker will not contain a key since it will go to the end of the
list.

99

3.5 Linked Lists (C) F. Estrada 2024

Traverse the linked list until we reach the current tail (easily recognized because it has no key in it). In this
example, that would be locker #9781.
Put the key to the new locker #4451 inside the current tail of the list (#9781). This means locker #9781 is no
longer the tail of the list as it now has a key to another locker. At the same time this links the new locker to
the list, at the tail.

Carrying out the process described above results in the map for the locker room that is shown in Fig. 3.17.
Once again, the new link is shown in green.

Figure 3.17: Map of the locker room after we add an item (a painting) to our collection at the tail of the list.
.

Note

Don’t forget: Adding an item at the tail of the list involves traversing the entire list. This can be a lot of
work! So why would we ever want to do this? Think about this little problem for a bit, and we will soon find
applications for which adding items at the end of a list makes perfect sense.

� Exercise 3.6 Starting with an empty list show what the linked list would look like if you carried out the following
operations (the lockers you get are indicated for each item):

Insert chocolates (#0008) at the head of the list (is this the same as inserting chocolates at the tail at this
point?)
Insert a bag with croissants (#9501) at the tail of the list
Insert a bag of books (#0546) at the head of the list
Insert a pair of t-shirts (#6121) at the head of the list
Insert a pair of shoes (#2222) at the tail of the list

100

3.5 Linked Lists (C) F. Estrada 2024

Questions: After the above operations are performed,
What is the head of the list?
What is the tail of the list?

3.5.4 Inserting at a location in-between existing items

The last option for inserting new items involves placing them somewhere in-between existing things in our
list. This is the most involved operation (though as we will see every step makes sense if you think about how the
lockers need to be organized). Like inserting at the tail, this is a type of insertion that makes sense for particular
applications. Let’s see how it’s done.

Example 3.11 Suppose we wanted to store the painting right after the books (or, what amounts to the same thing,
right before the old camera). The process would look like this:

Acquire a new locker for the painting (#4451).
Store the painting in that locker.
Traverse the linked list until we find the locker that contains the books (#6134). At this point, we need to
make sure the lockers end up in this order: #6134 (books) → #4451 (painting) → #2156 (old camera).
We take the key for locker #2156 (old camera) from locker #6134 (books).
We store the key for locker #4451 (painting) in locker #6134 (books) - this links the painting to the list just
after the books.
We store the key for locker #2156 (old camera) in locker #4451 (painting - this links the old camera to the list
just after the painting).

That’s it. Notice that we don’t have to do anything with the contents of locker #2156, as far as that locker is
concerned, nothing happened! The resulting map of the locker room is shown in Fig. 3.18. The updated links are
shown in green.

The only part of the process where we have to be really careful is when we’re moving the keys around. However,
if you take a moment to really understand why the steps above work, you’ll be able to figure out the steps whenever
needed, and you won’t need to memorize anything. You can always figure out the steps if you can draw what
the lists should look like before and after adding the new item.

� Exercise 3.7 List the steps needed to insert a bag of Swiss decaf coffee into our collection in-between the chocolates
and the t-shirts. Make sure to list every step and clearly indicate which keys end up in which lockers.Show what
the resulting list looks like after adding the coffee.

Ideas that you should be comfortable with at this point:
How a linked list is organized
How to search for a specific item in a linked list
How to insert a new item at the head, tail, or in-between existing items

3.5.5 Searching for items in the list

Now that we know how a linked list works, how it is organized, and how to add items to it, the next operation
we should figure out (as specified by the list of operations a List ADT has to support), is search - this means the

101

3.5 Linked Lists (C) F. Estrada 2024

Figure 3.18: Map of the locker room after we add an item (a painting) to our collection in between two other
items of the list.

.

process of finding a specific item in our collection.
As it turns out, we have already done that while we were figuring out how to add items either at the tail of

the list, or in between specific items in the list.

Definition 3.2 (Searching)

♣

In a linked list, search is simply the process of traversing the list starting at the head and following each
successive link in the list until we find the item we are looking for or we reach the end of the list.

We used search in order to get to the end of the list so we could add items at the tail of the list (we were
searching for an item in the collection that occupied a locker where there was no key leading somewhere else). We
also used search to find the item after which we wanted to add a new item to our collection.

In most applications of linked lists to real-world problems in computer science, we rely on search to obtain
detailed information about the data items our collection is meant to organize and manage. For instance, in an
application meant to store patient’s medical records, we would often require to pull up someone’s complete
record, and this requires us to use search to locate the entry in our linked list that contains that record, so we
can access the information stored therein.

3.5.6 Deleting items from the linked list

All the work of walking around acquiring things and storing them in lockers in a well organized linked list has
made you very hungry. You decide to eat all the chocolates in one of your lockers, you remember there’s two of
them, and you’re very hungry indeed so you decide to eat the first ones you find in your collection.

102

3.5 Linked Lists (C) F. Estrada 2024

You head back to the lockers, and traverse your linked list until you find chocolates:
Start at locker #1342 (luggage), get key for locker #0789
Go to locker #0789 (chocolates). Found them! Eat all the chocolates!

After you’ve eaten the chocolates the locker is empty, so you decide to return the key to the locker rental office
so that someone else can use that locker, but first you have to make sure the remaining lockers are still a linked list!

The situation we have at this point is like this: #1342 (luggage, key for #0789) → #0789 (no items, key for
#3519) → #3519 (watch) ... (the rest of the list). If we remove #0789, we need to make sure that locker #1342
becomes linked to #3519 which is the locker immediately after the chocolates that were eaten.

So to remove an item from the list we
Find the item right before the item we are removing (this is called the predecessor of the item we are
deleting).
Take the key from the locker that has the item we are deleting and store it in the predecessor- which
links the items right before and right after the one we are removing from the list.

In the case above, we need to take the key to locker #3519 from locker #0789 which is being removed, and store
it in locker #1342. This will result in the following situation: #1342 (luggage, key for #3519) → #3519 (watch) ...
(rest of the list). This is shown in Fig. 3.19.

Figure 3.19: Map of the locker room after we remove the chocolates from our collection.
.

The locker #0789 is no longer part of our list, and we can return the key to the rental office so the locker can
be re used. Because our linked list is all about acquiring lockers on demand, and being able to acquire as many as

103

3.6 Implementing a Linked List in C (C) F. Estrada 2024

we need to store our items, we should be good citizens and never forget to return a locker we no longer need so
it can be re-used by others, or by ourselves at a later time.

Questions:
Does the same process work if we are removing the item at the tail of the linked list?
Does the same process work if we are removing the item at the head of the linked list?

You may be wondering why we have developed the above example of linked lists without any actual code. The
reason is that the same process applies to linked lists independently of what language we are programming with,
or what items we are storing there. So, understanding how the list works independently of code will allow you to
implement a linked list in any language, for any application, and for storing any type of data. In effect we have
defined a linked list ADT.

This is precisely the kind of conceptual understanding that is essential to acquire. Implementing the linked list
will help refine and solidify your understanding, but do not forget: The concept, process, and organization of the
linked list are more important than any specific implementation.

3.6 Implementing a Linked List in C

Up to this point, we have been discussing linked lists at a conceptual level, as an Abstract Data Type that can
be implemented in any programming language, and in many different ways. It is now time for us to look at an actual
implementation of the linked list ADT.

Definition 3.3 (A specific implementation of an ADT is called a data structure)

♣

The difference is important: There may be many different ways to implement a particular ADT (even
using the same programming language), and implementations of the same ADT in different languages may
look completely different. The data structure on the other hand is programming-language specific, and
implementation dependent.

A properly designed data structure has to comply with the expectations described by the corresponding ADT,
that means that it has to organize information in the way the ADT describes, and it has to support every operation
the ADT specifies must be available for the information kept in the collection. In the case of a linked list, the
ADT specifies that items have to be stored in sequence (the order doesn’t matter), and the operations supported
are adding (inserting) items into the collection, searching (finding) specific items, and deleting items from the
collection.

What we are about to do is to create a linked list data structure in C. This involves the following steps:

Setting up a new compound data type (CDT) to store one item in the list. Each individual item is usually
called a node in the list.
Setting up a head pointer to keep track of the head of the list.
Writing a function to create a new empty node on demand - remember we must be able to add items when
we want to, and only use memory for items that are actually in the list.

104

3.6 Implementing a Linked List in C (C) F. Estrada 2024

Writing a function to insert properly filled nodes into the list - this means nodes that have all the information
required by one item in the collection.
Writing a function to search for a specific item.
Writing a function to delete (remove) a specific item from the list.

It seems like a bit of work, but as we shall see the process is independent from the type of information that the
linked list contains, so once you know how to do the steps above for items of one kind, you can do it for items of
any other kind.

3.6.1 Creating a node CDT

The general structure of a node in a linked list is

| DATA |
| |
link to next --------->

The node itself is just a big box with 2 parts: a data payload that consists of all the information we need to store
for a single item in the collection, and a link to the next entry in the list.

The data payload can be anything. From a simple data type such as int or float, to a chunky compound data
type that contains multiple fields, each of which has its own data type (and each of which could itself be a CDT).
The data payload can contain pointers to information stored elsewhere. For example, we could create a linked list
to store information about all the files stored in a USB memory stick, each node could contain information about
the file such as its name, the date it was created, the file size, the file type, and a pointer to the memory location in
the USB stick where the actual data for the file is stored.

The point is that the data payload can contain anything we want. The structure of the list doesn’t depend on
what kind of data it stores. It just provides a means to keep it organized.

The link to the next entry in the linked list is just a pointer that stores the memory location (the locker
number) of the box that contains the next item in the linked list. We have used pointers before to access information
our program needs, the next item pointer works just like any other pointer.

We have to use pointers because as we have learned
We don’t know where in memory a new node will be placed - it depends on where there’s space the moment
we ask for a new node to be created.
We will request space for nodes on demand, and will request as many as we need but no more - we can not
use an array for this.
In C, we need pointers to allow functions to access/change variables declared outside their scope. All the
functions that work on the linked list will have to do this, so we need the pointers.

Let’s see how we declare a linked list node for a simple data type.

Example 3.12 Declare a linked list node where each node stores a single int value.

105

3.6 Implementing a Linked List in C (C) F. Estrada 2024

typedef struct int_list_node
{

int stored_integer; // DATA
struct int_list_node *next; // Link to next entry

} int_node;

We have already seen that we use typedef to create new CDTs. A linked list node is a CDT and is defined in
exactly the same way. The first line

typedef struct int_list_node

tells the compiler that we are defining a new compound data type called int_list_node (a node for a linked list
containing integers).

The next couple lines
int stored_integer; // DATA
struct int_list_node *next; // Link to next entry

Define the contents of this node: one int value called stored_integer, and a pointer to the next node in the linked
list (which is of type int_list_node). In most linked lists, this pointer is called next. The last line

} int_node;

tells the compiler we want to call our new data type int_node. Thereafter we can go ahead and declare variables
for nodes in our linked list like so:

int_node a; // A variable of type int_node
int_node *head; // A pointer to an int_node

Let’s see how we would use our new data type in a little program.
Example 3.13

#include<stdio.h>
#include<stdlib.h>

typedef struct int_list_node
{

int stored_integer; // DATA
struct int_list_node *next; // Link to next entry

} int_node;

int main()
{

int_node a_node;
int_node *node_ptr=NULL;

a_node.stored_integer=21;
a_node.next=NULL;

node_ptr=&a_node;
node_ptr->stored_integer=17;

printf("The value contained in the node is %d\n",node_ptr->stored_integer);

return 0;
}

106

3.6 Implementing a Linked List in C (C) F. Estrada 2024

Compiling and running the code above we get:
>/a.out
The value contained in the node is 17

Let’s see what this does in memory to fully understand out little program.

