
Introduction to Computer Science

Fundamental concepts in CS and how to use them to solve problems

Author: Francisco J. Estrada

Institute: University of Toronto at Scarborough

Date: Apr. 01, 2024

Version: 2.0

This book is free to distribute and use, you are not permitted to charge for any part of it. The
contents of the book are distributed under the CC BY-NC-ND license. The latest version can be

found at http://www.cs.utoronto.ca/ strider/IntroCSbook/

Contents

Chapter 1 Introduction 1
1.1 What this book is about . 1
1.2 Our programming language . 2
1.3 Structure of a program in C . 3
1.4 Saying Hello! . 6
1.5 Your first exercise! . 9
1.6 How to deal with compiler errors . 9
1.7 A few notes on printf() . 11
1.8 The fundamental C control structures . 13
1.9 Exercises . 17
1.10 Building Programs That Work - Part 1 . 19

Chapter 2 The C Memory Model 20
2.1 Computer memory is like a room full of lockers . 20
2.2 What happens in memory when we declare a variable in C? . 21
2.3 Functions in C – how information moves about . 24
2.4 Arrays . 36
2.5 What is a pointer, and why do we need them? . 42
2.6 Model versus Reality . 60
2.7 Additional Exercises . 61
2.8 Building Programs That Work - Part 2 . 64

Chapter 3 Organizing, Storing, and Accessing Information 71
3.1 How to build a Bento Box . 73
3.2 Getting user input . 87
3.3 Handling realistic amounts of data . 90
3.4 Containers and Lists . 93
3.5 Linked Lists . 95
3.6 Implementing a Linked List in C . 104
3.7 Building a linked list of reviews . 118
3.8 Searching for specific items in large data collections . 127
3.9 Deleting nodes from a linked list . 131
3.10 Queues . 134
3.11 Wrapping up and summary . 136
3.12 Problem Solving . 138
3.13 Problems involving containers and lists . 139
3.14 Program listing for the linked list implementation in C . 144

CONTENTS (C) F. Estrada 2024

3.15 Building Programs that Work - Part 3 . 148

Chapter 4 Solving Problems Efficiently 153
4.1 Computational Complexity . 158
4.2 How to make search more efficient . 164
4.3 Trees, Binary Trees, and Binary Search Trees . 169
4.4 Binary Search Trees . 170
4.5 Tree traversals . 179
4.6 Implementing a BST . 182
4.7 Have we solved the problem? . 191
4.8 Wrapping up . 194
4.9 Additional Exercises . 194
4.10 Building programs that work - Part 4 . 195
4.11 Time to Practice . 199

Chapter 5 Graphs and Recursion 205
5.1 Graphs . 205
5.2 Representing graphs . 212
5.3 Complexity of Graph Operations . 215
5.4 Recursion as a tool for problem solving . 217
5.5 General principles of recursion . 222
5.6 Implementation considerations for recursive methods . 235
5.7 Solving graph problems with recursion . 240
5.8 Debugging recursive code . 243
5.9 Additional Exercises . 245
5.10 Building programs that work - Part 5 . 248

Chapter 6 Designing and Building Good Software 256
6.1 Software as a collection of modules . 256
6.2 A wish list for building good software . 258
6.3 How modules are organized and used in C . 259
6.4 Interacting with modules: The Application Programming Interface (API) 261
6.5 Limitations of our programming language . 268
6.6 Object Oriented Programming (OOP) . 269
6.7 Implementing a class in C++ . 272
6.8 Inheritance and class hierarchies . 281
6.9 Building programs that work - Part 6 . 292

ii

Chapter 1 Introduction

1.1 What this book is about

The goal of this book is to help you explore a few of the most interesting and useful ideas in computer science.
These ideas are found in one form or another in the majority of areas of application, research, and study that
comprise computer science, and they constitute a powerful toolbox for solving problems in a wide range of fields.
The book will introduce these ideas by exploring the kinds of problems they can be used to solve, and will show
how they are connected and form a strong foundation for the serious study of advanced computer science topics.

The book is not a programming book, or a book about coding, though we will be doing plenty of that as
a necessary component of fully understanding the different ideas and tools being covered. Therefore, a certain
amount of familiarity with programming concepts is required. In particular, this book is intended for someone who
has gone through an introductory programming course at the college level. No specific prior language is assumed,
but familiarity with fundamental programming concepts including variables, functions, control structures such
as bf conditionals and loops; breaking a problem into the steps required to solve it, and implementing those steps
in a program properly organized into functions; and testing and debugging a program. For the sake of generality,
the book assumes familiarity with Python, but exposure to a different language such as Java or even C will not be a
disadvantage in any way.

The focus of the book is on thoroughly understanding ideas, on developing your problem solving ability,
and on building a set of skills that will allow you to successfully dive into more advanced computer science
material. The examples, exercises, and problems presented in the book have been carefully designed to guide you
in developing these skills and habits; however, they can only be as useful as your own effort allows them to be.
To make the most of the book, you should take every opportunity presented to you to practice, think through the
content, and exercise what you have learned. As you progress through the book, keep the following skills in the
back of your mind, and take the time and effort needed to develop and strengthen them:

Understanding a problem in terms of the task and date involved, and the expected outcome of solving the
problem.
Identifying a suitable approach to the solution, based on understanding the concepts and ideas presented in
the book.
Determining whether your proposed solution is reasonable and efficient, based on understanding the amount
of work the computer has to do while carrying it out.
Making reasonable design choices in implementing your solution based on carefully considering the problem,
the intended user, and your own experience.
Predicting what your solution will do given a specific input, so you can properly design tests intended to
ensure your solution works correctly all the time.

We will revisit these skills at different points through the book, and we will build them up slowly but
continuously as we progress through the material. So, let us dive in and start our exploration!

1.2 Our programming language (C) F. Estrada 2024

1.2 Our programming language

Throughout this book we will be using the C programming language. C, as it is often simply called, was
developed in the early 1970’s by Dennis M. Ritchie. Currently, the language is extensively used for all kinds of
applications ranging from operating systems and robotics, to sound, image, and video processing, to embedded
systems software.

The fact that the language has been in continuous use for over half a century should not lead you to thinking
that it is outdated and no longer useful, it is in fact one of the top programming languages in use today. Its extensive
use means that there is a high probability you will need to use it at different points through your career as a computer
scientist, and it is an excellent language to learn as being comfortable with it opens doors for working in serious
applications that require a low-level, fast, and well studied programming language. Some of the properties of C that
make it a good choice for an introductory course in CS include:

It is an imperative language. This means that the structure of a program, and the types of control structures
(such as conditional statements, loops, etc.) will be familiar to you from any introductory programming
course.
It is a simple language, it provides precisely the support we need to focus on the concepts and algorithms
that comprise our course, without having to become distracted by the richness of features, syntax, and
programming constructs available in more recent languages.
It will require you to know in detail what each line of your program is doing. Programming in C will help
you strengthen your ability to fully understand what your code is doing at each step.
It is a skill that will be required of you in future courses. Whether you are in CS, Math, Stats, or a different
discipline altogether, the ability to think carefully and in detail about what your code is doing will help you
make the most of courses where programming is an essential component in understanding an exciting topic. If
you are in CS, knowledge of C will be required for courses such as: Operating Systems, Embedded Systems,
Computer Graphics, Computer Security, Computer Networks, Programming on the Web, Programming
Languages, and Compilers.
The memory model used by C is very simple, and accurately describes how computer storage works at a low
level. It maps directly to how memory is accessed by the computer’s processor, and how data and code are
processed once a piece of code is translated to the CPU’s machine language. Together with what you will
learn in a Computer Organization, it will allow you to fully understand how a computer works, and how it
can execute a program.

Working through the concepts in this course using the C language as your tool will help you develop a thorough
understanding of exactly what is going on inside a computer as it goes about solving a problem that is interesting
to us. This is possibly the most important habit you can develop in terms of building software. As a computer
scientist, you must fully understand what the computer is doing, you must be able to predict what a program you
implemented is going to do, you have to develop the ability to detect (by coming up with carefully thought out tests)
when your program isn’t doing what it should, and you need to be able to find and correct any bugs that may exist
in your program before allowing it to be used by others.

2

1.3 Structure of a program in C (C) F. Estrada 2024

All of these things are only possible if you fully understand what the computer is doing at every step of a
process or computation. In this book you will find very little (if anything) is hidden from you. We don’t use powerful
libraries (though many of them are available in C) to help us do work - because unless we thoroughly study what
the library does we would not know exactly what our program is doing. We don’t avoid studying and understanding
technical details of how the computer is processing information, and how your program is storing, moving around,
and modifying the input it is working on - because then we would not fully understand how the program achieves
its work. And we do not take shortcuts in order to get to where we are going faster (though many such shortcuts
exist, for instance, we could use automated code-writing tools, or modify existing programs someone else wrote)
- because then we would not develop our own ability to think through a problem from beginning to end, and then
develop the program that solves it.

Everything you need in order to understand the key ideas this book contains will be discussed within these
pages. This means our very first step must be to learn about our programming language, and become familiar with
the tool that will allow us to explore the interesting ideas the book is about.

1.3 Structure of a program in C

First things first. A C program is just a text file that has the extension .c, that means you can use any text
editor you like and are familiar with to write and edit your programs. While there is a wide range of tools and
IDEs (Integrated Development Environments) you can use to do this, for the purpose of this book and its contents,
it would be best if you used a simple text editor with syntax highlighting such as Notepad+. The reason for this is
that IDEs are intended to be time-saving tools for software development, and because of that they do a lot of work
for the developer transparently (without telling you about it), producing code we haven’t carefully thought through
ourselves. Since we are starting our study of C, we want to learn everything regarding how a program is written,
compiled, and run. So our best tool at this point is a basic text editor with syntax highlighting.

Secondly, C is a compiled language. If you’re familiar with Python, then you are used to being able to type
Python commands within an interactive terminal, and having Python immediately carry out those commands and
provide any relevant output. If you write a script in Python, you can directly import functions from the script,
and you can run code from the script without any additional work. However, C is not like that. The text file that
contains the C program can not be run by your computer, there is no interactive terminal for C in which you can type
commands that are immediately executed. Instead, in order to run a program you must carry out these 3 steps:

Edit your program in the text editor, and save it as a file with the extension .c
Compile your program using a C language compiler such as gcc (we’ll explain this shortly)
Run your program

We will get plenty of practice with the above process during the rest of this chapter. But before we can get
there, we first need to learn what the structure and parts of a C program are, as well as the essential building blocks
of every program we will need to write.

The basic structure of a C program will not be surprising if you have written any programs before, whether in
Python, Java, or any other programming language:

3

1.3 Structure of a program in C (C) F. Estrada 2024

A program is split into functions, each function carries out a specific task related to implementing a given
algorithm.
All C programs start at a function called main(). This function is in charge of using the rest of the code in
the program to carry out the specified algorithm.
C programs can include and use code from libraries (similar to Python modules), which provide a wide range
of functionality.
Blocks of code that belong together are grouped by using delimiters, in C these are curly braces {}.
We can add comment blocks to document and explain our code.

1.3.1 A word about data

We write programs for the purpose of manipulating some form of information, which we usually call data.
This can be anything, from simple lists of number or lines of text, to complete movies that include video tracks,
audio channels, subtitles, and other information. All of the data must eventually be stored in the computer’s working
memory in order for our program to be able to access it, and process it in whatever way is required.

The important thing to keep in mind when you are working with data in C, is that for every different data item
our program needs to work with, we must let the computer know what kind of information it represents. In
programming terminology, each data item has an associated data type. Data we will work with will usually be
stored in variables. There are two unbreakable rules about using variables in C that you must learn and remember:

1) A Variable has to be declared before it can be used. This means, your program must explicitly state the
name of the variable, and the variable’s data type.

2) After a variable has been declared, you can not change its name or its data type. That is, if your
program said it is going to create a variable called x, and this variable will be used to store integer values, then this
variable will always be called x and can only ever store integers.

There are good technical reasons why the two rules above are needed, and we will get into some of those later
on. For now, just remember these two rules.

The fundamental data types supported by C are:

int - An integer number. Keep in mind there is a limit to how big this number can be (C can’t handle infinitely
large integers)
float/double - Floating point number, used to store real valued quantities (e.g. 3.14159265)
char - A single character such as ’A’, or ’#’. The list of characters that a char can store can be found in the
ASCII table)
void - This indicates no data type, and can’t be used for variables, but we will see later it has important uses
in our programs

As you can see there aren’t many data types. Part of our course will consist of learning how to use these basic
data types as if they were Lego building blocks, and that with the basic types shown above we can build powerful
data containers such as the lists and dictionaries you may have used in Python.

4

1.3 Structure of a program in C (C) F. Estrada 2024

1.3.2 Overall structure of a C program

At the coarsest level, a C program looks like the listing below. Do not worry about the syntax right now, it
will be covered in detail soon, instead, pay attention to the parts that comprise the program and see how they are
organized.

// This is an example program. The ’//’ indicates a comment, anything
// found after, all the way to the end of the same line of text, is ignored.

/*
You can also write entire comment blocks without needing a ’//’ for
each line if you start with a ’/*’
Anything that follows is innored until the end of the comment
block, which is indicated by

*/

// Now for the structure of the program:

// Part 1)
// At the top, we list the libraries our code will use.
// To import a library, we use the ’#include<>’ statement, similar
// to a Python import.

#include<stdlib.h> // This is the standard C library
#include<stdio.h> // This is the standard input/output library

// Part 2)
// After the libraries, we will find the code that comprises the
// program, organized into functions.
// Notice that curly braces {} are used to indicate where things
// begin and end. This applies to functions, loops, conditional
// statements, and other code structures

void a_Function_In_C(int x,int y,int z)
{

int w; // Variable declarations should be at the top of a function

// program statements, as many as needed, including calls to other
// functions

another_Function(); // Function calls are pretty much done the same way as in Python
}

// There will be as many functions as needed for the program to carry
// out its work (and we’d expect to see code for ’anotherFunction()’ which
// our program seems to be using.

// Part 3)
// The main() function. Every complete program must have it, and
// the program always starts from the code in main()

int main(void)
{

int x; // An integer variable called x
double y; // A floating point number called y
char one_character; // A single character

5

1.4 Saying Hello! (C) F. Estrada 2024

program_statement_1; // Every program statement in C ends with ’;’
program_statement_2; // if you forget the ’;’, you get an error!

a_Function_In_C(1,2,3); // a sample function call!
// There will be more functions and code
// in a typical program!

}

As you can see there’s nothing very surprising. Python programs are organized in much the same way, and
while the syntax looks different, the thought process that goes into organizing your program is the same. We will
soon get into all the important details, but first let’s implement and run our first C program. This will also get you
started with practicing the 3-step process we will be using every time we write and run a program throughout the
entire book.

1.4 Saying Hello!

A tradition that goes back to 1978, is that your first program in C should do nothing more than say "hello,
world!". This comes to us courtesy of Brian Kernighan, a Canadian computer scientist who co-wrote the first, and
still standard, book on C programming: "The C Programming Language". Let’s have a go at it, and as we do so we
will review the 3-step process that we have to follow every time we want to edit and run a C program.

1.4.1 Write the program

Type-in the program below (or copy and paste it from here!) into a text file called HelloWorld.c, don’t forget
to save the program once you’re done, and make sure to note where the program was saved, you will need that
information in a moment.
/*

Hello World!
Welcome to programming in C

*/

#include<stdio.h>

int main()
{

printf("hello, world!\n");
return 0;

}

Note

The printf() function is part of the standard input/output library, and prints formatted information to the
terminal. It has a large number of options that we will study later, but for now, suffice it to say that the string
to be printed goes between the quotes, and the ’\n’ at the end is the newline character and tells the function
that it should go to the next line after printing (without it, if you have another print statement, the output of
the second one will be printed immediately after the first one, on the same line).

6

1.4 Saying Hello! (C) F. Estrada 2024

1.4.2 Compile your code

Unlike Python, C doesn’t have an interactive mode, and the text inside your program file can not be run
as-is. Instead, we need to use a program called a compiler to generate an executable version of our program. The
compiler’s job is to read your code, check it for syntax, make sure the code follows all rules of the C programming
language, and then translate the text in the program to machine instructions in an executable format. You can then
run the executable.

The compiler will report any syntax or structural errors in your code (much like Python will report syntax
problems when you load a program), but even if your program compiles without errors, that doesn’t mean the
program is actually correct in terms of the work it has to do. Errors can happen while the program is running due
to mistakes in the program logic or incorrect implementation of an algorithm. Such errors can not be detected by
the compiler, they will require careful testing to identify and fix. This will be a topic of serious discussion later on.

To compile your code:

Open a terminal – depending on what computer you have, and its operating system (i.e. Mac, Windows, or
Linux), the process to do this will be slightly different. If you don’t know how to do it, you can easily find
out by Googling ’How can I open a terminal in [my O/S]’.
Using the ’cd’ command to change your directory to the location in your computer where you saved your
program. If you’ve never used a terminal before, this will be new to you, not to worry, you can easily find out
how to do this by asking Google for instructions for your operating system.
Once you have your terminal in the directory that contains your code (you can type dir to list the files in
that directory and check your program is there), you can call the compiler to create an executable for your
program.

Note

What are we doing here? and why is this needed? The program we wrote and saved in a text file is
intended to be read by humans. The C language is meant to be read and understood by software developers.
Your computer’s microprocessor, on the other hand, does not understand C and it doesn’t know what to do
with a text file. Your computer’s microprocessor has its own very very simple language called machine
code or machine language. Unlike C, or Python, this language can only do very very simple things - such
as moving one piece of information from one place to another, or performing some computation on pieces
of data, or comparing data stored in memory. Because it’s so simple, it’s hard for anyone to write long,
complicated programs directly using machine language. So instead, we use more powerful programming
languages that are easier to read and understand, and that provide lots of features that machine language does
not have. But this creates a problem: we now need to translate our programs from whatever language
they are written in, into machine code. In the case of C, the C language compiler performs this task. It
takes as input the text file that contains your program, and translates it into the correct sequence of machine
language instructions that carry out all the C instructions you wrote in your code. This process is illustrated
in Figure 1.1.

7

1.4 Saying Hello! (C) F. Estrada 2024

Figure 1.1: Compiling a C program creates an executable program. This is just a sequence of machine code
instructions that carry out the process described in your C program.

We will be using the gcc compiler (the name comes from GNU Compiler Collection). It is a free, open-source
compiler that supports C, C++, and other variants, and is widely accepted as the standard compiler for working
with C. Your computer may not have a compiler installed. To check if you have the compiler installed, simply open
a terminal, and type gcc –version then press ENTER.

If the compiler is properly installed, you will see something like this:
> gcc --version

gcc (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0
Copyright (C) 2017 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

The specific version of the compiler doesn’t matter. The only thing that matters is that if the compiler is
not installed, you will instead receive an error message (which will be different depending on your computer and
operating system). If you do not have the gcc compiler installed in your computer, the first step is to install it. Once
more, for this task Google is your friend. Ask it to give you a tutorial on how to install gcc on your computer (and
provide it with information regarding your computer model, and the operating system it runs). You can also find
detailed ’how to’ videos on how to install gcc for Mac, Windows, or Linux on YouTube. Or, if you want to try the
bleeding age of technology, try asking your favorite A.I. Large Language Model (e.g. ChatGPT, Gemini, etc.) to
guide you step by step in installing the compiler on your machine.

8

1.5 Your first exercise! (C) F. Estrada 2024

You will know you have successfully installed the compiler when you can perform the check described above
and receive the corresponding version information and copyright notice for your compiler.

Once you have gcc installed, you can compile your code by typing (without the ’>’ - this is just the terminal
prompt and may be different on your computer):
> gcc HelloWorld.c

This will produce an executable program called a.exe in Windows, or a.out in Linux and Mac. You can run
this from the terminal by typing
> a.exe

(or a.out in Linux or Mac)
If you want the executable file to have a specific name, you can do so by adding the -o option as shown below:

> gcc HelloWorld.c -o HelloWorld

Which will produce HelloWorld.exe on Windows, or simply HelloWorld on Linux and Mac.

1.5 Your first exercise!

You now know enough to try a little exercise, just to be sure you’ve properly understood all the material
discussed above. You will write your own version of the hello world program. Open a new file, and call it
MyHelloWorld.c. Make the program print out information about yourself, similar to what is shown below. The
specific information you choose to print does not matter, writing the program, and successfully getting it to compile
and run is the point of the exercise.

Here’s an example of what the output for your program might look like:
Hello! My name is: Paco
I am a student in: Computer Science
My favourite colour is: Blue
My favourite fruit is: Pomegranate

I am going to learn C! :)

Note that there is an empty line in the output. Write, compile and run your code. Chances are, the first time
you try this out you will run into all kinds of compiler messages. Here’s the most important thing about learning to
deal with compiler errors:

Do not stress out – they happen often and you can fix them

1.6 How to deal with compiler errors

Getting a long list of compiler error messages is a frustrating experience. You will have this experience at
some point, and however frustrating it can be, you will be fine if you can:

9

1.6 How to deal with compiler errors (C) F. Estrada 2024

Take a deep breath

Remind yourself that this is something every single person who has written programs in C has experienced.

Know that there is no error message that you can’t fix with a bit of help from the many, many programmers
who had the same error before you did.

The compiler goes through your code in order, from top to bottom. So errors will be reported in this order.
Here is a solid process you can use to find and fix any errors the compiler may have reported in your program:

Starting at the top of the error report (i.e. with the error that is closest to the top), carefully read the error
message and go to the line in your program that the compiler says is where the error was detected. Carefully
check for typos and for simple syntax errors (e.g. missing parentheses, missing semicolons, etc.). You may
need to check a couple of lines above the one the compiler complained about.
If there are no visible syntax problems, think through what the error message states, and consider how it
relates to the code in the line reported by the compiler as well as the couple lines above. It is entirely possible
you have never encountered this error before. If the error message is not clear, look for help. Here’s a pretty
good reference for common error messages as well as their explanation: https://aop.cs.cornell.edu
/styled-4/index.html.
If checking a reference like the above does not help you figure out what the error means, it’s time to go to
Google. Copy/paste the error message into the search box but do not include any additional information
such as the program’s name, or line numbers. Google doesn’t know your code, but it probably has seen the
same error message in thousands of posts before.
Carefully review the first few hits Google comes up with, chances are you will find an explanation of the
problem, and suggestions on how to fix it. The internet is full of helpful information regarding pretty much
any aspect of programming in C, so learn to use it well.
Done fixing one error? Go on to the next one. Keep going until no errors are left.

Keep a journal of errors you encountered, and what caused them. So you can refer to it in the future and
save time and effort. You will in time remember these things without having to visit your journal, but while you’re
learning, it’s a great tool.

10

https://aop.cs.cornell.edu/styled-4/index.html
https://aop.cs.cornell.edu/styled-4/index.html

1.7 A few notes on printf() (C) F. Estrada 2024

Note

The compiler produces two different types of messages you should pay attention to:
An error means there is a syntactic or semantic problem with your code. The program you wrote is incorrect
by the rules of the C language, and it can not be compiled until the error is fixed.
A warning means that though your program is technically correct by the rules of the C language, the compiler
has noticed something that is likely to get you in trouble when you run your program. The compiler will
produce an executable program (the compilation is successful), but running your program may result in
unexpected behaviour, your program may have a bug, or it may be doing something different than what you
intended.
You have no option but to fix errors because the compiler will not produce an executable program otherwise
But you should also make it a habit to fix all the warnings as well - ignoring warnings is a pretty good way
to get into trouble with bugs and unexpected behaviour.
This will become more and more important as we move on to more interesting ideas, and start implementing
more complex programs. You should start developing the habit of resolving any compiler messages from
the start.

