
Chapter 4 Solving Problems Efficiently

Up to this point, we have learned how to represent, store, organize, and search through a collection of
possibly complex data items. We know what an Abstract Data Type is and why they are useful for coming up with
solutions to problems in a way that makes the solution independent from a specific implementation. We studied
lists, and their implementation as linked lists, and we used these for building a simple database able to answer a
few queries on items in our collection.

We will no doubt use lists in the future for a variety of applications. So before we close our discussion on lists,
it’s worth taking time to think about how efficient they are as a solution to problems that require frequent look-up
of items in the collection (whether it is to look at their content, update the data stored there, or carry out aggregate
computations).

Suppose we wanted to use linked lists to implement a fully functional database engine. The database should
be able to store information for a large number of data items (think big - tens of millions, hundreds of millions, or
even billions of nodes in the linked list). The question is, what can we expect in terms of the time it takes for us
to perform a search on the database?

Note

Having such a large number of data items in a collection is very common.

IBM’s Watson used millions of documents to answer game questions for Jeopardy
Google Image Search was indexing well over 10 billion images by 2010
Facebook had about 1.5 billion daily active users in September 2018
Amazon sells over 3 billion different products worldwide

So, thinking about what is the most efficient way to maintain a very large collection is of great importance.

To fully understand this question, we have to think a bit about how data was stored in the list. A common
assumption, and one that is reasonable for many database applications, is that the data was added in no particular
order, or what is the same thing the entries in the list are randomly ordered with respect to any data fields we
may want to use for answering database queries.

We also typically assume that queries arrive in random order. This is a reasonable assumption - think about
Google searches arriving over a span of 1 minute from everywhere in the world - chances are, there will be no
order or pattern to the searches carried out by people from Mexico, Australia, Singapore, and Finland, all of whom
happen to be online at that particular time.

Finally, we have to provide some definition of efficiency so we can evaluate how well our list is doing. For a
database engine, one reasonable measure is how many data items have to be inspected before we find the one we
are looking for.

Now, recall from the last unit that to perform a search in a linked list, we have to do a list traversal. This
means starting at the head of the list, and traveling along the list’s nodes until we find the one that contains the
information we are looking for.
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Question: How many nodes do we need to look at before we find the one we want?

If we are super lucky, the data we want will be in the head node and thus we only look at 1 node to find
what we want, but with randomly ordered data, the chance of this happening is 1/N, where N is the number
of nodes in our list. For a list with 1,000,000,000 entries, the odds are very large against this ever happening.
If we are super unlucky, the data we want will be at the tail of the list (or not in the list at all), and we have
to look at all N nodes before we find it or can be sure it’s not there.
Most of the time, we are neither super lucky, not super un-lucky. The data is somewhere in the list,
sometimes closer to the head, sometimes closer to the tail. Because the data is randomly ordered, the number
of nodes we need to examine averages out to N/2 after we run many, many queries.

This makes sense: Sometimes we find the data closer to the head, sometimes closer to the tail, but these two
balance each other out so on average we have to look at about half of the linked list to answer any given query.

This is really not too bad if our list is a few thousand entries long. But once our linked list grows into the
millions of items and beyond, the cost of answering a query becomes too large. Simply put, our linked list has to
look at too many data items in order to find a specific one. This translates into a longer wait time for a program
requesting information from the database. At some point, the list is so long that the wait time becomes impractically
long.

4.0.1 Why we need to look through all that data to find something

We may be inclined to think that the root cause of our problem is the structure of our linked list. And indeed,
our linked list has a major limitation in that we can not access an element inside the list without doing list
traversal. However, the root cause of our problem is not due to this limitation of the linked list.

Consider for example an array that contains the names of all of the hit songs from 2017 and 2018 as shown
in Fig. 4.1 (it’s a small list so we can show an example here, but you should be thinking this applies to an array of
any size).

Figure 4.1: A simple array that contains the names of hit songs from 2017 and 2018.

The question we want to answer is: Is searching for a specific item in an array with randomly ordered entries
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more efficient than searching in a linked list with the same (unordered) entries? Or, what amounts to the same thing,
we are asking if using an array allows us to find what we want with fewer than N/2 items examined on average.

Looking at the array in 4.1, it should be fairly clear that there is no pattern to how the data is ordered. If
we need to find a specific song name, we have to start at the top and look through the array until we find what we
want. This is called linear search. Just like a linked list, there is a chance we get super lucky and our query is right
at the first entry in the array, we can be super un-lucky so the query item is at the end, or not in the array; and on
average we have to look through half the array before we find our information. If the array has N entries, we’re back
to looking through N/2 entries on average.

This means that from the point of view of the number of items we need to look at to answer a query, a
linked list and an array are equally efficient. While there may be a slight performance difference in terms of
actual run-time (because there is more overhead to a linked list than an array), any small difference becomes
irrelevant as the collection size grows: both of these containers for storing information become inadequate for
quickly answering queries.

4.0.2 Organizing our data for efficient search

If we are to find a faster way to answer queries, we need to deal with the random order of our data. We
need to sort it. Once our data is in sorted order, we can do a much more efficient job of searching for specific items.
Fig. 4.2 shows a sorted version of the array from Fig. 4.1.

Figure 4.2: A sorted array that contains the names of hit songs from 2017 and 2018.

For a person, looking up a song in the sorted array above is much easier. We understand the entries are in
order, so we can easily find the spot where a particular song should be. This is why all content indexes in the backs
of books, library shelves, or the phone directory (back in the days when it was actually a printed book) are sorted.

In programming terms, sorting data has the immediate benefit of making that data much easier to search,
with the result that on a sorted array of pretty much any size, we only have to examine a few items in order to find
what we’re looking for.
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4.0.3 Binary Search

The process of finding an item in a sorted array is called binary search. Suppose we want to find the song
"I’m the One" in the array above. The binary search process is illustrated in Fig. 4.3.

Figure 4.3: The binary search process illustrated on a small sorted array.

Binary Search Algorithm
1) Go to the entry at the middle of the current array - this is the entry at index ⌊N/2⌋ (the floor of N/2).
2) Compare the middle entry with the query term, if they match return the index of the matching item.
3) If the current array has only one entry, the query term is not in the array, return -1 to indicate the term
was not found.
4) If the query term is less than the middle entry in the current array, then it has to be in the first half of
the array, so the first half becomes the current array, go back to 1). Otherwise, the query term must be
in the second half of the array, so the second half becomes the current array, go back to 1).

Binary search is a straightforward process, and it is incredibly efficient. This is not evident in the example
from Fig. 4.3 because the array shown there is tiny. Let’s think about what happens with larger arrays.

Key ideas:
The binary search process uses the fact that the array is sorted to predict in which half of the array the
data we want has to be.
This means that for every item we check, we can discard from the search half of the remaining entries.
When we choose which half of the array to search next, we can be sure we will never have to look at any
items in the other half.
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Thus, every round of binary search that we complete, the number of items that remain to be checked is cut in
half.

This very quickly reduces large collections to very manageable sizes. For example, if our initial array has a
length of 1024 entries

After the first round of binary search, we are left with 512 entries to check
After the second round of binary search, we have 256 entries left to check
After round 3, we have 128 entries left to check
After round 4, we have 64 entries left
After round 5, we have 32 entries left
After round 6, we have 16 entries left
After round 7, we have 8 entries left
After round 8, we have 4 entries left
After round 9, we have 2 entries left
After round 10, we have only 1 entry left to check

This is quite remarkable: In an array with over one thousand entries, we can find any item we want with 10 or
fewer checks. Compare that with the un-sorted array or the linked-list, in which case we would expect to have to
check on average 512 entries.

So binary search is a lot more efficient than linear search for finding information in large collections, but
just how efficient is binary search?

This is equivalent to asking: Given an initial value for N, the number of entries in the array, how many steps
are needed to reach the point where only one element is left? (this tells us the maximum number of entries we need
to examine to find what we want).

The answer turns out to be k = log2(N).

For the array with 1024 entries, k = log2(N) = 10, which is exactly the number of steps we had to do above
to get to a single item. To get a sense of just how big a difference this makes, Fig. 4.4 shows a comparison of the
number of checks that are performed by binary search compared with linear search as the size of the collection
grows, and showing three cases:

a) The maximum (worst case) number of items we need to look at for binary search
b) The average number of items we need to look at for linear search
c) The maximum (worst case) number of items we need to look at for linear search

From Fig. 4.4 it should be very clear to you that binary search is incredibly efficient. Even in the worst
possible case, with only 25 checks we can find any one item in a collection with over 33 million entries! Conversely,
linear search on an un-sorted array or linked list would be expected to have to check over 16 million items, on
average, and all 33 million if we are unlucky.

157



4.1 Computational Complexity (C) F. Estrada 2024

Figure 4.4: Comparison of the amount of work done by binary search (worst case) and linear search (on average,
and worst case) as the size of the collection grows.

4.1 Computational Complexity

The ideas above can be refined into a concrete, general framework for comparing different algorithms in
terms of the computational cost of carrying out a task.

One key idea in understanding how we can compare different algorithms is that we want to find a measure of
the amount of work a particular algorithm has to do as a function of N, the number of data items the algorithm
is working on. We call this measure the computational complexity of the algorithm.

In the examples above, we saw that linear search has to examine N items in the worst case, while binary search
only has to look at log2(N). The reason for wanting to look at a function of N is that it allows us to predict how
an algorithm will perform for increasingly larger data collections. In our search example, we have two different
functions:

fBinSearch(N) = log2(N)

fLinSearch(N) = N

So we say that binary search has a complexity of log2(N) and that linear search has a complexity of N.
Because the value of log2(N) grows much more slowly than N, we can conclude (without having to test on every
possible array) that binary search is much more efficient than linear search for large collections. We can
visualize this by plotting both functions for increasing values of N and comparing the predicted amount of work
they will have to do, this is shown in Fig. 4.5.

It should be obvious from the plots in Fig. 4.5 that one of these algorithms is a whole lot more efficient than
the other at finding information in a large collection. The key observation we can make from this is:

Given two algorithm and the functions of N that describe their computational complexity, the function that
grows more slowly will always win-out as the number of data items increases. So the algorithm with the
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Figure 4.5: Visualization of the complexity of two different search algorithms: Linear search (red) and binary
search (blue). Binary search is incredibly efficient, to the point of looking like it does no work at all compared to
linear search on large arrays. The shape of each function’s curve is easier to compare on a graph for smaller values
of N (left side graph)

slower-growing function is said to have a lower complexity, and is therefore shown to be more efficient for large
data collections.

Question: What can we conclude at this point about the run-time of two programs that do search on the same
data, but where one uses binary search, and the other uses linear search?

Being able to compare different possible ways of carrying out some task is essential for implementing good
solutions to any problem. In computer science, we compare algorithms by studying and measuring their
computational complexity. Computational complexity is expressed as a function of N, the number of data items
the program has to work on.