First, main() declares two variables
int_node a_node;
int_node *node_ptr=NULL;

The first one is a linked list node called a_node, the second one is a pointer to a variable of type int_node. In
memory, these lines will reserve one box of the right size to hold an int_node, and one box for a pointer to int_node;
as well as space for main()’s return value. This is shown in Fig. 3.20.

Figure 3.20: Memory model for the code in Example 3.13 just after space has been reserved for the program.
.

Note that:
The box containing the list node has two parts: an int, and a pointer to an int_node so we can link this box
into a list.
The node_ptr on the other hand is just a pointer, it doesn’t have two components despite being a pointer to a
variable of type int_node. Initially it is set to NULL indicating it’s not pointing to anything.

Next, the program fills-in the data in the variable a_node, there’s two fields to fill, and they are set to appropriate
values.

a_node.stored_integer=21;
a_node.next=NULL;

notice that the next pointer is being set to NULL. Whenever we create a new node, we must make sure that the next
pointer is set to NULL and it does not receive a different value until the node is linked to a list. Not setting the
next pointer to NULL is a common source of bugs in programs that work with linked lists. In the memory model,
the situation is as shown in Fig. 3.21.

Next we get a pointer to the list node a_node, use it to change the value of the data in the node; and then we
print out the node’s data contents:

node_ptr=&a_node;
node_ptr->stored_integer=17;

printf("The value contained in the node is %d\n",node_ptr->stored_integer);

107

3.6 Implementing a Linked List in C (C) F. Estrada 2024

Figure 3.21: Memory model for the code in Example 3.13 after a_node has been filled with information.
.

The first line is read as get the address of a_node and store it in node_ptr, then we access the node’s content using
our pointer (remember, when we have a pointer to a compound data type, we can access its different fields using
the ’->’ operator). In this case the line reads make the value of the stored_integer at the node whose address is
in node_pointer equal to 17. The last line prints out the node’s stored integer (using the pointer to access it). As
expected, it prints out 17. The memory model will look as shown in Fig. 3.22.

Figure 3.22: Memory model for the code in Example 3.13 just before the program ends.
.

You can see that node_ptr contains nothing more than the address for a_node. If we had a function that needs
to access/modify the data in a_node, we could pass node_ptr to it.

The example above is to show you how we define a node data type, how we can declare variables and pointers
to nodes, and how we can use them to access and modify data in the node. However, we started this section by
saying we want to be able to create nodes on-demand, as new data items are added to a collection. We can not
do this with variable declarations that are written into the code.

We will now see how to create nodes on-demand (this is called dynamic memory allocation, which is nothing
other than a fancy term for getting space for data whenever we need it). We will see that the only way to deal with
such data is by using pointers. We should be thinking of our original restaurant review app, so let’s apply what we
know to create a linked list of restaurant reviews, and see how we can generate new restaurant reviews on-demand
to put in our list.

3.6.2 Declaring a linked list node for reviews

Remember our Review data type (we have already seen how it works and how to use it):
#define MAX_STRING_LENGTH 1024

108

3.6 Implementing a Linked List in C (C) F. Estrada 2024

typedef struct Restaurant_Score
{

char restaurant_name[MAX_STRING_LENGTH];
char restaurant_address[MAX_STRING_LENGTH];
int score;

} Review;

Let’s now declare a node for storing reviews in a linked list. Just like before, our node will contain two parts: A
variable to hold one Review, and a pointer to the next node in the linked list.
typedef struct Review_List_Node
{

Review rev;
struct Review_List_Node *next;

} Review_Node;

This will create a new data type called Review_Node that contains one Review, and a pointer to the next entry in
a linked list.

Take a moment to compare this node definition with the one for the int_list_node above, and you will see that
the only change is that the data component of the node is now a variable of type Review. Other than that it works
exactly the same way. This shows that creating a node for a linked list works the same way for any data type.

3.6.3 Creating nodes on-demand

Since we must be able to create nodes on-demand, we need to write a function that will
Reserve space for a new Review_Node.
Initialize the contents of the newly reserved node - to reasonable default values.
Provide our program with a pointer to the new node so we can access/modify data inside it, and so we can
link it to a list.

Here is how we would do that for review nodes, but note that the same process will apply to nodes containing
any other data type:
Review_Node *new_Review_Node(void)
{

Review_Node *new_review=NULL; // Declare a pointer to locker that contains a Review_Node

new_review=(Review_Node *)calloc(1, sizeof(Review_Node)); // Reserves memory space!

// Initialize the new node’s content with reasonable default values that show
// it has not been filled with actual data. In our case, we set the score to -1,
// and both the address and restaurant name to empty strings ""
// Very importantly! Set the ’next’ pointer to NULL

new_review->rev.score=-1;
strcpy(new_review->rev.restaurant_name,"");
strcpy(new_review->rev.restaurant_address,"");
new_review->next=NULL;
return new_review; // This returns a *pointer*, NOT a Review_Node.

}

109

3.6 Implementing a Linked List in C (C) F. Estrada 2024

Let’s look at the code above in detail. You will use very similar code for creating nodes on-demand for any
linked list you will write in C (as well as for many other data structures we will study later on). First, the function
declaration:
Review_Node *new_Review_Node(void)

It states that the function called new_Review_Node has no input arguments, and returns a pointer to a
Review_Node. Inside the function’s body, we have one variable declaration:

Review_Node *new_review=NULL; // Pointer to the new node

This is just a pointer to a Review_Node and it’s initially set to NULL to indicate it’s UN-assigned. The actual
work of allocating a new Review_Node is done here:

new_review=(Review_Node *)calloc(1, sizeof(Review_Node));

The syntax here requires a bit of care to understand. The function calloc() is a library function that is used to
reserve memory on-demand. It takes in two parameters:

calloc(# of items , size of each item in bytes)

In the case above, we are requesting one item whose size is the size of a Review_Node. Luckily for us we have a
helpful sizeof() operator that returns the size in bytes of any data type known to the compiler - which includes any
CDTs we have previously declared.

What does calloc() do?
It finds an available place in memory that has the requested capacity
It reserves that memory for use by our program
It wipes-out the contents of that memory space with zeros - so it will not contain junk
It returns a pointer to our reserved chunk of memory

The function calloc() returns a pointer without any attached data type (it’s a simple function, it doesn’t know
what we want to do with the memory), so the line

new_review=(Review_Node *)calloc(1, sizeof(Review_Node));

takes the returned pointer, type-casts it to a pointer for a variable of type Review_Node, and stores it in our
pointer variable ’new_review’. That’s a lot to take in! So let’s review it slowly in steps:

We declared a pointer new_review to a Review_Node box, which we expect to request and reserve on-demand.
We then used calloc() to reserve memory space for the new node. It gives us a pointer to a clean box suitable
to store a Review_Node.
We stored that pointer so we can use it to access/modify the information stored in the Review_Node box.

We will see how all of this works in memory in a moment. Let’s just finish going through the new_Review_Node()
function. The last part of this function initializes (fills-in) the values of our newly acquired Review_Node with
default values that show the node has not been updated with actual data.

110

3.6 Implementing a Linked List in C (C) F. Estrada 2024

Note

This is an important step and helps us avoid bugs caused by trying to use information in nodes that have
been created but still contain no valid information.

In the case above, the code sets the ’score’ to -1, and initializes the restaurant’s name and address to empty
strings (""). It then sets the ’next’ pointer to NULL. This is an essential step as it ensures that if the ’next’ pointer
has any value other than NULL, then the node must be part of a linked list. Always initialize pointers in newly
created nodes to NULL.

To fully understand what the function above does, let’s see what happens in memory if we run a little program
that creates a single Review_Node, fills the new node with information, and prints that information out.

Example 3.14 The program below dynamically allocates a Review_Node, fills the Review within that node with
information, and then prints the information inside the Review. Pay close attention to how calloc() is used to reserve
memory on demand, how a pointer us used to access the newly reserved box, and how the program can access
data fields that are inside a double wrapping: They are stored inside a Review CDT, which then is packed inside a
Review_Node CDT.

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#define MAX_STRING_LENGTH 1024

typedef struct Restaurant_Score
{

char restaurant_name[MAX_STRING_LENGTH];
char restaurant_address[MAX_STRING_LENGTH];
int score;

} Review;

typedef struct Review_List_Node
{

Review rev;
struct Review_List_Node *next;

} Review_Node;

Review_Node *new_Review_Node(void)
{

// This function creates a new box for a ’Review_Node’,
// initializes the information stored in the Review_Node,
// and returns a pointer to the new node.

Review_Node *new_node=NULL; // Pointer to the new node

new_node=(Review_Node *)calloc(1, sizeof(Review_Node));
if (new_node==NULL)
{

// *ALWAYS* after using calloc, check if we actually were able
// to reserve the memory we wanted. calloc() returns NULL if it
// is not able to reserve the requested memory, we must check for
// that and handle the situation in a way that is appropriate
// to the program we are writing. In this case, print an
// error message and return NULL (so the function that called
// new_Review_Node() knows it did NOT get a node and can

111

3.6 Implementing a Linked List in C (C) F. Estrada 2024

// also react accordingly).

printf("new_Review_Node(): Error - there is no memory available, unable to
reserve space!\n");

return NULL;
}

// Initialize the new node’s content with values that show
// it has not been filled. In our case, we set the score to -1,
// and both the address and restaurant name to empty strings ""
// Very importantly! Set the ’next’ pointer to NULL

new_node->rev.score=-1;
// The line above is important. We have a pointer to a Review_Node
// box (new_node), inside that box is a Review *variable* called
// ’rev’, and inside ’rev’ there is a field called ’score’ that we
// want to update. So the instruction states:
// Use the pointer ’new_node’ to access the ’rev’ variable (using
// the ’->’ operator, since ’new_node’ is a pointer. Once we have
// access to ’rev’, access the ’score’ field (because ’rev’ is a
// regular variable, use the ’.’ operator) and set it to -1
// Similarly, the instructions below will update the name and address.

strcpy(new_node->rev.restaurant_name,"");
strcpy(new_node->rev.restaurant_address,"");
new_node->next=NULL;

return new_node;
}

int main()
{

Review_Node *my_node=NULL;

my_node=new_Review_Node();
if (my_node==NULL)
{

// This would happen if new_Review_Node() didn’t get memory,
// so we can’t continue.
printf("Could not reserve memory for a new Review_Node, ending the program now.\

n");
return 1; // Return non-zero to indicate that an error occurred.