1.7 A few notes on printf()

The printf() function will be with us all through the book. We will use it, of course, to output information and
results our program is producing. And we will use it extensively to test and debug what our program is doing. You
should become familiar with how it works. The standard format for printf() is as shown below:

printf("...formatting string...", variables, to, print, separated, by, commas);

The formatting string specifies what printf() is going to do with the list of variables it is printing, it tells
printf() the data type of the variables it is receiving, so that they are printed with the correct format. Formatting
options are specified using the ’%’ character as follows:

%d - Prints a decimal (integer) number
%f - Prints a floating point number
%c - Prints a single character
%s - Prints a string
%g - Prints a floating point number using scientific notation
%p - Prints a pointer (this will be formated as a hexadecimal value)

There are many more formatting options, and you can specify things such as the number of digits to print for
the integer and fractional parts of a floating point number. If you are looking for a way to give your program’s
output a specific format, look at the on-line documentation for printf(). Chances are the function does what you
need, you only need to find the correct format specifier.

Besides these format specifiers for variables, the printf() function also makes use of certain control sequences
to print special characters. These are identified by the \ character. Common control sequences include:

\n - New line (go to the next line and print there)
\t - Print a ’tab’

11

1.7 A few notes on printf() (C) F. Estrada 2024

\\ - Print a ’\’ symbol (otherwise the ’\’ is taken to be part of a control sequence)
%% - Print a ’%’ symbol (otherwise the ’%’ is taken to be part of a format specifier)

Finally, note that in C, strings are delimited by double quotes "...string...", whereas individual characters are
delimited by single quotes, as in ’C’.

Putting this all together, we can understand what a given printf() statement does:
printf("My variables are: %d, %f, %s \n", my_int, my_float, my_string);

The result of the above will be to print a line that looks like
My variables are: 10, 3.14159265, Hello World

And at the end of the string the ’\n’ sequence moves to the next line, so anything we print after will be output
to the next row of text in our terminal. Of course, the data type for your variables must match the format specified in
printf(), otherwise you will receive a compiler warning (remember we said above that this likely indicates something
is not quite right with your program!).
#include<stdio.h>
int main()
{

float pi;
pi=3.14159265;
printf("Printing an int, %d\n",pi);

}

Compiling the above results in

> gcc printf_test.c
printf_test.c: In function ’main’:
printf_test.c:6:12: warning: format ’%d’ expects argument of type ’int’, but argument 2 has

type ’double’ [-Wformat=]
printf("Printing an int, %d\n",pi);

^
> a.out
Printing an int, 190300824

Obviously, this is not what we would expect. Hopefully this gives you a very clear idea why you must resolve
all compiler warnings. Yes, the compiler has compiled your code and produced a working executable, but the
resulting program doesn’t do what you intended.

� Exercise 1.1
Write a little program that initializes a variable pi to 3.14159265, then prints out pi as an integer (should print

3), and as a floating point number with increasing fractional part lengths. i.e., the output of your program should
look like:

3
3.1
3.14
3.141
3.1415
3.14159
3.141592

12

1.8 The fundamental C control structures (C) F. Estrada 2024

3.1415926
3.14159265

1.8 The fundamental C control structures

We are almost ready to jump into the details of how to implement algorithms using C. But first, we should
have a look at how the control structures and loops you learned to use in Python are written and used in C. As you
will find out, the concepts and the way you use these structures is identical, the only thing that changes is the syntax
of how it looks in C. Happily, you can always look up the syntax if you don’t remember it at some point, and it will
become familiar and comfortable to you as we go along with the book.

1.8.1 Conditional Statements

Conditional statements are quite similar to what you’re familiar with from working with Python. We use if
statements to evaluate expressions and execute code that depends on the results. The structure of if...else statements
in C is as follows:

if (condition) // - The condition must be within parentheses
{

// Code to be executed if condition is true
}
else
{

// Code to be executed if condition is false
}

Of course, you can use nested if...else statements.

if (condition1)
{

// Some code
}
else if {condition2}

{
// Some alternate code

}
else if (condition3)

{
// Yet another possibility

}
else if ... // and we can keep going

Keep in mind that long sequences of if ... else if ... else if ... produce code that is harder to read and debug,
so try to avoid having a long sequence of statements of this type. It is always a good idea to spend a bit of extra
time thinking through what is the smallest, correct set of conditions your program needs to check, and to remove
any redundant checking.

Valid logical statements for the condition component can involve any existing variables, constant values (such
as 5, or ’p’, or 3.1415), and combinations thereof, as well as make use of any combination of valid comparison
operators. Common conditional operators are shown below:

13

1.8 The fundamental C control structures (C) F. Estrada 2024

a==b True if a equals b
a>b True if a is strictly greater than b
a<b True if a is strictly lesser than b
a>=b True if a is greater than or equal to b
a<=b True if a is lesser than or equal to b
a!=b True if a is not equal to b

In addition to the above, we can use logical operators to form conditional statements that evaluate multiple
relationships between variables. Common logical operators used in if statements include:

|| Logical or (this is a double vertical bar)
&& Logical and (this is a double ampersand)
! Logical not

Example 1.1
if ((a>b && c==d) || e!=f)
{

// Run this code!
}
else
{

// Run this code instead!
}

Be careful with the way you use operators. A common mistake is to use a single ’&’ or a single ’|’ instead
of the double symbol. The single ’&’ and single ’|’ perform an arithmetic and, and an arithmetic or respectively
(i.e. they are doing computation, not evaluating logical values), the result is a binary number instead of a true/false
value.

1.8.2 For loops

Loops are a fundamental programming construct, in C they come in two flavours: for loops and while loops.
For loops use a counter variable to keep track of how many times the loop has been carried out. Often, the counter
variable is just an integer that is increasing every time we go through the loop until the desired number of iterations
has been performed.

For loops have a simple syntax involving four distinct but necessary components:

for ((1) Initial value of the counter ; (2) Condition that causes the loop to continue ; (3)
increment for the counter)

{
(4) Body of the for loop - the instructions to be repeated

The loop itself is contained within curly braces, these
are indented so that they align with the ’for’ keyword

}

Example 1.2
#include<stdio.h>

int main()
{

14

1.8 The fundamental C control structures (C) F. Estrada 2024

int i;

for (i=0; i<10; i=i+1) // Notice there is no ’;’ after the ’)’. This is important!
{

printf("%d\n",i);
}

}

In the for loop above, the first line, containing the for keyword, provides all the information we need to
understand how many times this loop will be carried out. It uses an integer variable called ’i’ as a counter. When
the loop begins, the value of ’i’ is set to zero (this is part (1) of the declaration). The loop will be executed as long
as ’i’ is less than 10 (part (2) of the declaration), and at the end of each iteration, the counter will be incremented
by 1 (part (3) of the declaration). The body of the loop (part (4) of the declaration) is simply a printf() statement,
but a loop can contain any number of lines of program code.

Question: What is the output of the program above?

1.8.3 Variations on for loops

The C programming language is very flexible. This is both useful and also dangerous so you have to be careful.
In the case of for loops, you have a lot of flexibility in how the loop will work. You can use different data types as
counter variables, which means your counter can be either positive or negative, integer or floating point, or even a
character type variable.

The increment itself can be anything (as long as it can be applied to the corresponding counter variable). You
can even (intentionally) create endless loops. And you can change the value of the counter variable inside the
loop. This could happen as a result of operations or conditional statements that depend on what is happening within
the loop itself. This is not good programming practice, and you should not do it - the important point is this: C will
expect you to know what you are doing and to stay out of trouble. If you ask the language to do something, it
will do it. It’s up to you to learn what is good and reasonable, and what is not.

We will help you along the way by providing guidance and examples of good programming practice. But
nothing replaces experience. Practice, try things out, and learn as much as you can from seeing what happens!

Here are a couple examples of the variety of loops you can create in C:
Example 1.3

float angle;
float pi;

pi=3.14159265;

for (angle=0.0; angle<2.0*pi; angle=angle+.01)
{

printf("%f\n",sin(angle));
}

The code above will print the sine of angles between 0 and 2*pi at intervals of .01 radians.
Example 1.4

int i;

15

1.8 The fundamental C control structures (C) F. Estrada 2024

for (i=100; i>=0 ; i=i-3)
{

printf("Counting down, we have %d left!\n",i);
}

The code above counts down from 100 in steps of 3.
Example 1.5

int i,j; // We can declare variables of the same type in one
// line, separated by commas.

for (i=0; i<10 ; i=i+1)
{

for (j=0; j<i; j=j+1)
{

printf("%d, ",j);
}
printf("\n");

}

A nested loop where the length of the loop on j depends on the value of i.

Question: What is the output of the nested for loops above?

1.8.4 While loops

While loops in C are very similar to while loops in Python:
while (condition)
{

// body of the loop
}

The condition is a logic statement that depends on variables accessible to the part of the code where the while
loop is found. Logic statements evaluate to either true or false. The loop is executed for as long as the condition is
true.

Any combination of variables with their corresponding data types can be used, as long as the logic statements
being applied to them are valid.
Example 1.6

i=0;
while (i<25)
{

printf("This is a loop that prints an integer %d\n",i);
i=i+1;

}

A common bug occurs if we forget to change the value of the variable used in the condition at the top of
the loop. This is easy to do if the loop is long, or if we are used to for loops which automatically increment the
counter. If you run a program with loops, and it doesn’t seem to do anything (it doesn’t end), check that you do not
have an infinite loop because you forgot to increment a counter variable.

16

1.9 Exercises (C) F. Estrada 2024

1.8.5 Breaking out of loops

Often enough, we may want to end a loop well before its stopping condition is met. For example, suppose you
are searching within a very long text document to determine whether it contains the word "chameleon" in it, in
pseudocode this would look like:

while <words remain in the document>
if current word == "chameleon"

print out "The word is contained in the document!"
exit loop

Note that we are specifically terminating the loop early – it makes sense, once we have found the word we were
looking for there is no sense going over the remaining contents of the document.

It is possible to make a program end a loop at any time by using the break statement. This applies both to for
loops as well as while loops.
Example 1.7
int i=0;
int x=89211022;

// Use a for loop to check if x is a prime number, by testing whether we can divide x
// by integers from 2 all the way to x-1 and get a remainder of 0

for (i=2; i<x; i++)
{

if (x%i == 0) // If x modulo i is zero (dividing x by i leaves nothing left)
{

printf("x is not prime, sorry! it is divisible by %d\n",i);
break;

}
}

The example is chosen to illustrate an important point - in the program above, we find out that x is not prime
in the first iteration of the loop (i=2, and x is divisible by 2). There is no sense in allowing the loop to continue for
some 89 million iterations doing useless work, the right thing to do is to end the loop the moment we have found
out what we wanted to know.

1.9 Exercises

The best way to practice what you’ve learned is to exercise (this is true for everything worth learning: Playing
a musical instrument, cooking, sports, painting, dancing, etc.). So you should challenge yourself to write a few
simple programs that combine conditionals, loops, and involve using variables with different data types as well
as printing information using various formatting options available with printf().

Here are a few suggestions for exercises that involve the material covered in this chapter:

� Exercise 1.2 Write a program that outputs the letters in the alphabet (from A to Z)

� Exercise 1.3 Modify the program from (1) so that it prints both the upper-case and lower-case version of each letter
side by side, e.g.

17

1.10 Building Programs That Work - Part 1 (C) F. Estrada 2024

A - a
B - b
C - c
.
.
.
.
Z - z

Hint: You may want to look at the ASCII character table (easily found online), and think of text characters
as numbers. C lets you do with character type variables pretty much anything you can do with integer type
variables.

� Exercise 1.4 Write a program that prints out the prime numbers between 2 and 100

� Exercise 1.5 Write a program that prints out all the possible sequences of 3 characters in ’A-Z’, e.g.
AAA
AAB
AAC
.
.
.
AAZ
ABA
ABB
ABC
.
.
.
AZZ
BAA
BAB
BAC
.
.
.
// and so on until you reach
.
.
.
ZZZ

Note that you do not need strings - which we haven’t learned about yet. This should be done using character
type variables only.

� Exercise 1.6 A more challenging exercise: Write a small program that uses a for loop to go over the numbers
from 1 to 100, and prints out any that are perfect squares. The output of your program should look like:

4 = 2*2
9 = 3*3
16 = 4*4
. (there are more perfect squares printed)
100 = 10*10

You will need to use for loops, conditional statements, and printf().

18

1.10 Building Programs That Work - Part 1 (C) F. Estrada 2024

1.10 Building Programs That Work - Part 1

As we move on through the book, we will work towards developing habits and skills that will help ensure the
programs we write work. What this means is that

They perform the function they are designed to perform, correctly, every time.
They have been thoroughly and carefully tested to remove as many bugs as possible.
They have been properly documented so that they can be maintained, improved, and/or expanded by ourselves
or others.
They perform their work efficiently, using an algorithm known to be, or that can be shown to be, not
unnecessarily wasteful of computation, storage, or other resources.

We will cover different aspects of building code that works in each of the chapters in the book. For this first
chapter, our task is simply to develop good habits with respect to working with a compiler. So, as you work on each
of the exercises in the book, or write your own, make sure to spend time exercising these five steps:

Compile your code from the terminal, not from within an IDE.
Look up each of the compiler errors/warnings you haven’t seen before.
Locate the line(s) in your code that produce the specific errors/warnings you’re currently observing.
Figure out what you need to do to fix the corresponding error or warning - this may include doing the work
of finding information about the issue online.
Once you have resolved all errors and warnings (your program compiles cleanly), run your program from
the terminal and verify that it does what you expected.

The more practice you build with these, the better your work process will be, and the less time you will have
to spend trying to figure out why a particular program is not working properly.

19

Chapter 2 The C Memory Model

In this chapter we will learn about how computer memory is organized, and how our programs use it. This is
important because at the end of the day, our programs will be working with information stored in the computer’s
memory. Knowing what is stored where, and how to access and modify it, is essential for understanding what your
program is doing.

2.1 Computer memory is like a room full of lockers

If you have been to the change room in a gym, or if you had a locker while you were in high school, you will
have noticed the rows of lockers set up there for storage (Fig. 2.1). Row upon row of lockers, some empty, some
full, the ones that are full are assigned to a person who has either a key or a combination that allows them to put
things into, and take things out of their locker.

Figure 2.1: A locker room. Organized as rows and columns of numbered lockers, each with its own lock or key.
Image: Tiia Monto, Wikimedia Commons, CC-SA 3.0

All locker rooms share a couple of important properties:

Lockers are reserved - the owner of the locker has a key or combination that opens the door so only the owner
can store things into, or take things out of the locker.
Lockers are ordered by number in a way that makes it easy to find a specific one.

The process of reserving a locker changes from place to place and is not important to us right now. Neither is
the size of the lockers, or the number of them in the locker room. What matters to us is that the properties listed
above are very much the same properties of the main memory storage inside a computer. Indeed, at the lowest level,
computer memory is just like a very large locker room:

2.2 What happens in memory when we declare a variable in C? (C) F. Estrada 2024

It consists of numbered boxes where we can store information
The boxes are ordered by number in ascending order
Boxes are reserved so that only the program using that box to store information can store or access the
information in that box (we will see later what happens when we need to share)
If you look at the microprocessor under a microscope, you can see the rows and columns of memory lockers
(Fig. 2.2)

Figure 2.2: This is a micrograph of a CPU. Notice the rows and columns in the regions labeled L1 cache and L2
cache. These comprise this CPUs memory area, and they are indeed organized much like a regular locker room.
You can learn all about how this works in any Computer Organization book. Image: VIA Gallery, Wikimedia Commons,
CC-SA 2.0

For the purpose of this course, we will think of computer memory as nothing more than a large locker room
where our programs keep their data. We will see that declaring variables, assigning values to these variables, and
moving information between functions is very much the same thing as reserving a set of suitably sized lockers,
storing things in them, and moving those things around.

2.2 What happens in memory when we declare a variable in C?

As we saw in the previous Chapter, C supports a small number of data types we can use to declare variables.
Let’s have a look at what happens in memory when we compile and run a program that does something very simple:
Declaring a single integer variable and assigning a value to it.
Example 2.1

#include<stdio.h>
int main()
{

21

2.2 What happens in memory when we declare a variable in C? (C) F. Estrada 2024

int x;
x=5;

}

Let’s picture our computer’s memory as that locker room we’ve been talking about - this could look like the
image in Fig. 2.3.

Figure 2.3: A section of the computer’s memory where there’s empty lockers - the specific locker numbers do not
matter, they could be anything.

Figure 2.3 shows just a little section of memory, with 4 numbered boxes. The numbers on them are not
important, just as the locker number you get when you go exercising doesn’t matter. All that matters is that they
are empty, and available for use by a program (in this case, our program!).

Note

What does empty mean? - The diagram above shows the four boxes as empty. This means that the computer
knows these lockers are not reserved for use by any program. However, inside the actual computer memory
there may be junk left over by whatever program last used that box before. So in practice, you should
always assume that an empty locker contains junk until you change its contents to something useful. Be
careful with this, it can cause bugs that are hard to fix because your program looks right – it’s just using
junk values left over inside a locker you haven’t yet put anything meaningful into.

In C, declaring a variable (first line in Example 2.1):
int x;

means that we want to reserve a locker, to store one integer value, and we want to tag that locker with the
name x. In the computer’s memory, a locker suitable for storing one integer value is reserved for our program to
use, and tagged with x, as shown in Fig. 2.4.

Figure 2.4: The same memory section from Fig. 2.3, after our program has requested space for an integer variable
called x.

22

2.2 What happens in memory when we declare a variable in C? (C) F. Estrada 2024

Note that:

’x’ is not inside the box, the box is still empty, the variable’s name x is used as a tag so at any point when
our program needs x, we can easily find the locker that contains the value of that variable
x is also tagged as being of type int. Thereafter your C program will know what type of data is stored in that
box
Declaring a variable does not initialize it or set it to zero. As you see, the locker remains empty. Be careful
with this, some compilers choose to reset variables to zero, and some do not. Or do so only in some cases
and not in others. The safe practice is to assume your new variable contains junk after you initialize it, up
until the point where you give it a meaningful value

In our example, locker #3241 is now reserved for our program’s use, and it will store whatever values variable
x will take during the program’s execution. The next line in Example 2.1 contains an assignment operation:

x=5;

This literally means go to the box tagged with x, and put a 5 inside it. The end result is shown in Fig. 2.5.

Figure 2.5: The same memory section from Fig. 2.4 after we perform an assignment, which puts data (an integer
with value 5) inside the locker tagged x.

Of course, there could be a much more complicated expression right after the equals sign, in which case the
expression is evaluated (it must result in a concrete data value) and the result is stored in the corresponding box.

Let’s do a more interesting example to practice how all of this works. We will declare several variables, see
what the corresponding situation is in memory after the declaration, and summarize the key ideas that explain how
variables in C work in the computer’s memory.
Example 2.2

main()
{

int x; // Reserve space for an integer variable called x
float pi; // Reserve space for a float variable called pi
char c; // Reserve space for a variable of type char called c

x=5; // Go to the box tagged ’x’ and store a 5 there
pi=3.141592; // Go to the box tagged ’pi’ and store 3.141592 there
c=’C’; // Go to the box tagged ’c’ and store the character C in it.

// The figure illustrates the situation in memory at *this* exact point.
}

23

2.3 Functions in C – how information moves about (C) F. Estrada 2024

The situation in memory after the code above is processed will look as shown in Fig. 2.6. We have three
variables: x, pi, c, each with their own data type (int, float, and char respectively). We also have assigned values
to these variables that make sense for their data type. In the memory model, we see that we have three reserved
boxes, each of these corresponds to one of our variables in the order in which they were declared, each box is
tagged with the variable’s name, and the variable’s data type, and each box contains the value that we assigned to
the corresponding variable.

Figure 2.6: This shows the result of processing the code in example 2.2, we have three boxes reserved, and each of
them contains a value as requested by the program.

Note

From the examples above, you should take home the following essential facts about variables:
Variables are just boxes in memory where we can store information
The variable’s name is just a tag so the compiler knows which box we want to use
Each variable gets its own box, and each box can have only one tag
Assignments put values (data) inside boxes
All your program (or anyone else’s program for that matter) ever does is go into boxes, see or change
what is in there, and move data around

� Exercise 2.1
Draw a diagram like the one above showing what you’d expect would happen in memory if we compile and

run the following program:
int main()
{

int x;
int y;

x=5;
y=x; // What does this do?

return 0;
}

2.3 Functions in C – how information moves about

In your introductory programming course, you learned that we break programs into small functions each of
which has a specific task to perform, you learned that functions often take input arguments, and often return some

24

2.3 Functions in C – how information moves about (C) F. Estrada 2024

value that is the result of whatever processing the function does. The input arguments and the return value are the
foundation of how information moves around inside a program.

Let’s now take a look at how we declare a function in C, and discuss the important properties of how
information moves around from one function to another as our program goes about its work. The example below
declares a simple function. It has one input argument, and it computes and then returns the value corresponding to
the square of the input argument.
Example 2.3

int square(int x) // This is the function declaration
{

int s; // The body of the function consists of anything contained
s=x*x; // within the curly braces
return s;

}

First off, let’s spend a moment looking at the line that declares the function
int square(int x)

// ^ ^ ^
// | | \------ Input parameter: an integer variable called ’x’
// | \------------- The name of the function
// \------------------- The function’s return type. This one returns an
// integer value

The declaration has 3 parts always:
First off, the function’s return type which tell the compiler the data type of whatever information the function
will return. Functions in C can only return a single data value.
The function’s name - you should make sure to give each function a name that appropriately describes what
it does.
The function’s input arguments - the function can have as many input arguments as needed, separated by
commas. For each input argument, we need to provide the data type, and a name.

Note

Just like with variables, a function’s data type is fixed. Once defined it can not be changed. The same goes
for the argument list, once declared, the function will always expect the correct number of arguments and
they all must have the correct data type. If you call a function with the wrong number or type of arguments
you can expect the compiler to report an error or warning (depending on the severity of the issue).

After the function’s declaration, we find the function’s body which contains
Declarations for the variables the function will use. Note that each input argument is already a variable
usable by the function - for this reason, variables in a function must have a name that is different from any of
the input arguments.
The function’s code, which can be as short or as long as needed. Good programming practice suggests you
should keep functions on the shorter side as much as possible.

25

2.3 Functions in C – how information moves about (C) F. Estrada 2024

The return statement, which causes the function to send a result back to whichever part of the program
called the function. The function can return any of the variables or arguments it has available, but the value
being returned must be of the correct data type.

That is all there is to function declarations in C. All the functions you will ever write in this language follow
the rules stated above. Of course, a program will often contain many functions, so let’s now look at an example
where we have two functions, and we will use this example to understand what happens in memory when some part
of a program uses a function to do some work.
Example 2.4

#include<stdio.h>

int square(int x)
{

int s;
s=x*x;
return s;

}

int main()
{

int input;
int result;

input=7;
result=square(input);

// Here we would normally print the result, we’ll see how to do that very shortly!

return 0; // This is new! we’ll explain below
}

Let’s see what happens in memory when we compile and run the code above:
When the compiler is processing your program, it will note that main() declares two integer variables called

input and result. These two variables will be assigned one locker each, next to each other, in the order in which
they appear in the program. The compiler will also note that main() is expected to return an int. Therefore the
compiler will make sure there is a separate box reserved to store this return value.

Note

Whatever value a function returns must be stored in its own box, and this box will be reserved right beside
the last of the function’s variables.

When we run the program, the instructions that are executed are the instructions in main(). In Example 2.4,
the first thing the program does is to store a 7 in input. In the memory model, things will look as shown in Fig. 2.7
immediately after the 7 has been stored in the corresponding box.