4.1.1 The Big O Notation

In order to be able to better understand and compare the complexity of different algorithms, we use a special
notation called the Big O notation. The importance of the Big O notation is that it allows us to reason about the
efficiency of algorithms in terms of general classes of functions. Here’s what we mean by that:

Suppose that we have different implementations of linear search on arrays (perhaps written by different
developers, in different programming languages), and we also have different implementations of binary search.
We then set out to carefully measure their actual run-time for arrays of different sizes, on a particular computer,
and we find that they behave as follows:

a) .75 ·N (e.g. for N=10, this implementation runs in 7.5 seconds)
b) 1.25 ·N + .25 (this one has a .25 second start-up time that is not dependent on N)
c) 2.43 ·N
d) 1.15 · log2(N) + 1.12 (this one also has a start-up time, in this case 1.12 seconds independent of N)
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e) 1.75 · log2(N)

c) 15.245 · log2(N) + 15.25 (large start-up time! maybe it needs to load libraries before it runs)

The results above require some thought - we know how much work linear search has to do to find an item in
the array, and that in the worst case that would be looking at all N entries in the array. But we hadn’t considered
what could happen when variations between implementations are introduced.

Perhaps an implementation in C will be slightly faster than one in Java, and perhaps the one in Java will
be somewhat faster than one written in Matlab. But the important thing to note is that all of them are linear
functions of N. It is a property of the linear search algorithm. The only thing that can change among (correct)
implementations is the constant that multiplies N, and maybe the presence of a constant term independent of N.

We can say exactly the same in a different way: Any correct implementation of the linear search algorithm will
have a complexity that is characterized by c ·N + k, where c and k are constants, for large values of N.

The same is true for different implementations of binary search. They are all logarithmic functions of N
multiplied by some constant that is implementation dependent, and perhaps including a constant term independent
of N.

We want a way to compare algorithms in an implementation independent way. We need to know which is the
better algorithm, the one requiring less work to solve a given task. And if we can analyze algorithms in this way,
we can always pick the most efficient one. The Big O notation makes explicit the slowest-growing function of N
that characterizes the complexity of some algorithm. The definition of Big O states that:

Definition 4.1 (Big O Notation)

♣

To state that f(N) = O(g(N)), which is to say that a function f(N) has a Big O complexity of g(N) means
that f(N) ≤ c · g(N) for a sufficiently large value of N (usually stated as N > N0). It is assumed that
f(n), c, and g(n) are positive.

As an example, f(N) could represent the run-time of binary search. We know that a correctly implemented
binary search will have to check at most log2(N) entries to find the one we need, so we can state f(N) = O(log2(N))

- this immediately tells us that we expect f(N) ≤ c · log2(N) for sufficiently large N. We are categorically stating
that whatever the implementation of binary search (regardless of programming language, which computer it’s
running on, or who wrote the program), we can always find a function g(N) = c · log2(N) such that the run-time
of the algorithm f(N) is always less than, or equal to g(N).

We say that binary search has a worst-case complexity of O(log2(N)). Similarly, we can state that the
worst-case complexity of linear search is O(N) because whatever the implementation, we can always find a
function g(N) = c ·N such that the runtime f(N) of linear search is always less than or equal to g(N).

From the above, we can categorically conclude that binary search is significantly more efficient than linear
search for large N, and this is regardless of any possible differences in the implementation of the algorithms, or the
hardware they are running on. We can visualize why this statement is true by looking at the run-time plots for the
different implementations of linear search and binary search listed above. This is shown in Fig. 4.6.
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Figure 4.6: Plots of run-time for the different versions of linear search and binary search. Each graph shows
what happens for different ranges of values of N, increasing from left to right. For small values of N, linear search
would appear to be more efficient. However, by the time N=170 all the linear search implementations have overtaken
the slowest binary search implementation, and by the time N=1000 it’s all over for linear search. The conclusion
is: Binary search will win out in the end, regardless of how it’s implemented, if N is large enough.

The point not to be missed in the plots shown in Fig. 4.6 is that the algorithm with the smallest Big O
complexity will win for large enough N. The log2(N) function (or in fact, any log function, regardless of the
base) is much slower growing than any linear function, so we will always expect binary search to be faster on
a large enough array. The note about any log function being slower growing than any linear function means we
usually ignore the base of the log function, and we simply state that binary search is O(log(N)).

Note

Why do we want the slowest-growing function that characterizes the complexity of an algorithm? Consider
the graph shown in Fig. 4.7 that plots the runtime of an implementation of binary search written in C for
various values of N.
The plot also shows two functions both of which can be used as worst case upper bounds on the algorithm’s
run-time. From the definition of Big O complexity, if we take f(N) to be the run-time for the binary search
program, both of the following statements are correct:

f(N) = O(log2(N))

f(N) = O(N)

The Figure clearly shows we can find a logarithmic function such that c1 · log2(N) ≥ f(N) for all values
of N in the plot. We can also find a linear function such that c2 · N ≥ f(N) for all N in the graph.
However, notice that the linear function really does not provide a good prediction for what the run-time of
the program will be for any particular value of N . Indeed, for large N , the linear function over-estimates
run-time by a very large amount, whereas the prediction from the logarithmic function is much closer
to the real-world behaviour of the program.

Therefore, in order to be able to reason about, or compare the amount of work that different algorithms will
have to do while solving a problem, we need to find the slowest-growing function of N that provides a
bound on how much work the algorithm does as N grows.

161



4.1 Computational Complexity (C) F. Estrada 2024

Figure 4.7: Run-times for a C implementation of binary search (blue markers) for different array sizes (x-axis).
The two functions shown can both be used as bounds for the algorithm’s run-time. However, the linear function is
not useful for predicting what the run-time should be for a particular value of N.

4.1.2 From algorithm complexity to problem complexity

We started with the goal of understanding how efficient two different algorithms for finding a particular item
in an array can be. Complexity analysis is a wonderful tool for doing this. However, there is an even more powerful
idea behind the use of complexity analysis in computer science:

We can study, quantify, and prove results regarding the complexity of solving a given problem. What is the
difference? Let’s take an example: Sorting an array (and we will come back to this example soon in more detail).

Algorithm complexity means we can look at different algorithms to sort an array, and figure out which one
is going to be more efficient as the array size grows.
Problem complexity means we study the actual problem of sorting, and we try to figure out what is the
theoretical lower-limit on how much work the best possible algorithm has to do to sort an array.

For example, proving that linear search has a complexity of O(N) is equivalent to showing that it is not
possible to find an algorithm that can do linear search with complexity less than O(N).

This is a powerful and important idea because it allows us to classify problems by how hard (in terms of
complexity) they are to solve computationally. Harder problems are characterized by a Big O complexity given
by fast-growing, or very-fast growing functions of N. As a developer, it’s important to become familiar with the
different classes of problems you may have to work with one day, and to consider carefully what is reasonable
to expect of an algorithm, given the complexity of the problem it is working on. A comparison of a handful of
important algorithms and problems in terms of their computational complexity is shown in Fig. 4.8.
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Figure 4.8: The plot above shows examples of algorithms (on top) and problems (at the bottom) with different
Big O complexity. Note that for a given problem (e.g. sorting), you can easily find algorithms whose complexity
is greater (bubble sort) than the best known complexity for the problem. Knowing what the best known complexity
estimate is for a given problem allows you to evaluate how good an algorithm is at solving that problem.

Note

We can measure complexity in terms of different quantities: the number of times we have to check an item
in a collection, the run-time of an algorithm, the number of mathematical operations a certain function
has to perform. Which measure to use depends on what problem we are solving, but the analysis, and
what it tells us about an algorithm or problem is stated in the same way using the Big O notation.
Computational complexity analysis applies to every type of problem, not only searching for information in
a collection. For example, it is incredibly important in all areas of computer science that deal with numerical
computation, for example machine learning and artificial intelligence. We can learn a lot more about
computational complexity, and about how to study, analyze, and prove estimates of a problem’s complexity
by reading up on the topic. It requires a deeper and more serious study than is appropriate for this book.

4.1.3 So this means the implementation doesn’t matter right?

Not quite - solving a problem efficiently requires us to first think of the complexity of the algorithm for
solving the problem. Once we have selected an algorithm with the best known complexity for solving a particular
problem, we have to write a good implementation of it.

Going back to our original example of search algorithms, the difference between the implementations of
algorithms that have the same Big O complexity becomes important once N is large enough, e.g. N=1000000:

1.15 · log2(N) + 1.12 = 24.041

15.245 · log2(N) + 15.25 = 319.11

So the implementation makes all the difference between us having to wait around 20 sec. for the result, or
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having to wait over 5 minutes!

� Exercise 4.1 Consider a function that takes 2 input arrays:
void multiply_accumulate(float input[N], float output[N])

The function computes each value in the output array as output[i] =
P

j input[i] · input[j]

That is, the ith entry in the output array is the result of multiplying the ith entry in the input array with every
other entry in the input array (including itself), and adding all of these up.

One way to implement this function is shown below:
void multiply_accumulate(float input[N], float output[N])
{

int i,j;

for (i=0; i<N; i++)
{

output[i]=0;
for (j=0; j<N; j++)
{

output[i]=output[i]+(input[i]*input[j]);
}

}
}

Question: What is the Big O complexity of the function shown above? For this exercise, define the complexity
in terms of how many multiplications are carried out. If you’re having a tough time figuring that out from the
code, try and list the operations the loops are doing for a small value of N and see if that suggests something to you.

Question: Would the Big O complexity change if instead of multiplications we defined complexity in terms
of the number of additions that are carried out by the function?

Question: Is the complexity result we found above the best that we can do for this problem? Is there a better
algorithm? And if there is, what is the Big O complexity of that algorithm?

4.2 How to make search more efficient

We started this unit trying to understand how efficient linked lists are in terms of letting us search for items
in our collection. We have now seen that searching in linked-lists has a Big O complexity of O(N), and because
of that, for large collections, they are not the optimal way of storing information that will need to be searched
frequently.

As a side question: Why is it not possible to perform binary search on a linked list whose items are in sorted
order?

We also saw that binary search has a complexity of O(Log(N)) which makes it incredibly efficient for finding
information even for very large collections. So based on this we may conclude that we should give up on linked-lists
and that we should simply stick to sorted arrays of items so we can have efficient search.
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However, we left arrays behind when we realized that their limitations (fixed capacity, either insufficient for
data, or wasteful of space) made them hardly a good solution for the management and storage of large collections
of items whose quantity is not known in advance, and in cases where the size of the collection can change a lot over
time.

So we have a serious problem now:

At this point it looks like we can have either

1) A dynamic data structure that allows us to organize and maintain a large collection of items without
wasting space.

or

2) A sorted array with fixed capacity (and the associated known limitations), but where we can perform binary
search to efficiently search for information.

What are we missing?

Suppose we decided that efficient search is more important to us than not wasting space, so we are willing to
use an array large enough for our collection, so we can do binary search and find items quickly. Sounds like a good
plan, except that we haven’t accounted for the fact that we expect items to be added to our collection in random
order. Binary search requires our array to be sorted.

So before we decide that our best bet is to use a sorted array along with binary search, we have to consider
the computational cost (and you know now that by this we mean the computational complexity in terms of Big O)
of sorting the array in the first place.