}

strcpy(my_node->rev.restaurant_name,"Veggie Goodness");
strcpy(my_node->rev.restaurant_address,"The Toronto Zoo, Section C");
my_node->rev.score=3;

printf("The review node contains:\n");
printf("Name=%s\n",my_node->rev.restaurant_name);
printf("Address=%s\n",my_node->rev.restaurant_address);
printf("Score=%d\n",my_node->rev.score);
printf("Link=%p\n",my_node->next);

free(my_node);

return 0; // Return 0 because everything went as expected.
}

Compiling and running the code above produces:

112

3.6 Implementing a Linked List in C (C) F. Estrada 2024

>./a.out
The review node contains:
Name=Veggie Goodness
Address=The Toronto Zoo, Section C
Score=3
Link=(nil)

Let’s see exactly what is happening when we run the code above. First, main() declares a pointer variable to
a Review_Node. This means whatever memory address is stored here, we can expect at that location to find a box
containing a Review_Node. The pointer is initialized to NULL as should be done with any pointers we declare.
The initial situation in memory looks like that shown in Fig. 3.23.

Figure 3.23: Memory model for the code in Example 3.14 just after space is reserved for main()’s variables.

Things to note
The pointer my_node is the only variable declared in main()
It is not a Review_Node, all that it can store is a memory address
It is initialized to NULL to indicate it is unassigned at the moment
Let’s not forget about main()’s return value!

Next we have a call to new_Review_Node(),
my_node=new_Review_Node();

the function new_Review_Node() declares a single pointer variable to a Review_Node, and also has a return
value that is a pointer to a Review_Node. These need to be reserved in memory as shown in Fig. 3.24.

Note that neither main() nor new_Review_Node() have declared any actual variables of type Review_Node.
We are using pointers exclusively. Next, the new_Review_Node() function dynamically allocates memory for the
new Review_Node, and initializes it to reasonable default values. The result of this is shown in Fig. 3.25.

Things to note:
The newly reserved Review_Node is shown outside any of the functions in the program. It does not belong
to either main() or new_Review_Node().
It doesn’t have a name tag because it is not a local variable declared by a function.
Since it doesn’t have a name tag, the only way to get to it is by having its address (#9871) in a pointer. The
pointer new_node stores the address of the newly created node.
The new Review_Node has two fields as expected: one field of type Review that we called ’rev’, and a
pointer called ’next’ that can be used to link this node to a linked list.

113

3.6 Implementing a Linked List in C (C) F. Estrada 2024

Figure 3.24: Memory model for the code in Example 3.14 just after the call to new_Review_Node() has reserved
space for the function’s variables.

.

Figure 3.25: Memory model for the code in Example 3.14 after the function new_Review_Node() has reserved
memory for a new Review_Node and filled it with default values.

.

114

3.6 Implementing a Linked List in C (C) F. Estrada 2024

Finally, the new_Review_Node() function returns the pointer to the newly allocated node back to main(), it
gets stored in the ’my_node’ variable, giving main() access to the box for the new node, as shown in Fig. 3.26.

Figure 3.26: Memory model for the code in Example 3.14 once the return statement copies the pointer to the
newly allocated node back to main()’s pointer variable ’my_node’.

.

Its work completed, memory reserved for the function new_Review_Node() is released. Importantly the box
for the newly allocated node is not released because it does not belong to the function, it is not attached to any
function in the program and is not released when functions end. We will get back to this point in a moment.

At that point, main() has access to the newly allocated box, and can use its pointer ’my_node’ to fill-in the
new node with information. The situation is shown in the memory model in Fig. 3.27.

The syntax for accessing information stored within a node is worth careful thought:
my_node->rev.score=3;

// ^---- We want to update the score for this review
// ^-------- ’score’ is a field in ’rev’, which is a variable
// so we use the ’.’ operator to access it
// ^------------- ’rev’ is a field in the Review_Node box that
// is stored at the address in ’my_node’, so we
// use the ’->’ operator to access it.
// ^--------------------- ’my_node’ is a pointer to a Review_Node
// and was declared in main()

a similar process is used to access the other fields in rev.
The last step in the program, right before the program ends, is releasing the memory we have dynamically

allocated. This is essential whenever we use dynamic memory to store information. The reason for this is that, as

115

3.6 Implementing a Linked List in C (C) F. Estrada 2024

Figure 3.27: Memory model for the code in Example 3.14 after main() has filled-in the new node with information.
.

116

3.6 Implementing a Linked List in C (C) F. Estrada 2024

shown in the memory model, any boxes that our program reserves dynamically are stored outside functions, and
have no attached tags. They are not local variables and are not released automatically when the function that
reserved them ends. We have to clean up after ourselves.

Note

The process for releasing memory that has been dynamically allocated by our program uses a built-in function
called free() that takes a single input argument: a pointer to a chunk of memory that was dynamically
reserved by our program. The function releases the memory for use by other programs (or by our own
program at a different point in time).

The last line in our program right before the final return statement releases memory for our newly acquired
node

free(my_node);

the process is straightforward but we have to be careful:
For each data item we dynamically allocated, there has to be a corresponding free().
Any dynamic memory we acquired that we do not release with free() becomes a memory leak.
We can not free() a chunk of memory more than once (if we try, the program will be terminated) - it is a bug.
We can not free() a NULL pointer (if we try, the program will be terminated) - this is also a bug.
We can not free() local variables, input arguments, or a return value - only dynamic memory can be freed in
this way.

In summary: From the above example, we have seen how to build a CDT for a node that contains a Review,
how to implement a function that dynamically allocates a new node when we need it, and that returns a pointer
to the new node (properly initialized with reasonable default values); and how to use this pointer to access and
update information stored in our dynamically allocated node. We will use all of these ideas very shortly in order to
implement a fully-working linked list of restaurant reviews.

117

3.7 Building a linked list of reviews (C) F. Estrada 2024

Note

Why did we bother with so much detail? In a different course, the code we wrote may have been explained
in a much more compact way. In particular, the line

my_node=new_Review_Node();

could just have been explained by saying the function new_Review_Node() allocates a new Review_Node,
and returns its address. This is an accurate statement, but it doesn’t help us really understand what is going
on when we reserve memory on-demand, or the process we have to follow if we ever have to (and we will
have to!) write code that creates and initializes different types of data items. So, it’s worth going through
the entire process once, in great detail, making sure we understand every single step.
At this point, given all the examples we have done of how variables, pointers, compound types, and function
calls are processed, we should have a pretty good understanding of what happens when we perform a
sequence of operations in C. So, from now on, we will spend less time looking at the very low-level detail
of how things change in memory when we run code, and start looking at programs at a higher level,
focusing on the conceptual aspects of what we’re doing - this is unavoidable since we will be implementing
more complex programs and looking at every single step in them would take too long and wouldn’t teach us
anything new.
But we should not forget - C is a very simple and straightforward language that doesn’t do anything we didn’t
ask it to do. We can always figure out exactly what is going on if we think in terms of boxes in memory
that correspond to the data our program is working with, and operations on these boxes. Whenever we are
not sure about what is happening, we should take a blank sheet of paper and a pencil, and draw a memory
diagram, then make sure we understand what our code is doing step by step.

� Exercise 3.8 Write a little program that
Creates an int_node CDT which represents a node in a linked list where the data items are single integer
values.
Has a function to allocate and initialize a new int_node.
Creates a new int_node in main(), and uses a pointer to update its integer value to 42.
Uses the pointer to print out the contents of the int_node.
Releases the memory for the int_node before the program ends.

3.7 Building a linked list of reviews

At this point we have all we need to create a linked list of restaurant reviews:

We know how to define a CDT to store the data for a single review.
We know how to define a linked list node CDT that we can use to link reviews into a list.
We know how to write a function that allocates new review nodes on-demand and returns a pointer to the
newly created nodes so we can access/modify information within.
We know how to read user input from the terminal so we can obtain information to fill our reviews.

118

3.7 Building a linked list of reviews (C) F. Estrada 2024

It’s time we put everything together into a little program that is able to read review information from the
terminal, fill-in the information typed in by the user into review nodes allocated on-demand, and link these nodes
to form a linked list.

In order to complete this program we will need to:

Implement a function to initialize a new (empty) linked list.
Implement a function to insert a newly created review into the linked list.
Implement a function to search for specific reviews we wish to inspect.
Implement a function to print the reviews in the list whenever we want.
Implement a function to delete a specific review the user no longer needs.
Add code to main() that allows the user to choose what they want to do, and obtains any review information
that is needed.

We will be looking at this code at a higher, more conceptual level, and stop only to look at details when such
details illustrate a new idea we haven’t seen before.

� Exercise 3.9 Write in pseudocode the steps we need to implement as per the description below (we will start with
only some of the linked list operations we need to implement, and extend our implementation afterwards).

Gives the user a choice between: a) Entering a new review, b) Printing out all the reviews entered thus far, or
c) Exiting the program.
If the user chooses a) the program should carry out all the steps needed to add the new review to the linked
list of reviews.
If the user chooses b) the program will traverse the list printing out each review in turn.
If the user chooses c) the program releases all memory allocated to the linked list, and exits.

Having completed the exercise above, have a look at how we would implement these steps in main().
int main()
{

Review_Node *head=NULL;
Review_Node *one_review=NULL;
char name[MAX_STRING_LENGTH];
char address[MAX_STRING_LENGTH];
int score;
int choice=1;

while (choice!=3)
{

printf("Please choose one of the following:\n");
printf("1 - Add a new review\n");
printf("2 - Print existing reviews\n");
printf("3 - Exit this program\n");

scanf("%d",&choice);
getchar();

if (choice==1)

119

3.7 Building a linked list of reviews (C) F. Estrada 2024

{
// Here we need code to add a new review to the linked list

}
else if (choice==2)
{

// Here we will add code to print the existing reviews
}

}

// User chose #3 - Release memory and exit the program.
}

The code above is not complete (and is also missing the #include statements, and the declarations for the
various CDTs we need). But, importantly, it contains the different sections we need to complete in main() in order
to implement all the functionality requested. It already does two important things:

Firstly, It declares a new, empty linked list:
Review_Node *head=NULL;

As you see, it’s just a pointer to a Review_Node, initially set to NULL. This is how we create any empty linked list
in C.

Question: How do we check if a linked list is empty?

Secondly, it provides a loop that prompts the user to choose a number from 1 to 3. Depending on the user’s
choice, different sections are executed. If the user chooses 3, the loop exits.

Question: What does the loop do if the user inputs anything other than values in 1-3?

Note

When you are writing a complicated program, it is a good idea to write a little driver function (in the case
above, we used main() for this but it could be a separate function called by main()) that has a loop like the
one above, and allows you to test different parts of the program separately giving you control over which
part gets tested, in what order to test the different program components, and what information to pass to each
of them. We will get back to this topic at the end of the Chapter.

Let’s now start filling in the missing parts of the implementation. First, let’s have a look at the code for option
1, it should insert a new review into our linked list.

3.7.1 Inserting a new node into the linked list, at the head

if (choice==1)
{

// Request a box for a new review node

one_review=new_Review_Node(); // We saw how this works in the previous section!
if (one_review==NULL) // Remember to check that we actually got a node..