The next line of the program is important to understand because all function calls in C work in the same
way:

26

2.3 Functions in C – how information moves about (C) F. Estrada 2024

Figure 2.7: A memory model for the program in Example 2.4 up to the line input=7;.

result=square(input);

It does the following:

1) It reserves memory for the function square() to use (notice that space for functions is only reserved at
the time when they are called). From the function’s declaration the compiler knows it needs space for one input
argument x, one local variable s, and the function’s return value which is of type int. This is shown in Fig. 2.8.
Notice that the memory locations reserved for square() could be anywhere and not necessarily close to the lockers
reserved for main().

Figure 2.8: Memory model after lockers have been reserved for the input argument, local variables, and return
value for function square().

27

2.3 Functions in C – how information moves about (C) F. Estrada 2024

Note

The memory model has been annotated to show clearly which lockers were reserved by main() and which
were reserved by square(). There is an essential property of the memory model that we should make sure to
understand at this point: variables and input arguments that belong to a function can only be accessed
by the function that owns them. This means that main() doesn’t know anything about square()’s variables,
their name, type, or where their lockers are. Similarly, square() doesn’t know anything about main()’s
variables, their type, or where they are. We say that the variables (and input arguments) declared by a
function are local because only the function that owns them can access/read/modify the corresponding
boxes.

Definition 2.1

♣

The scope of a variable is the region within a program’s code where this variable can be referenced
and manipulated.

The scope of all the local variables and input arguments declared within a function is the code contained
within the curly brackets that delimit the start and end of the function. There are other possible scopes for
variables in C, and we will learn about them as we progress through the course.

2) It calls the function, which means: It passes the required arguments to the function and then proceeds with
whatever instructions are part of the function itself. In the example, the function was called from main() using the
local variable input as the argument to square(). So the value of input is copied onto the box reserved for x.
This is shown in Fig. 2.9.

Figure 2.9: Calling the function means making a copy of values passed to the function into the corresponding
input arguments.

3) The program then continues with the instructions that is are part of function square(). In this case, it
evaluates the square of the input argument and stores it in the local variable s. The last line in square() contains

28

2.3 Functions in C – how information moves about (C) F. Estrada 2024

the return statement. In this case, it returns whatever the value of the local variable s is at that point. This makes
a copy of the value of s and stores it in the box reserved for the return value of square(), as shown in Fig. 2.10.

Figure 2.10: Memory model after the instructions in square() are carried out, the last line copies the value we want
to return into the box reserved for the function’s return value.

4) The program then returns to main() exactly to the line where square() was called, and copies the return
value of square() onto the local variable result. This is illustrated in Fig. 2.11

Figure 2.11: When the function returns, whatever is stored in its return value box will be copied into main()’s
local variable result.

5) Because the work of square() is complete, the memory reserved for the function is released, which means
these lockers become available for any other function or program to use for their own work. This is important,
memory reserved for a function is only reserved for as long as the function is doing work. As soon as the

29

2.3 Functions in C – how information moves about (C) F. Estrada 2024

function returns, its reserved lockers are released. The final state of the memory for our program will look as shown
in Fig. 2.12.

Figure 2.12: Memory model for the program after the function square() has returned, its work is done, and memory
reserved for it has been released.

Note that the computer does not clean up the boxes that were used by square. They are marked as empty,
and they can be reserved by any other program or function, but whatever was left there, is still there. This is why, as
discussed previously, we should assume that lockers assigned to our program will contain junk information until
we put something meaningful there.

After the call to square(), the program continues with any instructions left in main(), which could, for example,
print the result, or there could be more function calls, etc. In the example above there’s no more work for main() to
do, and we find a return statement that signals the end of main. Why does main() have a return value? who gets
that return value?.

30

2.3 Functions in C – how information moves about (C) F. Estrada 2024

Note

All programs have to be started by something/someone. The simple programs we have written so far are
launched by us from a terminal, but the same thing happens when you double click on a program on your
computer’s desktop, or when another application launches a helper program to do some work. The point
is, the program is called by something outside itself, much the same way functions are called within a
program. So, by convention, a C program must have a main() function that returns an integer value. The
point of this return value is to provide information to whatever user or application launched the program.
Most of the time, the purpose of the return value is to indicate whether the program completed its work
correctly, or conversely, whether there was some error and the program did not finish properly. The
expected return values are defined as:

0 indicates the program completed correctly, with no errors
any positive integer greater than zero indicates an error occurred, and the value of the integer can
be used as an error code to indicate what the error was. There is no standard for what non-zero return
values mean, it is up to the application to provide documentation that explains different possible error
codes

2.3.1 Summary

From the examples above and the discussion on how information moves around between different functions in
a program, you should make sure to remember the following principles that apply to every function, and function
call in C.

Each function will have its own memory space. Functions can only access/change information that is stored
in boxes reserved for the function, no other part of the program has access to these boxes.
Because each function has its own lockers, we say that variables and input arguments are local to the function.
For each function, space is reserved for each input argument in the order in which they appear in the function
declaration, then space is reserved for each local variable in the order in which they are declared, and finally
a box is reserved for the function’s return value.
Multiple functions can have variables or input arguments with the same name, since they each have their
own box within the memory space reserved for their function. There is no confusion about which variable
some part of the program is using.
Information is passed into the function by making copies of the variables passed to the function in the
function call into the corresponding boxes for the function’s input arguments. This is an essential property
of how functions in C work. We say that arguments are passed by value into C functions because we provide
the function with a copy of the values it is being passed as arguments.
Information is passed back outside the function by copying the value stored in the function’s return value
box into the specified local variable outside of the function.
A function can only return a single data item.
Once the function’s work is done, the space reserved for the function is released for use by other functions or
programs. This means functions only use memory space when they are actively doing work.

31

2.3 Functions in C – how information moves about (C) F. Estrada 2024

� Exercise 2.2 Show in in a memory model diagram what the contents of memory would look like just before
the space reserved for square() is released. Your memory model diagram should clearly show each function’s
memory space, and for each function it should contain the function’s arguments if any, the local variables, and
the return value. These should be in the order discussed above. Do not forget to tag each box with the variable’s
name and data type.

#include<stdio.h>

int square(int x)
{

x=x*x;
return x;

}

int main()
{

int x;
x=9;
square(x);

// What would be the value of main()’s x variable if we printed it out in *this* line?

return 0;
}

Question: What would be the final value for the local variable x declared by main()?

2.3.2 Input arguments and type conversions

You know by now that all variables, input arguments, and function return values have an associated data type.
You can not change the data type at run-time. However, certain type conversions are possible during the process
of passing arguments to a function, as well as during the assignment of return values to variables. Let’s see an
example:

#include<stdio.h>

float square(float v)
{

// Now this function takes as input a floating point number,
// and produces a corresponding floating point result.

return v*v; // In C, we can do a little bit of
// processing in the return statement!

}

int main()
{

float pi;
int x,y;
int result;

x=5;

// Notice we will call square() with an int, not a float,
// and we are assigning the result (which is float) to an int.
y=square(x);

32

2.3 Functions in C – how information moves about (C) F. Estrada 2024

printf("The first result is %d\n",y); // What does this print out?

pi=3.14159265;
y=square(pi);
printf("The second result is %d\n",y); // What does this print out?

return 0;
}

Note that we have changed the declaration of the function square(). It now takes as input argument a floating
point value v and returns a floating point number that is the square of v. This time we shortened the function a bit
so the calculation happens right at the return statement. Draw for yourself a diagram of what’s going on in memory
when you call this function.

Here’s what happens when we compile and run the little program:
>./a.out
The first result is 25
The second result is 9

What’s going on here?

The first time we call square(), we are passing in x which is of type int. Because square() expects a float as
an input parameter, the value of x which is 5 is converted into a floating point value 5.0, and then stored in
the corresponding input argument v.
This process of converting information from one data type to another is called type-casting.
After square() has done its work, the result which is the floating point value 25.0 is returned. However, it
is being assigned to local variable y which is of type int. The floating point value 25.0 is type-cast to the
integer value 25 and stored in y - so the first print statement prints out 25.
The second time we call square() we are passing in pi which is of type float. No conversion is necessary, so
the value 3.14159265 is copied onto v and the square is computed and returned.
However, the result, 9.869604 is being assigned to local variable y which is an int. Once more, the floating
point value is converted to an integer. This is done by chopping off the fractional part, the conversion
does not round the value to the nearest integer. The resulting value assigned to y is 9, and this is what the
second print statement outputs.

Note

The conversion, or type casting, is transparent to you but you must always be aware when a type conversion
is taking place, as this is a place where bugs can easily creep into your program. In fact, good programming
practice would have you make sure type casting only happens when the programmer explicitly intended for
it to happen.

There is a consistent set of rules used to type-cast values in C. You can learn how these rules work, but it is
a bad idea to write code that assumes you know these rules perfectly – worse, it makes your code hard to debug:
Anyone reading the code would have to be an expert to identify and solve problems introduced by unintended
type-casting. Here’s an example of why this is important.

33

2.3 Functions in C – how information moves about (C) F. Estrada 2024

Example 2.5
#include<stdio.h>

int main()
{

int x,y;
float result;

x=5;
y=2;
result=x/y;
printf("The result is: %f\n",result);

return 0;
}

Compiling and running the code above produces:
./a.out
The result is: 2.000000

The result is not correct despite the fact that result was declared as a float and should be able to represent
the value of 5/2. However, because the expression x/y must be evaluated first, and since both x and y are int,
the division carried out is an integer division which gives the integer result of 2. The integer 2 then is type-cast
into a floating point value 2.0. To ensure things work out properly in your code you must explicitly indicate
when type conversions should happen, and what data type the conversion should result in. A correctly written
version of the code above would look like this:

#include<stdio.h>

int main()
{

int x,y;
float result;

x=5;
y=2;
result=(float)x/(float)y;
printf("The result is: %f\n",result);

return 0;
}

In the program above, the expression (float)x indicates we are requesting the compiler perform a type
conversion for us. In this case, it tells the compiler to convert the value of x into a float before it’s used. Likewise
(float)y tells the compiler to convert the value of y into a float before using it. Since the division is now working
with two floating point numbers, we should expect the result to come out right:

./a.out
The result is: 2.500000

The code above is an example of explicit type casting. We tell the compiler when to perform a type conversion,
and what data type we want the result to have. It is essential that we do this whenever we are writing code that
uses mixed data types such as integers and floats (this is quite common).

34

2.3 Functions in C – how information moves about (C) F. Estrada 2024

Note

You must be very careful when performing type conversions to ensure that the result makes sense and is
valid. This is an issue because floating point variables can store values that are much, much larger (or much,
much smaller) than any integer can handle. So for instance, if you tried to type-cast the floating point value
12345678987654321.0, which has no fractional par, into an integer; you would get 4294967295. This is
clearly wrong! but happens because the original value is too large for an integer to hold. This is unavoidable
and a property of these two data types. Similarly, any floating point value smaller than 1, will give you zero.

Not only must you perform the type conversions explicitly in your program (as shown above), but you also have
to implement safeguards to make sure the values that result from the conversion will be valid within the context
of your program, and will not cause a bug. To summarize, you should always carry out explicit type conversion
because

It will help you keep in mind a complete and clear picture of what your code is doing, what the expected
inputs and outputs to computations and functions should be, and ensures that data is being manipulated as
you expected at all times.
It greatly reduces the possibility that you will run into unexpected bugs caused by type conversions being
performed without appropriate safeguards. This is no small thing, Fig. 2.13 shows an example of the kind of
major fault that can result from not being careful with type conversion.

Figure 2.13: An Ariane-5 rocket self-destructed after takeoff due to software error caused by an incorrect type
conversion. The cost of this mistake was over 370 million dollars. Photo: ARIANE 5 Flight 501 Failure Report
by the Inquiry Board (ht tp : // su nn yd ay .m it .e du /n as a-c la ss /A ri an e5-r ep or t. ht ml), Public
Domain

35

http://sunnyday.mit.edu/nasa-class/Ariane5-report.html

2.4 Arrays (C) F. Estrada 2024

Note

So why are data types such a big deal?
All the information in digital computer is stored in the form of bits, so every piece of information you
will ever manipulate with a standard digital computer, from integers, to floats, to music videos must be
represented, in some way, as a string of ones and zeros.
How the bits are interpreted to represent information depends on what type of information is being stored.
Integers and floating point numbers have completely different binary representations. This means that the
circuitry inside the CPU that carries out operations with these different types of binary data can not mix and
match bit strings for integers with those for floating point numbers.
Therefore, all CPUs have separate instructions for doing arithmetic and logic operations on integers, and on
floating point values. You can see that these circuits are even located on different parts of the CPU surface
by looking at a micro photograph of the CPUs circuitry in Fig. 2.14.

Figure 2.14: Micrograph of a Pentium CPU showing the separate circuits for the integer (labeled Superscalar
Integer Execution Units), and floating point (labeled Pipelined Floating Point) arithmetic units. Photo courtesy of:
CPSC 3300 Computer Systems Organization, Clemson University

2.4 Arrays

In C, we can reserve space for more than one data item of a given type. The resulting set of items is called an
array, and it is the simplest data structure that will allow you to work with sets of data.

Here’s how we declare an array in C:
#include<stdio.h>

36

2.4 Arrays (C) F. Estrada 2024

int main()
{

int my_array[10]; // This is an array of 10 integer values

my_array[0]=10; // This is the first entry in the array
my_array[9]=5; // This is the last entry in the array

return 0;
}

The syntax should look familiar to you, and you’ve likely used similar syntax to manipulate lists in Python. Be
aware that arrays are very different and much simpler than Python lists. The only operations they support are
reading and storing values in the different array locations.

In the memory model, the array declaration shown above causes a group of 10 consecutive lockers, all of
them able to store an integer to be reserved for the program. The first box, with the lowest locker number is
tagged with the array name and array type. This is shown in Fig. 2.15.

Figure 2.15: Memory model for an integer array with 10 entries, the first and last box were assigned values by the
program, the rest remain empty.

All array declarations work the same way, the only thing that changes is the number of lockers reserved (which
depends on the size specified in the array declaration), and the data type for the entries. You can create arrays with
any valid data type supported by C.

Important facts about arrays that you must remember:

37

2.4 Arrays (C) F. Estrada 2024

The size of the array is fixed. Once you declare the array, you can not extend it. This is unlike the lists and
dictionaries you are used to from Python which can grow whenever needed. You need to think carefully and
in advance about how much space your program will need.
The lockers reserved for the entries in an array are always contiguous, arrays can not have their entries
scattered all over memory.
Indexing is the same as in Python: array[0] is the first entry, array[N-1] is the last entry in an array with N
entries. The only valid indexes are integers in [0,N-1]. Negative indexes are not allowed, neither are floating
point values allowed as indexes.
Array indexes are offsets, if you request to access array[3], the compiler finds the first locker reserved for the
array, and then looks for the box that is 3 lockers after it.
All entries in the array have the same type, you can not mix data types within an array.
C will not warn you or protect you from trying to access array entries outside valid index range. You must be
extra careful with this, as it is a common source of bad bugs.

The last point in the list above is particularly important, as array indexing problems are among the most
common, and often tricky to find sources of bugs in programs. Let’s take for instance the sample array described
above with 10 entries. We know this means that valid array indexes must be within [0,9]. But our program can
request the following:

array[10]=5; // Indexing beyond the array

This will in effect try to store an integer value of 5 in a location that is 10 lockers after the first box in the array.
This box has not been reserved for the array, so our access request is not valid. At that point one of several
things will happen (and we can not always predict which of them will occur, even for the same program, on the
same computer, different things could happen at different times):

The program will continue to run after the line that contains the invalid access. It will store a 5 at the locker
you requested – this is a bug, we are overwriting something else. That box could be reserved for another
local variable or array, it could be data from another function in your code, or it could be empty space.
It will be hard to detect and fix this bug because the program continues as if there was no problem. The
program will show unpredictable behaviour and may or may not do the same thing at different times.
The code may crash (stop working before the normal end of its work) – this is obviously a bug, in this case the
box we’re trying to write to belongs to another program or is otherwise reserved. The computer’s operating
system terminates our program because it has tried to access data it doesn’t own. Once more, this may happen
unpredictably. Sometimes the program may finish without crashing, other times it will crash, or it may
work on one computer and not another, or it may work in Windows but not Mac or vice versa.
Another possibility is that the program continues past the line that has the invalid access, but the effect of
changing a value in a box outside the array causes a problem later on, at a different point in the program. This
can result in erroneous values being computed, unpredictable or unexpected behaviour from the program, or
a crash at a different point in the code.

All of these are situations we must avoid. Unpredictability is not acceptable in a program, and array indexing

38

2.4 Arrays (C) F. Estrada 2024

issues are a common source of unpredictable behaviour. Therefore, be very, very careful when indexing into arrays
in C.

Note

If your program is behaving in unexpected ways, check your array indexing and make sure you don’t have
indexes out of bounds at any point.

� Exercise 2.3 Write a small program that creates an array for 10 floating point values. Then fills this array with
multiples of pi. That is:

array[0]=1*pi;
array[1]=2*pi;
array[2]=3*pi;
// etc... maybe you want to use a loop...

Have your program print out the entries in the array in separate lines once the array has been filled with the
correct values.

� Exercise 2.4 Modify the program you wrote for Exercise 2.3 so that there is a second array, this array should be of
integer type, and the entries of this array are filled by type-casting to int the corresponding entry of the floating
point array that contains the multiples of pi.

Make sure your program prints out both the floating point value, and the corresponding int value for each
index in the arrays.

� Exercise 2.5 Modify the program you wrote for Exercise 2.4 so that instead of using type-casting, the entries in the
integer array are obtained by rounding the corresponding floating point value to the nearest integer.

You should write your own separate function that takes as input a floating point value, and returns the
corresponding nearest integer.

2.4.1 Strings in C

One of the most common uses of arrays in C is for storing and manipulating strings. Indeed, in C a string
is nothing more than an array of individual characters. This makes it very different from the strings you may have
used in Python (and which provided you with all kinds of functionality). Strings in C are incredibly simple, and
working with them becomes a matter of knowing how to access and manipulate entries in arrays.

Here’s what a typical declaration for a string looks like in C
char a_string[1024];

Because strings are just arrays, they follow exactly the same rules as arrays of integer, float, or any other data
type. Importantly, the size of the string is fixed and can not be changed after the string has been declared, and
initially the contents are junk. The declaration above reserves space for up to 1024 characters, and we will not be
able to store any strings longer than that (if we try, we will get into the same problems we described earlier regarding
invalid indexing into arrays).

39

2.4 Arrays (C) F. Estrada 2024

The string behaves exactly like any other array in C, so we can access and modify entries in the array as we
normally would expect.

a_string[0]=’H’;
a_string[1]=’e’;
a_string[2]=’l’;
a_string[3]=’l’;
a_string[4]=’o’;
a_string[5]=’\0’;

The above code changes the contents of our string to contain the characters ’H’,’e’,’l’,’l’,’o’,’\0’.

Definition 2.2

♣

The last entry is especially important, it is the end-of-string delimiter, in our program, we write it as a ’\0’.
But it represents a single character, not two. The ’\0’ is just a special sequence to tell the compiler we want
to mark the end of a string.

Note

Why do strings need a delimiter?

Because we may want to store different text sequences within the same string array. The reason we declared
the original array to have 1024 entries is that we want to have enough space that we can store a pretty large
variety of text sequences without worrying they won’t fit inside the string array.
Most of the text sequences we may be interested in will be shorter than 1024 characters. The example
above contains only the text Hello, 6 characters altogether. But the string array contains 1024 entries and
the remaining ones will be full of junk.
Any functions that need to work on the text of the string (for example, to print out what the string contains)
need to know which entries contain valid text, set by our program, and what entries are unassigned junk.
The end-of-string delimiter is used to tell these functions where the valid text stops. Anything stored in the
array after the end-of-string delimiter is ignored.

A common source of bugs stems from using the end-of-string delimiter incorrectly (e.g. putting in the wrong
place, or alternately, forgetting to put it where it should be). All valid C strings must have an end-of-string
delimiter just after the valid text portion of the string.

Question: If the string array contains 1024 entries, what is the maximum number of regular text characters
that we can store in this string?

Of course, updating strings character by character would be a very annoying process. Luckily, there is a
standard C library that contains functions you can use to manipulate strings.
#include<stdio.h>
#include<string.h> // - This is the C library for string management

int main()
{

40

2.4 Arrays (C) F. Estrada 2024

char a_string[1024];

// Let’s initialize a string - we can do that with the strcpy() (string copy) function
strcpy(a_string, "This is a message for those learning C.\n");

// Let’s print out what we have stored in the string at this point:
printf("%s\n",a_string);

// Let’s now concatenate another string to what we already have using the strcat() (string
concatenate) function

strcat(a_string, "Don’t forget to practice using strings!\n");

// Let’s print out the string after concatenation
printf("%s\n",a_string);

return 0;
}

Compiling and running the program above produces
>./a.out
This is a message for those learning C.

This is a message for those learning C.
Don’t forget to practice using strings!

A couple of things worth noticing:
A single string can contain multiple lines of text (we can split text into separate lines by using the special

end-of-line character \n).
The functions in the string library automatically make sure the end-of-string delimiter is properly placed after

each manipulation of the string.
In the examples above we used constant string values (the text sequences within double quotes in the program

above) to initialize the string and to concatenate onto the string. But functions in the string library can use other
string arrays as well, for instance, we can copy one string onto another with strcpy(), and we can concatenate the
contents of two string arrays using strcat().

There are many more functions in the string library that you will find useful. For example, strlen() returns
the length of the string - this is the number of characters of valid text, not including the end-of-string delimiter.
Another useful function strcmp() can compare the contents of two strings to tell you whether they are identical or
different.

If you need to look up how to use these function, a handy resource is here: https://www.cs.bu.edu/te
aching/cpp/string/cstring/. This is from the computer science department at Boston University. There are
many other references and examples for using string library functions, so as ever, if you have a problem, Google is
your friend!

41

https://www.cs.bu.edu/teaching/cpp/string/cstring/
https://www.cs.bu.edu/teaching/cpp/string/cstring/

2.5 What is a pointer, and why do we need them? (C) F. Estrada 2024

Note

A final thought regarding strings: it is easy to run intro trouble with index-out-of-bounds issues when
manipulating strings. In particular, if we are concatenating strings, it is easy to end up with a text sequence
that is too long for the array that is meant to store it. This would create mayhem in memory as the string
manipulating functions will try to write to parts of memory that are not part of the string. You must be
careful to ensure all the text sequences your program will work with fit within the arrays reserved for the
strings themselves.

2.5 What is a pointer, and why do we need them?

Let’s review the original program we wrote to compute the square of a number:
#include<stdio.h>

int square(int y)
{

return y*y;
}

int main()
{

int x;
x=9;
x=square(x);

return 0;
}

You have seen this program before, main() will reserve space in memory for one integer variable called x, and
set it to 9. When we call square(), it will reserve space for an integer parameter called y and for an integer return
value which will be set to y*y. This is shown in Fig. 2.16.

The point we need to make here is that the only way for square() to change what is stored in main()’s local
variable x is by returning a value. This is the consequence of variables being local to functions, as we have discussed
in detail previously. This is perfectly fine for a wide range of functions we will ever need to implement, and it is
a safe way to write code, because the locality of variables ensures functions can not go around changing data that
they do not own.