4.2.1 The computational cost of sorting

Consider an (unsorted) array with N entries. Let’s consider the simplest sorting algorithm we can come up
with: bubble sort. If you haven’t seen bubble sort before, here’s a simple implementation:
void BubbleSort(int array[], int N)
{

// Traverse an array swapping any entries such that
// array[i] < array[j]. Keep doing that until the
// array is sorted (at most, N iterations of the
// loop on i)

int t;

for (int i=0; i<N; i++)
{

for (int j=i+1; j<N; j++)
{

if (array[i]<array[j])
{

t=array[j];
array[j]=array[i];
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array[i]=t;
}

}
}

}

In bubble-sort, the larger elements float to the top of the array like bubbles. After the first iteration of the
loop on ’i’, the largest number in the array is in the correct location (the first entry in the array), after the second
iteration of the loop on ’i’ the next largest number is at the correct location (second entry in the array), and so on.

The question is: what is the worst-case Big O complexity of bubble sort? In this case, let’s measure work in
terms of how many comparisons of pairs of entries the algorithm has to perform - which is a common measure of
work for sorting methods. Let’s take a look at how many swaps would be needed to sort the array:

For the first iteration of the loop on ’i’, the loop on ’j’ would perform N-1 comparisons
For the second iteration of the loop on ’i’, the loop on ’j’ would perform N-2 comparisons
For the third iteration of the loop on ’i’, the loop on ’j’ would perform N-3 comparisons
... and by now you can see the pattern arising ...
For the (N − 1)th iteration of the loop on ’i’, the loop on ’j’ would perform 1 comparison
And finally, for the N th iteration of the loop on ’i’, the loop on ’j’ would perform 0 comparisons

The total amount of work performed by bubble sort is the sum of the comparisons performed for the N

iterations of the loop on ’i’. We can figure out what that is by noting that matching pairs of iterations combine to
perform a constant number of comparisons. The first and last iteration combined carry out N − 1 comparisons
(N − 1 from the first iteration, 0 from the last one). The second iteration and the next-to-last iteration combined
also carry out N − 1 comparisons (N − 2 and 1, respectively). The third iteration and the second from last
combine to carry out N − 1 comparisons as well, and so on. In total, there are N/2 pairs of iterations each of
which combines to perform N − 1 comparisons. So the total number of comparisons performed by the bubble sort
algorithm is:

N
2 · (N − 1) = N ·(N−1)

2 = N2

2 − N
2

Question: The total work done (in the worst case) by bubble sort has two different terms both of which
involve N , so what is the worst-case Big O complexity of bubble sort?

To answer that question, all we have to do is consider what happens to each of these terms as N grows. The
quadratic term N2/2 grows a whole lot faster than the linear term N/2. For instance, for N = 1000, we have that
N2/2 = 500, 000 and N/2 = 500 so the linear term is 1000 times smaller. As N grows to 10000 we have that
N2/2 = 50, 000, 000 and N/2 = 5000 which is 10, 000 times smaller.

From this you can glean an important principle: Whenever you have a complexity result that involves different
terms involving N, the fastest growing term will dominate the complexity of the algorithm as N grows.

In the case of bubble sort, that means we need only consider the quadratic term N2/2. And we say that
worst-case Big O complexity of bubble-sort is O(N2).
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Note

Don’t forget that this is appropriate for comparing and choosing among algorithms that have different Big
O complexity. If what we are doing is trying to choose between algorithms that have the same Big O
complexity (e.g. the different versions of binary search we discussed earlier on) then we have to include
everything. That means, any terms that depend on N as well as the constants that may appear in our estimate
of how much work the algorithms are doing.

Houston, we have a problem:

We want to use a sorted array and binary search so that searching for items in our large collection has a
complexity of O(log(N))

But in order to do that, we have to first sort the array, which (if done with bubble sort) has a complexity of
O(N2)

that is not a nice result. The quadratic cost of sorting will dominate the complexity of the process, and this cost
grows a lot faster than even the linear search complexity which is only O(N). Suddenly, using a sorted array
doesn’t seem like such a good idea.

4.2.2 It gets more interesting

Bubble sort is definitely not the best sorting algorithm out there (President Obama knows this, see Fig. 4.9) - we
sometimes use it for small arrays because it’s so simple and quick to implement, but we can do much better. If you
recall from our discussion above on the computational complexity of problems, the best known sorting algorithms
have a complexity ofO(N ·log(N)). There are several algorithms that can reach this level of performance, including
a couple we will study in detail in the next Chapter. For now let’s see how far we can get if we replace our costly
bubble sort with the more efficient merge sort.

Figure 4.9: "I think the bubble sort would be the wrong way to go". Photo: U.S. Federal Government – public
domain

How would this change our decision on whether or not sorting an array and then using binary search to find
information efficiently is reasonable? What we have now is the following situation:
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We have to sort the collection, which has a worst case Big O complexity of N · log(N) using merge sort
Thereafter we can find any item in the collection in O(log(N)) time

Unfortunately, N · log(N) is still bigger than N , so we could be led into thinking that doing linear search
remains the best option. But it’s actually more complicated than that.

Suppose we are working with a collection that doesn’t change much - for example, suppose we are maintaining
a database of all the streets in a particular city. New streets don’t appear every day, and existing streets don’t
disappear very often either. Under these conditions we could do the sorting once, and once we have a sorted
collection we can carry out many, many searches efficiently using binary search.

In this situation, whether we should use sorting and binary search or simple linear search in an unsorted
linked list or array comes down to how many searches are we going to do?. The table below illustrates the total
cost of carrying out a sequence of searches using either sorting and binary search or an unsorted array.
Example 4.1

In the table below, N is the number of entries in the collection, M is the
number of searches we want to perform, ’A’ is the cost of
sorting the array (it’s done only once), ’B’ is the total cost of doing M
searches using binary search (M*log(N)), and ’C’ is the cost of
linear search (N*M). The line marked [+] indicates where the cost of
using linear search (C) becomes greater than the cost of sorting and using
binary search (A+B).

N=1000

A B C
M Sorting Cost (N * log(N)) Searching Cost (M*log(N)) A+B N*M

1 6907.8 6.9 6914.7 1000
10 6907.8 69.0 6976.9 10000 [+]
100 6907.8 690.7 7598.6 100000
1000 6907.8 6907.8 138165.6 1000000

N=10000

A B C
M Sorting Cost (N * log(N)) Searching Cost (M*log(N)) A+B N*M

1 92103 9.2 97112 10000
10 92103 92.1 97195 100000 [+]
100 92103 921.0 98024 1000000
1000 92103 9210.3 106313 10000000

The table above is interesting because it shows that even though the initial cost of sorting can be significant
(as seen, for instance, for N = 10000), that cost is the same whether we do 10, or 1000 searches. Because
binary search is so efficient, it only takes a few searches to make linear search more costly than sorting once and
searching many times. In both of the cases above, it takes only 10 searches for linear search to do more work than
our solution using merge sort and binary search.

So, you should keep in mind that Big O complexity results have to be used carefully - the actual decision on
what algorithm or combination of algorithms you should use for working with a particular collection involves
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not only the Big O complexities for each of the components of the algorithms you’re comparing, but also the type
of operations you are expecting will be carried out on the collection, and their frequency (how often they take
place).

If our collection had frequent insertions and/or deletions, we would need to re-sort the collection (or use
insertion sort) to keep the array in sorted order, and if this happens often that would quickly make the solution that
uses sorting much worse than the linear search.

� Exercise 4.2 Build a table like the one shown in Example 4.1, But this time, in addition to the searches, there are
Q insertions, where Q can be 10 or 100 and after each insertion the array must be re-sorted (i.e. the cost of each
insertion is N · log(N)).

� Exercise 4.3 Build a table like the one shown in Example 4.1, but instead of merge sort, we are using bubble sort
for sorting the array before doing binary search. Fill in the table and find out how many searches are needed for
linear search to become less efficient than the combination of bubble sort and binary search. Your table should
show what happens for N=1000 and N=10000.

So have we found an efficient way to make a large collection searchable?

Not quite...
The array solution has space limitations (fixed size can be either insufficient, or wasteful of space).
It requires sorting. With the best sorting algorithm this has complexity O(NLog(N)) which is already worse
than linear search (it can still be worth it if we sort once and then search many times).
But, we expect most collections to change over time - insertions, deletions, and modifications will require
work to ensure the array remains sorted.
The conclusion is that a sorted array with binary search is not necessarily the best solution for organizing,
storing, and searching over a large and changing collection of items.

What do we need?
It is clear that for efficient search data has to stay organized in some way. We need an ADT than can
facilitate this without requiring a separate sorting step.
The ADT must support efficient search, insertion, and deletion; and these operations must remain efficient
(in terms of Big O complexity) as the collection grows in size.
The implementation of this ADT as a data structure should be dynamic and request/use space only as
needed by the items in our collection.

We will now learn about an ADT and associated data structure that can do just that. We will study its properties,
learn how it handles searches, insertions, and deletions, figure out the Big O complexity of the typical operations it
supports, and look at some of its applications.

4.3 Trees, Binary Trees, and Binary Search Trees

Recall that a linked-list is a data structure in which nodes contain one item from a collection, and one link to a
successor node which is the next node in the list.
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A tree is a generalization of this idea, it consists of nodes, each of which contains one or more data items
from a collection, and one of more links to children nodes (the equivalent of the successor node, but now we can
have many).

Trees are extremely common structures in computer science, used for a wide range of purposes.
A particularly common type of tree is the binary tree, which has the property that each node has two child

nodes, the left child, and the right child.
The diagram in Fig. 4.10 illustrates a binary tree. Note the following:

Each node has two spaces for links - one for the left child (shown with red arrows), and one for the right
child (shown with blue arrows).
Nodes may have zero, one, or two children.
The node at the top of the tree is called the root node. Similarly to the head of a linked list, we manage a tree
by keeping a pointer to the root node.
Each level in the tree consists of nodes that are at the same distance or depth with regard to the root node.
Each level contains up to 2 times the number of nodes of the previous level.
Leaf nodes are nodes with no children.

Figure 4.10: Structure of a binary tree, each node has up to two children and contains data for one item in a
collection.

Without any additional refinements, binary trees may be useful for various tasks. However, for efficient
management of a data collection, we have to satisfy the requirement that the tree keeps data organized in a way that
makes the various operations efficient. With an additional constraint on how the tree is built we can achieve this
last requirement.

4.4 Binary Search Trees

A Binary Search Tree (BST) is binary tree such that for each node in the tree, the BST property holds:
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Data in the left sub-tree of a node have value less than, or equal to the value of the data in the node
Data in the right sub-tree of a node have value greater than the value of the data in the node

This means that at each node, we can quickly determine which of the following three situations is true:

The data is in the current node
The data is not in the current node, but if it is in the tree, it must be in the left sub-tree
The data is not in the current node, but if it is in the tree, it must be in the right sub-tree

The above should make you think about binary search! The BST is intended to allow us to organize a large
collection in such a way that we can quickly search through it. Indeed, under the assumption that our data is inserted
into the tree in random order, the BST can provide an average case search complexity of O(Log(N)) .