120

3.7 Building a linked list of reviews (C) F. Estrada 2024

{
printf("main(): Error - there is no more memory, unable to create a new linked list

node!\n");
exit(1); // This ends the program at this point

}

// Read information from the terminal to fill-in this review
printf("Please enter the restaurant’s name\n");
fgets(name, MAX_STRING_LENGTH, stdin);

printf("Please enter the restaurant’s address\n");
fgets(address, MAX_STRING_LENGTH, stdin);

printf("Please enter the restaurant’s score\n");
scanf("%d",&score);
getchar();

// Fill-in the data in the new review node
strcpy(one_review->rev.restaurant_name,name);
strcpy(one_review->rev.restaurant_address,address);
one_review->rev.score=score;

// Insert the new review into the linked list
head=insert_at_head(head,one_review);

}

The code above uses the function we wrote before, new_Review_Node() to allocate and initialize a new
Review_Node. You already know how this function works, and what happens in memory when we call it. In the
code above, we can simply assume that we obtain a pointer to a newly allocated Review_Node. But notice we
always check to see if a problem occurred (in which case new_Review_Node() will return NULL).

The next step is to obtain information from the user to fill-in the review. Once we have this data, we can update
the fields inside the ’rev’ variable that is itself a field of the Review_Node.

The final step is to insert the new node into the linked list. For this we have a function (not yet implemented!)
called insert_at_head(). Remember we discussed above the three different ways in which we can insert a node into
a list: at the head, at the tail, or in between existing nodes.

Here we will insert new nodes at the head because our program does not require the reviews to be ordered
in some meaningful way. The order of the nodes in the list is not important, and we know that inserting a node
at the head is the least amount of work.

Let’s see how we can implement the insert_at_head() function by looking at an example of inserting a couple
of nodes into an initially empty list.

Example 3.15 The diagram in Fig. 3.28 shows how the linked list grows as we add new nodes at the head of the
list.

Initially, the list is empty, which is indicated by the fact that the head pointer is NULL.
The first node to be added to the list is a special case. Since the list is empty, the first node added to the
list becomes the head. This is easily done, we just need to copy the address of the new node to the head
pointer for the linked list.

121

3.7 Building a linked list of reviews (C) F. Estrada 2024

Thereafter, any new node can be added to the list by the following two-step process: 1) Copy the address
of the current head of the list into the next item pointer in the new node - which links the new node to
the rest of the list (at the start of it). 2) Update the head pointer to have the address of the new node - this
makes our list start with the newly added item.

Figure 3.28: Sequence showing how the linked list grows as nodes are added at the head of the list.
.

Note

Ensuring that the last node in the list has a next pointer that is NULL is crucial. If it contains junk, or
a previous pointer value, then any program using the linked list will believe there are more nodes and go
looking for them at whatever address it finds in the next pointer. This is a bad type of bug – it will produce
unpredictable behaviour or, if you’re lucky, crash your program. If you are seeing weird behaviour in code
that uses linked lists, check that the lists are properly ended with a NULL pointer at the tail.

� Exercise 3.10 Starting with the diagram in Fig. 3.28 show what the list would look like after we insert two more
reviews, the first node added has the address #3141, and the second one has the address #9811.

122

3.7 Building a linked list of reviews (C) F. Estrada 2024

Having understood how the insertion process works, let’s write a function to insert a new node into the list:
Review_Node *insert_at_head(Review_Node *head, Review_Node *new_node)
{

// This function adds a new node at the head of the list.
// Input parameters:
// head: The pointer to the current head of the list
// new_node: The pointer to the new node
// Returns:
// The new head pointer

new_node->next=head;
return new_node; // Same thing as doing

// head=new_node;
// return head;

}

As you can see, it’s a pretty short function! - It copies the current head node’s address to the new node’s next
pointer (using the ’->’ operator because new_node is a pointer). Then it returns the address of the new head
node – which is the same as the address stored in new_node.

Note that we do not explicitly check for an empty list! so as an exercise - trace the code in function
insert_at_head() and convince yourself that it works also when the list is initially empty!

� Exercise 3.11 Draw a memory model that shows what happens when we call the insert_at_head() function from
main() with the line

head=insert_at_head(head,new_node);

Assume the list is initially empty and that we requested a new node and got its address in ’new_node’. Your diagram
should show

The head pointer variable in main().
The new_node pointer variable in main().
The box for the new node, somewhere in memory.
All the variables, input arguments, and return value for insert_at_head() just before the memory for this
function is released.
The values for all pointers once the call to insert_at_head() returns.

Once you have completed the above, draw another memory model that shows what happens when the next
node is inserted into the list.

� Exercise 3.12 Implement a function insert_at_tail() that adds a new review to the linked list, but at the tail of the
list. You will need to add an option to main() to allow the user to select this function.

� Exercise 3.13 Given the memory models you created for Exercise 3.11, think about how you could verify that
both of the insert functions (at head, at tail) are doing the right thing. You want to think about this as a problem
in checking that the list is correctly organized in memory given the sequence of nodes that have been added to
it, and the type of insert function that was used. You should write down a sequence of insert operations your
program will carry out on the list, and for each of these operations, how to verify that the result is correct.

123

3.7 Building a linked list of reviews (C) F. Estrada 2024

Embedded in the above is the idea that we test and verify our program as we develop functionality. A topic
that we will explore in more detail shortly!

That completes option 1 - Add a new review. Let’s see now how we could implement option 2 - Print existing
reviews.

The process we have to carry out for implementing option 2 is one of the most common operations you will
have to do with linked lists: Traversing the linked list while carrying out some particular operation at each node.
The operation here is simply printing out the contents, but in more complex applications, where your linked list
contains all kinds of complex information, the operation itself may be fairly involved. Regardless of what operation
is being carried out, the list traversal process is identical. Let’s have a close look at how it works.

3.7.2 Traversing a linked list

The process of traversing a linked list requires you to:

Set up a traversal pointer that will be updated as we travel down the list to point to the node currently being
processed
Initializing the traversal pointer to the address of the head node for the list
Writing a loop that: 1) Processes the node whose address is in the current traversal pointer, 2) Updates the
traversal pointer to point to the next node in the list. The loop ends when the traversal pointer reaches the
end of the list

Let’s apply the above to write a small function that prints out all the reviews in the list.
void print_reviews(Review_Node *head)
{

Review_Node *p=NULL; // Traversal pointer

p=head; // Initialize the traversal pointer to
// point to the head node

while (p!=NULL) // Until we get to the end of the list
{

// Print out the review at this node
printf("Restaurant Name: %s\n",p->rev.restaurant_name);
printf("Restaurant Address: %s\n",p->rev.restaurant_address);
printf("Restaurant Score: %d\n",p->rev.score);

// Update the traversal pointer to point to the next node
p=p->next;

}
}

This deserves a bit of thought. Let’s see how it works with the example linked list from example 3.15. The
process is illustrated in Fig. 3.29.

Question: What happens if we pass an empty list to the print function? Does it work just fine or will it crash
our program?

124

3.7 Building a linked list of reviews (C) F. Estrada 2024

Figure 3.29: Sequence showing how the traversal pointer p moves down the linked list, visiting each node in
sequence until reaching the end of the list (indicated by a NULL pointer).

.

125

3.8 Searching for specific items in large data collections (C) F. Estrada 2024

The final part of our little program involves option 3, when the user wishes to exit. This would be trivial were
it not for the little detail of releasing all the memory we have requested for reviews in our list.

As it turns out, releasing memory for a linked list is just another list traversal process like the one we
discussed just above, except in this case, instead of printing the contents of the node, we will release the memory
allocated to that node. Here’s a little function that cleans up after our program:

void delete_list(Review_Node *head)
{

Review_Node *p=NULL;
Review_Node *q=NULL;

p=head;
while (p!=NULL)
{

q=p->next;
free(p);
p=q;

}
}

The delete_list() function above is a bit different from print_reviews() function. Notice we are using a
temporary pointer ’q’ which did not appear in the function that prints information. This is required because when
releasing memory, we get into a chicken and egg kind of problem:

We need to release memory allocated to the node currently indicated by the traversal pointer p.
But we then need to access the next pointer in order to know where the next item in the list is.
But we can not do that if we already released memory for the node.
So the temporary pointer ’q’ is used to store the value of the next pointer before we release the box where
it is stored.

3.7.3 What have we accomplished up to this point?

By now, we know how to build a linked list to store items for any data type. This is a big deal - there is a huge
number of applications out there that rely on linked lists to organize and process information. We will find linked
lists in a variety of flavours, and in different programming languages. But they all follow the process described
above, and are organized in the same way as the lists we studied in this Section.

You should be comfortable with the code for the program we developed above. Make sure you understand
what is going on at each step, and how each of the functions there works. A good way to check your understanding
is to explain how the code works to someone else, or to write a summary in your own words, for yourself, explaining
what the code is doing and why.

What’s next? There are two major operations on linked lists that we have yet to learn: searching for a specific
item, and deleting items from the list. Let’s have a look at those to complete our study of linked lists.

126

3.8 Searching for specific items in large data collections (C) F. Estrada 2024

3.8 Searching for specific items in large data collections

We started this section with the goal of understanding how to organize, store, and manipulate a large
collection of information. Perhaps the most important aspect of doing this is being able to search through a
collection of data for items of interest. Consider how many times in the past month you have:

Used Google to look for a document, class notes, news, or images
Used the search function in an on-line retail shop to find an item you wanted to buy
Searched for a particular music video by song title, or by artist name

A very large number of real-world applications have a built-in search function that allows us to find and explore
specific data items stored within a large collection. To a large degree, the usefulness of these applications is tied to
how efficiently and accurately they are able to find the information a user needs.

In computer science, a very large effort has been invested in figuring out what are the optimal ways to organize
information so that we can quickly search through very large collections. In this Chapter, we will begin looking
at this problem, see how far we can get with linked lists, and understand just how much work is needed to search
through a large collection that has been organized as a linked list.

This will open the door for us to start thinking in terms of the efficiency of a particular algorithm, or a
particular data structure, and thus allow us to choose between different data structures that implement the same
ADT, and/or between different ADTs, and select the one that provides the best performance (and as we will see,
the definition of performance depends on what we want to achieve with our program).

3.8.1 Searching through a linked list

The search process on a linked list is just a form of list traversal. We have already seen how a list traversal
works, and the only difference when we are searching is that the operation carried out at a node is a comparison
between a search key, and a value or set of values stored in the list node. The search process will either

Find the requested search key and return a pointer to the node that contains it, or
Go through the entire list without finding the key, and return NULL

Let’s see how we would write a search function for our linked list of restaurant reviews so that we can update
the score of a specific restaurant already in the list. The search function should accept a restaurant name as search
key, and return a pointer to the node that contains the review for that restaurant, or else return NULL to indicate
there is no restaurant with that name in our list.
Review_Node *search_by_name(Review_Node *head, char name_key[])
{

// Look through the linked list to find a node that contains a
// review for a restaurant whose name matches the ’name_key’
// If found, return a pointer to the node with the review. Else
// return NULL.

Review_Node *p=NULL; // Traversal pointer

p=head;
while (p!=NULL)
{

if (strcmp(p->rev.restaurant_name,name_key)==0)

127

3.8 Searching for specific items in large data collections (C) F. Estrada 2024

{
// Found the key! Return a pointer to this node

return p;
}
p=p->next;

}
return NULL; // The search key was not found!

}

The code above looks through the linked list. At each node, it compares the restaurant name in the review
stored at the node with the search key, and if they are equal, it returns the pointer to that node.

Note

This is one example of code in which it makes perfect sense to exit a loop early – as soon as we find the
search key we return the pointer to the node where we found it. Imagine a list with millions of entries, it
would make no sense to keep traversing each of those nodes after we have found what we were looking for.