However, there are situations where we want a function to be able to directly access, read, or modify
information that is stored somewhere else, and that is owned by a different part of the program. For example, this
is a common situation when working with arrays. Let’s say you have a program in which main() declared and is
using an array with one million floating point values (for example, this could be a simulation of weather patterns,
or it could contain statistics about stock prices, or it could represent the location of vehicles in a city grid). Now
imagine that every time main() calls another function to do some work that requires the array we make copies of
the array so each function has its own local copy as dictated by the principles of local variables and passing input
arguments by value.

42

2.5 What is a pointer, and why do we need them? (C) F. Estrada 2024

Figure 2.16: Memory model for the short program that computes the square of a number. This is what memory
would look like just before the memory used by square() is released.

Clearly, doing this would result in a lot of space being used for copies of the array, and a lot of time and work
would be spent simply creating and maintaining these copies so that they are in sync - all of these copies represent
the same data, so they should contain the same values once work on them has been done.

Note

This is not a good way to handle large collections of data. An array with one million entries is actually fairly
small, by today’s standards. A single video file with about 30 minutes worth of video can easily require one
thousand million array entries to fully load into memory.

In C, there is a simple and intuitive way to allow a function to access information it doesn’t own, it’s called a
pointer.

To understand what a pointer is, let’s start with an analogy to our locker room model for memory:
You reserve a locker at your gym to keep your clothes and toiletries. You know the locker number so you know

where your locker is, and the gym reserved the locker for you by giving you a key so only you can open the locker
and access what’s inside. As you are exercising (maybe playing basketball) with your friends, you realize you forgot
your water bottle in the locker. Lucky for you, one of your friends is heading there to fetch their phone so you ask
them to go to your locker and get your water bottle for you. You tell your friend your locker’s number so they
can find it - in effect you just gave your friend a pointer to your locker!, and you share your key so they can open
the locker and get the bottle for you. One should always stay well hydrated.

Definition 2.3

♣

In C, a pointer is simply a variable that contains a locker number that indicates where some information
the program needs to use is stored. Like all other variables declared by a function, it will have its own box
in the memory model, and has an associated data type that tells you the data type of the information
stored in the locker that the pointer is referring to.

There is nothing mysterious about pointers, they are nothing more than locker numbers we use to go find a

43

2.5 What is a pointer, and why do we need them? (C) F. Estrada 2024

specific box whose data we need.

In C, pointers have their own particular (and, to be fair, somewhat clunky) syntax. There are three fundamental
operations we need to learn to do with pointers: declare a pointer, assign a locker number to the pointer, and
use the pointer to access information. Let’s see how these work by way of an example:
Example 2.6

#include<stdio.h>

int main()
{

int my_int;
int *p=NULL; // A pointer to an int!

my_int=10; // Change the value in ’my_int’ directly
printf("My int is: %d\n",my_int);

p=&my_int; // Put ’the address of my_int’ in pointer p
*(p)=21; // Use the pointer to change the value of ’my_int’
printf("My int is: %d\n",my_int);

return 0;
}

Let’s see what’s happening here. First, main() reserves space for two variables, an integer variable called
my_int, and a pointer to an integer variable called p.

The ’*’ in the line:
int *p=NULL;

specifies that we are declaring a pointer variable, and the associated data type tells us the pointer will keep track
of the locker where we stored an int. Importantly, the pointer is initialized to NULL to indicate it is initially
not assigned to anything (we have not put a valid locker number in it just yet). In memory, this looks as shown in
Fig. 2.17.

Figure 2.17: Memory model for the program in Example 2.6 up to the line my_int=10;.

The next line is something we haven’t seen before:
p=&my_int; // Put ’the address of my_int’ in pointer p

this should be read as get the address of the variable called my_int and store it in p. Whenever you find a
statement like this in C you should translate it into the corresponding sentence in English so that you clearly

44

2.5 What is a pointer, and why do we need them? (C) F. Estrada 2024

understand what the program is doing. The ’&’ symbol is read as ’the address of’. The effect of this line of code is
that the compiler looks up the locker number for the box where my_int is stored and copies that locker number
into p. This is exactly the same thing that happens when you give your friend the number of your locker at the gym.
The result of this is shown in Fig 2.18.

Figure 2.18: Memory model for the program in Example 2.6 up to the line p=&my_int;.

So now, our pointer p stores the value of the locker number reserved for my_int, and we can use the pointer
to access or even change what is stored in that locker.

The next line does exactly that:
*(p)=21;

This should be read as go to the locker number specified by (p) and store 21 in there. Whenever you see a
sentence like this:

*(a pointer or pointer expression) = expression

or
variable = *(a pointer or pointer expression)

You should read the ’*’ as the contents of (whatever is in the pointer expression within the parentheses).

So the instruction *(p)=21; becomes make the contents of (p) equal to the value 21. We know that p has the
value 3241, so the instruction really says make the contents of box (3241) equal to the value 21. We are telling the
compiler to go to a specific locker, and put a particular value in that locker. This is shown in Fig. 2.19. Thereafter,
if we print the value of my_int, we will see it is 21.

Figure 2.19: This is the result of using pointer p to change the value of my_int.

What we just did is: we used a locker number to directly access a specific box in memory. We did that
without using the name of the corresponding variable which is important because we said before that each box in

45

2.5 What is a pointer, and why do we need them? (C) F. Estrada 2024

memory can only have one tag. However, now we have two different ways to access box 3241. One is by using the
local variable my_int, and the second one is by using pointer p. There really is no practical difference in terms of
using one or the other of these two methods, both will allow you to read or modify the value stored at box 3241.
However, the advantage of using a pointer is that we can have the same pointer variable point to different lockers
at different points in the program. So, unlike the local variable my_int which is always attached to the same box,
our pointer p can be used to access different data items at different points in the program.

Note

Using a pointer to access a locker directly will work as long as the locker is reserved by some function
in our program. We can not go poking around memory that is not reserved by our program by using
pointers to lockers the program doesn’t own. If we try that, the computer’s operating system will terminate
(end/crash) our program. This is a common bug. If your program does not complete correctly (it ends
without finishing its work, seemingly for no reason) or if the computer reports a segmentation fault, that is
a clear sign that there is a problem with the way your program is accessing memory locations. This can be
because the program is using pointers to lockers that it shouldn’t access, or it can happen if the program is
using invalid indexes into arrays. So, if you experience these problems, the first thing to do is to carefully
check code that uses pointers or arrays and make sure it is not accessing memory locations that are not valid
and correct for your program.

Note

As mentioned above, the syntax for pointers in C is a bit clunky. In particular, you have to be careful with
the meaning of the * symbol. It is used in two very different ways in the context of pointers:
float *fp; // This tells the compiler you want to declare a pointer called ’fp’

// which will point to a floating point data item

*(fp)=3.1415926; // This means ’assign to the contents of (fp) the value 3.1415926’ here
// the ’*’ is used to access data in a particular locker

� Exercise 2.6 In a memory model diagram, show what’s happening in memory with the following small program
that uses pointers. Indicate what the final value for x and y are.

#include<stdio.h>
int main()
{

int x,y;
int *p=NULL;

x=5;
p=&x;
*(p)=3;
y=*(p);

}

46

2.5 What is a pointer, and why do we need them? (C) F. Estrada 2024

Note

One more note regarding good programming style when declaring pointers. You should use
int *p;

instead of
int* p;

both of which compile, and both of which you can find in textbooks and programming manuals. The reason
for this is using int* (or any other data type with a * attached to it) is ambiguous. Here’s why:

int a,b;

tells anyone reading the code that you are declaring two integer variables, a and b. So, a declaration that
reads

int* p,q;

would reasonably be taken to mean you are declaring two integer pointers p and q. However, this is not
correct. The preceding line will declare a single integer pointer p, and a regular integer variable q. This
can easily be a source of misunderstanding. Conversely, any of the following declarations are completely
unambiguous:

int *p, *q;
int *p, q;
int p, *q;
int p,q

in each case, it is perfectly clear which variable is a pointer and which is just an int. Make sure to write code
that is clean, easy to read, and contains no ambiguity about what you mean to do.

2.5.1 Passing pointers to functions

As we mentioned before, a function can not directly use, access, or modify data that is external to itself. It
can only receive data via its input arguments, and can only send data out to the rest of the program via its return
value. This is the correct way for the function to work in many situations, and it is also good programming practice
because it prevents the function from accidentally changing data external to itself in unexpected ways. However, we
will find situations in which we need a function to directly access and/or modify data that is external to the function.

Let’s update our example with the square() function to understand how this may work, and once we see the
process in action, we will study the most common situation that requires us to allow functions to access information
owned by a different part of the program. Consider the version of the square() function shown in the example
below:
Example 2.7

#include<stdio.h>

void square(int *p)
{

47

2.5 What is a pointer, and why do we need them? (C) F. Estrada 2024

int x; // This is unnecessarily long,
x=*(p); // but we want you to see every
x=x*x; // step of the process.
*(p)=x;

}

int main()
{

int my_int;
my_int=7;

square(&my_int); // This reads ’take the address of my_int
// and pass it to square()’
// It’s like telling your friend your locker
// number at the gym.

printf("The final value for my_int is: %d\n",my_int);

return 0;
}

In the memory model, the first thing that happens is main() reserves space for a local variable my_int, and for
its return value. Then it sets my_int to 7, the result is shown in Fig. 2.20.

Figure 2.20: Memory model for the code in Example 2.7 after the line my_int=7; is processed.

The next line in the code: square(&my_int); is the call to the square function, it does the following:
Reserve space for square(). One box for the input argument p which is a pointer to int, then a box for the
local integer variable x. Now we notice something we haven’t seen before. The function declaration states
the return value is of type void. This effectively means the function does not have a return value. That
means there will be no box reserved for the return value of square().
Pass the required input argument to square(). The function is being called with (&my_int) as argument.
This means get the address of my_int and pass it to square(). The input argument p is a pointer, so we
need to provide it with an address, a locker number.
The program then continues with the code in square().

The situation in the memory model will be as shown in Fig. 2.21. Pay close attention to the value stored in the box
labeled p, it now contains the locker number for main()’s local variable my_int.

The next couple lines in square() do the actual work, let’s look at them one by one:
x=*(p);

48

2.5 What is a pointer, and why do we need them? (C) F. Estrada 2024

Figure 2.21: Memory model for the code in Example 2.7 once the function square() is called. Notice there is no
box for a return value for square().

this reads get the contents of (p) and store that value in x. Since p now has the locker number for my_int, this
line effectively becomes get the contents of locker (3241) and store that value in x. This stores a 7 in variable x.
The next line x=x*x; simply computes the square and makes the value of x equal to 49. Finally, the last line

*(p)=x;

updates my_int. The line reads make the contents of (p) equal to the value in x, or, if we think of p as a locker
number, make the contents of box (3241) equal to the value of x. The end result will be that main()’s local variable
my_int will be updated to the value 49. The situation in the memory model just before the memory reserved for
square() is released is as shown in Fig. 2.22.

Figure 2.22: Memory model for the code in Example 2.7 after function square() has been processed, right before
the memory reserved for square() is released.

49

2.5 What is a pointer, and why do we need them? (C) F. Estrada 2024

Note

A small note regarding the code above. We could have written a much shorter, but also harder to understand
version of square(). The short version doesn’t use the local variable x. Instead, it contains a single line of
code:

(p)=((p))*(*(p));

Which should be read as make the contents of (p) equal to the value of the contents of (p) times the
contents of (p). This is correct, and shorter, but also hard to parse because the syntax is clunky. Notice the
use of parentheses to clarify what is being multiplied. In particular, the parentheses show that (*(p)) is one
thing being multiplied with another (*(p)) thing.

You could avoid the parentheses altogether and write:
*p=*p**p;

which will compile and run just fine, but is very hard to read and understand for anyone other than
whoever wrote this pretty ugly code. So the message is this: Please write code using pointers as clearly
and unambiguously as possible. The syntax is clunky, but you can use parentheses to help group things
into units that make sense and can be more easily read and understood by a human going through the code.

From the example above, it’s important to remember that passing a pointer into a function gives the function
access to information that would otherwise be out of reach. This is both a powerful feature, and a possible source
of all kinds of bugs. So use this with care. As noted earlier, most functions that perform simple computations and
can return the result should use a return value and not have access to external data. However, handling larger
amounts of information such as may be stored in arrays or strings is best done by using pointers. Let’s now see
how that works in C.

2.5.2 Pointers and Arrays

At the start of this section we briefly discussed that with arrays (or strings) we want to avoid having to make
copies in order to provide a function with the information needed to do some work. Copying arrays would result in
an often unnecessary waste of space as well as time. So, in C, by design, arrays will be passed onto the functions
that use them as pointers.

Definition 2.4

♣

In C, arrays are passed by reference. This means that whenever we pass an array (or string, which is just
an array of char) to a function, the function receives a pointer to the first entry in the array. The array is
never copied. The function thereafter can directly access/modify the contents of the array that was passed
to it, regardless of which part of the program declared and owns the array.

There are a couple of important ideas to keep firmly in mind regarding arrays passed on to functions:
The function will only get an address/locker number. None of the values of the array are ever copied or
passed on to the function.

50

2.5 What is a pointer, and why do we need them? (C) F. Estrada 2024

The function must also receive the size of the array. This is because arrays in C are only collections of
boxes. They do not contain information about their size, this has to be provided separately so the function
knows how many items of data it has to work with.
The function will access the array normally, that is, it doesn’t have to use pointer notation to access
information in the array. This is done for the convenience of the programmer. What actually happens is that
the compiler translates all array accesses to the equivalent pointer expressions without us needing to
worry about it. This is also the case in the original function that declared and owns the array.

Let’s have a look at an example of how this works:
Example 2.8

#include<stdio.h>

void square_array(int array[], int size)
{ // Square the value of each entry in the array

int j;

for (j=0; j<size; j=j+1)
{

array[j]=array[j]*array[j];
}

}

int main()
{

int i;
int my_array[5];

for (i=0; i<5; i=i+1)
{

my_array[i]=i;
}

square_array(my_array,5);

for (i=0; i<5; i=i+1)
{

printf("%d squared equals %d\n",i,my_array[i]);
}

return 0;
}

Compiling and running the code above produces:
./a.out
0 squared equals 0
1 squared equals 1
2 squared equals 4
3 squared equals 9
4 squared equals 16

Let’s see what’s happening in memory when we execute this code. First, main() reserves space for a 5-entry
integer array and fills it up with values from 0 to 4 (remember, array indexes for an array of length k go from 0 to
k-1). This is shown in Fig. 2.23.

51

2.5 What is a pointer, and why do we need them? (C) F. Estrada 2024

Figure 2.23: Memory model for the code in Example 2.8 after main() has declared and filled a small integer array.

The memory reserved for the array is marked by the red-dashed lines (as expected, it’s contiguous, and only the
first box is tagged with the name and type for the array). When the function square_array() is called, the following
happens:

The compiler reserves space for the input parameters. The first one is declared as an int array but notice
no size is given because the function doesn’t know what the size of the array was when it was declared, and
also because we would want this function to work with arrays of any size. Because arrays are passed by
reference the compiler will reserve a single box in which it will place the address of the first entry of the
array.
The compiler then reserves space for the integer input parameter size, which will provide the size of the array
the function will be working on.
Then the compiler reserves space for local variable j.
Finally the program continues with the instructions in square_array().

In the memory model this will have the effect shown in Fig. 2.24.

Things to note
Function bf square_array() only reserved 3 boxes in memory, despite the fact that it will be working with a
5-entry array. The function would reserve only these 3 boxes even if the input array had millions of entries
The box tagged array has a type int[] to indicate it is an array, however, what it actually contains is the
address (or locker number) of the original array in main()

The last point above deserves comment. The box for array looks like an actual array would, and the code in the
function square_array uses the array variable as you would use any other array. This is done for the convenience
of the programmer. In reality what the array box contains is just a pointer to the first entry in the array from
main().

After the compiler has reserved space for square_array, the function goes about its work. The important thing
to understand here is that the line

52

2.5 What is a pointer, and why do we need them? (C) F. Estrada 2024

Figure 2.24: Memory model for the code in Example 2.8 after the call to square_array() has reserved all the space
the function will need.

array[j]=array[j]*array[j];

is directly working on the data stored in my_array which was declared and is owned by main(). Passing the
array to the function is exactly the same thing as giving the function a pointer so it can work directly with the data
in the original array.

Question: What memory location is being accessed if square_array() stores something in array[3]?

Question: What do you think will happen if square_array() attempts to store a value in array[11]?

After the function has completed its work, we expect the contents of memory to look as shown in Fig. 2.25.

The example above shows how useful pointers can be - without them working with arrays would be much more
involved. The same is true for all work we will do using strings. Indeed, if you look at the definitions for functions
in the string library, they all take as input parameters pointers to char arrays.

2.5.3 Using pointers and offsets to access array data

As noted above, when we pass an array into a function what the compiler does is provide a pointer to the first
entry in the array so that the function can directly access array data. The C compiler then translates all the array
instructions in the function code into the corresponding expressions using pointers. We can choose to write code

53

2.5 What is a pointer, and why do we need them? (C) F. Estrada 2024

Figure 2.25: Memory model for the code in Example 2.8 after the call to square_array() has completed but just
before the memory reserved for square_array() is released.

that uses only pointers instead of array expressions, and this is the more common way to work with arrays and
strings in C. Let’s see how that works, first by using pointers with a small example array, and then by rewriting the
square_array() function in Example 2.8 to use pointer expressions instead of arrays.

Example 2.9 The program below uses pointers and offsets to change entries in an array without using array notation
#include<stdio.h>

int main()
{

int array[10];
int *p=NULL;

p=&array[0]; // Get address of the first entry in the array

*(p+0)=5; // Set the contents of array[0] to 5
*(p+4)=10; // Set the contents of array[4] to 10fs

printf("array[0] is %d, array[4] is %d\n",array[0],array[4]);

return 0;
}

The example above initializes a pointer to the address of the first entry in array (the line p=&array[0]; is read
as take the address of array[0] and store it in p. Given a pointer into an array, we can use an offset to access
any of the entries in the array. Offsets are exactly equivalent to array indexes, so (p+4) is referring to the data item

54

2.5 What is a pointer, and why do we need them? (C) F. Estrada 2024

stored four boxes after the first entry in the array. The expression
*(p+4)=10;

is read as make the contents of (p+4) equal to the value 10. Since p contains a locker number, (p+4) gives the
location of a box four locations after the first entry in the array.

The instruction
*(p+7)=2;

is exactly equivalent to
array[7]=2;

in fact, as we have discussed above in the context of passing arrays to functions, the compiler will convert
the expression that uses array notation to the corresponding expression that uses pointers when translating your
program to machine language.

It’s important to develop the ability to use pointers and offsets to access information, and we will have plenty
of opportunity to practice this skill through the book. For now, please keep in mind the following important points
that apply to the use of pointers and offsets to work with data in arrays:

Similarly to array indexes, the compiler will not tell you if a (pointer+offset) expression results in your
program trying to access a box it doesn’t own, or a box that is not part of the array you meant to work with.
You can easily get in trouble by using the wrong offset together with a pointer, so be very careful that your
offsets and pointers are always correct and the resulting access is valid.
Problems with accessing data via pointers and offsets can easily result in unpredictable behaviour, or your
program may be terminated by the computer (e.g. you get a segmentation fault, or the program simply
stops and nothing else happens, not even an error message).
Negative offsets can be used, though they do not make sense if your pointer contains the address of the first
entry in an array. We will come across situations where negative offsets have a role to play in our program,
just be careful in the meantime.

Let’s now do one more example and see how we would rewrite the square_array() function from Example 2.8
so that it uses pointers and offsets, instead of array notation.
Example 2.10

#include<stdio.h>

void square_array(int *array, int size)
{ // Square the value of each entry in the array

int j;

for (j=0; j<size; j=j+1)
{

(array+j)=((array+j)) * (*(array+j));
}

}

int main()
{

55

2.5 What is a pointer, and why do we need them? (C) F. Estrada 2024

int my_array[5];
int i;

for (i=0; i<5; i=i+1)
{

my_array[i]=i;
}

square_array(&my_array[0],5);

for (i=0; i<5; i=i+1)
{

printf("%d squared equals %d\n",i,my_array[i]);
}

return 0;
}

The code in Exercise 2.10 is very similar to the code in Exercise 2.8, but the differences are important and
worth spending a moment on Firstly, the function declaration:

void square_array(int array[], int size) // Using array notation

// becomes

void square_array(int *array, int size) // Using pointers

The change is mostly a matter of syntax. We know that arrays are passed by reference, and that passing an array
(first version of the function declaration) results in a single box being reserved, and in that box the compiler puts
the address of the first entry of the array. The second version of the function declaration makes this explicit: The
function expects to receive the address of an integer data item. Both functions will receive exactly the same thing,
but the pointer version of the function makes explicit the fact that what the function is getting is just a locker number.

The second change is within the function itself:
array[j]=array[j] * array[j]; // Using array notation

// becomes

(array+j)=((array+j)) * (*(array+j)); // Using pointer notation

which is exactly the same thing - the first version of the code (using array notation) will be converted by the compiler
to an expression that looks like the second version, using pointers and offsets. The only difference is what the
programmer would read, the array notation is perhaps easier to understand, but both do exactly the same thing.

Finally, there is a small change in the way the function is called:
square_array(my_array,5); // Passing an array

// becomes

square_array(&my_array[0],5); // Passing the address of
// The first entry in the array

56

2.5 What is a pointer, and why do we need them? (C) F. Estrada 2024

The first version (with array notation) takes advantage of the fact that the compiler knows to pass arrays by reference,
so when we call a function using the array name, it provides the function with the address of the first entry in the
array. The second version (with pointers) explicitly passed the address of my_array[0] - which is in effect the
same thing but we are making explicit the fact that we are passing down a locker number. Because the compiler
knows to pass arrays by reference, we could call the pointer version of square_array() exactly as we would call the
version that uses arrays: square_array(my_array,5); works with both versions.

The notation can be a bit confusing, so whenever you’re working with an array, remember the following:
my_array; // The name of the array, same as the address of the first entry in the array
&my_array[0]; // ’The address of’ my_array[0], also the first entry in the array
my_array[0]; // The value stored in the first entry of the array, *this is NOT an address!*

2.5.4 Summary

What are pointers? They are variables that hold the memory address (locker number!) of the contents of a
variable, array, string, or data structure we want to share between functions in the program.

Why are they useful? Because they allow functions to access and modify data that has been declared outside
of the function’s code. Because they allow us to share information between functions without making extra copies
of the data we are sharing.

What is the syntax for declaring a pointer variable?
type *pointer_name=NULL;

for example,
int *p=NULL; // A pointer to an int
float *fp=NULL; // A pointer to a float

What is the syntax for assigning a pointer to a variable?
pointer = &variable;

Which is read as assign to pointer the address of variable, for example
float pi;
float *fp=NULL;

pi=3.1415926535;
fp=π

initializes a float called pi, and sets the pointer fp to the address of pi.

How do we access or update boxes in memory using pointers?
(pointer+offset)=expression; or variable=(pointer+offset);

the expression on the left is used to store a value at the locker specified by (pointer+offset), the expression on the
right is used to get the value stored at locker (pointer+offset) so we can assign it to a variable. Examples:

57

2.5 What is a pointer, and why do we need them? (C) F. Estrada 2024

float pi;
float *fp=NULL;

fp=π
*(fp)=3.1415926535;

The above uses the pointer to update the value of pi.

How do we obtain a pointer to an array? Get the address of the first entry in the array. Like so:
int array[10];
int *p=NULL;
p=&array[0];

or, equivalently
int array[10];
int *p=NULL;
p=array;

the above works because the compiler takes the array name to be equivalent to a pointer to the first entry in the array.