4.4.1 Search in a BST

The purpose of a BST is to support efficient search for data stored in the tree. Let’s consider the search process
in a BST as shown in the pseudocode below:

// This function takes the root of a subtree <subtreeRoot>
// and a key value we are searching for <queryKey>. If an
// item in the tree contains a matching key, the function
// returns the data contained in that node.

searchForKey <-- <subtreeRoot>, <queryKey>

if the <queryKey> is equal to the <key> at <subtreeRoot>
// Found the key: Return the data stored at this node

otherwise
if the <queryKey> is less than the <key> in <subtreeRoot>

// The node we want must be to the left of <subtreeRoot>
searchForKey <-- <leftSubtreeRoot>, <queryKey>

otherwise
// The node we want must be to the right of <subtreeRoot>
searchForKey <-- <rightSubtreeRoot>, <queryKey>

The search process starts at the top of the tree, checking the query value against the value stored at a node. If
the value is found the search succeeds and returns the requested data item, otherwise, it checks whether the query
value should be in the left or the right subtree (which is possible because of the BST property), and continues
searching on the corresponding subtree.

The search process is illustrated in Fig. 4.11.
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Note

With BSTs, we normally call the values used to search for information in the tree search keys. If the tree
contains data items which are simple data types then the keys and the data values are the same. But remember
that we intend to use these data structures to organize and maintain large collections of compound data types.
So in general, the key will be a suitable field, or a subset of fields from the CDTs. Keys have to be
comparable (i.e. besides checking for equality, we must be able to tell which of the two keys is greater
and which is lesser according to some ordering that makes sense for our data). This often involves writing
a comparison function that works with our data type. Finally, as we discussed in the previous Chapter,
search keys must uniquely identify each item in a collection.

Figure 4.11: Search in a BST involves checking nodes starting at the top, at each step deciding whether we have
found the data we are looking for (the queryKey) or whether we should look for it in the right subtree or the
left subtree. Nodes shaded in gray will never be checked because they belong in a subtree where we know the
queryKey could never be placed.

You can see how, similarly to binary search, the search process in a BST quickly discards from search a large
portion of all the values stored in the tree. The question is how many items need to be examined for us to find
the query key (or determine it’s not in the tree)?.

The search moves down one level in the BST for every comparison between the queryKey and values in the
tree. This means that at most, the search has to examine a number of nodes equal to the height of the BST - the
number of levels in the tree. The height of a BST is defined as the length of the longest path from the root of the
tree to a leaf node. This is the number we need to know in order to estimate how muck work is needed to find a
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specific item in a BST.
So, how many levels are there in a full BST? To answer that question we need to figure the maximum height

and the minimum height that a BST with N items in it could have.
The height of the tree depends on where data items are relative to each other. To understand how the tree is

shaped, we need to take a look at how the tree is built by inserting data items in some order into an initially empty
BST.

4.4.2 Inserting nodes into a BST

For linked lists, we had to keep around a pointer to the head of the list. In the case of a BST, we will need to
keep around a pointer to the root of the tree (the node at the very top). The insert process must ensure that the
BST property is enforced when a new item is inserted in the tree.

The pseudocode for the BST insert operation is shown below:
// Given the <root> of the BST
// and a new data item whose key is <newKey>
// to be inserted in the tree.

if the BST is empty (root is NULL) // The first key inserted in the
<root> := <newKey> // tree becomes ROOT

otherwise
BST_insert <-- <root>, <newKey>

// The insert function takes the root of some
// subtree (or the whole tree) and the newKey
// and inserts the new node in the right place
// so the BST property is preserved

BST_insert <-- subtreeRoot, newKey

if the <newKey> is equal to the <key> at <subtreeRoot>
then this is a duplicate key: Return without inserting anything

otherwise

if the <newKey> is less than the <key> in <subtreeRoot>
// <newKey> should be on the left-side from <subtreeRoot>
if the <leftSubtree> of <subtreeRoot> is empty

<leftSubtreeRoot> := <newKey>
else

BST_insert <-- <leftSubtreeRoot>, <newKey>

otherwise
// <newKey> should be on the right-side from <subtreeRoot>
if the <rightSubtree> of <subtreeRoot> is empty

<rightSubtreeRoot> := <newKey>
else

BST_insert <-- <rightSubtreeRoot>, <newKey>

The insert operation works very similarly to the search operation. It starts at the top of the tree, working its
way downward and choosing either the left or the right subtree at each level depending on whether the new key is
less than or greater than the key at each node visited. Once it finds an empty subtree, it inserts the new node
there. Fig. 4.12 shows several examples of this process.
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Figure 4.12: Examples of BST insert starting with an empty tree. The process works its way down from the top
of the tree, choosing the left or right subtree as is appropriate at each level, until an empty subtree is found where
the new data item should be stored.
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� Exercise 4.4 Starting with the last BST in Fig. 4.12 (after 22 is inserted), list the steps carried out, and draw the
resulting tree, after inserting: 19, 4, 1, 6 , and 21 (in that order)

With this in mind, let’s revisit our question regarding the possible values for the height of a BST that contains
N items. Because of how the insertion process works, the shape of the BST (the location of the nodes) will be
dependent on the order in which keys are inserted. To see this, have a look at the example below, which inserts the
numbers 1 to 7 in an initially empty BST.
Example 4.2

Let’s first see what happens when we insert the numbers 1-7 in order into an intially
empty BST.

1 1 1 1 .. etc .. 1
\ \ \ \
2 2 2 2

\ \ \
3 3 3

\ \
4 4

.
.
\
7

Because the numbers are inserted in order, each key we add must be placed to the right
of the one that was inserted just before. The resulting BST is completely one-sided
and in fact looks like a linked list!

The height of a BST that results from inserting N items in order is N-1

Now let’s see what happens when we insert the same numbers in the order
4, 2, 6, 1, 3, 5, 7

4 4 4 4 4 4 4
/ / \ / \ / \ / \ / \

2 2 6 2 6 2 6 2 6 2 6
/ / \ / \ / / \ / \

1 1 3 1 3 5 1 3 5 7

In this case, the keys are inserted in such a way that the resulting BST is
balanced - which means that there are no large differences in height between
different subtrees at any place. This latter tree is an example of a
’complete’ BST.

So the height of the BST depends on the order in which items are added to the tree. From the example above
we can immediately tell that in the worst case the height of the BST will be N-1 which means that both search
and insert have a worst case Big O complexity of O(N). That should not be surprising because in the worst case,
the BST looks like a linked list.

Conversely, when the tree is as short as possible, the height of the tree is given by ⌊log2(N)⌋. This follows
from the fact that each successive level in the tree contains twice as many nodes as the one before - or what amounts
to the same thing: each additional level in the tree doubles the number of nodes it can contain. This can only
happen when the BST is complete, which means that every level of the tree is full with the possible exception of
the last one, and any nodes in the last level are packed to the left, with no gaps in between.
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Therefore the the Big O complexity of search and insert is O(log2(N)) on a complete BST.
At this point let us remember one important assumption regarding our collection: Items are added in random

order. This means we would have to be very very lucky (or very very unlucky) to get either of these special cases
of BSTs. Most of the time we have a tree whose height is between that of a complete BST and that of a misshapen
tree that looks like a linked list.

In order to get a useful estimage of what we can expect from a typical BST, we need to know what is the
average height of a BST that results from items being added in random order. The surprising, but very helpful
result is that the average height of a BST built from a random sequence of insertions is O(log2(N)) - it is not
exactly log2(N) but it is within some constant factor of it. Detailed proofs for this result can be found in standard
textbooks on algorithms.

This is a good result because it means that on average, the Big O complexity of search and insert on a BST is
O(log(N)). And now we’re getting somewhere! in the average case, BST search is as efficient as binary search,
and we do not have to sort the data because the BST insert operation (which is also O(log(N))) ensures the BST
property holds everywhere in the tree at all times.

Note

We can not trick the Universe. The total computational cost (on average) of building a BST with N keys
is O(N · log(N)) because we are performing N insert operations, each with a cost of O(log(N)). This
is just the same as the cost of sorting an array so we can use binary search. However, once we have the
BST we can insert new items into it at a cost of O(log(N)), whereas to insert a new item into the sorted
array we would need to use insertion sort which has a complexity of O(N) or re-sort the array at a cost
of O(N · log(N)). The real advantage of the BST is not in the initial setup but in the fact it allows us to
perform any succeeding operations efficiently.

� Exercise 4.5
Draw the BST that results from inserting the following keys in sequence: 49, 85, 22, 15, 97, 67, 4, 71, 35, 8,

99, 64, 2, 17, 69, 50

4.4.3 Deleting items from a BST

The delete operation is a bit more interesting than both search and insert. This is because we must ensure that
after deletion the BST property still holds everywhere in the tree.

There are three cases we must consider for deletion:

Case a) The item to be deleted is a leaf node (it has no children). Figure 4.13 shows an example of this case.
The process to be carried out is:

Find the node with the item we want to remove - same process as BST search.
Since this a leaf node, there is nothing else in its subtree. Once we remove this node, there is nothing left.
Therefore, we set the corresponding pointer in the parent node to NULL to indicate that there is now an
empty subtree on the side where the deleted item used to be.
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Figure 4.13: Example of case a) of BST delete. The item being deleted (40) is in a leaf node, therefore we simply
delete the node and set the corresponding pointer in the parent node to NULL.

Case b) The item to be deleted has one child only. This is very similar to deleting an item inside a linked list
as shown in Fig. 4.14. The process to be carried out is:

Find the node with the item we want to remove - same process as BST search.
The node’s child is guaranteed to be on the correct side with regard to the node’s parent because BST
insert ensures the BST property holds throughout the whole tree.
Therefore, we have to link the node’s parent to the node’s child and then delete the node.

Figure 4.14: Example of case b) of BST delete. The item being deleted (19) has a single child (22). Linking the
parent node (27) to the child node (22) preserves the BST property and we can then delete (19).

Case c) The most general case, the item to be deleted has two children. In this case, deleting the node and
trying to re-link the tree results in a problem: we would have two dangling nodes (the children of the node we just
deleted) and only one link where to attach them. Rather than try to figure out where to attach the two children while
preserving the BST property, we can solve this problem by carefully moving data items inside the tree as shown
in Fig. 4.15. The process is as follows:

Find the node with the item we want to remove - same process as BST search.
Search in the right-side subtree for the successor of this node - this is the smallest key in the right subtree
of the node we are deleting. The successor is easily found by starting at the top of the right subtree and then
traversing as far down and to the left as possible (i.e. without following any right-child links).
Promote the successor to the node we are deleting - this means copying the data (and key) stored at the
successor node into the node we are deleting.
Finally, delete the successor node from the right subtree - this will be either case a) or case b).

177



4.4 Binary Search Trees (C) F. Estrada 2024

The point of this process is that we do not remove internal nodes in the BST. Instead, we move data around such
that we are left with a valid BST (the BST property holds everywhere after we have moved the data), and an easier
case of deletion either case a) or case b) since the successor node can never have two children (think through the
process of finding the successor to see why that has to be the case).