We can now modify our original program - the one that handles restaurant reviews, so that it allows the user
the option of updating a review that has already been added to the list. This requires us to change a bit the option
listing in main():

printf("Please choose one of the following:\n");
printf("1 - Add a new review\n");
printf("2 - Print existing reviews\n");
printf("3 - Update review for one restaurant\n");
printf("4 - Exit this program\n");

scanf("%d",&choice);
getchar();

We need to update the while loop that prints these options and requests a number from the user, so that it exits
when the user selects 4 (previously it was 3), and we need to add code to use our search function to look for a
specific restaurant, and update its score:

else if (choice==3)
{

printf("Which restaurant’s score do you want to update?\n");
fgets(name,MAX_STRING_LENGTH,stdin);
one_review=search_by_name(head,name);
if (one_review==NULL)
{

printf("Sorry, that restaurant doesn’t seem to be in the list\n");
}
else
{

printf("Please enter the new score for the restaurant\n");
scanf("%d",&one_review->rev.score); // Store the new score directly in the review node!
getchar();

}
}

Adding these improvements to our code allows us to update reviews for restaurants already added to our linked
list.

128

3.8 Searching for specific items in large data collections (C) F. Estrada 2024

� Exercise 3.14 Compile and run the complete program (the full listing can be found in Section 3.14, you can
copy/paste it into a file), insert a few reviews, print the reviews in the list, and then modify one of the reviews. Be
sure to test what happens when:

You try to print a list that is empty
You try to update a review for a restaurant that does not exist
You choose an option not in 1-4 when prompted

Try to break the program. See what you can do to make it act weirdly or crash, and then think about how
you would prevent a user from breaking the program in that way.

With this we are taking our first steps into software testing, an incredibly important process that has to be
carefully and thoroughly carried out for every piece of software that we develop. We will explore it in more detail
at the end of the Chapter.

� Exercise 3.15 Write a search function search_by_address() that allows you to modify a restaurant’s score by
searching for that restaurant’s address. Add an option to the menu in main() to use your new function, and
implement the code that updates the score. Test your code and make sure it’s solid, updates the correct review,
and doesn’t break if the user enters a non-existent address.

Question: Should we do something to ensure the score entered by the user is valid?

� Exercise 3.16 Write a search function that prints out information for all restaurants with a review score greater
than, or equal to a user-specified value. Add an option to the menu in main() to allow the user to select this
functionality. Test your code and make sure it’s solid, prints out all the restaurants in the list that meet the specified
criteria, and doesn’t print any restaurants that don’t meet the criteria.

Question: Suppose we are searching for a specific restaurant by name in a list with 1,000,000 nodes. In the
worst possible case (i.e. if we are unlucky and have to do the longest possible traversal), how many nodes will we
have to examine before we find the desired restaurant or determine it’s not in the list? How does that number change
if the list has 10,000,000 nodes? What about 100,000,000 nodes?

What we should learn from the above:

Search on a linked list is just a list traversal checking each node to see if it contains the search key.
Because it is a list traversal, we may have to go through the entire list looking for a node.
This means the amount of work we have to do during search grows with the length of the list.
The amount of work search has to do in the worst case grows in direct proportion to the number of data
items in the list.

The next Chapter will explore in detail how we can estimate, quantify, compare, and think about the amount
of work a particular algorithm has to do when working on a collection of a given size. This will be a central concern
for us as we discover more and more ADTs and algorithms many of which can be applied to the same problem.

129

3.8 Searching for specific items in large data collections (C) F. Estrada 2024

We will need a principled way to choose the most efficient one (under a definition of efficiency that is general and
does not depend on particular implementations, languages, or hardware).

However, just from the discussion above it should be clear to us that for a very large collections of data (e.g.
the millions upon millions of documents indexed by Google), a linked list will simply not be a fast enough data
structure to allow users to frequently and quickly find the information they need. Imagine how long it would take
if every time you input a search keyword in Google it had to go through a list billions of nodes long looking for it!

We will need a faster way to do search through large collections. Unfortunately, there’s little we can do to
make searching on linked lists faster, so we’ll have to come up with smarter data structures. That’s a little later on
though. For now, let’s set down a few more important thoughts related to search that will have importance later on
(for example, if you choose to spend time studying and working with databases).

3.8.2 Thoughts on search

We should spend a bit of time thinking about the search key we are using to look through our list of reviews.

Question: What should be the properties of a good search key?

Think about the restaurant name. At first glance this may look like a good choice and it worked for our little
program with a few reviews entered by a single user. However, consider the following:

- What if the user typed in "MacDonald’s" as a search key?
* Would we expect there to be a single node for MacDonald’s?
* Would we expect to find multiple entries? (e.g. one for each different location, each

with a different address)
* If there are multiple matches for a specific search key what should the program do?

Update them all one by one?
Ask for more information to single out one location?
Give up and refuse to update?

The point to make here is that though we can search for information using any field, a good search engine will
have a way to uniquely identify each entry in a collection.

One of the fundamental tasks that have to be carried out when designing a database, is figuring out what data
items it will store, for each of these items, what data fields are required to store the relevant information, and the
list of search keys that can be used to find information within the database.

Of particular importance, we will require at least one primary key. A primary key is either a single data field,
or a collection of fields such that they uniquely identify each individual item in the database. For example, a social
insurance number can be used to uniquely identify an individual, regardless of how many different people may
have identical names. Most serious applications provide a unique numeric or alphanumeric identifier - such as
the social insurance number, a student number, an employee number, passport number, etc. to be used as primary
key while looking for information for a particular individual.

In the case of our restaurant review database, we do not have any data field that can serve as a unique
identifier. However, we can create a unique identifier by combining multiple fields. For example, we can use
the restaurant’s name together with the restaurant’s address, and ask the user to provide both of these when
searching for a particular review. The reason why this works is that we would not expect two different restaurants

130

3.9 Deleting nodes from a linked list (C) F. Estrada 2024

to have exactly the same name and be located at exactly the same address (if we find such a case, it means we have
a duplicate entry in our collection!).

Collections are made up of unique items, no duplicates are allowed. This is usually enforced by having the
insert function check whether or not a particular data item has already been added to the collection, and refuse to
insert duplicate items. In the case of our restaurant review application, the insert function would check that the
collection doesn’t already contain a review with the same restaurant name and address.

3.9 Deleting nodes from a linked list

The last operation we need to implement to complete our linked list is the delete or remove operation. As the
name implies, it removes a specific node from the list. Because it looks for a specific item, it involves a slightly
modified search process – so it is in essence a list traversal operation.

Let us have a look at the steps needed to delete a node.

Example 3.16
Figure 3.30 shows the different cases for deleting a node, and what the steps are depending on where the node

to be deleted is on the list. The process is:

Case a) - Deleting the node at the head of the list. Two-step process: update head=head->next; (which
moves the head pointer to the second node in the list), then delete (which means use free() on) the old list
head.
Case b) - Deleting the node at the tail of the list. Three-step process: traverse the linked list until we reach
the node that is second from last (this will become the new tail of the list), delete the current tail, then set
the next pointer in the new tail node to NULL.
Case c) - General case, the node we are deleting is in between two other nodes. Three-step process: traverse
the list until we reach the node immediately before the one being deleted (the predecessor of the node being
deleted). Update the predecessor’s next pointer to contain the address of the node immediately after the
one being deleted (the successor of the node being deleted). Finally, delete the node we want to remove.

These cases are illustrated in the figure, you should write an example of a list for yourself, and try out all three
cases to verify you can easily figure out which pointers need to be updated for each case.

There is more than one way to implement the deletion operation. The key here is that for cases b) and c) in
Example 3.16 we need to keep track of the predecessor of the node that is being removed. We can achieve this in
one of two ways:

1) Use two traversal pointers. One for the current node, and one that is always right behind it along the list
and points to the predecessor.
2) Use one traversal pointer, together with the current node’s next item pointer to look ahead for the node
we are deleting (or the tail of the list).

Both ways work, and you should use whichever makes more sense to you. A sample implementation of the
delete function is shown below:

131

3.9 Deleting nodes from a linked list (C) F. Estrada 2024

Figure 3.30: Three different cases for deleting nodes from the list, and what the list looks like after each node has
been correctly deleted.

.

132

3.9 Deleting nodes from a linked list (C) F. Estrada 2024

Review_Node *delete_by_name(Review_Node *head, const char name_key[])
{

// This function removes the node from the link list that contains the
// review with a matching restaurant name.

Review_Node *tr=NULL; // We will use the two pointer process
Review_Node *pre=NULL;

if (head==NULL) return NULL; // Empty linked list! nothing to do!

// Set up the predecessor and traversal pointers to point to the first
// two nodes in the list.
pre=head;
tr=head->next;

// Check if we have to remove the head node - case a)
if (strcmp(head->rev.restaurant_name, name_key)==0)
{

free(pre); // Delete the first node in the list
return tr; // Return pointer to the second node (new head!)

}

// This while loop takes care of cases b) and c)
while(tr!=NULL)
{

if (strcmp(tr->rev.restaurant_name, name_key)==0)
{

// Found the node we want to delete
pre->next=tr->next; // Update predecessor pointer
free(tr); // remove node
break; // Done!

}
tr=tr->next;
pre=pre->next;

}
return head; // Head did not change

}

The code above implements the list traversal using two pointers, a predecessor pointer and a traversal
pointer. It first checks whether we’re deleting the head node and if so, it returns the updated head node pointer.
Otherwise it proceeds through the loop that finds and removes the node that contains the specified search key (if
such a node can be found in the list).

� Exercise 3.17 Compile and run the program (the full listing can be found in Section 3.14), and test the
delete_by_name() function to verify it works correctly.

As we have discussed earlier, you need to
Come up with a sequence of linked-list operations that will thoroughly test the delete functionality.
Perform the operations in your sequence one by one, checking after each of them that the structure and
contents of the list are correct.

Question: How can we check that a linked list in the computer’s memory has the correct structure?

This is indeed the central problem we have to solve any time that we are testing code for correctness. It always
boils down to this: we must know what the expected situation would be after our program performs some

133

3.10 Queues (C) F. Estrada 2024

operation. For example, we can draw on paper a diagram of the linked list, and figure out how the nodes are linked
as we insert and delete nodes from the list.

We then have to check that the list that our program built in memory has the expected structure (i.e. nodes
are in the correct order, and linked as expected). To do this we need our program to provide us with information
about what is stored at each node, and how the nodes are linked.

The easiest way to do this is to write a small function that prints out the information we need, then call this
function after each operation and check the information printed against our hand-written diagram.

In the next Chapter, we will discuss how to use more sophisticated tools called debuggers that will allow us to
stop the program at particular points (where we want to check something), inspect what is stored in variables
and dynamic memory (to check that the information is correct), and if needed change values of memory contents
which may be useful to test particular parts of our code, or see what happens if variables take on certain values that
may cause trouble.

For now, printing the information we need will allow us to verify what the program does against our work on
paper, showing what the list should contain after each operation.

� Exercise 3.18 Re-implement the delete_by_name() function so that it uses one traversal pointer, and instead of a
predecessor pointer, it uses the next item pointer in the current node to look ahead for the node we want to delete.

Test the re-implemented function, ideally using the same tests you developed for the previous exercise. Verify
that the function correctly deletes nodes, and that the list has the correct ordering and is linked as expected after
each deletion.