How do we update entries in an array using a pointer? Since the pointer has the location of the first entry
in the array, we can use the pointer plus an offset to access and/or update any entry in the array like this:

int array[10];
int *p=NULL;

p=&array[0];

// Set the first entry in the array to 7
*(p)=7;

// Set the second entry in the array to 10
*(p+1)=10;

// Set the third entry in the array to 15
*(p+2)=15

// Set the last entry in the array to -15
*(p+9)=-15;

// The next two lines are an example of invalid
// (pointer+offset) combinations - they are a
// bug!
*(p+15)=25;
*(p-2)=0;

as noted earlier, we have to be careful that our (pointer+offset) expressions do not result in access to a box that is
not valid. The last two lines would clearly attempt to store data in lockers not reserved for our program, so any of
those lines would be expected to cause a problem.

Final notes on pointers:

We will be using pointers for the better part of the course. You should make yourself comfortable with them,
practice using them for passing parameters to functions, for having functions manipulate and change data defined

58

2.6 Model versus Reality (C) F. Estrada 2024

outside of them, and to access and change the contents of arrays, both by passing them to functions that manipulate
them, and by using pointers and offsets to access data in the arrays.

You should always make sure that
Pointers are initialized to NULL when you declare them - this will save you no end of trouble as you can
check whether the pointer has actually been assigned to something or not.
Every function that receives a pointer as a parameter must check that the input pointer is not NULL. You can
not access a NULL pointer and trying to do so will crash your program.
When using pointers and offsets to access data, you must ensure the offsets used are within bounds for the
array you’re indexing into.

� Exercise 2.7 Let’s put everything you’ve learned in this section together. Write a program that:
Declares a string in main(), you can fill that string with any text you wish, for example: "Now I know how
to program in C!".
Write a function that takes the string as input, and reverses the string. Mind the fact that the length of
the string may be different than the size of the array, and that the reversing process should not move the
end-of-string delimiter.
Try to implement the reverse function using (pointer+offset) notation only.
Have your code print the reversed string.
Write a function that takes takes as input the string, a query character, and a target character, then goes
over the string and replaces any occurrence of the query character with the target character.
Try to implement the replace function using (pointer+offset) notation only.
Have your code print the string after replacing all occurrences of a with i.

For instance,
If the input string is "Hawdy! that strange pointer was NULL"

then the reverse function would print:

LLUN saw retniop egnarts taht !ydwaH

and after replacing ’a’ with ’i’ the program would print

LLUN siw retniop egnirts tiht !tdwiH

That’s it! Have a go at it. You may want to read the last part of this Chapter on building code that works, and apply
the advice there to solving this exercise.

And finally:

You’ve worked very hard in this Chapter to become familiar with C and how it works, so you deserve a
moment to celebrate.

Go have a nice lunch, watch a movie, play sports, spend time with your friends, or something equally fun.

Congratulations! Now you know how to program in C!

59

2.6 Model versus Reality (C) F. Estrada 2024

Figure 2.26: Climbing a mountain is hard work, but the view from the top is worth it! Photo: WolfmanSF,
Wikipedia Commons, CC-SA 3.0.

2.6 Model versus Reality

Through this Chapter, we developed a memory model to help us understand how information is being manipu-
lated by our program, how variables, arrays, function arguments, return values, and pointers work. But,you should
keep very clearly in your mind the following idea: The memory model we are studying here is exactly that - just
a model. It is an abstraction intended to help you understand how information is organized and manipulated by
a C program as it goes about its work. It is a good model in that it captures correctly the way in which memory
is organized inside your computer, but by necessity, it simplifies or removes some of the details because they are
neither relevant at this point, nor helpful in understanding how a C program works. However, it’s important to make
sure we understand what parts of the model are entirely accurate, and which are simplified.

Our memory model accurately describes:
That memory is organized as a large collection of sequentially numbered boxes that can be used to contain
data.
That each variable our program declares is assigned its own box, its box can not be shared by any other
variables, and it’s tagged with the variable’s name and data type.
That variables declared by the same function in our program will be assigned neighbouring boxes in the
memory model.
That the return value of a function will have its own reserved box.
That variables and input arguments are local to a function. Only the function that declared them knows
their name, type, and can access or store values in their corresponding boxes by using the variable’s name.
That arrays are simply collections of consecutive boxes with the same data type.
That pointers are just variables so they have their own box in memory, that box will store the locker
number of another variable or array we want to work with.

60

2.7 Additional Exercises (C) F. Estrada 2024

That memory reserved for a function is released after the function ends.

Some of the details that the memory model simplifies (removes or abstracts away):
In our model neighbouring boxes have locker numbers that increase by 1, and we assume boxes can hold
any data type. In reality each data type has a different size and the compiler needs to reserve the correct
amount of space. This means that if we look at the locker number for two neighbouring variables A and B
inside the computer, their locker numbers may be different by more than 1 unit. This is not relevant to us as
it is handled automatically by the compiler.
The order in which variables are placed in memory. As noted above, variables declared by a function will
be placed in contiguous locations, but the order is up to the compiler and may be different from the order in
which we declared them in our program. Assuming that the variables will be placed in the order in which
they were declared is reasonable and often accurate, but keep in mind the compiler may choose to reorder
things if it yields better code in machine language.
That the return value is placed at the end, after all the input arguments and variables for the function. Once
again this is often correct, but once again the compiler may choose to change things around if it yields better
code after translating to machine language.

If you are interested, you can learn in detail how the parts of the memory model that were simplified actually
work. This is part of what any good course in Computer Organization would cover in detail, so if you are curious,
find a good book on that topic and read on. For the purpose of this book, we will work with the memory model as
described above, and consistently follow the rules we described for how variables are ordered in memory.

2.7 Additional Exercises

Learning to program in a new language requires practice, so here are a few additional exercises to help you
practice. Spend time working on them, and follow the advice contained in this Chapter’s How to Build Code
that Works section. The more thought you put into solving the exercise problems, and then thinking through the
implementation of the corresponding program, the better you will develop your understanding of the material in
this Chapter.

Note

For the exercises below where there are snippets of code and you’re asked to figure out the output you should
be able to do this without compiling/running the code. This is where you verify that you understood the part
of the material that the exercise is about. If you can not figure out the output without compiling/running the
code, that is a sign you should probably go back and review the relevant section of these notes.

� Exercise 2.8 Draw a memory diagram that illustrates what happens in memory when you run the following snippet
of code:

int main()
{

int x;

61

2.7 Additional Exercises (C) F. Estrada 2024

int y;
float pi;

x=5;
y=x+3;
pi=y/2;

printf("%f\n",pi);

return 0;
}

What will be the final value printed by the program?

� Exercise 2.9 Consider the following snippet of code:
float convert_to_degrees(float angle)
{

// This function converts an angle given in radians to degrees
return angle*360.0/(2.0*3.1415926535);

}

int main()
{

int x;
float ang;

x=2;
ang=convert_to_degrees(x);
printf("%f\n",ang);

return 0;
}

Draw a diagram that shows the memory model after we call convert_to_degrees() but before the memory
reserved for the function is released.

What is the final value of ang?

� Exercise 2.10 Consider the next little program:
void hard_working_function(int x)
{

x=x*x;
x=x/x;
x=3*x;
x=x+71;
x=x/2;

}

int main()
{

int x;
x=1;
hard_working_function(x);
printf("%d\n",x);

return 0;

62

2.7 Additional Exercises (C) F. Estrada 2024

}

What is the final value printed by the program?

� Exercise 2.11 Write a program that

Declares an array of 10 integer values
Fills this array with equally spaced angles between 0 and 359 degrees
Prints out the 10 angles both in degrees and in radians

� Exercise 2.12 Remember that when we pass an array to a function, the function gets a pointer to the array (not a
copy of the data), and recall that strings are arrays of chars. Now consider this program:

void start_a_story(char input_string[1014])
{

char little_story[2048];

strcpy(little_story,"Once upon a time...");
strcat(little_story,input_string);
printf("%s\n",little_story);

}

void main()
{

start_a_story("there was a blue rhinoceros named Randolph.");
}

What is the output of this little program?

� Exercise 2.13 Now consider the modified program from Exercise 2.12 shown below:
char *start_a_story(char input_string[1014])
{

char little_story[2048];
strcpy(little_story,"Once upon a time...");
strcat(little_story,input_string);

return little_story;
}

void main()
{

char *story;
story=start_a_story("There was a blue rhinoceros named Randolph.");
printf("%s\n",story);

}

There is a major problem with the code above. What is it? (hint: when are boxes reserved for function calls?).
Explain what the issue is, and what you expect would happen if we compile and run the code above.

� Exercise 2.14 Let’s consider the following little programs
void main()
{

char little_string[1024];

63

2.8 Building Programs That Work - Part 2 (C) F. Estrada 2024

char *p=NULL;
strcpy(little_string,"This is just a little harmless string");

p=&little_string[0];

printf("%c\n",*(p));
printf("%c\n",*(p+3));

p=p+5;
*(p)=’u’;
printf("%s\n",little_string);

}

What is the output of the little program?

2.8 Building Programs That Work - Part 2

Writing programs that work, and writing good code, are habits that require work and discipline. Experience
helps, so the more you practice, the better you will become at it. But it all begins by having a solid process for
developing programs that solve a variety of problems. You will develop this process over the course of your career,
and there are multiple disciplines that will contribute to it. For this introductory book, we will develop a skeleton
on which you can later build a stronger, much more capable software development process.

Here is a short process that you should follow to solve any programming-related problems going forward.

Step 1 - Fully understand the problem you are expected to solve. In examples within the book, you will
be working from a problem description of what your program should do, in more realistic contexts you may have a
user with particular needs for what your software should accomplish. In every case, you must fully understand
the problem as well as any specified characteristics of the solution. If the problem is being specified by a user,
you will need to ask questions that help you fill-in any gaps in the original problem description.

Example 2.11 Description: You are asked to implement a program that will find all prime numbers between 2 and
N, where N can be up to 10000. The program should implement the method called the sieve of Eratosthenes to
find these primes, and should print them out as a list separated by commas.

Understanding the problem: The description above is fairly short, and may not provide all of the information
you need to solve this problem, but it does provide a good starting point. Reading the description carefully we note
that:

Our program will be tasked with finding prime numbers (what is a prime number?)
These numbers have to be within a range of [2,N] where N can change but is at most 10000
To find the primes, we must use a method called sieve of Eratosthenes (what is that?)
The primes that were found will be printed as a comma-separated list

The description of the problem was enough to give us the big picture, but now we need to fill-in the details.
First, if we are not sure what a prime number is the first step is to learn about them and make sure that we understand

64

2.8 Building Programs That Work - Part 2 (C) F. Estrada 2024

how to determine if a number is prime. We can’t find prime numbers if we don’t know how to check if a number
is prime.

Secondly, if you, like me, have never heard of the sieve of Eratosthenes, we would have to go and find out
what it is and how it works. This involves a bit of work, you can look this up online, or you can check it out in a
book. The sieve works by scanning the numbers that are in the specified range and progressively tagging all
numbers in this range that are multiples of the primes found so far. So, for instance, the first number scanned is 2
which is prime. The sieve then tags all multiples of 2 as not prime. The next number scanned is 3, which was not
tagged before so it must be prime, the sieve then tags all multiples of 3 in the range as not prime. Next up is 4 but
it was tagged before because it’s a multiple of 2 so it is not prime. Next is 5 which was not tagged previously so it
must be prime and the sieve tags all multiples of 5, and so on.

By the time the sieve has scanned all numbers in the specified range, any non-tagged numbers left must be the
primes.

Note that we have not said anything about programming, we haven’t started implementing anything, we are
just understanding what the problem is and what the task is that we need to solve. We should not proceed until we
are certain we have fully understood the problem, the input our program will be required to work with, and the
output it must produce, as well as any specified conditions on how the problem must be solved. Whenever you are
not entirely sure about something, you should seek additional information. It is also possible you will come up with
more questions as you work through step 2 of the process.

Step 2 - Think through the steps required to solve the problem on paper. You should not start writing
a program until you have a well developed algorithm for what the solution should be. The solution should be
detailed enough that you or anyone else implementing it can easily figure out what the different parts of the process
are, how it can be broken up into functions, and how these functions will work together to produce the solution.
You algorithm can be written in pseudocode or just as a list of steps, but it has to cover every important part of the
solution.

Example 2.12 For the program that finds the prime numbers, given our understanding of the problem and the
description of how the sieve of Eratosthenes works, we can come up with the sequence of steps that our program
needs to carry out to solve the problem:

Requires: The value of N Algorithm:

Declare an array with N integer entries. This array will be used to indicate if a number is prime or not. The
value 1 will indicate a prime, 0 will indicate a non-prime
Initialize all entries in the array to 1. The process will then tag non-primes by setting their array entry to 0 as
they are identified
Loop over each value i from 2 to N

If the entry for i is 1, then i is a prime. Loop through the array in increments of i tagging all multiples
of i as non-primes by setting the corresponding array entry to 0

65

2.8 Building Programs That Work - Part 2 (C) F. Estrada 2024

After the loop is complete, loop once again over the array entries from 2 to N, if the corresponding array
entry has a value of 1 print the number

Note that the algorithm above states what information is required for the algorithm to work, and the description
of steps is detailed enough that we could come up with a program that implements it. You should also note that the
algorithm is the solution. Implementing the algorithm is really not the major issue when solving a problem - the
key step is this one, figuring out what the algorithm is in enough detail that you can be confident that implementing
that algorithm will solve the problem.

Needless to say, you can not expect a program to work if you skipped this step and simply tried to
write some code without first thinking through the solution. That is a recipe for making a problem harder
than it actually is: Writing a program from a complete algorithm is its own challenging task, but it is manageable.
Similarly, solving a problem on paper is challenging but manageable. Trying to do both things at the same time is
an easy way to turn two manageable tasks into a single unmanageable one.

Step 3 - Design the program that will implement your solution from Step 2. This means working out how
to break the algorithm into functions that will carry out the required work. You need to think about what data
needs to be declared by each function, and how the different functions will communicate with each other
(input arguments and return values). You also need to figure out the overall flow of the program. You should be
able to verify that your design has functions that take care of each of the steps in the algorithm you came up with,
and you should be able to follow the program flow in your design and convince yourself it implements the algorithm
correctly.

Example 2.13 For the prime finding program, and considering the algorithm proposed in Step 2, a reasonable
design could look like so:

main()
- Declares and owns the array of size N that will contain the 1s and 0s indicating

which numbers are prime
- Initializes this array to all 1s
- Calls a function that implements the sieve of Erastosthenes on the array
- Prints out the prime numbers after the sieve has completed its work

sieve()
- Receives a pointer to the array with initially all 1s
- Loops over entries starting from 2

For each prime ’y’ found, loop over the array tagging all multiples
of ’y’ as non-prime

For most problems and algorithms, there will be many possible designs, and there may be multiple reasonable
ways to organize the program into functions. Later on in the course we will look at ways to decide whether one
possible solution is better (in an objective way) than a competing one. For now, what matters is that you should
come out of this step with a solid plan for your program, one which can be directly implemented.

Step 4 - Implement your solution. This is where you actually get to begin writing code. Notice that by this
point you have already solved the problem, all that remains is to write code that carries out the algorithm, and
implements the design that you already have. All your previous work will make implementing the actual program

66

2.8 Building Programs That Work - Part 2 (C) F. Estrada 2024

much easier, and will help you later on with testing and with (if necessary) debugging. Once you start writing the
code you may find the need to adjust or change some of the details in your design, or your algorithm. However,
you should not find that major changes are needed - if you do, that would mean your original solution was not
properly thought out, or your design was not carefully planned out. In either case, if you find a major issue while
implementing the program you should go back and revise your solution and program design.

Importantly: Hacking at code until it works is not a good process, it is not a good problems solving
technique, and will not work for complex problems and reasonably long programs. So avoid doing this. Instead,
make sure you have a solid algorithm to solve the problem, make sure your design is sound and reasonable, and the
result of this will be code that is good by design.

Example 2.14 Given the design above, an implementation of the program to find and print prime numbers could
look as shown below:

#include<stdio.h>
#include<stdlib.h>

#define N 1000

void sieve(int *p, int size)
{

/* Implements the sieve of Eratosthenes on an array
of the given size, it receives a pointer to the
first entry in the array */

int j,k;

for (j=2; j<=N; j++)
{

if (*(p+j)==1)
{

for (k=j+j; k<=N; k=k+j)
{

*(p+k)=0;
}

}
}

}

int main()
{

int primeTags[N+1];
int i;

for (i=0; i<=N; i++)
{

primeTags[i]=1;
}

sieve(&primeTags[0],N);

printf("The list of primes from 2 to %d is:\n",N);
for (i=2; i<=N; i++)

if (primeTags[i]==1)

67

2.8 Building Programs That Work - Part 2 (C) F. Estrada 2024

printf("%d, ",i);
printf("\n");

return 0;
}

As per the design, there are two functions: main(), and sieve(); main() declares and owns the integer array
used to tag non-primes, and sieve() does the work of looping through the array tagging multiples of all primes
found. The code follows directly from our design from Step 3, and did not require a large amount of work to write
since the problem had already been solved, the algorithm had already been worked out, and the design had already
determined how many functions there would be and what these functions would do.

Step 5 - Test your program. Of course, once you have written any program, you must ensure it works properly
and the only way to do this is by thorough testing. Testing is a skill that requires time, practice, technique, and
hard thought. Testing is a topic that requires significant attention on its own so we will discuss it in detail in
the next Chapter. For now, we will simply compile our code, deal with all compiler errors and warnings as we
learned in Chapter 1, and verify that the program produces the correct list of primes for a given value of N.

Compiling and running the code for N=1000 as in the program above prints out:
./a.out
The list of primes from 2 to 1000 is:
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,

101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191,
193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283,
293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401,
409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509,
521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631,
641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751,
757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877,
881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997,

Should we be satisfied that the program didn’t crash and printed out a bunch of numbers? of course not!. We
have to check that the program has correctly solved the problem. Notice that this is often very different from
checking that the output is correct.

A program can produce seemingly correct output, while having done the wrong thing internally. So
whenever possible, we want to verify that the information computed or produced by the program is correct internally.
Another way to think about this is: we test for correctness, not output.

In the case of this program, the task was to find the primes in the range [2,N]. From our program design we
know the result of performing the sieve of Eratosthenes will be an integer array in which primes will be indicated
by a 1, and non-primes will be indicated by a 0. Correctness of the results in this array requires us to check for
two things:

That all the numbers for which the corresponding entry is 1 are prime
That all the numbers for which the corresponding entry is 0 are non-prime

68

2.8 Building Programs That Work - Part 2 (C) F. Estrada 2024

We obviously do not want to do this by hand. Instead, we can write a test function, let’s call it check_result(), that
goes into the array after sieve() has done its work, and checks that both of the conditions noted above are true for
the entire array.

Example 2.15 A sample function to check the correctness of the results produced by sieve() is shown below:
int check_result(int *p, int size)
{

/* This function gets a pointer to the array with the results
from sieve() and checks each entry starting from index 2.
If the entry is a ’1’, it checks that the corresponding
index is a prime number. If it’s a ’0’, it checks that the
number is not prime.

If all entries in the array are correctly marked as prime
or non-prime, it returns 1 (indicating everything is correct)
else it returns a 0 (and also prints the index at which an
erroneous value was found)
*/

int i,k;
int tst;

for (i=2;i<=N;i++) // For each entry in the array
{

tst=1; // Assume it is prime
for (k=2;k<i;k++) // Try to divide it exactly by ingeters
{ // from 2 to i-1

if (i%k==0) tst=0; // if we can do it, it’s not prime
}
// Now we know if i is prime, check if it agrees with the array
if (*(p+i)!=tst)
{

// Failed! something is inconsistent
printf("Found a problem, integer %d is tagged with %d, prime test returns %d\n",

i,*(p+i),tst);
return 0;

}
}
return 1; // Everything looks good!

}

we also need to add a couple lines to main() to call this function and print a message depending on whether results
check out or not (these lines would be added anywhere after the sieve() function has been called:

// Call the test function to verify the result
if (check_result(&primeTags[0],N))
{

printf("The results check out, everything appears correct\n");
}
else
{

printf("There was a problem, at least one entry was tagged erroneously by the
sieve\n");

}

compiling and running the code now gives the following output:

69

2.8 Building Programs That Work - Part 2 (C) F. Estrada 2024

./a.out
The list of primes from 2 to 1000 is:
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,

89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173,
179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269,
271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367,

373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463,
467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577,

587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677,
683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797,

809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911,
919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997,

The results check out, everything appears correct

so the test function has verified the work done by the sieve(), and no inconsistencies have been found. We can
check that the test function will catch problems by manually creating an inconsistency. For example, we can add
a couple lines of code that change some of the tags in the array to the wrong value - these lines are added after the
call to sieve():

primeTags[4]=1; // Here we are saying that 4 is prime
primeTags[5]=0; // and also that 5 is not prime

compiling and running the code now prints out:
./a.out
The list of primes from 2 to 1000 is:
2, 3, 4, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,

89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173,
179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269,
271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367,

373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463,
467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577,

587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677,
683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797,

809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911,
919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997,

Found a problem, integer 4 is tagged with 1, prime test returns 0
There was a problem, at least one entry was tagged erroneously by the sieve

the test function correctly identified the first entry that was wrong in our array. If you look carefully, you can see
that 4 was printed in the list of primes, and 5 was not. That may be hard to catch simply by inspecting the output,
so please remember this: write code to test your functions and program for correctness, and do not rely just
on printed output to decide your program is correct.

A final comment on the above: The example test shown above is a good start, but by no means does it constitute
a full and comprehensive test for correctness for the program. We still don’t know that the program works correctly
for different values of N, or that the output is actually printed correctly given the contents of the array, or that
the code is actually implementing the sieve of Eratosthenes as specified in the problem description. Testing is
a thought and work intensive process, you should practice it as often and as thoroughly as you can, until you have
built the ability to develop a sufficiently solid testing process for your programs that you can be highly confident
that anything you ever make available for use is as likely to be completely correct as one could hope for. We will
discuss testing at length in the next Chapter.

70

Chapter 3 Organizing, Storing, and Accessing Information

Now that we have a strong enough understanding of our programming language, we can start our exploration
of the interesting problems and tools that are found throughout computer science. We will start by looking at the
fundamental problem of data and how to store it so that we can efficiently find the information we need, and
manipulate data as needed to solve whatever problem we are studying.

By data in this case, we usually mean large amounts of information. Organizing a few integers, or a couple
strings, or some floating point numbers is not challenging, interesting, or ultimately useful. Where things get
interesting is when we start looking at large collections of data items that our program needs to work with. A few
examples of the kind of data items our programs may eventually need to work with include:

Text documents - e.g. news articles, blog posts, web documents, pages from books, etc.
Music files - or sound clips, podcasts, newscasts, etc.
Pictures - collections of photos, digital archives, digital art collections, etc.
Video files - movies, clips, recordings of work meetings, etc.
Database records - for instance, the collection of information that represents each customer profile for a large
online store. There are endless variations of these, and the amount of information available can be staggering.
Results of computations - for example, the output of a program that does weather modelling will consist of
huge amounts of numerical data that has to be stored, and then processed and visualized to enable humans to
make sense of it.

In general, one of the first things you have to do when solving a problem using a computer is to carefully
consider:

What type of information we have to store, is it mostly numbers, text, a mixture of media, or something else?
How much of it do we need to be able to handle - for example, your phone’s photo app only needs to deal
with the images you have stored in your device, Google on the other hand needs to be able to organize and
search through billions of images available online, these are two very different problems.
How the data will be accessed and used, and by whom - this will have implications for choosing how the
information is organized and stored, and puts constraints on security measures we may need to put in place
to restrict access to it.
How to make the data easy to manage within a program - which is often different from making the information
easy to access by a human.