Figure 4.15: Example of case c) of deletion. The node has two children so we do not want to remove it, instead
we promote the successor (smallest key in the right subtree) to the node we want to delete, and then delete the
successor from the right subtree.

Note

It should be noted that deletion would work equally well if we used the predecessor (largest key in the
left subtree) instead of the successor. Both of these options will result in a valid BST (the BST property
is maintained throughout the tree), and they involve the same amount of work in terms of computational
complexity - there is no difference. For consistency, in this book we will use the successor when deleting
nodes from a BST.

� Exercise 4.6 Beginning with the tree in Fig. 4.15 after (29) was deleted, draw the trees resulting from deleting: 9,
29, 22, and 11 in that order. Be sure to identify which case of deletion is needed for each number.

Question: What is the average case Big O complexity of deleting a node from a BST? The process of finding
the node we want to delete is O(log(N)), it is just a regular BST search. The actual deletion requires a fixed
number of operations for cases a) and b). For case c) it involves one additional search with cost O(log(N))

to find the node’s successor. So just like search and insert, the average case Big O complexity of delete is
O(log(N)).
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This last is important. It means that we can expect all BST operations to be as efficient as binary search in
the average case.

Note

In practice, BSTs perform incredibly well under general conditions, but you may be concerned that they
perform well only in the average case. It’s worth pointing out that there are several other types of trees such
as AVL-trees and B-trees that have the property that they remain balanced regardless of the order in which
keys are inserted. Such balanced trees guarantee that the Big O complexity of search, insert, and delete
operations remains O(log(N)) in the worst case. You can learn about these more sophisticated trees in any
standard algorithms book.

4.5 Tree traversals

In linked lists, an implicit operation that needs to be carried out frequently is a list traversal. A full list
traversal involves visiting each node in the list exactly once. There are many situations in which we need to visit
nodes in a binary tree (for example, in a tree that stores numbers we may want to compute the average of the values
in the tree). Because in BSTs there is more than one link at each node, that means there is a choice in terms of the
order in which we visit the nodes to carry out whatever work we need to do.

The process of visiting each node in a BST exactly once is known as a tree traversal, and because there is a
choice in terms of the order in which we visit nodes and work with the data stored in them, there are 3 different
types of tree traversals for binary trees.

4.5.1 In-order traversal

Possibly the most common type, it specifies nodes will be visited in the order given by the following procedure,
starting at the root of the BST

At any particular node i:
1) Perform an in-order traversal of the left subtree
2) Carry out the specified work at node i
3) Perform an in-order traversal of the right subtree

The process is illustrated in Fig. 4.16. For this figure, the work being done at each node consists very simply
of printing the value in the node. But in general this could involve more complicated processing of whatever data
is stored in the corresponding BST node. What is important in the figure is understanding the how the steps of the
process are applied at each node, and the order in which nodes are processed.

In-order traversal visits nodes in sorted order with respect to their key value. So in the sample case above,
the process will print a sorted list of keys in the tree: 5, 11, 15, 17, 19, 27, 34.

What is the Big O complexity of in-order traversal? Just like list traversal, a tree traversal will need to
visit each node in the tree. If there are N nodes, that means the traversal process will be O(N).
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Figure 4.16: Step-by-step in-order traversal in a sample BST, note the order in which the three steps of the process
are applied at each node. In particular, nodes whose left subtree is not empty have to wait until their left subtree
has been processed before they get their turn.

Note

In-order traversal of a BST can be used for sorting. The process is called tree sort.

Insert all items to be sorted into the BST using as key whatever data field or fields we want the data
sorted by
Perform an in-order traversal of the resulting tree - this produces the sorted list of items

What is the worst-case Big O complexity of tree sort?. We can figure this out by accounting for the Big
O complexity of each of the two steps in the tree sort process.

Inserting items into the BST: In the worst case the items are already sorted, and inserting them into
the BST produces a structure that resembles a linked list. The cost of each insert is O(N) because
each new item will go to the bottom of the growing tree, and we perform N insertions which gives
a complexity of O(N2) for building the BST
The in-order traversal has a cost of O(N) regardless of the shape of the tree

This gives a total cost of O(N2 + N) and as we saw above, the fastest-growing term will dominate this
complexity bound, so the worst case Big O complexity of tree sort is O(N2). Which is the same as bubble
sort and not very good.
However, if the input is not sorted, as we might expect if data arrives in random order, things look a lot
better:
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Inserting items into the BST will in the average case have a computational cost of O(N · log(N))

The in-order traversal has a cost of O(N)

This gives a total cost of O(N · log(N)+N) and as usual the fastest-growing term dominates the complexity
bound. So the average case cost of tree sort isO(N ·log(N))which is on par (in terms of Big O complexity)
with the best known sorting methods. If instead of a BST we use a balanced tree such as an AVL, then the
O(N · log(N)) cost is guaranteed in the worst case.

4.5.2 Pre-order traversal

One of the most common uses of a pre-order traversal is making an exact duplicate of a BST. By traversing
the BST in pre-order, making a copy of each data item, and inserting the new item into another (initially empty)
BST we obtain two identical trees - each corresponding node is in exactly the same location with respect to the root
of the tree. Other applications include search algorithms on graphs, which we will study in the next chapter. The
pre-order traversal is as follows:

At any particular node i:
1) Carry out the specified work at node i
2) Perform a pre-order traversal of the left subtree
3) Perform a pre-order traversal of the right subtree

The process is illustrated in Fig. 4.17. Same as for the in-order example, the work being done at each node is
simply printing the value at the node. In this example, the traversal will print: 17, 11, 5, 15, 27, 19, 34. Which is
pretty different from what we got out of the pre-order traversal.

4.5.3 Post-order traversal

The last type of traversal for binary trees is the post-order traversal. It has applications in compilers and
parsing languages. It is also essential for managing BSTs because whenever we want to delete a BST this has to
be done in post-order. Post-order traversal consists of:

At any particular node i:
1) Perform a post-order traversal of the left subtree
2) Perform a post-order traversal of the right subtree
3) Carry out the specified work at node i

The process is illustrated in Fig. 4.18. As in the previous traversal examples, the work being done at each node
is simply printing the value at the node. Post-order traversal will print: 5, 15, 11, 19, 34, 27, 17. Note that the
parent node has to wait until both of its subtrees have been processed, which is what we want when deleting a
BST - we can not delete a node until both of its subtrees have been removed.
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Figure 4.17: Step-by-step pre-order traversal in a sample BST. In this traversal method, the work at the node is
done before either of the subtrees is processed.

4.6 Implementing a BST

Now that we have learned about all the operations that a BST supports, as well as the different tree traversal
methods we can perform on a binary tree, the last step is to turn our BST ADT into a data structure by implementing
all of the BST operations in C. The implementation of each function is listed below, you should read through it
carefully and review the pseudocode and examples of the different operations as you work your way through the
program code.

Firstly, let’s define the CDTs we will need. We are going to work with the same example application as in the
previous chapter (a collection of restaurant reviews), so we need a CDT for the reviews, and another one for the
BST nodes.
typedef struct Restaurant_Score
{

char restaurant_name[MAX_STRING_LENGTH];
char restaurant_address[MAX_STRING_LENGTH];
int score;

}Review;

typedef struct BST_Node_Struct
{

Review rev; // Stores one review
struct BST_Node_Struct *left; // A pointer to its left child
struct BST_Node_Struct *right; // and a pointer to its right child

} BST_Node;
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Figure 4.18: Step-by-step post-order traversal in a sample BST. In this traversal method, both subtrees of a node
are processed before the node itself.
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The Review CDT should be perfectly familiar to you by now. The BST_Node CDT is just a small modification of
the Review_Node CDT we used for linked lists. The only difference is that instead of a single next pointer, we
now have two pointers to BST_Node CDTs. One for the left child, and one for the right child. By convention, in
most BST implementations you will ever come across, these pointers are called left and right.

Next we have to write a function to allocate and return a newly created BST_node.
BST_Node *new_BST_Node(void)
{

BST_Node *new_node=NULL; // Pointer to the new node

new_node=(BST_Node *)calloc(1, sizeof(BST_Node));
if (new_node==NULL)
{

printf("new_BST_Node(): Error, there is not enough memory to create new node, returning
NULL\n");

return NULL;
}

// Initialize the new node’s content (same as with linked list)
new_node->rev.score=-1;
strcpy(new_node->rev.restaurant_name,"");
strcpy(new_node->rev.restaurant_address,"");
new_node->left=NULL;
new_node->right=NULL;

return new_node;
}

This function is very similar to the one we wrote for linked lists, nothing new here except for having to initialize
two pointers rather than one.

Next up is the function that inserts a new item into the BST:
BST_Node *BST_insert(BST_Node *root, BST_Node *new_node)
{

// This function takes as input the <root> of a subtree
// (it can be any subtree, or the whole BST), and a
// <new_node> that contains a review (already filled
// with valid information).
// It inserts the <new_node> into the BST

if (root==NULL) // Tree is empty, new node becomes
return new_node; // the root

// Check for duplicates (and refuse to insert duplicates)
if (strcmp(new_node->rev.restaurant_name,\

root->rev.restaurant_name)==0)
{

printf("BST_insert(): Duplicate data item detected. Ignoring\n");
return root; // The root did not change

}

// This node is occupied, we need to figure out on which
// side of this node the <new_node> needs to go, and then
// go and insert the <new_node> in that subtree.
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if (strcmp(new_node->rev.restaurant_name,\
root->rev.restaurant_name)<=0)

{
// <new_node>’s key is less than the key at <root>,
// it must be inserted in the left subtree

root->left=BST_insert(root->left,new_node);

// The situation at this point is as shown below:
//
// /
// /
// root <-- we’re working here
// /
// /
// leftRoot <-- The <new_node> should
// go in this subtree
//
// leftRoot is stored in ’root->left’
//
// So, we tell the BST_insert() function to go and
// insert the <new_node> in the subtree that
// starts at ’root->left’.
//
// Why are we updating ’root->left’ with the return
// value of BST_insert()?
//
// Because if the situation is as follows:
//
// /
// /
// root
// /
// /
// NULL
//
// Then the first check in BST_insert will simply
// return <new_node> because this node will
// become the top of a new subtree. Updating
// ’root->left’ results in
//
// /
// /
// root
// /
// /
// new_node
//
// If ’root->left’ is NOT NULL when we call
// BST_insert(), nothing will happen as
// BST_insert() will simply return the same
// ’root->left’ it received.

}
else
{

// <new_node>’s key is greater than the key at <root>
// it must be inserted in the right subtree

root->right=BST_insert(root->right,new_review);
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// Which works exactly as shown above, but on the
// subtree that is on the right side of <root>

}

return root; // Return the same <root> we received
}

The only thing worth commenting in the code above is that the BST_insert() function is that we use it within the
function itself to get the work done. This is an example of recursion. We will take a detailed look at recursion
as a general tool for solving a very large variety of problems that have particular characteristics. In this case, we
observe that inserting a node into a tree requires us to be able to insert a node into a subtree (the left or right
one, depending on the key). But every subtree of a BST is also a BST (see Fig. 4.19).