� Exercise 3.19 Write a delete function that allows a user to delete reviews by specifying the restaurant address.
Test the function for correctness.

� Exercise 3.20 Write a delete function that allows a user to delete all reviews that have the specified score (e.g. we
may want to remove from our list all restaurants with really bad scores, such as 1). Test the function for correctness.

All that remains to complete our little program for storing, organizing, and updating restaurant reviews is to
add one more option to main() allowing the user to delete a review for the specified restaurant. This also completes
our study of linked lists in C. It is a very common data structure, and any implementations you find in the future
that are written in C will be very similar to what we covered above.

3.10 Queues

An important variation on the List ADT is the Queue ADT. A queue is simply a list where the insert/add and
delete/remove operations happen at very specific locations in the list.

In a queue, items are always added at the tail of the queue - this operation is called enqueue
In a queue, items are always removed from the head of the queue - this operation is called dequeue

134

3.10 Queues (C) F. Estrada 2024

In addition, other operations are often defined as well, for example, getting the length of the queue.
Queues are ubiquitous (they appear everywhere!). For instance, a network printer will have a print job queue.

Print jobs can arrive at any time, from any of a possibly large number of users. Jobs are printed in the order in
which they arrive.

Queues are also important in software that simulates scheduling operations. For example, Air Traffic Control
software will have queues for departing flights, inbound flights, and aircraft that are slotted for landing.

Online customer service systems often have a wait queue to which arriving users are added.
Finally, queues are essential for applications that use graphs to represent and process information. Graphs

are ADTs that represent collections of information in terms of data items and their relationships to one another.
One common example are social networks, these have nodes for users, and the links indicate connections between
users (see Fig. 3.31). We will study graphs in detail in a later Chapter.

Figure 3.31: This image shows a graph for the professional connections of a single individual. Each circle
represents an individual, and each line represents a professional connection between two individuals. Image: Dave
Wallace, Flickr, CC-SA 2.0

Processing information in graphs often involves placing nodes in a queue. Common instances of this include
the classical Artificial Intelligence search methods that do path-finding (think about the Maps application in your
cellphone), scheduling, finding solutions to constrained optimization problems, and so on.

You will have a chance to explore many more applications of queues, so do not forget what the Queue ADT
looks like. Importantly, you already know how to implement a Queue ADT! It can be implemented using a

135

3.11 Wrapping up and summary (C) F. Estrada 2024

linked-list in which the insert operation always adds nodes at the tail, and the delete operation always removes
the head of the list.

� Exercise 3.21 Extend the liked list implementation we developed in this Chapter so that it supports using the list as
Queue ADT. You should implement an enqueue() function, and a dequeue() function, and provide options for the
user to select these operations from the menu in main().

As ever with exercises for the rest of the book: thoroughly test your queue and make sure that it always has
the correct structure, items are in the right place, and links are correct at all times.

3.11 Wrapping up and summary

After working our way through this Chapter, carefully thinking through the examples and programs developed
here, and completing all the exercises, we should:

Be able to explain why we need to think carefully about how to store and organize collections of data.
Be able to explain why we need to be able to reserve space for data items on-demand - i.e. we should know
what the limitations of arrays are and why they are not a good solution for applications where the amount of
data is not specified at the start and changes over time.
We should know how to create compound data types (bento boxes!) for data so we can represent complex
items.
We should know how to create and manipulate variables and pointers for complex data types.
We should know what a List ADT specifies, how it organizes data, and what operations it supports.
We should understand how a linked list works, conceptually. How to search for an item, insert an item, and
delete an item in a linked list.
We should be able to implement a linked list data structure in C. including:

Defining compound data types to hold the information we need
Defining a node data type that we can use to build the list
Implementing the insert function, at head, at tail, or in-between nodes
Implementing the search function to find and update specific items
Implementing the delete function to remove nodes as needed
Releasing memory we allocated to nodes in the list

We should understand how much work is involved in list traversal. We should be able to explain why we say
that the amount of work for traversal is proportional to the number of items in the list.
We should be able to explain the difference between an ADT and a data structure.
We should be able to go through the program listing in Section 3.14 and understand everything that it is doing.
In addition to that we should have learned the specifics of the C implementation that we used to build the
restaurant reviews app:

How to read input from the terminal
How to allocate memory for a list node on-demand using calloc()
How to write a little driver program that allows us to test parts of our code

136

3.12 Problem Solving (C) F. Estrada 2024

How and when to pass and return pointers so functions can work on linked lists

3.11.1 Why this Chapter is important

We started this section needing a way to:

Store, organize, and manage a possibly large collection of complex data items
Be able to obtain space for data items on-demand
Be able to search for specific items, and to grow or shrink our collection as needed

We discussed the idea of containers; then we looked at a particular container type - the List ADT. We saw
how to use a linked list to implement a List ADT, and we spent time working out the implementation of a linked
list data structure.

We now have a working linked list implementation, and we can create variations of this list to handle pretty
much any data type we may ever need to store and keep organized. This is our first achievement for this part of the
book.

Indeed, linked lists or variations of them will appear on a large majority of applications. To give you a couple
examples you may find amusing:

Graphics rendering programs keep lists for most data items used to create images: objects to be rendered,
light sources, textures, animation key-frames, etc.
Music synthesizers keep a list of notes being played, to be fed to the sound synthesis engine. There are also
lists of digital effects, and even entire songs kept in a list in memory for playback.
A shopping cart for an on-line retailer can quickly and easily be implemented with a linked list.

These are only a couple applications, there are many, many more. However, at this point we also know that
linked lists have the disadvantage that search (and thus updating information for specific nodes), deletion, and list
traversal take a fair amount of work - we may have to go through the entire list checking each node in turn to find
what we want.

This means that for applications that will handle very large amounts of data, linked lists would result in an
unacceptably long wait for basic operations that need to be carried out thousands of times.

So, while lists provide us with a way for satisfying the data organization and storage goals we set out to fulfill
at the start of the section, we now know we need to find a smarter way to organize data if we want to ensure the
fastest possible access to possibly very large amounts of information. We also need to figure out a principled way
to study, and compare the amount of work that is done by different algorithms or data structures as they process
information.

These will be the topics of the next Chapter in the book. For now, let’s see what kinds of problems we can
solve having learned about containers and lists!

137

3.12 Problem Solving (C) F. Estrada 2024

3.12 Problem Solving

As we said at the start of the book, our goal is to learn general techniques for solving problems in computer
science. In this Chapter, we learned about containers and lists. Our motivation in doing this was the need to
understand how we can organize, store, and manage a possibly large amount of complex information so as to make
it useful within a program.

The problems below give you a chance to test your understanding of the material in this section, and to practice
problem solving. But first, let’s look at a reasonable approach you may want to consider when faced with a new
problem.

3.12.1 A suggested approach to solving programming-related problems in CS

Read the problem description carefully. If there is something in the problem’s statement that is unclear, seek
additional information - this may require a bit of research.
Consider the input for the problem - that means, what data will you be working with, whether you know
how much of it there will be from the start, or whether the amount will change (and likely grow) over time, as
well as any particular characteristics of the input data. Consider as well whether user input will be required.
Write down any assumptions you are making about the data:

Data types you think will be needed, new compound types you’ll have to create
Special conditions (e.g. range of input values, or description of valid inputs)
Uniqueness constraints (e.g. If an input field contains values that must be unique, such as student
numbers)
Amount of data you may expect to deal with
What kind of storage structure you think will be needed (e.g. arrays vs. lists)

Consider the task the problem requires you to solve: In order to find a good programming solution, you need
to understand what will happen to the input data once it’s in your program, make a note of what operations
or processing will be performed on the input data, and whether it will be applied to all or most of the data or
individual items.
Consider the output for the problem: This means thinking about what needs to be computed or produced by
your solution. Is the output used only for display (e.g. to be printed to the terminal), or is it going to be the
input for a different part of a program. Depending on this, you need to think about how to store the output.
Write down your assumptions about the output.
Write down the solution in plain language (not code). At this point you want to make sure you understand
the solution for the problem and can think of every step involved
Design and implement the solution. The design must be informed by your analysis of the input and output to
the program, as well as what processing will be done on the input data.
Test your solution thoroughly, make sure it solves the problem with reasonable input. That may involve
running your code multiple times with different possible inputs, carefully chosen to cover different possible
but valid inputs to the program. It must work every time.
Address any issues discovered during testing.

138

3.13 Problems involving containers and lists (C) F. Estrada 2024

Test your solution for special cases, e.g. empty or missing input values, input that is the wrong data type,
input that breaks your initial assumptions about the data (that’s why we wrote them down!). Resolve any
issues identified in testing.
Now try to break the program. See if you can come up with input that causes your program to crash or do
the wrong thing. This may include invalid input, empty fields, using special characters, and so on. The goal
here is to identify potential problems, and think about how to make your solution more robust.
Finally - if the output of your solution is going to be used as input for a different part of the program, Test
that the output is properly formatted and can be accessed by whichever functions need it.

The process is important - hacking away at a solution without having fully understood the problem will most
likely

Make it harder for you to come up with a good solution.
Make you think C is difficult - because you’re having a hard time implementing the solution, the problem is
not the language, it’s the fact you haven’t fully thought through what the solution should be.
Produce solutions that are of lower quality.
Produce a solution that is less organized, and is harder to test and maintain.
Produce a solution that needs to be re-worked because it doesn’t do what it’s supposed to do.
Lead to code that is fragile, and easy to break.

Get used to working through a solution methodically, and thinking carefully about every aspect of your
solution before you start coding. Remember: Being able to come up with a solid, well thought solution to a
problem is much more valuable than just being able to implement a solution someone else developed.

The problems below are intended to make you think, and tohelp you identify what material you still haven’t
mastered - do not stress if they seem challenging. They are meant to be, but with a bit of work and focused studying
you will be able to think of a way to approach, and eventually solve every one of them.

3.13 Problems involving containers and lists

Problem 3.1 In practice, we often need to find out the length of a linked list (we need to know, for example, how
many restaurant reviews we have in our system at a given time).

Write a small C function that takes as input the head of a linked list, and returns the length of the list (zero if
the list is empty). You can do this using the linked list for restaurant reviews, or use your own linked list.

Problem 3.2 You are working on a checkout module for an on-line store’s shopping cart. Because typical users
will only add a few things to the cart in any one visit, the store’s on-line system keeps the items currently in the cart
in a linked list. Each Item_Node CDT in the linked list contains:

Item item_info;
Item_Node *next;

The Item CDT contains

139

3.13 Problems involving containers and lists (C) F. Estrada 2024

int item_id; // A unique identifier for each item
char name[1024]; // The item’s name
float price; // The item’s price
float discount_pct; // Discount percentage in [0, .5] (0% up to 50%)
int quantity; // Item quantity in the cart

Part a) Complete the definition of the Item CDT and the Item_Node CDT in C. This is basically to practice
your grasp of the syntax needed for defining new data types.

Part b) Write down the implementation of a function that computes the total price for items in the shopping
cart:

First write down the steps of the solution in plain language, and check that your solution makes sense, and
computes the correct total considering the quantity, and discount_pct for each item.
Then write an implementation in C for a function that computes and returns the total price for items
currently in the shopping cart. You may assume the function will take in a pointer to the head of the linked
list for the shopping cart.
Thoroughly test your solution for correctness.