In this part of the book, we will learn about program-level organization and manipulation of data. We will
see how to use the simple data types provided by C in order to build richer, more useful, more flexible, and easy to
use data containers that can be used to represent, store, organize, access, and manage pretty much anything you
may wish to manipulate inside a computer.

The concepts and techniques covered here will be the foundation you will need later on in order to understand
how to model information, and how the modeling of information affects the design of the software written to handle

(C) F. Estrada 2024

it (this is one of the main problems studied in Software Design). It is also the foundation on which databases are
built. Nowadays, databases are needed almost for every application – from a cooking recipe app (which will have
some form of searchable recipe database), to customer information systems for every kind of business both on-line
and on-site. Databases are fascinating, so if you’re curious about how they work you should follow up by taking a
course or reading a book about them.

Note

Just how much data is out there? This is a simple question, but it doesn’t have a particularly easy answer as
it would appear no one really knows exactly just how much data is out there, or even how to measure what
is out there: do we count only publicly-accessible data? - which leaves out huge collections of information
available only to particular governments or corporations or organizations. Do we include data stored in user
devices? - as opposed to only what is stored in some internet-reachable server and thus possible accessible by
others. Do we include only meaningful data items? - that means, files and formats we can easily recognize
and make sense of, which leaves out large chunks of data that is just numbers and that we can’t understand
unless we are provided with a thorough description of what it means.
However we decide to count, the unavoidable fact is that there is a huge amount of information out there
and we should keep in our minds that programs and applications we write will, more often than not, need
to deal with fairly large amounts of data. Here are a few facts about data that will help you wrap your head
around just how much of it is stored out there.

The Google codebase in 2016 included approximately one billion files and had a history of approx-
imately 35 million commits spanning Google’s entire 18-year existence. The repository contained
86TB of data at the time, including approximately two billion lines of code in nine million unique
source files (source: https://cacm.acm.org/magazines/2016/7/204032-why-google-sto
res-billions-of-lines-of-code-in-a-single-repository/fulltext). By 2024 the
estimate is that the number of lines of code is in the tens-of-billions, but no official figure is available.
How much data is stored by Google? Apparently the answer to this is no-one (perhaps including
Google) really knows. But here’s a fairly interesting analysis: https://what-if.xkcd.com/63/
. The analysis provided states: Let’s assume Google has a storage capacity of 15 exabytes, or
15,000,000,000,000,000,000 bytes. This is a not unreasonable estimate and was likely at the right
order of magnitude for the actual storage available to Google when this post came out, several years
ago. At the present time it has been suggested Google’s total storage capacity may be in the order of
zettabytes (ZB) - a zettabyte is 1000 exabytes, so 1,000,000,000,000,000,000,000 bytes.
The number of pictures uploaded to facebook each day as of 2016 was closing on half-a-billion.
According to https://www.omnicoreagency.com/facebook-statistics/ "350 million photos
are uploaded every day, with 14.58 million photo uploads per hour, 243,000 photo uploads per minute,
and 4,000 photo uploads per second.". For Instagram, as of 2021, the figure was 95 million videos
and pictures being uploaded daily. Also from this site https://www.omnicoreagency.com/ins
tagram-statistics/ we find that "More than 50 Billion photos have been uploaded to Instagram
so far." and that "Pizza is the most Instagrammed food globally, followed by Sushi."

72

https://cacm.acm.org/magazines/2016/7/204032-why-google-stores-billions-of-lines-of-code-in-a-single-repository/fulltext)
https://cacm.acm.org/magazines/2016/7/204032-why-google-stores-billions-of-lines-of-code-in-a-single-repository/fulltext)
https://what-if.xkcd.com/63/
https://www.omnicoreagency.com/facebook-statistics/
https://www.omnicoreagency.com/instagram-statistics/
https://www.omnicoreagency.com/instagram-statistics/

3.1 How to build a Bento Box (C) F. Estrada 2024

From https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-w
e-create-every-day-the-mind-blowing-stats-everyone-should-read/#6a951bf860b
a we find that "There are 2.5 quintillion bytes of data created each day", "On average, Google now
processes more than 40,000 searches EVERY second (3.5 billion searches per day)!", and "We send
16 million text messages (every minute!)". This was in 2018, by now those numbers will have grown
significantly.
You should have a look here https://everysecond.io/youtube to get a real-time sense of just
how much data is being produced and uploaded to some server every second of every day

These are just a few examples, but hopefully they drive home the point that storing, accessing, modifying,
and maintaining a collection of information is far from an easy or trivial problem.

Figure 3.1: This is what the inside of a data center looks like. Somewhere in the world, in a data center similar to
this one, a copy of this book is stored. Photo: Global Access Point, Public Domain

3.1 How to build a Bento Box

We know how to use the standard data types provided in C, however most interesting applications will require
keeping track of data that is a bit more complex than a few integers, or floats, or even a few strings. The problem
at hand is how to design and implement a new data type, something beyond what is already available in C, and
that can represent a much more interesting unit of information.

As an analogy – a good meal is not composed of a single item like, broccoli (you should eat broccoli by the
way, it’s good for you!), but instead it consists of many different components put together in a way that makes a
good meal. The individual components are ingredients you may find at any store, but the finished meal is much
more interesting. If you have been to a Japanese restaurant, then you may have already seen a meal that is a great

73

https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/#6a951bf860ba
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/#6a951bf860ba
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/#6a951bf860ba
https://everysecond.io/youtube

3.1 How to build a Bento Box (C) F. Estrada 2024

example of the process we are now going to apply to data types: The Bento Box (see Fig. 3.2).

Figure 3.2: Bento Box - the meal is composed of individual components, each in its own container, arranged to
complement each other and each of them needed to complete the meal. Photo: miheco - Flickr, CC - SA 2.0

Our task here is to figure out how to represent information about an item, where this information is more
complex than what a single data type can hold. For example, if we are going to write an application to store
information about movies, we may need to store:

The movie’s title
The year the movie came out
The name of the director
The name of the studio that produced it
The review score it received on Rotten Tomatoes
... and possibly a lot more

There are several individual pieces of information that we need to keep track of for each movie, and each of
them has its own data type – there may be strings, integers, floats, and so on. We will need to store information for
many movies (it is not particularly useful if we can only store a few, remember we are learning how to deal with
large collections of information).

Question: Given what we know at this point, how could we do this in C?

Using only C’s standard data types, we would need to create separate arrays for each of the different
components that make up a movie’s information (from now on, we will refer to a single movie’s information as a
movie record):

One array of strings for the movie titles
One array of integers for the year when the movie came out

74

3.1 How to build a Bento Box (C) F. Estrada 2024

One array of strings for the directors’ names
One array of strings for the studio
One array of floats for the Rotten Tomatoes score

Now we can design a program that allows users to fill-in these arrays with information for each of the movies
we’ll keep in our app, and that provides the functionality the user wants.

Question: What do you think are the advantages and disadvantages of storing movie records in this way?

In practical terms, the implementation with arrays has a number of disadvantages that we need to be aware of:

Because arrays in C have a fixed size, our application will be limited in the number of movie records that it
can store and manipulate. We can run out of space and not be able to store any more movies, or, if we choose
to make these arrays really huge to begin with, our app will be consuming a very large amount of memory
most of which may go unused. This is wasteful and would cause the app to take resources that other programs
may need.
Because we are storing information in several separate containers (each array is a container), all of our code
now needs to deal with multiple sources of data, and we must ensure that movie record information is kept
properly synchronized across all of these arrays at all times. This adds complexity to the program, increases
the likelihood of bugs, and makes testing of the app more complicated.
Conceptually something is not right - a movie record is a single unit of information and yet we are working
with it as if each part was its own thing. We have taken what should be a bento box and put each food item in a
separate box with nothing to hold the separate components together to indicate they should form a single unit.
This is not how we want to think of information, and it is not how we want programs to handle information.
Information that corresponds to a single item (a movie in this case) should be bundled together.

To make the above more concrete, here is an example in pseudocode of what a program may need to do if we
decide to use regular C arrays to store records, and we will compare that with a solution in which information is
bundled together rather than spread into multiple containers.
Example 3.1

// Using one array for each piece of information that makes up a single movie record

// Here is what a function that adds a single movie to our app might look like
// (in pseudocode)

addMovie()
Inputs:

- The new movie’s title
- The new movie’s year
- The new movie’s director
- The new movie’s studio
- The new movie’s Rotten Tomatoes score
- The app’s movie titles array
- The app’s movie years array
- The app’s movie directors array
- The app’s movie studios array
- The app’s movie scores array

75

3.1 How to build a Bento Box (C) F. Estrada 2024

- The number of movies currently stored

Returns:
- The number of movies after we inserted the new one

(it may not have changed if we were not able to add
the new movie!)

Procedure:

Check that there is space left in the arrays
if no space left, print an error message and
return the current number of movies unchanged

Fill in the new movie’s title in the titles array
Fill in the new movie’s year in the movie years array
Fill in the new movie’s director in the directors array
Fill in the new movie’s studio in the studios array
Fill in the new movie’s RT score in the scores array

Increment the number of movies in the database by 1
and return the updated number of movies

// Here’s what a function that deletes a movie from the app might look like (in pseudocode)
deleteMovie()

Inputs:
- The index of the movie we want to delete
- The app’s movie titles array
- The app’s movie years array
- The app’s movie directors array
- The app’s movie studios array
- The app’s movie scores array
- The number of movies currently stored

Returns:
- The updated number of movies after we deleted the

requested movie

Procedure:

Check that the requested movie index is valid (i.e. greater or
equal to zero, and less than the number of movies
currently stored)

If the index is not valid, print an error message and
return the current number of movies unchanged

Deletion:
If the index of the movie to delete is i, then starting
with index i+1

Move all entries in the movie titles array one space back
(e.g. entry k will move to entry k-1)

Move all entries in the movie years array one space back
Move all entries in the movie directors array one space back
Move all entries in the movie studios array one space back
Move all entries in the movie scores array one space back

Decrement the number of movies in the app by 1
and return the updated number of movies

76

3.1 How to build a Bento Box (C) F. Estrada 2024

Things you should note from the above example: Notice the large number of input arguments that each of our
functions will require. Because we have multiple pieces of information, and multiple containers, the argument list
for the functions will be unavoidably long. This makes the program more cumbersome to read and understand, and
therefore harder to maintain. Importantly if we need to add a new data item to a movie record, for example,
to store also the movie’s box office amount (how much money the movie made), we would need to modify the
argument lists of all functions in the app that deal with movies. That is not a great feature of our design
using separate arrays. Also, notice that each function is now performing the same operation multiple times on
different containers. The function that adds movies is adding information in multiple different places, the one that
deletes movies is now performing a shifting operation on each of several arrays. This makes the code repetitive,
cumbersome to maintain, harder to test, and it’s easier for a programmer to inadvertently introduce bugs because
repetitive code tends to look right even when it is not.

What would change if we could bundle information for each movie into a single movie record that contains
(in a single place) all the different pieces of data that we need to store?

Example 3.2
// Given a data-type that can store all the information of a single movie as a single movie
// record

// Here’s what the function that adds a movie to the app might look like (in pseudocode)

addMovie()
Inputs:

- The filled-in movie record for the new movie
- The array that contains the movie records for all movies in the app
- The number of movies currently stored

Returns:
- The updated number of movies

Procedure:

- Check that there is space left in the array that stores movie records
if no space left, print an error message and return the current
number of movies unchanged

- Copy the new movie record onto the movie records array at the end
- Increment the current number of movies by 1 and return it

// Here’s what the function that deletes a movie from the app might look like
deleteMovie()

Inputs:
- The index of the movie we want to delete
- The array that contains the movie records for all movies in the app
- The number of movies currently stored

Returns
- The updated number of movies

Procedure:
- Check that the index is valid (greater or equal to zero, less than

the current number of movies)
if the index is not valid, print an error message and return

77

3.1 How to build a Bento Box (C) F. Estrada 2024

the current number of movies unchanged

Deletion:
If the index of the movie to delete is i, then startint at i+1

Move all existing entries in the movie records array up by 1

Decrement the number of movies stored by 1, and return the updated
number of movies

This is already better even in pseudocode. Note that the argument list for the functions in the program is now
much smaller and easier to understand. Now compare the body of the functions: With bundled movie records
the functions are cleaner, shorter, easier to understand for someone reading through the procedure, and there is no
duplication of work because everything happens in a single array rather than multiple ones. Additionally, if we
decided we need to add the box office total for the movies, we would not need to modify the function’s argument
list at all! and the body of the functions would either not change or change only in a minimal way. This is a huge
advantage in terms of building programs that are easier to understand, test, debug, maintain, and expand.

The example above motivates the need for a way to bundle information together so that each data item
represents the totality of the information that we need to manage for a single entity (movies in the examples above)
that our program will need to manage.

3.1.1 Compound Data Types (CDTs)

In C, we can define our own compound data types (CDTs) which are the programming equivalent of a Bento
Box: They are composed of a set of simpler data types, each of which provides needed information about a single
item or entity our program needs to handle.

Movies are fairly complex data items (if you look at the information on IMDB for a single movie you will find
out all kinds of things). So, for the examples in this section we will use a much simpler example: Suppose we are
writing a little app to keep track of restaurant reviews. Let’s say we are going to call our app Kelp.

The fundamental unit of information we need to keep track of is a single restaurant review. A restaurant
review record consists of:

The restaurant’s name (this is a string)
The restaurant’s address (this is also a string)
The review score (let’s say this is an integer in 1-5)

Here’s how we would build a compound data type in C that could store all the information required for one
restaurant review record:

typedef struct Restaurant_Score
{

char restaurant_name[1024];
char restaurant_address[1024];
int score;

} Review;

78

3.1 How to build a Bento Box (C) F. Estrada 2024

Let’s have a look at how this declaration works, since we will be using this throughout the book to declare
our own data types. The first line:

typedef struct Restaurant_Score

tell the compiler several things. First typedef tells the compiler we are defining a new data type. The next part
struct Restaurant_Score tells the compiler that our new data type is a compound data type (in C this is known
as a struct), and that the name of the struct will be Restaurant_Score. The general form for defining a new CDT
is typedef struct [_struct_name_].

After the typedef, and encased by curly braces, is the list of fields (which are the individual data elements)
that are bundled into the CDT we are creating. In the case above you can see the restaurant name, the restaurant
address, and the review score; each with an appropriate data type. In the case of the two strings, we specified a
length of 1024. This is arbitrary, but should suffice to store any reasonable restaurant name and any reasonable
address.

The last line, with the closing curly bracket is also important:
} Review;

This line completes the declaration of the new CDT by giving it a name we can use to create variables of this
type. In this case, the name we have selected is Review. Please note that this is different from the struct name that
was used in the very first line of the declaration for the new CDT. Now we can use the new CDT in a program and
create reviews for restaurants just as we would create other C data types - let’s look at an example:

Example 3.3
#include<stdio.h>
#include<stdlib.h>
#include<string.h>

#define STR_LENGTH 1024 // A convenient constant to use
// in our program

// Here’s our new CDT declaration, discussed above
typedef struct Restaurant_Score
{

char restaurant_name[STR_LENGTH];
char restaurant_address[STR_LENGTH];
int score;

} Review;

int main(void)
{

Review rev; // Declaring one variable of type ’Review’

// Let’s assign values to the information in ’rev’
// Individual components of a compound data type are accessed by using
// the ’.’ operator:

// Score is just an int, so we can do this:
rev.score=4;

79

3.1 How to build a Bento Box (C) F. Estrada 2024

// However, the address and name are strings, which means arrays. We
// have to use a function from the string library to copy them over.
strcpy(rev.restaurant_name,"Best Salads Ever");
strcpy(rev.restaurant_address,"777 Wonderful Street");

printf("This review has: name=%s, address=%s, score=%d\n",\
rev.restaurant_name,rev.restaurant_address,rev.score);

return 0;
}

The program above is a very simple example of how we would declare and use variables that are of compound
type. In the example, main() declares a single variable called ’rev’ which is of type Review. As we discussed just
above, the Review CDT contains three fields needed to represent the information of a single restaurant review
record; so our variable ’rev’ has 3 fields, and each individual field can be accessed as needed by using the ’.’
operator. In Example 3.3, all that we do is assign values to the different fields of the CDT, and then print out the
information we just stored there.

Question: What happens in the memory model when we declare a variable that is of compound type? Recall
that by defining CDTs we wanted to be able to bundle information so that we could treat each record for a complex
entity (like movies or restaurant reviews) as a single box that contains all the things we need. So, in the memory
model we will represent CDT variables as a single box which contains space for the different parts that comprise
the CDT. This is illustrated in Fig. 3.3

Figure 3.3: Memory model for the program in Exercise 3.3. Note that there is only 2 boxes, one for the Review
variable called ’rev’ which is of compound type, and one for main()’s return value

Note

Remember this: Variables that are compound type correspond to individual units of meaning in our
program. So we treat them as a single box in the memory model. Importantly this is a conceptual
representation, part of our memory model’s abstractions so we can think about how information moves
around in our programs in the correct way. How the pieces of information inside the CDT are represented,
stored, and organized in the actual computer memory is a lot more complicated - but happily we do not need
to worry about that, the compiler takes care of everything so we can use CDTs as bento boxes, with each of
the parts we specified always bundled together.

80

3.1 How to build a Bento Box (C) F. Estrada 2024

Compiling and running the code above produces
>./a.out
This review has: name=Best Salads Ever, address=777 Wonderful Street, score=4

One very nice thing about CDTs is that once we have created them, we can use them just like we would use
any other of the standard data types supported by the language. Here are some of the things we can do with CDTs:

Review rev1, rev2; // Declare individual variables of this type whenever we like
Review many_reviews[100]; // Create arrays in which each entry is a CDT
Review *rp; // Declare and use pointers to access information in CDTs

rev2=rev1; // We can copy CDT variables onto each other, this would
// copy the values in each of the fields in ’rev1’ onto
// the corresponding field in ’rev2’

rev1.score=4; // We can access individual fields in a CDT by using the
// ’.’ operator

rp=&rev2; // We can get the address (locker number) of a CDT variable
// and store it in a pointer

rp->score=3; // And we can easily use a pointer to access information
// in a CDT variable by using the ’->’ operator. This
// particular instruction is exactly equivalent to
// rev2.score=3;

We will practice all of the above as we look at how to pass CDT variables into and out of functions.

3.1.2 Passing compound types between functions

Like any other variable, we will find we need to pass CDTs as input arguments to functions, and/or to return
a CDT from a function. The way this is done is identical to the way we pass standard C-types between functions.
For example, let’s define a very short function that updates the score for a restaurant review

Review change_score(Review old_rev, int new_score)
{

old_rev.score=new_score;
return old_rev;

}

This function takes as an arguments a CDT of type Review called ’old_rev’, an int called ’new_score’; and
returns a CDT also of type Review. Let’s now see an example of how we would use this function, and what
happens in memory when we call change_score()
Example 3.4

int main()
{

Review rev1, rev2;

strcpy(rev1.restaurant_name,"The Home of Sushi");
strcpy(rev1.restaurant_address,"555 Ellesmeadow Rd.");
rev1.score=3;

rev2=rev1;

rev2=change_score(rev2,4);
}

81

3.1 How to build a Bento Box (C) F. Estrada 2024

The first thing the program does is create two CDT variables to hold restaurant reviews (Fig. 3.4). As expected,
this creates two boxes each of which contains space for the different parts of each of the reviews.

Figure 3.4: Memory model for the program in Example 3.4 just after memory has been reserved for main().

The next three lines fill-in the information in ’rev1’, which in the memory model looks as shown in Fig. 3.5.

Figure 3.5: Memory model for the program in Example 3.4 after filling-in information for rev1.

The line ’rev2=rev1;’ makes a complete copy of the contents of the box tagged ’rev1’ onto the box tagged
’rev2’. This means that each field is duplicated exactly. Needless to say, both boxes have to be exactly of exactly
the same type (Review) for this to work. The result is shown in Fig. 3.6.

Figure 3.6: Memory model for the program in Example 3.4 after the instruction ’rev2=rev1;’.

At this point we have two identical boxes, each containing the same address, restaurant name, and score. With
the instruction ’rev2=change_score(rev2,4);’ several things happen. First, space is reserved for the function’s input
arguments and return value. The input arguments are one variable of type Review called ’old_rev’, and an integer
variable called ’new_score’. Additionally space is reserved for the return value which is of type Review. As part
of the process, the value of the CDT rev2 being passed to the function is copied into the function’s old_rev
argument, and the value 4 is copied into the function’s argument ’new_score’. The situation is shown in Fig. 3.7.

The essential fact to keep in mind here is that passing a CDT into a function involves making a copy of the
CDT into the corresponding input argument. Compound data types are passed by value just like regular data types

82

3.1 How to build a Bento Box (C) F. Estrada 2024

Figure 3.7: Memory model for the program in Example 3.4 after the instruction ’rev2=new_score(rev2,4);’ has
reserved space for the function’s input arguments and return value, and copied the input arguments into their
corresponding boxes.

int, float, and char.
Once the function’s memory has been reserved and the input arguments have been set up, the program continues

with the instructions inside the body of the function. This very simple function only updates the score for the input
movie review. Note that the score being change is in the old_rev CDT. Nothing has changed in the original
variable ’rev2’ which belongs to main() and which we intended to update by calling this function. This is shown
in Fig. 3.8

Finally, the ’return old_rev;’ statement completes the function call and does the following: First, the value of
old_rev is copied onto the function’s return value box (because we said that is the variable we want to return), and
then the function returns control to main(). At that point, the return value of the function is copied onto rev2 as
directed by the original instruction ’rev2=change_score(rev2,4);’. Only at this point is the score in ’rev2’ actually
updated. This is illustrated in Fig. 3.9.

Once the return statement has done its work, the space reserved for change_score() is released.

The above process seems unnecessarily tedious, but it is important to see it at least once in detail so as to
properly understand that

CDTs are treated just as regular data types, and are passed by value (by making a copy) into and out of
functions.
The only thing that changes is the amount of information being copied.
The information inside a CDT is always treated as a bundle, and the entire bundle is copied when necessary.
The fields inside the CDT are never split from the bundle or left behind when the CDT is passed around the
program.
If the CDT contains a large amount of information and many different fields, the process of making copies
of it could cause significant overhead (i.e. it can be slow). This can be important if many function calls are

83

3.1 How to build a Bento Box (C) F. Estrada 2024

Figure 3.8: Memory model for the program in Example 3.4 after updating the score for the old_rev CDT.

Figure 3.9: Memory model for the program in Example 3.4 showing the effect of the function’s return statement.

84

3.1 How to build a Bento Box (C) F. Estrada 2024

required to get work done.
To avoid the overhead of copying large CDTs, we often prefer to use pointers to access and modify
information stored inside Compound Data Types. This is the same reason we don’t make copies of arrays,
and instead use pointers to access and modify array contents.

3.1.3 Using pointers with Compound Data Types

As we just saw, passing compound types around could involve a large amount of duplication of information.
Much like arrays, what we often need is a way for a function to directly access and if necessary change the contents
of a CDT defined outside. Just like with arrays, the way to do this is through the use of pointers. Let’s see how we
use pointers to handle compound data types:
Example 3.5

int main()
{

Review rev;
Review *rp=NULL; // Remember to always initialize pointers to NULL when

// you declare them!

strcpy(rev.restaurant_name,"The Baking Sleuth");
strcpy(rev.restaurant_address,"221B Baker Street");
rev.score=5;

rp=&rev; // Get the address of ’rev’ and store it in our pointer

rp->score=4; // Use the pointer to change data stored in ’rev’

return 0;
}

The code above declares one variable of type Review called ’rev’, and a pointer ’rp’ to a variable of type
Review. The next couple of lines fill-in the information for the review. The next line ’rp=&rev;’ is read as take the
address of rev and store it in pointer rp. Thereafter, ’rp’ contains the address of our review variable, and we can
use the pointer to access and modify the information contained in that review. In our memory model, this would
look as shown in Fig. 3.10.