Figure 4.19: Each subtree in a BST is itself a fully valid BST - so inserting a key in a particular BST subtree is
exactly the same thing as inserting a key in a BST.

We take advantage of this property to use the same BST_insert() function to handle the process as we traverse
from the root of the BST to the place where the new node should go.

Because C reserves space for a function’s variables at the moment we call the function (see Chapter 2), each
call to BST_insert() will have its own reserved space for input arguments, local variables, and return value.
The structure of the function shown above directly matches the pseudo-code description of how BST insert is
supposed to work, there really is nothing special about recursion, it is the natural way to implement operations on
trees.

The next function to implement is search:
BST_Node *BST_search(BST_Node *root, char name[1024])
{

// The function takes as input the <root> of some
// subtree in the BST (can be the root of the whole
// tree).
// It searches for the node that contains the matching
// restaurant name, and if found, it returns a pointer
// to the node containing the matching review.

if (root==NULL) return NULL; // We reached an empty
// subtree, the queryKey
// is not in the BST

186



4.6 Implementing a BST (C) F. Estrada 2024

// Check if this node contains the review we want, if so, return
// the pointer to this node
if (strcmp(root->rev.restaurant_name, name)==0)

return root;

// The queryKey is not in the current node, decide
// if we need to search in the left subtree or
// in the righ subtree.

if (strcmp(name, root->rev.restaurant_name)<=0)
{

// queryKey is less than the key at <root>
// so we must go search in the left subtree

return BST_search(root->left,name);

// The call above performs a search on
// the left subtree, and will return
// whatever we find there i.e. NULL if
// the queryKey is not found in the
// left subtree, or the pointer to the
// node that contains the matching
// review, whereved it may be in the
// left subtree.

}
else
{

// queryKey is greater than the key at <root>
// so we must go search in the right subtree

return BST_search(root->right,name);
}

}

Not surprisingly, BST_search() is also recursive. But if you work your way through it, you will see it is simply a
direct implementation of the pseudo-code for search that we studied above.

The last operation we need to implement for a fully working BST is the insert operation:
BST_Node *BST_delete(BST_Node *root, char name[1024])
{

// Takes as input the <root> of a subtree, and
// the key of a node we want to remove. In this case
// a restaurant’s name.

BST_Node *tmp;

if (root==NULL) return NULL; // Tree or sub-tree is empty
// nothing to do.

// Check if this node contains the review we want to delete

if (strcmp(name,root->rev.restaurant_name)==0)
{

// Determine which of the three cases of
// deletion we are dealing with.

if (root->left==NULL && root->right==NULL)
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{
// Case a), no children. The parent will
// be updated to have NULL instead of this
// node’s address, and we delete this node

free(root);
return NULL;

// The situation here is as follows:
//
// parent
// /
// /
// root <-- We are at this node
//
// We need to delete the current node,
// and because there are no children, the
// ’parent’ node will have an empty
// subtree. So, the function returns
// NULL so the parent can update its
// subtree to look like so:
//
// parent
// /
// /
// NULL
//

}
else if (root->right==NULL)
{

// Case b), only one child, left subtree
// The parent has to be linked to the left
// child of this node, and we free this node

tmp=root->left; // Store the pointer to the
free(root); // child!
return tmp;

// The situation is as follows:
//
// parent
// /
// /
// root <-- We are at this node
// /
// /
// child
//
// We need to connect ’parent’ to ’child’
// and remove <root>. So, we store
// ’child’ in a temporary pointer
// (once we delete <root> that pointer
// would be gone!)
//
// parent
// /
// /
// (deleted)
//
// tmp-->child
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//
// The function then returns ’tmp’ which
// allows the ’parent’ node to update its
// own link so point to ’child’
//
// parent
// /
// /
// child

}
else if (root->left==NULL)
{

// Case b), only one child, right subtree
// The parent has to be linked to the right
// child of this node, and we free this node

tmp=root->right;
free(root);
return tmp;

// Same as the case above, but the child node
// is to the right of <root>

}
else
{

// Case c), two children.
// We need to find the successor to this
// node, promote it (copy the data to this
// node), and then delete the successor
// from the right subtree.

tmp=root->right; // Top of the right subtree
while (tmp->left!=NULL) // Successor is the

tmp=tmp->left; // leftmost key

// Promote the successor (copy the data over
// to <root>)
root->rev = tmp->rev;

// And finally delete the successor in the
// right subtree
root->right=BST_delete(root->right,tmp->rev.name);

return root;
}

}

// The review we want to delete is not in this node,
// determine if it should be on the left or right
// subtree, and call delete on the corresponding
// subtree.

if (strcmp(name, root->rev.restaurant_name)<=0)
{

// The review we want should be on the left
// subtree

root->left=BST_delete(root->left,name);
}
else
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{
// The review we want should be on the right
// subtree

root->right=BST_delete(root->right,name);
}
return root; // Nothing changed here,

// return the <root> we
// received.

}

Just like insert, and search, the BST_delete() is recursive. It follows the pseudo-code for the insert operation as
discussed above. While it does a bit more work than either of the other operations, the fundamental process is
identical: Starting at the top of the tree, traverse downward choosing either the left or the right subtree until we find
the place where work needs to be done.

This completes the implementation of all the BST operations required to build, maintain, and use a BST in C.

� Exercise 4.7 Modify the app you created in the previous Chapter to manage the restaurant reviews so that it uses
BSTs instead of linked lists. The goal here is to see how you can achieve the same functionality with different
data structures.

There are two ways to go about this:
a) Modify the listing from the previous Chapter to use BST Nodes and BST functions using the code above
b) Expand on the code above by adding a main() function providing the same functionality as the program
from the previous chapter. You will also need to implement any extra functions (i.e. beyond insert, search,
and delete) that were present in the linked-list version

As you are building the application: Follow the test-as-we-develop process described at the end of Chapter
3. Make sure each function you add to your program is thoroughly tested before moving on to the next thing.

After your implementation is complete: Add a comprehensive set of full program tests to your test driver
as discussed in Chapter 3. After all your testing is complete, you should be able to confidently state the program you
implemented is solid, works on reasonable input, and handles tricky or erroneous input in a reasonable fashion.

� Exercise 4.8 Implement the three types of tree traversals. The traversal functions should print the restaurant
name, and the review score for each visited node, in the order specified by the traversal process. Add options in
main() so that the user can request each of the three types of traversal.

Follow the test-as-we-develop process described at the end of Chapter 3.

� Exercise 4.9 Crunchy! As we know, if we are unlucky with the order in which items are inserted into a BST, we
could end up with a very unbalanced tree in which some branches are much longer than others (and in the worst
case, there is a single branch with all the keys in it).

Write pseudo-code for a process that can be used to take as input an unbalanced BST, and that will then create
a new, balanced BST (and delete the old unbalanced one). Make sure that your design follows the guidelines set
at the end of Chapter 2.
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Once you are happy with your design, expand the program that handles restaurant reviews to provide an option
to re-balance the BST and implement your process into a function that produces a balanced BST from whatever
the current BST looks like.

Test-as-you-develop - write the function that balances a BST, and test it thoroughly before integrating it with
the rest of your application. Then perform full program testing. Follow the testing guidelines at the end of Chapter
3. Your tests should include verification that the resulting tree is balanced.

How do we verify that a tree is balanced? there are several ways in which we can define balanced. But for
simplicity, for this exercise we will define a balanced BST as one in which the difference in height between the
leaf node that is closest to root and the leaf node that is farthest from root is less than 2.

How do we find the minimum (or maximum) height of a leaf node? - that’s for you to work out, but perhaps
tree traversals could be handy...

4.7 Have we solved the problem?

At this point we have a good understanding of what BSTs can do, and how to implement them, but we have
yet to determine whether all this work has helped us solve the problem of finding a more efficient way to store,
organize, and access a large collection of information. We may suspect that the BST is likely to give us faster
search because its average search complexity is better than the linked list’s average search complexity, but we still
have to tie a few loose ends:

a) The time it takes to build the BST compared to the time needed to build a linked list

For N items, the linked list can be built in O(N) time - each item is added at the head so no traversal is
needed. That’s pretty good!
For the same N items, the BST can be built in O(N · log(N)) time on average since insertions always happen
at the bottom of the tree, and the tree has height O(log(N))

Advantage: Linked list

b) The time it takes to build a BST compared with the time needed to sort an array (so we can use binary
search)

Using merge sort an array can be sorted in O(N · log(N)) time on the worst case
As we saw above, the BST can be built in O(N · log(N)) time on average

Advantage: Array - merge sort guarantees O(N · log(N)) even in the worst case, while for BSTs the worst case is
O(N2) - the worst case happens with data that is initially sorted or close to sorted, so it can come up on real-world
situations.

c) Search complexity
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Sorted array: O(log(N)) worst case using binary search
Linked list: O(N) both average and worst case
BST: O(log(N)) average case, O(N) worst case

Advantage: The BST and sorted array on the average, sorted array in worst case. The linked list is not
competitive, it is simply too slow on average.

d) Storage use

Sorted array: Fixed size, not suitable for growing/shrinking collections as that would require re-allocating
the whole array
Linked list: Space usage is O(N) - one node per item
BST: Space usage is O(N) - one node per item

Advantage: The BST and linked-list, because they only use space for items actually present in the collection,
whereas the array has to pre-reserve space and we have the problem of estimating in advance how much we may
need which is not trivial. A lot of the space reserved may go unused.

4.7.1 So what do we choose?

The point of going through all of this work is to help you see that there is a fair number of factors you have
to consider when choosing how to store and organize a collection of data. Up to this point we have studied
3 different ways of storing items: arrays, linked-lists, and BSTs, and as shown above, each one of them has
advantages and disadvantages. So how are we to choose?

a) Consider how large your collection is going to be:

For very large collections that change frequently, you want to choose the data structure that gives you the
best Big O complexity for common operations like insert, delete, and search.
Consider the space requirements: For items with small memory requirements (e.g. just numeric data,
like ints or floats, or small compound data types) it’s not unreasonable to pre-allocate a large array even
though entries in it may go un-used. Conversely, for items with a large memory footprint (e.g. compound
data types with lots of data, or multi-media content like images, sound clips, etc.) we prefer a dynamic data
structure.
For smaller collections, you may want to choose based on ease of implementation. There is a trade-off
between ease of implementation (arrays require less complicated code to work with than BSTs) since it saves
developer time, and is likely to produce code with smaller likelihood of having difficult to find bugs.

b) Consider what kind of operations will be performed on the collection’s items:

If you will mostly perform operations over the entire set, choose a linked list or an un-sorted array. An
example of this is the 3D point meshes used in computer graphics which may contain millions of points,
but we don’t usually perform individual point look-ups; instead, we almost always render the whole mesh.
Meshes are often kept in arrays.
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Conversely, if individual item look-ups (search), insertions, or deletions make-up the majority of the opera-
tions on your collection, then you should choose a data structure that gives you the best Big O complexity
for these operations.