Problem 3.3 You have found a summer job at the central Toronto Public Library. The TPL has been expanding its
digital collection that includes eBooks, movies, audio recordings, and photographs. The library’s digital collection
is stored in a central server, and you have a linked list of items available.

The Item_Node CDT for the list is as shown below:
typedef struct Item_List_Node{

int item_id; // Unique identifier
char title[1024]; // Title for this item
int type; // Type of resource

// 0 - eBook, 1 - video,
// 2 - music, 3 - photograph

// There are many more fields we don’t need for this problem

struct Item_List_Node *next; // Pointer to next node in the list
} Item_Node;

Your problem is as follows: Each local branch of the library houses its own collection of video, and music
(these are in the form of actual DVDs and CDs). They are now seldom accessed since most users would rather
access the same content electronically on their handheld devices. So the library has decided to remove from each
branch any videos or music recordings that are already part of the central digital collection.

Library personnel have already cataloged the content at each branch, and stored it in a (you guessed it!) linked
list.

Part a) Finding duplicate content: Write down the steps of an algorithm that takes as input two linked lists of
Item_Nodes (one for the central digital collection, one for a local branch collection), and prints out any duplicate
videos or music entries so the duplicates can be removed from the local branch collection.

140

3.13 Problems involving containers and lists (C) F. Estrada 2024

Be sure to write down any assumptions you are making regarding the fields in the item node. Write your
solution in plain language, with enough detail that someone else could implement it in C.

Once you’re satisfied with your solution, write an implementation in C.

Part b) Think about the data representation. Note that whoever designed the data representation for the
library’s linked list didn’t bother to build a separate data type for each item’s information. DVDs and eBooks, for
instance, will likely require different fields, the Item_Node has to be able to properly capture information for all
supported types. To do this, the Item_Node will have to contain every possible field that may need to be captured
for all supported media resources. Write down what you believe would be:

Advantages of representing items in this way
Disadvantages of representing items in this way

Problem 3.4 You are working on an open source project for a web browser that provides the user with full control
over the amount and type of personal information that is made available to websites. One of the key components
of any web browser is the bookmarks section. For simplicity, the bookmarks are organized as a simple linked list.
New bookmarks are inserted at the head of the list.

However, the user can choose to organize the bookmarks in many different ways. In particular, they may choose
to sort the bookmarks by url by pressing a button on the browser’s main window.

Part a) Implement a function that builds a sorted linked list. Write down the steps required to
Take as input an un-sorted linked list of bookmarks.
Create a new linked list where the bookmarks are sorted by url by inserting each node from the original input
list into the sorted list at the right location according to its sorting order (you may want to review insertion
sort).

Use plain language, but do make sure your solution is detailed enough that someone else could implement
it in C.

Illustrate with a diagram how your solution works.

Now, assuming that the linked list nodes contain:
char url[1024];
Url_Node *next;

Write a function in C that takes as input the head of an un-sorted linked list of Url_Nodes, builds a sorted
linked list of Url_Nodes, and returns a pointer to the head of the sorted list. You can assume you have already
written a function

Url_Node *copyUrlNode(Url_Node *orig);

that takes as input a pointer to a Url_Node and creates a new node with the same URL but with the next pointer
set to NULL (so you can insert it into the growing, sorted linked list). Yes, we are duplicating information at this
point!

141

3.13 Problems involving containers and lists (C) F. Estrada 2024

Part b) More challenging - Implement a function that takes an un-sorted input linked list of URLs, and sorts
it without making a new list.

As in part a), you should write your solution steps first in plain language, draw a diagram to show how the
process works on one node of the input list, and finally write an implementation in C.

Because you haven’t written a full program to work with the linked lists in this problem, you can’t test your
implementation as you normally would. However, you can still test your solution! in this case, you can trace
through the steps of your algorithm (on paper) making sure that each step is doing the right thing, keeping track
of a diagram of the linked list(s) as the algorithm is working, and checking that it produces the correct result (at
least on paper).

It is important to always walk through an algorithm you just developed, and to make sure it isn’t missing
steps, and that it does the right thing.

Problem 3.5 You have been hired for a Co-Op placement at the University Health Network. Having seen that
you learned C during your studies, they decided to give you the task of designing the storage framework for a new
system keeping track of the sequence of patients to be seen at an emergency room.

You are asked to:
Develop a suitable data representation to keep track of each patient’s information as captured by the triage
nurse.
Develop the storage framework (decide what data structures to use to organize and access the information),
as well as the functionality required to:

Add patients as they arrive
Remove patients once they have been seen by a doctor, or if they leave
Search for specific patients by name
Print out a list of patients in the order they expect to be seen by a doctor

Part a) - Designing the data representation for patients. The nurse at the triage station will capture the following
information:

Patient’s name (Last, First, and Middle)
Patient’s street address
Patient’s postal code
Phone number
Health card number
Body temperature in degrees Celsius
A short description of the problem

Design a data representation model that would allow your program to organize and store information for one
patient. This model will be the foundation of your triage system.

142

3.13 Problems involving containers and lists (C) F. Estrada 2024

Show a list of the data fields and their data type. You should justify (explain) why the data type is appropriate
to each field. If you added fields beyond what the nurse captured, explain why these are needed and how they
will be used.
Indicate special constraints you can identify for each field (e.g. range of values, uniqueness constraints, etc.)
Mark which field(s) will be used for searching for specific items, e.g. to remove specific items, or to implement
functionality required by the system.
Write an implementation in C of your data representation model - this will require designing appropriate
CDTs.

Part b) - Design the core of the triage patient management system. Required functionality:
The system must allow you to add patients as they arrive at triage:

Patients should be seen in the order they arrive
Unless their body temperature is > 40.5C, in which case they must be seen first

A nurse must be able to bump a patient to the front of the list at any point if they believe the patient needs
immediate attention.
Patients must be removed from the system once they’ve been seen, or if they leave (they may, or may not
notify the nurse).
The current list of patients in the order they will be seen is printed to a screen so the triage nurse can keep
track of what’s happening at all times.
Nurses must be able to look-up patient data by health card number, and update any data field as needed.

You need to provide an overall description of the solution that clearly shows:
What data structure(s) you will use, explaining why you chose that particular data structure and why you
think it suits the problem well. Be sure to note any possible limitations of your particular choice.
How you will break your solution into modules that can be implemented as separate functions.
A pseudocode description of the main function showing what happens:

when a patient arrives
when a patient is seen or leaves
when a nurse bumps a patient to the front of the list
when a nurse updates a patient’s record because their body temperature has changed

A pseudocode description of the part of your solution that adds a new patient to the list.
A pseudocode description of the part of your solution that moves a patient to the front of the list.

At this point you have solved the problem - that’s the important part! All that remains is implementing the
solution and testing it for correctness.

Part c) - Implement and thoroughly test your solution!

What you will achieve by solving this problem:
You’ll have gone through the full process of designing and implementing a solution to a data organization/s-
torage/management problem that applies to a real world situation

143

3.14 Program listing for the linked list implementation in C (C) F. Estrada 2024

You will find any gaps in your understanding of this Chapter’s material
You will practice every concept covered in this Chapter as you are developing your solution
You will practice implementing C code that deals with compound data types, and data collections

3.14 Program listing for the linked list implementation in C

/*
Introduction to CS - Chapter 3 - Containers, ADTs, and Linked Lists

This program implements a linked list of restaurant reviews.
The program allows the user to enter as many reviews as needed,
to print the existing reviews, and when finished, it releases
all memory allocated to the list before exiting.

(c) 2024 - F. Estrada, M. Ponce, I. Huang
*/

#include<stdio.h>
#include<stdlib.h>
#include<string.h>

#define MAX_STRING_LENGTH 1024

typedef struct Restaurant_Score
{

char restaurant_name[MAX_STRING_LENGTH];
char restaurant_address[MAX_STRING_LENGTH];
int score;

} Review;

typedef struct Review_List_Node
{

Review rev;
struct Review_List_Node *next;

} Review_Node;

Review_Node *new_Review_Node(void)
{

Review_Node *new_review=NULL; // Pointer to the new node

new_review=(Review_Node *)calloc(1, sizeof(Review_Node));
if (new_review==NULL)
{

printf("new_Review_Node(): Error! - no memory left, can not create new node!\n");
return NULL;

}

// Initialize the new node’s content with values that show
// it has not been filled. In our case, we set the score to -1,
// and both the address and restaurant name to empty strings ""
// Very importantly! Set the ’next’ pointer to NULL

new_review->rev.score=-1;
strcpy(new_review->rev.restaurant_name,"");
strcpy(new_review->rev.restaurant_address,"");
new_review->next=NULL;

144

3.14 Program listing for the linked list implementation in C (C) F. Estrada 2024

return new_review;
}

Review_Node *insert_at_head(Review_Node *head, Review_Node *new_node)
{

// This function adds a new node at the head of the list.
// Input parameters:
// head : The pointer to the current head of the list
// new_node: The pointer to the new node
// Returns:
// The new head pointer

new_node->next=head;
return new_node;

}

void print_reviews(Review_Node *head)
{

Review_Node *p=NULL; // Traversal pointer

p=head; // Initialize the traversal pointer to
// point to the head node

while (p!=NULL)
{

// Print out the review at this node
printf("**\n");
printf("Restaurant Name: %s\n",p->rev.restaurant_name);
printf("Restaurant Address: %s\n",p->rev.restaurant_address);
printf("Restaurant Score: %d\n",p->rev.score);
printf("**\n");
// Update the traversal pointer to point to the next node
p=p->next;

}
}

Review_Node *delete_list(Review_Node *head)
{

/*
This function releases all memory reserved for restaurant
reviews in our linked list. It returns NULL so we can
update the head pointer in main() to indicate the list
is empty

*/

Review_Node *p=NULL;
Review_Node *q=NULL;

p=head;
while (p!=NULL)
{

q=p->next;
free(p);
p=q;

}

return NULL;
}

Review_Node *search_by_name(Review_Node *head,\
const char name_key[MAX_STRING_LENGTH])

145

3.14 Program listing for the linked list implementation in C (C) F. Estrada 2024

{
// Look through the linked list to find a node that contains a
// review for a restaurant whose name matches the ’name_key’
// If found, return a pointer to the node with the review. Else
// return NULL.

Review_Node *p=NULL; // Traversal pointer

p=head;
while (p!=NULL)
{

if (strcmp(p->rev.restaurant_name,name_key)==0)
{

// Found the key!
return p;

}
p=p->next;

}
return NULL; // The search key was not found!

}

Review_Node *delete_by_name(Review_Node *head, const char name_key[])
{

// This function removes the node from the link list that contains the
// review with a matching restaurant name.

Review_Node *tr=NULL;
Review_Node *pre=NULL;

if (head==NULL) return NULL; // Empty linked list!

// Set up the predecessor and traversal pointers to point to the first
// two nodes in the list.
pre=head;
tr=head->next;

// Check if we have to remove the head node
if (strcmp(head->rev.restaurant_name, name_key)==0)
{

free(pre); // Delete the first node in the list
return tr; // Return pointer to the second node (new head!)