Figure 3.10: Memory model for the program in Example 3.5 after the line ’rp=&rev;’.

Remember that to access the different fields of a CDT we use the ’.’ operator. This works only for variables
of that type. With pointers, we use the ’->’ (arrow) operator instead:

rp->score=4;

85

3.2 Getting user input (C) F. Estrada 2024

This line updates the score field in our CDT variable ’rev’ to 4. The nice thing about using pointers to access
information stored in CDTs is that the syntax is much easier to manage (remember that with regular type variables,
we need to use the ’*’ operator, which can lead to clunky and hard to read code). With pointers to CDTs we use
the arrow operator ’->’ to select fields we want to access and/or update. Say, for instance, that we wanted to update
the address of the restaurant, we could do so by using the pointer with the following line of code:

strcpy(rp->restaurant_address,"222A Baker Street");

Let’s see how things change in the memory model if we take the program from Example 3.4, and modify the
change_score() function to use pointers.
Example 3.6

void change_score(Review *rp, int new_score)
{

rp->score=new_score;
}

int main()
{

Review rev1, rev2;

strcpy(rev1.restaurant_name,"The Home of Sushi");
strcpy(rev1.restaurant_address,"555 Ellesmeadow Rd.");
rev1.score=3;

rev2=rev1;

change_score(&rev2,4);
}

The first thing to note in Example 3.6 is the declaration for the function ’void change_score(Review *rp, int
new_score)’. It now takes as input argument a pointer to a Review type variable instead of a copy of a Review
variable (as it did in Example 3.4). It also has no return value since this time around the function will directly
update information stored in the CDT variable owned by main().

Let’s look at the memory model at the point where the program calls change_score() and the function updates
the review score. The compiler will reserve two boxes for function change_score(), the first one is a pointer to a
Review type variable, and the second one is an int (there is no return value, so no box is reserved for that). The
function itself consists of a single line ’rp->score=new_score;’ which directly updates the score in variable rev2.
The situation in memory after the score is updated is shown in Fig. 3.11.

Compare the memory model in Fig. 3.11 against the original one in Fig. 3.9, and you can see that
If we use a pointer, there is no duplication of information - the contents of rev2 are never copied into the
function. The version without pointers had to make a copy of the entire CDT three times.
The memory model for the function with pointers is cleaner and easier to understand.

Hopefully this shows that even with a small CDT and a simple program, there are definite advantages to using
pointers to access and modify information stored in CDT variables. This is one of the main reasons we will be
using pointers throughout most of the programs we will write for the rest of the book.

86

3.2 Getting user input (C) F. Estrada 2024

Figure 3.11: Memory model for the program in Example 3.6 after the call to change_score() has been set up.

3.2 Getting user input

From this point onward, we will be working with information units that are more interesting, and writing
programs that handle larger amounts of information. As a result we will often need to request input from the user.
Let’s see how to do that in C.

3.2.1 Numeric types - integers and floats

For numeric data, we use the scanf() function. This function takes a formatting string that determines how
the user’s input is going to be converted into values that can be assigned to variables in our program. The formatting
string uses the same format specifiers as printf(). Let’s see an example:
Example 3.7

#include<stdio.h>

int main()
{

int x,y;
float pi;

printf("Enter two integer numbers and one float on the same line\n");
printf("Separated by spaces\n");

scanf("%d %d %f",&x,&y,&pi);
getchar();

printf("Read: %d, %d, %f\n",x,y,pi);

return 0;
}

Compiling and running the code above results in:

87

3.2 Getting user input (C) F. Estrada 2024

>./a.out
Enter two integer numbers and one float on the same line
Separated by spaces
2 3 1.2
Read: 2, 3, 1.200000

Things to note:

The formatting string for scanf() specified that we want ’%d, %d, %f’, so, one int, one int, and one float.
Whatever the user inputs will be interpreted as values to be assigned to these data types, in the order specified
by the formatting string. Remember that scanf() does not validate input. If the user inputs anything other
than the expected data types, the resulting values will be junk.
Because we want to read multiple values with one call to scanf(), we can not rely on the return value of
scanf() to get our information. Instead, scanf() takes in pointers to the variables where we want to store
the information the user provided. The pointers have to correspond to variables of the correct data type,
and in the exact same order as specified by the formatting string. If we try to store information into the
wrong data type, the result will be junk.
There is a call to getchar() just after scanf() because scanf() will ignore the [enter] key the user pressed after
inputting values. If we don’t remove it, it will mess with any further input that our program requires.

To illustrate the point that scanf() does not provide any checking for what the user inputs, or whether it matches
the data types we expected, see what happens when we run the same program but the user doesn’t type-in the
requested information and instead inputs gibberish.

>./a.out
Enter two integer numbers and one float on the same line
Separated by spaces
ahsga tsafhsgah 3
Read: 21893, 408739536, 0.000000

That clearly makes no sense. You should always check that the user input is reasonable before using it in
your program. Checking that the input is reasonable is called input sanitization and involves setting reasonable
bounds on what the input values should be. For example, if we are reading a score for a restaurant review, and we
know that scores are in 1 to 5, we can check that the score read from the terminal is valid, and if not, ask the user to
input a valid score.

� Exercise 3.1 Write a little program that declares an int array with 10 entries, it asks the user for the values for each
of these entries (these values should be in 0 to 100); and then computes and prints out the average of the values
in the array (in effect, you’re implementing the average() function found in most spread-sheet applications!)

3.2.2 Reading strings from the terminal

We can not use scanf() to read strings because scanf() interprets spaces as delimiters. Every space in the
input string would be taken to mean that a new value for a separate variable is being provided. Instead, we will use
a different library function called fgets() (the name comes from GET String).

88

3.2 Getting user input (C) F. Estrada 2024

Here’s how you use fgets() to read strings from the terminal:

Example 3.8
#include<stdio.h>

int main()
{

char my_string[1024];

printf("Please type one string\n");
fgets(my_string, 1024, stdin);

printf("The input string is: %s\n",my_string);
return 0;

}

The only new thing here is the call to fgets()
fgets(my_string, 1024, stdin);
// ^------- This specifies we want to read from the STanDard INput
// (the terminal)
// ^------------ This is the maximum length of the string we expect to read
// ^--------------------- And this is the name of the string where we will store
// user input

Note that the maximum length we specify for fgets() must be less than, or equal to the length of the char
array where we are storing the user input. In reality, if we specified that the maximum length is N, then fgets() will
read at most N-1 characters from the user’s input, because we need to reserve one character in order to store the
end-of-string delimiter ’\0’. While for many of our programs we will be reading input from stdin, the function
fgets() can be used to read from other sources of data, such as files, network sockets, etc.

Compiling and running the program above produces:
> ./a.out
Please type one string
Here is one string the user typed-in!
The input string is: Here is one string the user typed-in!

Note

Be careful your string arrays are large enough to contain the information you will be reading, and use
fgets() carefully. Trying to store a string in an array that is too small for it will crash your program.

To make the above point more clear, here is what happens when we change the program in Example 3.8 so
that the my_string array has a size of only 10 chars, and then we compile and run the code again and let the user
type-in what they want:
$./a.out
Please type one string
This string will not fit within a 10 entry array, something bad may happen!
The input string is: This string will not fit within a 10 entry array, something bad may happen

!

89

3.3 Handling realistic amounts of data (C) F. Estrada 2024

*** stack smashing detected ***: terminated
Aborted (core dumped)

The specific way the program crashes (remember that with array indexing, or pointer+offset problems the result
may be different on different computers, operating systems, or even the same computer at different times) is not
important. What is important is for you to remember that you can not control what, or how much the user will
type, so your program has to be written in such a way that whatever the user types-in you will not get in trouble.
This includes input sanitization as discussed above for numeric data types, as well as careful use of string arrays
and making sure that fgets() never reads more than can fit in them.

3.2.3 Practice Exercises

Let’s take a moment to practice what we have learned up to this point regarding CDTs and reading user input.
Take some time to try solving the following exercises before moving on to the next Section.

� Exercise 3.2 Write a small program that:
Declares a CDT that can store restaurant reviews. The CDT must include the three fields we used above
in the examples, but also include the average cost of a meal at the restaurant, and whether or not it does
delivery. You are free to decide what data types to use for the new fields.
Declares one or two Review variables in main() so we can store information for one or two restaurants.
Has a function called fill_in_review() that receives the information for each of the fields of a single review (as
separate data items), and fills-in the corresponding values in a Review CDT. The function must use pointers
to access/modify information in the CDT without making unnecessary copies.
Calls the fill_in_review() function to fill-in the review variable(s) in main().
Prints out the information stored in the review(s).

� Exercise 3.3 Modify the program from Exercise 3.2 so that
It declares an array for 10 Review CDTs.
It uses the function fill_in_reviews() to fill-in the information for each of 10 restaurants.
The function fill_in_review() asks the user to input the information it needs for an individual restaurant, and
reads that information from the terminal.
It prints out the review information for the 10 restaurants.

3.3 Handling realistic amounts of data

At this point we know how to create custom boxes to store information, and it is time to turn our attention to
one of the fundamental ideas this book is about. To understand what we’re going to do, let’s think a bit about what
would happen if we wanted to implement the restaurant review app using only what we know up to this point:

We know how to implement a new CDT to store information about reviews
We know how to declare and use Review type variables

90

3.3 Handling realistic amounts of data (C) F. Estrada 2024

We know how to pass reviews between functions in our program, both by copying them, and by using pointers
We know how to get input from the user to fill-in a review’s data

Question: How would our program be able to store multiple reviews in a way that makes the information
easy to access/modify?

Suppose we say we want to use an array (so far this is the only container we know for storing multiple items
of a given data type in C); so we go ahead and declare:

Review all_reviews[100];

This would reserve space for 100 reviews, they would be stored in consecutive boxes in memory (as is always the
case with arrays of any data type), and they would be easily accessible to our program.

However, as was noted earlier in the Chapter, the fixed size of the array becomes a limitation, further, if later
on we decide to change the size of the array, we will need to go through the entire program and change the size
wherever it is being used. This makes maintaining the program more time consuming and increases the likelihood
there will be a bug introduced over time when we forget to change the size somewhere.

But suppose we decide to be a bit smarter, and we do the following:
// At the top of the program, we have
#define MAX_REVIEWS 100000

// Then later on (maybe in main())
Review all_reviews[MAX_REVIEWS]

// Similarly, anywhere the program needs to
// use the array size, it can simply use
// MAX_REVIEWS. Changing the size of the
// array becomes easy

The version above is better in that we now have a very large array, we’re unlikely to run out of space at
least for a while, and changing the size of the array can be easily accomplished by changing the definition of
’MAX_REVIEWS’. However, the array may be mostly empty for a good part of the time. Because space for
arrays is reserved all at the same time, the program will obtain one hundred thousand boxes for restaurant reviews,
and keep them around even if it is using only a much smaller number of them to actually store information.

For example, as of 2024, there are approximately 7,500 restaurants in the city of Toronto (see Fig. 3.12).
This means that for even a large city with a wide variety of places to eat, declaring the all_reviews array to have
100,000 entries will result in a significant waste of space. Over 90% of the array will be empty. Even if we consider
future growth, it seems 100000 may be too big. However, if we instead think about the total number of restaurants
in Canada, we find that the number may be somewhere between 70,000 and 100,000 and our array will barely fit
them all.

What we should remember from the above
Arrays are wonderfully useful when we have a known amount of data to work with, and need a simple, easy
to use container for storing and managing the data. They are commonly used in data processing applications
to represent and manipulate numeric data.

91

3.3 Handling realistic amounts of data (C) F. Estrada 2024

Figure 3.12: Toronto is a good place to be, if you like food!. Image from:
https://www.destinationtoronto.com/restaurants/

Because they have fixed size, they could end up being too small to store the information we need. Conversely
if we define them to be very large from the start, they will likely waste a lot of space that may or may not ever
be used.
Because of these limitations, they are not the right tool for implementing an information storage/retrieval
system that is intended to work on a large collection of data whose size is both changing constantly, and
not known inadvance.

Here’s the problem we would like to solve:

We need to develop a way to
Store, keep organized, and update a large collection of items that represents the data our program will
manage (e.g. the collection of reviews in our restaurant reviewing app).
Our solution should allow us to keep as few or as many instances of individual data items as we need.
We don’t know the number in advance, and it may change over time. We don’t want to be constrained by a
fixed number of items.
Space should be reserved on-demand as new data items are added to our collection. This is to avoid wasting
computer storage by pre-reserving large amounts of space. In other words, our storage solution should be
extendible.
Our solution should enable us to search for, access, modify, and delete any individual data item in our
collection.

The above is a fairly general description of what a database is. Indeed, the definition of what a database is,
directly from Oracle reads: A database is an organized collection of structured information, or data, typically
stored electronically in a computer system.

92

3.4 Containers and Lists (C) F. Estrada 2024

Of course a modern-day database is incredibly complex and very powerful. In what remains of the Chapter
we will start exploring the ideas, principles, tools, and problems that arise when we consider the problem of
maintaining an organized collection of structured information.

3.4 Containers and Lists

A container is a construct (something we have built) that provides a means for storing, organizing, and
accessing a collection of data items of a given type. Notice that this is a very general definition - it doesn’t specify
how the data will be organized, it doesn’t specify how the data will be stored in memory (or on a hard drive if we
want to make a persistent copy), and it doesn’t say how we will implement functions to access and modify data
items in the collection.

An array is a very simple but limited container. We have discussed above the limitations that encourage us
to develop a better solution for storing data when we don’t know in advance how much of it our program will have
to handle.

Let’s have a look now at what is possibly the simplest container that:

Allows us to keep a collection of data items
The collection size can grow or shrink over time
The data is organized in a simple, easy to understand way that allows us to find what we need

The container we are talking about is called a List, and its main property is that The data items are stored in
sequential order, one after the other, and for every item we can tell what the next item is (if there is one).

This is also a fairly general definition - on purpose! The goal of this definition is to provide only the basic
properties of a list in a way that applies to any implementations you could write for it. This is important because it
doesn’t matter how you implement the list, or in what programming language, or what type of data it contains, a list
is still a list.

To make the point perfectly clear, in Fig. 3.13 you can see two very different implementations of lists - hand-
written vs. computer-made, shopping list vs. to-do list, and Italian language vs. English language. The details of
how the list was created, or what it contains, do not matter. They both share the same key properties of storing a
collection of items, sequentially ordered, and so they both are examples of a list.

3.4.1 List Abstract Data Type (List ADT)

The List Abstract Data Type extends our definition of a list container by specifying the operations that the
list must provide. That is, in addition to representing a collection of data items that are sequentially ordered, the
List ADT requires the following operations to be implemented:

Creating a new (empty) list
Adding items to an existing list
Removing items from a list
Searching for a specific data item

93

3.4 Containers and Lists (C) F. Estrada 2024

Figure 3.13: Two examples of lists. On the left we have a to-do list created with an app. On the right we have
Michelangelo’s shopping list from the 16th century. Images: (left) Lubaouchan, Wikimedia Commons, CC-SA 4.0;
(right) Michelangelo, Wikimedia Commons, Public Domain.

The search operation is needed so we can find, modify, and view the contents of specific items in our collection.
For example, in our restaurant reviews app, we may want to update the score for a restaurant already in the list.
Search is also needed to check whether a specific item is already in the collection (i.e. we need it in order to avoid
duplicating information).

There are variations on the definition above. We may find versions of the List ADT that include other
operations, for example, getting the length of the list, or inserting items at specific positions in the list (common
options include at the front vs. the end). The definition we provide here contains the fundamental operations we
will find on pretty much any list we will encounter in the future.

3.4.2 Why is this called an ’abstract’ data type?

This is a particularly important point: The List ADT we defined above is called abstract because it does
not specify how the List ADT and its operations are to be implemented. There are many possible ways in
which we could build our list, and we could implement it in any programming language we know of. Two actual
implementations of the List ADT could be completely different from one another, and yet, anyone who knows
what the List ADT includes will know to expect a collection of data items, sequentially ordered, that supports
declaring a new list, adding and deleting items, and search.

This is useful because it means that once you know how and when to use a List ADT to store and organize data,
you can do so using any of the implementations of the ADT, in any programming language, without having to
worry about the implementation details.

94

3.5 Linked Lists (C) F. Estrada 2024

Note

Abstract Data Types are a fundamental component of problem solving in computer science - they allow us
to think in terms of how data is organized, and what operations can be performed on that data, so we can
determine the optimal way to store and manage the information for the specific problem we need to solve
without having to worry about implementation details.

3.5 Linked Lists

One of the most common implementations of the List ADT is the linked list. To understand how a linked list
works, we can turn back to our original analogy of memory being just a very large room full of numbered lockers.

Here’s a real-world example of the process we follow to build a linked list:

Suppose you arrive in Lausanne (Switzerland, lovely city! see Fig. 3.14) for a little sight-seeing trip. Because
you are only staying a few hours, you don’t bother reserving a hotel room, and instead you decide to leave your bags
in a locker at the train station. So you find an empty locker, pay your fee, put your bags in the locker, and get your
numbered key (let’s say you got locker #1342).

Figure 3.14: A view of Lausanne, Switzerland. Looking southward across the lake is France. Image: Switzerland
Tourism, CC BY-NC 2.0 DEED.

You go our and start exploring the city. It’s a very interesting city and you buy a few things to bring home.
First, you buy some Swiss chocolate, and to avoid it melting while you walk around you decide to go back to the
train station and leave it there in another locker. You find an empty one, pay your fee, put the chocolates in there
and take your numbered key (#0789).

95

3.5 Linked Lists (C) F. Estrada 2024

Next you find some interesting pocket watches, buy one, and in order not to carry it around you head back to
the station and put it in its own locker (same process as before), and take the numbered key (#3519).

The process repeats with you acquiring some books (left in locker #6134), a new digital camera (you left the
old one in locker #2156), some more chocolate! (locker #0178), and a few t-shirts (locker #9781).

At this point, you notice that you’re walking around with a bunch of keys making noise in your pockets.
It’s not fun. So you you start to wonder: How could I store all my stuff (it doesn’t fit in fewer lockers) in such a
way that I need to carry only one key at any time, and yet I can still go and fetch any of my items whenever I
want?

After thinking about it for a while, you come up with this scheme:

Write down a list of all the lockers you have (in the order you got them): #1342, #0789, #3519, #6134, #2156,
#0178, #9781.

Then you do the following (starting at the next-to-last locker and working backwards):
Go to locker #0178 and put it inside the key for locker #9781 (together with the chocolates stored there, the
key is small so it fits).
Go next to locker #2156 and store there the key for locker #0178 (along with your old digital camera).
Head to locker #6134 and leave there the key for locker #2156 (together with the books).
Walk to locker #3519 and put there the key for locker #6134 (sharing the locker with the pocket watch).
Move to locker #0789 and leave there the key for locker #3519 (together with the chocolates you bought first).
Go to the first locker you got, #1342 and store there the key for locker #0789 (next to your luggage).
Now you can walk outside again, carrying only the key for locker #1342.

You have just created an arrangement of lockers in which you only have the key to the first one, and inside
each locker you can find the key for the next one. This is a linked list. In this example, the links are the keys
that open the next locker in the collection.

Definition 3.1

♣

The first locker in the list, the one for which we carry the key is called the head of the list. The last locker,
the one with no key inside is called the tail of the linked list.

If we draw a map of the items as they are stored in the locker room, we would expect it to look like Fig. 3.15.

Important things to note in the map in Fig. 3.15:
Lockers are ordered (but not in increasing order of locker number!). The order is given by when they were
added to your collection, and whatever locker happened to be available when you added each item.
Each locker except for the last one has a unique successor whose numbered key is part of the locker’s
contents.
The last locker (the tail of the list) has no key stored in it.
The key to the first locker (the head of the list) is not stored in any locker, it’s kept by you.

96

3.5 Linked Lists (C) F. Estrada 2024

Figure 3.15: Map of the locker room at the train station after organizing all the items stored there into a linked list.

Questions:
Would you ever expect the lockers to be ordered by increasing value of locker number?
Which locker is the successor of locker #6134?
Is the order of the lockers meaningful (does it provide any information about what’s stored in the locker)?

3.5.1 Looking for something?

Suppose now that you have been walking for a while snapping pictures. Your new camera runs out of battery,
but luckily you remember you bought a spare one and left it in the locker that contains the old camera.

Question: What is the sequence of actions you have to take to retrieve the spare battery from the locker with
the old camera?

Because of the structure of a linked list, whenever we are looking for a specific item we need to traverse the
list, starting at the head, and using the key in in each locker to open the next one in the list until we find the item
that we want.

In this case, we would have to carry out the following actions:
Use your key to locker #1342, look inside. This is not the locker you need, so use the key stored there to open
the next locker #0789 (don’t forget to put the key back before closing #1342).
Look in locker #0789. Chocolates! But we need a battery, so use the key stored there to open the next locker,
#3519.
Look in locker #3519, the watch is not what we’re looking for, so use the key stored there to open the next
locker, #6134.

97

3.5 Linked Lists (C) F. Estrada 2024

Look in locker #6134, it’s books! Not what we are looking for. So take the key there and use it to open locker
#2156.
Look inside locker #2156. It’s the old camera! Bingo! Fetch the spare battery, close the locker, and head out.

As you can easily see, that took some time and work. We will return to this later on.

Note

Remember: Whenever you we are using a linked list to keep a collection of items, searching for a specific
item will require traversing the list until we find it. Unlike arrays, we can not simply go to any arbitrary
item in the list – we need the key, and the key is stored in another locker. The only way to get to a particular
item is to follow the links from one locker to the next until we arrive at the one that contains what we’re
looking for (or we reach the end of the list).

� Exercise 3.4 Turns out all that walking has left you a bit sweaty, so you decide to change your shirt. Write down
the sequence of actions that would be required for you to fetch a clean t-shirt from the ones you stored at the train
station.

3.5.2 What if we need to store more things?

Suppose that you find a nice painting of a Swiss landscape that you want to bring home. You buy it, and you
bring it back to the station.

Question: How can we insert (add) another locker to our collection?

There are several ways in which we can add new items to our collection. Whichever one we choose, we must
carry out at the very least these three steps:

Get a new locker to store things in, we will get the key to this locker.
Put whatever we need to store in the newly acquired locker.
Link the new locker to the rest of our collection. This is the crucial step for making sure our linked list works
as intended as we add more items to it.
How to link the new locker to the list depends on where in the list we want to insert it, and will affect how
much work we need to do to add each item to the list.

Example 3.9 Let’s store our newly bought painting in a locker, and insert the new locker in our collection at the
head of the linked list:

Reserve a new locker (we got #4451).
Put the painting in the locker (we’re lucky, it just fits!).
Link the new locker to the existing linked list at the head. This means the new locker will become the
first locker in our list, in effect, it will become the head. Locker #1342 which was previously the head will
become the second locker in the list.

98

3.5 Linked Lists (C) F. Estrada 2024

So we take the key we are currently carrying for locker #1342 (our original head of the list) in the new locker.
Locker #4451 is now the head of the list so we take the key for it with us. Done!

After we completed the process above, our map for the locker room will look as shown in Fig. 3.16. The new
link joining the locker we just acquired for our painting to the rest of the list is shown in green.