Note

However, keep in mind that there is no pre-set definition for what it means for a collection to be small or
large or very large. So likely what you will need to do is sit down and create a table such as the one shown
in Exercise 4.1, then run a few numbers to see what storage method will result in the best performance for
the specific collection you will be working with, then consider ease of implementation. Document your
findings, and then make the best choice you can supported by having thoroughly thought through the
issues mentioned above.

4.7.2 A brief note on databases

Real world systems that manage large collections of data do not rely on a single kind of data structure.
For example, typical databases organize the actual item information into tables - these are basically huge arrays
(stored on disk, not computer memory), where each row contains all the data fields for one item in the collection
(in effect, one row in a database table is equivalent to a CDT we may have in memory). The tables are most often
un-sorted.

Separately from the table that contains the actual data, the database keeps an index in the form of a balanced
tree (typically a B-tree or a variation thereof) which contains search keys the user may want to run queries with.
Each node in the index contains the location in the original table where the information for the item matching
the query key can be found (this is just like a pointer, but instead of containing a memory location, it contains a
disk location).

This has several important benefits: Firstly, the index data structure is very small compared to the size of
the collection because it only stores keys and pointers to entries in database tables. Often, the whole index can
be kept in memory (whereas the entire data collection may be too big for this). This is important because working
with information that is in the computer memory is much faster than working with information stored on disk.
Secondly, we can define multiple indexes over the same collection. For instance, a database that stores information
about students at a University may have an index based on student number, and another index based on student
name plus date of birth. This allows the users to perform queries using either the student’s name and birth date,
or their student number, and both will be equally fast.

Separating the index from the data has the advantage that it allows us to provide different ways to find
information within the collection efficiently.

The above motivates one final thought regarding the problem of managing a large collection of information:
It involves thinking at multiple levels of detail. Knowing how particular ADTs and their corresponding data
structures work, as well as the complexity of typical data operations when we use these data structures is only
the foundation. Once you have understood that part, you can begin thinking at a higher level of abstraction: How
will the collection be used? what kinds of operations will be more frequent? what kinds of look-ups may be often
required and therefore should be made very fast? and how do we organize the information available into possibly
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many different data structures so that the overall system provides excellent performance for all required uses?
This is an extensive and fascinating topic, and you can learn a whole lot more about it by picking up a good

book on databases.

4.8 Wrapping up

We have spent some time carefully studying the problem of how to efficiently manage large collections of
information. Along the way we studied the problem of measuring, characterizing, and reasoning about the
complexity of algorithms and problems. We have thought about how to determine which data structure will
provide a better performance in a particular case (as described by the size of a collection and the types of operations
that we will carry out on it), and we have thought about how and when we should use the different ADTs we have
learned up to this point.

Keep in mind that the theoretical analysis of complexity is only one layer of the difficult problem of figuring
out the most efficient way to carry out some task. You need to learn about computer architecture, how modern CPUs
work, and how to optimize programs for maximum efficiency if you really want to write the best (most efficient,
fastest) software to solve any given problem.

As for the worst-case complexity. The discussion above may lead you to believe you don’t have to worry
about it if your data structure has a good average-case complexity. Indeed, for most applications you will find you
can get excellent results from using data structures such as BSTs. However, for safety-critical applications, or for
real-time applications, examples of which include industrial control software, medical equipment, electrical
power generation, transportation (aircraft flight control), robotics, manufacturing, and so on; you can not
afford to use a data structure whose worst-case performance is bad. The point being that even if you need to
be very unlucky to get the input that triggers worst-case or close to worst-case performance, you can not afford
to take that risk. And this is due to the fact we often have to worry about malicious parties (i.e. hackers and
other adversarial entities) who may use knowledge of how your system is built to find a weak point and exploit it.
Applications of the type just mentioned require guaranteed performance bounds from all the data structures and
algorithms used within their software.

4.9 Additional Exercises

� Exercise 4.10 Draw the BST that results from inserting the following keys in sequence into an initially empty BST.
Keys are sorted alphabetically.

“Iron Man 3”, “Black Panther”, “The Avengers”, “Captain America”, “Iron Man 2”, “Aquaman”, “Batman
Returns”, “Thor”, “Spider Man: Into the Spiderverse”

� Exercise 4.11 Draw the BST after we delete “Aquaman”

� Exercise 4.12 Draw the BST after we delete “Iron Man 3”

� Exercise 4.13 What is the list of movies generated by a post-order traversal of the BST from Exercise 4.12?
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� Exercise 4.14 It is highly likely that a BST whose keys are movie titles will run into the problem that there are
multiple entries with the same key. As we discussed above this is really not a great situation. Give at least 3
different suggestions regarding how we can build a BST where entries are organized by movie title, yet, there are
no duplicate keys.

� Exercise 4.15 Which of the following has the lowest complexity for large values of N?

250000 · log(N)

.001 ·N

.000001 ·N2

5000 · log(N2)

.01 ·N · log(N)

� Exercise 4.16 Which of the following has the lowest complexity for small values of N?

5.25 ·N
1.11 ·N
5 · log(N)

2.1 · log(N2)

.00001 ·N2

� Exercise 4.17 Typically, changes to the key values in nodes for a BST are not allowed because they could break the
BST property. However, in practice we may come upon a situation in which we may have to update a data field
used as key. List the steps we could take to accomplish this without breaking the BST property in the tree. Write
the process in pseudo-code, and then provide a function in C that does this and add it to your BST application to
handle movie reviews.

Use the test-as-we-develop approach as described at the end of Chapter 3, documenting your tests for the new
function and adding them to the test-driver you have been working on for the restaurant reviews app.

After your new function is thoroughly tested on its own, add a set of tests to verify it works well with the rest
of the program, as per the guidelines in Chapter 3.

Finally, add an option to main() so the user has access to the new functionality. It should allow the user to
change the name of the restaurant (which we are using as key) for any of the reviews already present in the BST.

� Exercise 4.18 Implement tree sort from the description in the text (at the end of the subsection on in-order
traversals). Your tree sort function should take as input an un-sorted array of integers (or floats, up to you), and
return the sorted array using tree sort to carry out the sorting process.

4.10 Building programs that work - Part 4

In the previous Chapter we discussed the process for having a solid testing strategy that will allow us to
thoroughly check that our program’s functions are working as intended, and to verify that the completed software
performs its task correctly on any input that may be provided to it.
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A solid testing process will allow you to find bugs - errors in the way the program handles information that
result in wrong behaviour. Examples of this can be output that is not correct given the input, it can be behaviour in
the application that is not expected, it can be a serious problem that causes the program to break, or it can produce
unexpected changes to information being managed by your program. The term debugging has been around for a
long time (some say since the late 1800’s) but you can see the first actual bug found inside a computer in Fig. 4.20.

Figure 4.20: The first bug found inside a computer. This is from 1947 and resulted in erroneous results from math
computations. Photo: U.S. Government, Public Domain

Though the variety of bugs that you will encounter while developing software is very large, the process for
finding and correcting them is the same. The first step is to identify the existing of a bug. This may occur in
different ways:

The program fails one or more of your tests during development. This is normal while developing software
and is the best way of finding and fixing bugs.
A user reports a problem with the software once it’s been released. Which should happen much less often if
you have done your work properly. We want to avoid this, it is harder to find and fix bugs that were reported
by users.
Another developer, working with your program, reports a bug. This is common when working on open
source projects which involve a community of developers working together.

Regardless of how the bug was initially identified, the process for fixing it involves:

Figuring out how to reproduce the bug. With a failed test this is easy, you know which test failed and can run
this test anytime to trigger the bug. With user-reported bugs it is a bit more difficult as we often don’t have
enough information about what was going on when the bug occurred. With bugs identified by a developer, we
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usually get more information but we also have the option to contact the developer to figure out what sequence
of inputs or actions can be used to trigger the bug.
Once we have a way to trigger the bug, we need to determine what is the correct behaviour the program
should have for this test case, input sequence, or user action (whatever the case may be) - we can not fix a
bug if we do not know what the program should do in the correct case.
Once we have both a way to trigger the bug, and a thorough understanding of what the program should
do in the correct case it’s time to debug the program.

4.10.1 What does it mean to debug a program?

The process of fixing a bug, i.e. debugging, consists of tracing through the program to check each step
the program carries out to identify at which point the program produces an unexpected/wrong result or
behaviour. Usually, in a well designed program, we start by identifying the function (or perhaps a small sequence
of function calls) within which the bug occurs.

Once we have identified the function(s) where the bug occurs:
We have to check what is happening at each step/line within the function(s) on the input that triggers the
bug. We need to know what each step in the function is supposed to do, so we can verify each step and find
which ones produce the wrong results.
Once we have identified the line(s) where what the program does is different from what it should be doing:

Inspect the content of local variables, input arguments, arrays, and any other data that the program is
using.
If the information the program is using is correct, then the lines of code that produce the wrong behaviour
are likely wrong. Think through them carefully, trace the program on paper for the lines that are the
likely problem and figure out which step(s) are incorrect, then fix them.
If the data the program is using is not as expected, then the source of the bug is somewhere else. You
need to go back to tracing the program but this time you need to pay attention to where the data you
identified as having the wrong value is being manipulated. Once you identify the section of the code
where data gets modified or set incorrectly, think through that code, trace what it does on paper, and fix
any problems you find.

Keep in mind that if the problem is with information being used by a function, the actual origin of the
bug may be in an entirely different part of the program. However, once you know which piece of information
is getting wrong values you can trace the program looking at parts that have access and can change that specific
information to figure out where things are going wrong.

4.10.2 How do we trace a program?

The simplest way is to add a lot of print statements, each of which has to provide you with (at the very least):
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The specific location at which the print statement is taking place - so when you see something wrong you can
immediately find what part of the program the corresponding information was printed from.
Values of any variables, input arguments, arrays, or data structures that are being used at the program at that
specific point, and which you need to know in order to determine if the program is doing the right thing at
that particular point.
If the print statement is within a loop, the iteration of the loop, so if a problem is detected you know at what
point in the loop it happened.

Your task is then to read through the sequence of printed information, to identify where in the sequence
something is not correct, and then to go into the program to determine what may be the problem at the location
corresponding to where the print statement was produced.

This is a general way to trace through a program, and will work on a wide range of settings. It doesn’t require
special tools being available. But on the flip side, it doesn’t provide you with control over the process of tracing.
You can not stop the program to inspect what is happening in memory, and you have to dig through possibly very
long sequences of printed information.

A more powerful, but also more complex alternative to using print statements is the use of a debugger. This
is a specialized tool that allows you to control the process of tracing through a program so you can run each step,
then have a look at what is going on in memory with the program’s variables and data, and then continue with the
next step once you have checked everything is ok up to that point.

A standard debugger is called gdb, and is available in all Unix/Linux systems, which includes a large
proportion of computing servers and other systems you may need to work with. So knowing how to use gdb is
a valuable skill. The gdb debugger is a fairly sophisticated program, so if you want to learn to use it you should
spend a meaningful amount of time working through a tutorial on the subject. Many such tutorials are available
both as electronic documents and in the form of how-to videos. If you want to follow up on this, here’s a good place
to get started: https://users.ece.utexas.edu/~adnan/gdb-refcard.pdf.