}

while(tr!=NULL)
{

if (strcmp(tr->rev.restaurant_name, name_key)==0)
{

// Found the node we want to delete
pre->next=tr->next; // Update predecessor pointer
free(tr); // remove node

break; // Done!
}
tr=tr->next;
pre=pre->next;

}
return head; // Head did not change

}

int main()
{

146

3.14 Program listing for the linked list implementation in C (C) F. Estrada 2024

Review_Node *head=NULL;
Review_Node *one_review=NULL;
char name[MAX_STRING_LENGTH];
char address[MAX_STRING_LENGTH];
int score;
int choice=1;

while (choice!=5)
{

printf("Please choose one of the following:\n");
printf("1 - Add a new review\n");
printf("2 - Print existing reviews\n");
printf("3 - Update review for one restaurant\n");
printf("4 - Delete a review\n");
printf("5 - Exit this program\n");

scanf("%d",&choice);
getchar();

if (choice==1)
{

// Get a new review node
one_review=new_Review_Node();
if (one_review==NULL)
{

printf("main(): Error! can not reserve space for a new node. Ending the program
now\n");

return 1;
}

// Read information from the terminal to fill-in this review
printf("Please enter the restaurant’s name\n");
fgets(name, MAX_STRING_LENGTH, stdin);
printf("Please enter the restaurant’s address\n");
fgets(address, MAX_STRING_LENGTH, stdin);
printf("Please enter the restaurant’s score\n");
scanf("%d",&score);
getchar();

// Fill-in the data in the new review node
strcpy(one_review->rev.restaurant_name,name);
strcpy(one_review->rev.restaurant_address,address);
one_review->rev.score=score;

// Insert the new review into the linked list
head=insert_at_head(head,one_review);

}
else if (choice==2)
{

print_reviews(head);
}
else if (choice==3)
{

printf("Which restaurant’s score do you want to update?\n");
fgets(name,MAX_STRING_LENGTH,stdin);
one_review=search_by_name(head,name);
if (one_review==NULL)
{

printf("Sorry, that restaurant doesn’t seem to be in the list\n");
}

147

3.15 Building Programs that Work - Part 3 (C) F. Estrada 2024

else
{

printf("Please enter the new score for the restaurant\n");
scanf("%d",&one_review->rev.score);
getchar();

}
}
else if (choice==4)
{

printf("Which restaurant’s review do you want to delete?\n");
fgets(name,MAX_STRING_LENGTH,stdin);
head=delete_by_name(head,name);

}
}

// User chose #5 - Release memory and exit the program.
head=delete_list(head);
return 0;

}

3.15 Building Programs that Work - Part 3

At this point, we are building programs that consist of many different (non-trivial) functions, they use arrays,
pointers, strings, and can manipulate a significant amount of information.

We have to develop a process that will enable us to check our programs for correctness to the degree that
we can be highly confident our software does not contain errors of logic or programming bugs, that it stores and
manipulates data in the way that was intended by the algorithm we set out to implement, and that it correctly solves
the problem or performs the task it was designed for on any reasonable input that may be presented to it.

Achieving the above requires discipline and the developing both a habit for testing thoroughly and the skill
for knowing when you have tested enough. The latter only comes from experience, and you will develop it over
time. But the habit can be developed with a bit of help from having a good software development process to follow.

In the previous Chapter, we set out a starting point for our software development process. We discussed the
importance of thinking through the problem carefully, and writing a detailed solution on paper before any
actual coding happens.

Here, we will add a key component of our software development process: careful and thorough testing
while we are developing a program, and thorough testing of the finished software.

3.15.1 Testing software as we are writing it

The first type of testing that we have to perform for every piece of code that we produce has the job of
checking individual functions or self-contained sections of our code for correctness. Here’s a solid, basic process
we can use to help us produce code that is correct as we are developing a complex piece of software.

In order to be able to properly test code that you are writing:

You must have completed the design of the software you are writing - in particular, you need to know which
functions will be required, and the order in which they are going to be used.

148

3.15 Building Programs that Work - Part 3 (C) F. Estrada 2024

For each function you have to implement, you need to know what the input is (data type(s), constraints on
possible valid or invalid values, whether or not it uses arrays or pointers, etc).
For each function you have to implement, you need to know what is the correct output or result after calling
the function given some specific input(s) - you can not test code if you do not know what the correct
result of a test case should be.

These conditions should all be satisfied if you are following the procedure we discussed in Chapter 2 for
developing your solution.

How to test your code as you’re writing it:

Step 1 Decide the order in which you will implement the different functions that are part of your design.
This has to be done carefully, because you should only use parts of the code that have already been tested in
building more complex functionality. For example, if we have two functions

int function_A(int n)
{

// This function does some processing
// on an input integer n, and returns
// an integer value.
// It doesn’t call any other functions
// in the program

// Here we would have some code
// that does something interesting

return result; // And eventually a result is returned
}

int function_B(int n)
{

// This function does some more complex
// processing of an input integer n, and
// returns an integer result.
// But, at some point, it uses function_A()
// as part of the process

// Here we would have some code
// that does part of the work,
// then we call function_A() to do
// something as part of the process

r=function_A(x);

// and then the processing continues...

return result; // Until the result is returned
}

the point of the example above is not the actual instructions in either function_A() or function_B(), but instead, it
is to show that in order to be able to test that function_B() works correctly, we need to be sure that function_A()
works correctly. If we have not tested function_A() and made sure it works as intended, then we will not be able
to tell if any problems found while testing function_B() are the result of a problem with its own code, or whether
perhaps the problem is in function_A() instead.

149

3.15 Building Programs that Work - Part 3 (C) F. Estrada 2024

As another example, in the program that implements the linked list of restaurant reviews, we have to implement
and test the new_Review_Node() function before we can use it in order to create and then insert nodes into the linked
list. We can not test insert_at_head() if we are not sure that nodes being allocated for us by the new_Review_Node()
function are correctly structured and initialized.

This means that our program will be implemented and tested starting from simpler (self-contained) functions,
progressing toward more complex functionality only when the required smaller pieces have already been tested
and found to be correct.

Step 2) Create a function in the program that will serve as a test driver. This function will contain all the
different tests that you will be running over the functions and parts of your code, along with (if appropriate) the
code that verifies the results of each test. We will be adding tests to the test driver as we implement functions in
the code.

Step 3) Repeat the steps below for each function you implement (in the order determined in Step 1), until all
the functions in your program have been implemented.

Write down (on paper!) a set of tests designed to put this function through its paces, and see how it behaves
under different conditions. For instance:

For functions that process input and produce a result, this means checking various valid and also not-
valid inputs, and verifying the function produces the correct result for the valid cases, and behaves in
a reasonable way for non-valid inputs (e.g. prints an error message, or returns a default value, but does
not cause the program to crash or produce a result that looks valid).
For functions that work on arrays or strings, this means creating input cases that check the function
works on a wide range of possible inputs. This means testing inputs of different lengths, including
empty ones, as well as testing for any special cases such as strings that contain special characters, or
are not properly terminated with an end-of-string delimiter (once more, the function should handle
these cases gracefully, without causing the program to crash).
For functions that work on collections and use data structures (such as our linked lists), this will require
you to write sequences of operations that have been carefully designed to test that the function handles
the data correctly, preserves the correct organization of the data structure, and produces the correct
result on the data and/or structure of the collection.

Think of ways in which you may break the function (cause it to fail or produce the wrong result), this could
include non-valid inputs, tricky cases, unique arrangements of items in a collection, etc. Turn these into
separate tests.
For each of the tests you came up with, write down (on paper!) the expected (correct) result. This could
be a number, the content of an array or a string after the function is called, or the structure of a collection
after using a function that modifies it. For tests intended to break the function, the expected result would be
that the function does not fail and behaves in a way that makes sense even for weird, unexpected, or tricky
inputs.
Now add each test to the test driver function along with code that checks that the result matches what
you expected:

150

3.15 Building Programs that Work - Part 3 (C) F. Estrada 2024

The test usually requires you to set up some data (whatever is appropriate for the function to work
with), and then call the function to work on your test case and produce a result.
The correctness check can be done in multiple ways. You could hard code the expected values in the
test driver (e.g. by setting some variable, or array, or string to have the content you expect to have if the
function worked correctly) and then check the function’s output against these hard coded value(s). You
could write a function that processes the result of the test to check it is correct (we did that in Chapter
2 to check the prime-finding function). You could check by hand (against your written test results) by
having the test driver print out the relevant information .
However you choose to check, the test driver should not continue past any test that failed. That
means that if at some point the expected result, and what your function did are not in agreement, the test
driver has to let you know which test failed and exit so you can get to work on finding and correcting
the problem (more on that in a moment).

Run the test driver. If your function passes all the tests you designed you can move on to implementing
(and testing) the next function in your design. If any of the tests failed, it’s time to do some debugging!

This may seem like a lot of work, and it actually takes a good amount of thought, effort, and time. But it
reduces by a huge amount the time, thought, work, and frustration that you will undergo while chasing bugs
in code that was not tested as it was being developed. More importantly, it leads to overall better software that
has fewer bugs, is more reliable, and requires less maintenance. So work hard to develop the habit of testing
as you write your programs.

3.15.2 Testing the finished software

Testing every single individual function for correctness as we write our code does not guarantee that the
finished program will work as intended. After we have completed the development process, it is essential to test
the completed program and ensure that everything works well together. This could involve testing independent
subsets of the software as well as the complete program.

Testing the completed software requires you to think in terms of the user or the problem that the software
needs to solve, and to come up with a thorough sequence of tests that covers as many reasonable use cases for
the software as you can think of. If you can interact with the user, you definitely want their help in designing a full
set of tests for the completed program. If you don’t then it’s up to you to come up with the tests.

However you go about generating the tests, it’s important to keep in mind that:

The tests must cover all the common, typical operations the user may perform on the software.
The tests must consider a realistic amount of data. Many common problems show themselves only after a
certain amount of data is being manipulated.
They must provide a wide variety of reasonable inputs that achieve meaningful coverage of normal software
use. This will involve different input lengths, different sequences of operations, and/or different paths to
completion for the task the program is performing.
The tests must also include simulating input or behaviour that may be expected from users with different
levels of familiarity with the software.

151

3.15 Building Programs that Work - Part 3 (C) F. Estrada 2024

For programs that handle sensitive information, the tests must include checking that information is properly
protected throughout the entire process, and no sensitive data is exposed to unauthorized users.
In this final case, testing should also simulate input or behaviour that may be expected from a malicious
user attempting to gain access to sensitive information.

You can follow a process similar to the one described above for the testing on individual functions, except this
time it applies to the finished program. You may need to implement a separate test driver function to carry out these
tests, as they will likely be more involved, require more input data to be set up, and require more work to check for
correctness.

Ultimately there is no single set of steps to be followed in order to design and carry out the testing for any
given program. Testing must reflect the complexity of the software we are developing, the type of information it
deals with, the requirements set forth by the user (or in the absence of a user, the requirements set by the problem
being solved through the software). You have to decide for each program, within its own context, how much testing
is needed at each level to convince yourself that the software performs its work correctly and reliably.

Much like in Physics, we can never categorically state that a complicated piece of software is bug free.
Through careful testing we can ensure that we have removed as many bugs as possible, and that the likelihood that
a serious issue remains in the code is small.

Software testing is a complex, rich, and interesting area of study and research. What we have described above
is not a formal testing methodology, it is just a starting point for good software development practice. We will
continue to develop our ability to test and verify software for correctness as we gain experience and expand our
knowledge of computer science and its many sub fields.

152