The goal of using a debugger is the same as that of using print statements - you want to be able to inspect
what is happening with the program at each step so that you can check what is happening against what you
know should be happening and identify the place(s) where something is wrong.

4.10.3 Pitfalls to avoid

Whenever there is a problem with a program it is very important to remember: computers are deterministic,
predictable, and execute the instructions the program contains. It is easy to fall into one of the following pitfalls
by thinking that:

The program is correct, it must be some random thing with the computer. This is incorrect. Computers
are predictable and deterministic. If they do something, it is because the program caused them to do that.
Believing the program is correct against the evidence that there is a problem is one sure way to fail to fix the
problem.
It works on a different computer, therefore it’s a problem with the computer. This is most often incorrect. It
can actually happen that a hardware problem may cause a program to fail in weird ways but this is very rare.
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Most likely, there are differences in how the program is running on these computers and these differences
cause the bug to trigger in one but not the other. This requires very careful investigation - with very high
probability the program has a bug and thorough testing will find it.
It fails because the test was tricky so it is ok, we don’t need to fix anything. This is incorrect. Thorough testing
requires that we try to break the program. This means testing on unexpected or possibly incomplete or
incorrect inputs and verifying that the program does the right thing and doesn’t fail. Our programs should
not fail because we have not devoted enough thought to making them solid.
The bug is probably very difficult to trigger by a real user (i.e. it would show very very rarely) so it is ok not
to fix it. This is also incorrect and unethical. If we know there is a problem with the code, it is our duty to
fix it. Something like this: https://www.cnn.com/2019/05/05/us/boeing-737-max-disagree-ale
rt/index.html is bf wrong and should never be accepted.

Some bugs will be much harder to find and fix than others, and the more complex the software is, the more
time and effort it will likely take to test and debug thoroughly. However, if you are careful and follow a thorough,
logical process to testing and debugging you can find and fix any reported bug. Avoid convincing yourself that it
is acceptable to ignore a problem.

4.11 Time to Practice

In order to practice the process we have established for developing working software, from program design, to
testing, to debugging, we will look at one fairly short example that nevertheless will allow us to practice all of the
ideas we have covered thus far.

The problem: Our task is to implement a signal filtering function. Signal filtering is a common task in
applications that deal with media, communications, and machine learning among others. A common example of
filtering is smoothing a signal, for instance in order to reduce noise. Typically, we will have access to an input
which usually represents a signal of interest, such as an audio recording; and a filter which is a pattern of values
we will use to combine data in the input to produce a result. The filtering process is illustrated in Fig. 4.21.

The filter must be odd-length since we have to align its central entry with each input entry in order to compute
the corresponding output. Normally, the length of the filter is much smaller than the length of the signal. For
example one second of high-quality sounds data would contain over 40,000 entries, whereas a typical smoothing
filter would have 5, 7, or 9 entries.

The process itself is straightforward, as shown in the Figure.

4.11.1 Step 1 - Understanding the problem and designing the solution

As discussed at the end of Chapter 2, the first step in implementing a program that works for solving the above
problem is to understand the problem thoroughly. One way to verify you’ve understood the process above, is to
do an example of the filtering process on paper, with a short filter and maybe one or two different input locations.
You can use this later on when designing the tests for functions in the program.
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Figure 4.21: The process of filtering a 1D signal. The value of output[i] is the result of aligning the center of the
filter with the entry at input[i], and then adding up the result of mutiplying corresponding values. This has to be
done at every valid entry in input. Valid entries are those for which after aligning the filter with the input, there is
one input entry to multiply with each filter entry. For simplicity, the output value will be set to zero for non-valid
entries.
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� Exercise 4.19 Carefully review the description of the problem in the figure, and make notes to yourself that clearly
describe the process of filtering a 1D signal, including any conditions placed on the inputs and/or output of the
filtering process. Work out at least one short example on paper showing the computation that has to be carried out
by the filtering program.

The next step in our process is to come up with a written description of the algorithm, in enough detail that it
can be implemented.

� Exercise 4.20 Before continuing, write a complete description of the algorithm for 1D filtering. You can do this
as a list of steps in bullet point format, or as pseudo code. Do not attempt to write C code at this point.

You can compare your description of the algorithm with the pseudocode below (take special note of any steps
that are different/missing and if needed review the algorithm description to resolve any differences).

Algorithm: Filter1D - performs 1D filtering of an <input> array
with the specified <filter>.
Produces an <output> array with the same
length as the <input>, where each entry is
the result of applying the <filter> to the
corresponding entries in the <input> array.

Procedure:

* Loop over entries in the <input> array, one by one, using index <i>

- For each value of <i>
* Align the central entry in <filter> with the <input> entry <i>
* Check that the every entry in <filter> has a corresponding

entry in <input>
- if this is not the case, set <output[i] := 0> and

continue with the next <i>
* Compute the result of applying the <filter> to the

<input> at <i>: Multiply corresponding entries, and
add up the result of these products (this operation is
called a cross-correlation)

* Update <output[i]> to be the result of the cross-correlation

Having understood the problem, we have to design our solution. There is always more than one way, and
often many ways to do this, and in most cases there is no single correct way to solve any reasonably interesting
problem. So your focus here is not to find the one right solution but rather to design a solution that makes sense
to you, follows good design practice in terms of breaking up your algorithm into self-contained functions, that
you can test and debug with reasonable ease, and that, where applicable, uses data structures and algorithms
with good known complexity for the problem at hand.

� Exercise 4.21 Before continuing, come up with your own design for a program that implements the pseudocode
shown above. This means deciding how to break the problem into functions, and figuring out what the information
flow will be between these functions and main().

In the case above, a reasonable way to break up the problem into functions we have to implement could involve:
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A function called crossCorrelation() that computes the cross-correlation between an input array and a filter
array at a specified index i
A function called filter1D() that loops over the input array calling the cross-correlation function to obtain
the value of the output

As noted above, this is only one way to solve the problem, someone else may decide to do everything in the
algorithm within as single function. Both of these solutions have their own advantages and disadvantages. We will
proceed with the breakdown above.

4.11.2 Step 2 - Testing as we develop

At the end of Chapter 3, we looked at the process of testing a program as we are developing it. This
involves choosing the order of implementation for the various functions, then implementing them in order and
thoroughly testing each function as we complete it before moving on to the next one.

For the problem at hand, we have two functions, and it is fairly clear that cross-correlation has to be
implemented first because it is used by the function that computes the output array. Therefore, we will

Implement crossCorrelation()
Thoroughly test crossCorrelation()
Implement filter1D()
Thoroughly test filter1D()

and once we have completed the steps above, we will then thoroughly test the complete process of filtering
1D signals to make sure it works for a variety of possible inputs as well as a variety of filters.

� Exercise 4.22 Implement crossCorrelation() and filter1D() following the design and pseudocode described above.
There is a reference implementation below, which you will use for testing and debugging, but you should first
implement these functions yourself - compare your implementation with the reference below and carefully consider
any differences. You can apply the tests and debugging process described below to your own implementation as
well as the reference one.

� Exercise 4.23 Write down a set of tests for the crossCorrelation() function, the filter1D() function, and the
complete working code. The tests should be thorough and allow you to discover any potential bugs or errors in the
computation being performed by the filter.

4.11.2.1 Step 3 - Debugging

In order to practice debugging, consider the implementation below for the two functions that comprise our 1D
filter:

double crossCorrelation(double input[],int n, double filter[], int m, int idx)
{

// This function returns the cross-correlation between an input
// array and a filter array at input location ’idx’.
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//
// Inputs: input[] - a 1D array of size n
// filter[] - a 1D array of size m
//
// n>m , and m must be an odd integer number
// (n-1)-hs >= idx >= hs
//
// The cross correlation is defined as
//
// cross_correlation=sum_{i = -hs}^(hs) input[idx-i]*filter[i+hs]
//

double cross_correlation=0;
int hs=(m-1)/2; // Half the filter size
int i;

for (i=-hs; i<hs; i++);
{

cross_correlation+=input[idx-i]*filter[hs-i];
}

return cross_correlation;
}

void filter1d(double input[], int n, double filter[], int m, double output[])
{
// This function takes a 1D input array of size n, and a 1D filter of
// size m, and produces an output result (same size as the input) that
// is the result of evaluating the cross-correlation between the input
// and the filter at each valid location.
//
// Inputs: input[] - a 1D array of size n
// filter[] - a 1D array of size m, m<n, m is odd
// output[] - a 1D array of size n
//

double cc;
int hs;
int i;

hs=(m-1)/2;

for (i=0;i<=n;i++) // Initialize output array to zeros
output[i]=0;

for (i=0; i<=n; i++)
output[i]=crossCorrelation(input,n,filter,m,i);

}

The code above looks reasonable and correct, but it in fact contains bugs. Your task now is to use the tests
you developed above to identify problems with the implementation, and once you have found a problem, debug it
by following the process described in this Chapter.

� Exercise 4.24 Use the set of tests you developed to find bugs in the implementation above. Once you identify a bug,
carefully trace through the code using either carefully placed, informative printf() statements, or a debugger
such as gdb in order to identify where the problem is, and then correct it. Remember you must be able to follow
each instruction in the implementation, and you must know what the correct result of each instruction must be (in
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terms of the variables and data involved in them).

If you do not discover any problems with your tests, that would indicate your set of tests was not thorough
enough, and you should revisit Chapter 3 and the process of testing, then expand or change your set of tests
accordingly. The end result of working your way through this section and completing all of its exercises as well as
the debugging task should be an implementation that is thoroughly tested, solid, and that will perform 1D filtering
on any input signal and valid filter correctly.

� Exercise 4.25 Carry out the testing and debugging process on your own implementation of the functions for the 1D
filter. Once you are satisfied that your own implementation works correctly, perform an additional set of high-level
tests that consist of filtering multiple, different input signals with various filters, using both the (now fixed) reference
implementation, as well as your own. compare the output from both of these for each input/filter test case, and
ensure they are identical for every test. If you find any differences, then either or both of the implementations still
contain bugs. Find and correct any problems found in this manner.

The final exercise in this section illustrates one more way in which we can test a program we have developed:
by comparing it with a different implementation (which can be in a different programming language, or simply
written by a different developer or team). This is common practice for software that implements functionality that
is well known or common, and for which we can easily find reference implementations available for our testing.
However, be careful:

Do not copy or immitate code from the reference library - Code that has been developed by someone else
is protected by copyright, copying it or using trivial variations of it is an infraction. You are expected to
develop your own solution independently and without looking at the work of others. We will discuss how to
incorporate and re-use code from open source or creative-commons libraries in a later Chapter.
Do not assume that the reference implementation is free of bugs. If you find a disagreement between results
obtained with your own code, and that of the reference implementation, all that you can conclude from this is
that at least one of them has a bug, you have to carefully trace through your program, and if necessary also
the reference implementation in order to determine which one(s) have errors.
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