Figure 3.16: Map of the locker room after we add an item (a painting) to our collection at the head of the list.
.

The same process would allow us to add any number of items at the head of the list as long as there are
unused lockers at the train station. The list will grow from the front end.

� Exercise 3.5 Starting with an empty list, show a diagram of what the linked list looks like after we insert chocolates
(locker #2215), Swiss cheese (locker #0117), a coo-coo clock (locker #4152), and a bunch of postcards (locker
#1890), in that order, by inserting each item at the head of the list.

3.5.3 Inserting a new item at the tail of the list

Inserting new items at the head of the list is the most straightforward (least effort) way to insert a new item
into the list. However it is not the only option. We can, with a bit more work, insert a new item at the tail of the
list, so the list grows from the tail-end.
Example 3.10 Suppose we wanted to add the new locker with our painting (#4451) at the tail of the list (instead
of at the head of the list). We would have to:

Get the new locker #4451 and its key.
Store the painting in the locker, note that this locker will not contain a key since it will go to the end of the
list.

99

3.5 Linked Lists (C) F. Estrada 2024

Traverse the linked list until we reach the current tail (easily recognized because it has no key in it). In this
example, that would be locker #9781.
Put the key to the new locker #4451 inside the current tail of the list (#9781). This means locker #9781 is no
longer the tail of the list as it now has a key to another locker. At the same time this links the new locker to
the list, at the tail.

Carrying out the process described above results in the map for the locker room that is shown in Fig. 3.17.
Once again, the new link is shown in green.

Figure 3.17: Map of the locker room after we add an item (a painting) to our collection at the tail of the list.
.

Note

Don’t forget: Adding an item at the tail of the list involves traversing the entire list. This can be a lot of
work! So why would we ever want to do this? Think about this little problem for a bit, and we will soon find
applications for which adding items at the end of a list makes perfect sense.

� Exercise 3.6 Starting with an empty list show what the linked list would look like if you carried out the following
operations (the lockers you get are indicated for each item):

Insert chocolates (#0008) at the head of the list (is this the same as inserting chocolates at the tail at this
point?)
Insert a bag with croissants (#9501) at the tail of the list
Insert a bag of books (#0546) at the head of the list
Insert a pair of t-shirts (#6121) at the head of the list
Insert a pair of shoes (#2222) at the tail of the list

100

3.5 Linked Lists (C) F. Estrada 2024

Questions: After the above operations are performed,
What is the head of the list?
What is the tail of the list?

3.5.4 Inserting at a location in-between existing items

The last option for inserting new items involves placing them somewhere in-between existing things in our
list. This is the most involved operation (though as we will see every step makes sense if you think about how the
lockers need to be organized). Like inserting at the tail, this is a type of insertion that makes sense for particular
applications. Let’s see how it’s done.

Example 3.11 Suppose we wanted to store the painting right after the books (or, what amounts to the same thing,
right before the old camera). The process would look like this:

Acquire a new locker for the painting (#4451).
Store the painting in that locker.
Traverse the linked list until we find the locker that contains the books (#6134). At this point, we need to
make sure the lockers end up in this order: #6134 (books) → #4451 (painting) → #2156 (old camera).
We take the key for locker #2156 (old camera) from locker #6134 (books).
We store the key for locker #4451 (painting) in locker #6134 (books) - this links the painting to the list just
after the books.
We store the key for locker #2156 (old camera) in locker #4451 (painting - this links the old camera to the list
just after the painting).

That’s it. Notice that we don’t have to do anything with the contents of locker #2156, as far as that locker is
concerned, nothing happened! The resulting map of the locker room is shown in Fig. 3.18. The updated links are
shown in green.

The only part of the process where we have to be really careful is when we’re moving the keys around. However,
if you take a moment to really understand why the steps above work, you’ll be able to figure out the steps whenever
needed, and you won’t need to memorize anything. You can always figure out the steps if you can draw what
the lists should look like before and after adding the new item.

� Exercise 3.7 List the steps needed to insert a bag of Swiss decaf coffee into our collection in-between the chocolates
and the t-shirts. Make sure to list every step and clearly indicate which keys end up in which lockers.Show what
the resulting list looks like after adding the coffee.

Ideas that you should be comfortable with at this point:
How a linked list is organized
How to search for a specific item in a linked list
How to insert a new item at the head, tail, or in-between existing items

3.5.5 Searching for items in the list

Now that we know how a linked list works, how it is organized, and how to add items to it, the next operation
we should figure out (as specified by the list of operations a List ADT has to support), is search - this means the

101

3.5 Linked Lists (C) F. Estrada 2024

Figure 3.18: Map of the locker room after we add an item (a painting) to our collection in between two other
items of the list.

.

process of finding a specific item in our collection.
As it turns out, we have already done that while we were figuring out how to add items either at the tail of

the list, or in between specific items in the list.

Definition 3.2 (Searching)

♣

In a linked list, search is simply the process of traversing the list starting at the head and following each
successive link in the list until we find the item we are looking for or we reach the end of the list.

We used search in order to get to the end of the list so we could add items at the tail of the list (we were
searching for an item in the collection that occupied a locker where there was no key leading somewhere else). We
also used search to find the item after which we wanted to add a new item to our collection.

In most applications of linked lists to real-world problems in computer science, we rely on search to obtain
detailed information about the data items our collection is meant to organize and manage. For instance, in an
application meant to store patient’s medical records, we would often require to pull up someone’s complete
record, and this requires us to use search to locate the entry in our linked list that contains that record, so we
can access the information stored therein.

3.5.6 Deleting items from the linked list

All the work of walking around acquiring things and storing them in lockers in a well organized linked list has
made you very hungry. You decide to eat all the chocolates in one of your lockers, you remember there’s two of
them, and you’re very hungry indeed so you decide to eat the first ones you find in your collection.

102

3.5 Linked Lists (C) F. Estrada 2024

You head back to the lockers, and traverse your linked list until you find chocolates:
Start at locker #1342 (luggage), get key for locker #0789
Go to locker #0789 (chocolates). Found them! Eat all the chocolates!

After you’ve eaten the chocolates the locker is empty, so you decide to return the key to the locker rental office
so that someone else can use that locker, but first you have to make sure the remaining lockers are still a linked list!

The situation we have at this point is like this: #1342 (luggage, key for #0789) → #0789 (no items, key for
#3519) → #3519 (watch) ... (the rest of the list). If we remove #0789, we need to make sure that locker #1342
becomes linked to #3519 which is the locker immediately after the chocolates that were eaten.

So to remove an item from the list we
Find the item right before the item we are removing (this is called the predecessor of the item we are
deleting).
Take the key from the locker that has the item we are deleting and store it in the predecessor- which
links the items right before and right after the one we are removing from the list.

In the case above, we need to take the key to locker #3519 from locker #0789 which is being removed, and store
it in locker #1342. This will result in the following situation: #1342 (luggage, key for #3519) → #3519 (watch) ...
(rest of the list). This is shown in Fig. 3.19.

Figure 3.19: Map of the locker room after we remove the chocolates from our collection.
.

The locker #0789 is no longer part of our list, and we can return the key to the rental office so the locker can
be re used. Because our linked list is all about acquiring lockers on demand, and being able to acquire as many as

103

3.6 Implementing a Linked List in C (C) F. Estrada 2024

we need to store our items, we should be good citizens and never forget to return a locker we no longer need so
it can be re-used by others, or by ourselves at a later time.

Questions:
Does the same process work if we are removing the item at the tail of the linked list?
Does the same process work if we are removing the item at the head of the linked list?

You may be wondering why we have developed the above example of linked lists without any actual code. The
reason is that the same process applies to linked lists independently of what language we are programming with,
or what items we are storing there. So, understanding how the list works independently of code will allow you to
implement a linked list in any language, for any application, and for storing any type of data. In effect we have
defined a linked list ADT.

This is precisely the kind of conceptual understanding that is essential to acquire. Implementing the linked list
will help refine and solidify your understanding, but do not forget: The concept, process, and organization of the
linked list are more important than any specific implementation.

3.6 Implementing a Linked List in C

Up to this point, we have been discussing linked lists at a conceptual level, as an Abstract Data Type that can
be implemented in any programming language, and in many different ways. It is now time for us to look at an actual
implementation of the linked list ADT.

Definition 3.3 (A specific implementation of an ADT is called a data structure)

♣

The difference is important: There may be many different ways to implement a particular ADT (even
using the same programming language), and implementations of the same ADT in different languages may
look completely different. The data structure on the other hand is programming-language specific, and
implementation dependent.

A properly designed data structure has to comply with the expectations described by the corresponding ADT,
that means that it has to organize information in the way the ADT describes, and it has to support every operation
the ADT specifies must be available for the information kept in the collection. In the case of a linked list, the
ADT specifies that items have to be stored in sequence (the order doesn’t matter), and the operations supported
are adding (inserting) items into the collection, searching (finding) specific items, and deleting items from the
collection.

What we are about to do is to create a linked list data structure in C. This involves the following steps:

Setting up a new compound data type (CDT) to store one item in the list. Each individual item is usually
called a node in the list.
Setting up a head pointer to keep track of the head of the list.
Writing a function to create a new empty node on demand - remember we must be able to add items when
we want to, and only use memory for items that are actually in the list.

104

3.6 Implementing a Linked List in C (C) F. Estrada 2024

Writing a function to insert properly filled nodes into the list - this means nodes that have all the information
required by one item in the collection.
Writing a function to search for a specific item.
Writing a function to delete (remove) a specific item from the list.

It seems like a bit of work, but as we shall see the process is independent from the type of information that the
linked list contains, so once you know how to do the steps above for items of one kind, you can do it for items of
any other kind.

3.6.1 Creating a node CDT

The general structure of a node in a linked list is

| DATA |
| |
link to next --------->

The node itself is just a big box with 2 parts: a data payload that consists of all the information we need to store
for a single item in the collection, and a link to the next entry in the list.

The data payload can be anything. From a simple data type such as int or float, to a chunky compound data
type that contains multiple fields, each of which has its own data type (and each of which could itself be a CDT).
The data payload can contain pointers to information stored elsewhere. For example, we could create a linked list
to store information about all the files stored in a USB memory stick, each node could contain information about
the file such as its name, the date it was created, the file size, the file type, and a pointer to the memory location in
the USB stick where the actual data for the file is stored.

The point is that the data payload can contain anything we want. The structure of the list doesn’t depend on
what kind of data it stores. It just provides a means to keep it organized.

The link to the next entry in the linked list is just a pointer that stores the memory location (the locker
number) of the box that contains the next item in the linked list. We have used pointers before to access information
our program needs, the next item pointer works just like any other pointer.

We have to use pointers because as we have learned
We don’t know where in memory a new node will be placed - it depends on where there’s space the moment
we ask for a new node to be created.
We will request space for nodes on demand, and will request as many as we need but no more - we can not
use an array for this.
In C, we need pointers to allow functions to access/change variables declared outside their scope. All the
functions that work on the linked list will have to do this, so we need the pointers.

Let’s see how we declare a linked list node for a simple data type.

Example 3.12 Declare a linked list node where each node stores a single int value.

105

3.6 Implementing a Linked List in C (C) F. Estrada 2024

typedef struct int_list_node
{

int stored_integer; // DATA
struct int_list_node *next; // Link to next entry

} int_node;

We have already seen that we use typedef to create new CDTs. A linked list node is a CDT and is defined in
exactly the same way. The first line

typedef struct int_list_node

tells the compiler that we are defining a new compound data type called int_list_node (a node for a linked list
containing integers).

The next couple lines
int stored_integer; // DATA
struct int_list_node *next; // Link to next entry

Define the contents of this node: one int value called stored_integer, and a pointer to the next node in the linked
list (which is of type int_list_node). In most linked lists, this pointer is called next. The last line

} int_node;

tells the compiler we want to call our new data type int_node. Thereafter we can go ahead and declare variables
for nodes in our linked list like so:

int_node a; // A variable of type int_node
int_node *head; // A pointer to an int_node

Let’s see how we would use our new data type in a little program.
Example 3.13

#include<stdio.h>
#include<stdlib.h>

typedef struct int_list_node
{

int stored_integer; // DATA
struct int_list_node *next; // Link to next entry

} int_node;

int main()
{

int_node a_node;
int_node *node_ptr=NULL;

a_node.stored_integer=21;
a_node.next=NULL;

node_ptr=&a_node;
node_ptr->stored_integer=17;

printf("The value contained in the node is %d\n",node_ptr->stored_integer);

return 0;
}

106

3.6 Implementing a Linked List in C (C) F. Estrada 2024

Compiling and running the code above we get:
>/a.out
The value contained in the node is 17

Let’s see what this does in memory to fully understand out little program.

First, main() declares two variables
int_node a_node;
int_node *node_ptr=NULL;

The first one is a linked list node called a_node, the second one is a pointer to a variable of type int_node. In
memory, these lines will reserve one box of the right size to hold an int_node, and one box for a pointer to int_node;
as well as space for main()’s return value. This is shown in Fig. 3.20.

Figure 3.20: Memory model for the code in Example 3.13 just after space has been reserved for the program.
.

Note that:
The box containing the list node has two parts: an int, and a pointer to an int_node so we can link this box
into a list.
The node_ptr on the other hand is just a pointer, it doesn’t have two components despite being a pointer to a
variable of type int_node. Initially it is set to NULL indicating it’s not pointing to anything.

Next, the program fills-in the data in the variable a_node, there’s two fields to fill, and they are set to appropriate
values.

a_node.stored_integer=21;
a_node.next=NULL;

notice that the next pointer is being set to NULL. Whenever we create a new node, we must make sure that the next
pointer is set to NULL and it does not receive a different value until the node is linked to a list. Not setting the
next pointer to NULL is a common source of bugs in programs that work with linked lists. In the memory model,
the situation is as shown in Fig. 3.21.

Next we get a pointer to the list node a_node, use it to change the value of the data in the node; and then we
print out the node’s data contents:

node_ptr=&a_node;
node_ptr->stored_integer=17;

printf("The value contained in the node is %d\n",node_ptr->stored_integer);

107

3.6 Implementing a Linked List in C (C) F. Estrada 2024

Figure 3.21: Memory model for the code in Example 3.13 after a_node has been filled with information.
.

The first line is read as get the address of a_node and store it in node_ptr, then we access the node’s content using
our pointer (remember, when we have a pointer to a compound data type, we can access its different fields using
the ’->’ operator). In this case the line reads make the value of the stored_integer at the node whose address is
in node_pointer equal to 17. The last line prints out the node’s stored integer (using the pointer to access it). As
expected, it prints out 17. The memory model will look as shown in Fig. 3.22.

Figure 3.22: Memory model for the code in Example 3.13 just before the program ends.
.

You can see that node_ptr contains nothing more than the address for a_node. If we had a function that needs
to access/modify the data in a_node, we could pass node_ptr to it.

The example above is to show you how we define a node data type, how we can declare variables and pointers
to nodes, and how we can use them to access and modify data in the node. However, we started this section by
saying we want to be able to create nodes on-demand, as new data items are added to a collection. We can not
do this with variable declarations that are written into the code.

We will now see how to create nodes on-demand (this is called dynamic memory allocation, which is nothing
other than a fancy term for getting space for data whenever we need it). We will see that the only way to deal with
such data is by using pointers. We should be thinking of our original restaurant review app, so let’s apply what we
know to create a linked list of restaurant reviews, and see how we can generate new restaurant reviews on-demand
to put in our list.

3.6.2 Declaring a linked list node for reviews

Remember our Review data type (we have already seen how it works and how to use it):
#define MAX_STRING_LENGTH 1024

108

3.6 Implementing a Linked List in C (C) F. Estrada 2024

typedef struct Restaurant_Score
{

char restaurant_name[MAX_STRING_LENGTH];
char restaurant_address[MAX_STRING_LENGTH];
int score;

} Review;

Let’s now declare a node for storing reviews in a linked list. Just like before, our node will contain two parts: A
variable to hold one Review, and a pointer to the next node in the linked list.
typedef struct Review_List_Node
{

Review rev;
struct Review_List_Node *next;

} Review_Node;

This will create a new data type called Review_Node that contains one Review, and a pointer to the next entry in
a linked list.

Take a moment to compare this node definition with the one for the int_list_node above, and you will see that
the only change is that the data component of the node is now a variable of type Review. Other than that it works
exactly the same way. This shows that creating a node for a linked list works the same way for any data type.

3.6.3 Creating nodes on-demand

Since we must be able to create nodes on-demand, we need to write a function that will
Reserve space for a new Review_Node.
Initialize the contents of the newly reserved node - to reasonable default values.
Provide our program with a pointer to the new node so we can access/modify data inside it, and so we can
link it to a list.

Here is how we would do that for review nodes, but note that the same process will apply to nodes containing
any other data type:
Review_Node *new_Review_Node(void)
{

Review_Node *new_review=NULL; // Declare a pointer to locker that contains a Review_Node

new_review=(Review_Node *)calloc(1, sizeof(Review_Node)); // Reserves memory space!

// Initialize the new node’s content with reasonable default values that show
// it has not been filled with actual data. In our case, we set the score to -1,
// and both the address and restaurant name to empty strings ""
// Very importantly! Set the ’next’ pointer to NULL

new_review->rev.score=-1;
strcpy(new_review->rev.restaurant_name,"");
strcpy(new_review->rev.restaurant_address,"");
new_review->next=NULL;
return new_review; // This returns a *pointer*, NOT a Review_Node.

}

109

3.6 Implementing a Linked List in C (C) F. Estrada 2024

Let’s look at the code above in detail. You will use very similar code for creating nodes on-demand for any
linked list you will write in C (as well as for many other data structures we will study later on). First, the function
declaration:
Review_Node *new_Review_Node(void)

It states that the function called new_Review_Node has no input arguments, and returns a pointer to a
Review_Node. Inside the function’s body, we have one variable declaration:

Review_Node *new_review=NULL; // Pointer to the new node

This is just a pointer to a Review_Node and it’s initially set to NULL to indicate it’s UN-assigned. The actual
work of allocating a new Review_Node is done here:

new_review=(Review_Node *)calloc(1, sizeof(Review_Node));

The syntax here requires a bit of care to understand. The function calloc() is a library function that is used to
reserve memory on-demand. It takes in two parameters:

calloc(# of items , size of each item in bytes)

In the case above, we are requesting one item whose size is the size of a Review_Node. Luckily for us we have a
helpful sizeof() operator that returns the size in bytes of any data type known to the compiler - which includes any
CDTs we have previously declared.

What does calloc() do?
It finds an available place in memory that has the requested capacity
It reserves that memory for use by our program
It wipes-out the contents of that memory space with zeros - so it will not contain junk
It returns a pointer to our reserved chunk of memory

The function calloc() returns a pointer without any attached data type (it’s a simple function, it doesn’t know
what we want to do with the memory), so the line

new_review=(Review_Node *)calloc(1, sizeof(Review_Node));

takes the returned pointer, type-casts it to a pointer for a variable of type Review_Node, and stores it in our
pointer variable ’new_review’. That’s a lot to take in! So let’s review it slowly in steps:

We declared a pointer new_review to a Review_Node box, which we expect to request and reserve on-demand.
We then used calloc() to reserve memory space for the new node. It gives us a pointer to a clean box suitable
to store a Review_Node.
We stored that pointer so we can use it to access/modify the information stored in the Review_Node box.

We will see how all of this works in memory in a moment. Let’s just finish going through the new_Review_Node()
function. The last part of this function initializes (fills-in) the values of our newly acquired Review_Node with
default values that show the node has not been updated with actual data.

110

3.6 Implementing a Linked List in C (C) F. Estrada 2024

Note

This is an important step and helps us avoid bugs caused by trying to use information in nodes that have
been created but still contain no valid information.

In the case above, the code sets the ’score’ to -1, and initializes the restaurant’s name and address to empty
strings (""). It then sets the ’next’ pointer to NULL. This is an essential step as it ensures that if the ’next’ pointer
has any value other than NULL, then the node must be part of a linked list. Always initialize pointers in newly
created nodes to NULL.

To fully understand what the function above does, let’s see what happens in memory if we run a little program
that creates a single Review_Node, fills the new node with information, and prints that information out.

Example 3.14 The program below dynamically allocates a Review_Node, fills the Review within that node with
information, and then prints the information inside the Review. Pay close attention to how calloc() is used to reserve
memory on demand, how a pointer us used to access the newly reserved box, and how the program can access
data fields that are inside a double wrapping: They are stored inside a Review CDT, which then is packed inside a
Review_Node CDT.

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#define MAX_STRING_LENGTH 1024

typedef struct Restaurant_Score
{

char restaurant_name[MAX_STRING_LENGTH];
char restaurant_address[MAX_STRING_LENGTH];
int score;

} Review;

typedef struct Review_List_Node
{

Review rev;
struct Review_List_Node *next;

} Review_Node;

Review_Node *new_Review_Node(void)
{

// This function creates a new box for a ’Review_Node’,
// initializes the information stored in the Review_Node,
// and returns a pointer to the new node.

Review_Node *new_node=NULL; // Pointer to the new node

new_node=(Review_Node *)calloc(1, sizeof(Review_Node));
if (new_node==NULL)
{

// *ALWAYS* after using calloc, check if we actually were able
// to reserve the memory we wanted. calloc() returns NULL if it
// is not able to reserve the requested memory, we must check for
// that and handle the situation in a way that is appropriate
// to the program we are writing. In this case, print an
// error message and return NULL (so the function that called
// new_Review_Node() knows it did NOT get a node and can

111

3.6 Implementing a Linked List in C (C) F. Estrada 2024

// also react accordingly).

printf("new_Review_Node(): Error - there is no memory available, unable to
reserve space!\n");

return NULL;
}

// Initialize the new node’s content with values that show
// it has not been filled. In our case, we set the score to -1,
// and both the address and restaurant name to empty strings ""
// Very importantly! Set the ’next’ pointer to NULL

new_node->rev.score=-1;
// The line above is important. We have a pointer to a Review_Node
// box (new_node), inside that box is a Review *variable* called
// ’rev’, and inside ’rev’ there is a field called ’score’ that we
// want to update. So the instruction states:
// Use the pointer ’new_node’ to access the ’rev’ variable (using
// the ’->’ operator, since ’new_node’ is a pointer. Once we have
// access to ’rev’, access the ’score’ field (because ’rev’ is a
// regular variable, use the ’.’ operator) and set it to -1
// Similarly, the instructions below will update the name and address.

strcpy(new_node->rev.restaurant_name,"");
strcpy(new_node->rev.restaurant_address,"");
new_node->next=NULL;

return new_node;
}

int main()
{

Review_Node *my_node=NULL;

my_node=new_Review_Node();
if (my_node==NULL)
{

// This would happen if new_Review_Node() didn’t get memory,
// so we can’t continue.
printf("Could not reserve memory for a new Review_Node, ending the program now.\

n");
return 1; // Return non-zero to indicate that an error occurred.

}

strcpy(my_node->rev.restaurant_name,"Veggie Goodness");
strcpy(my_node->rev.restaurant_address,"The Toronto Zoo, Section C");
my_node->rev.score=3;

printf("The review node contains:\n");
printf("Name=%s\n",my_node->rev.restaurant_name);
printf("Address=%s\n",my_node->rev.restaurant_address);
printf("Score=%d\n",my_node->rev.score);
printf("Link=%p\n",my_node->next);

free(my_node);

return 0; // Return 0 because everything went as expected.
}

Compiling and running the code above produces:

112

3.6 Implementing a Linked List in C (C) F. Estrada 2024

>./a.out
The review node contains:
Name=Veggie Goodness
Address=The Toronto Zoo, Section C
Score=3
Link=(nil)

Let’s see exactly what is happening when we run the code above. First, main() declares a pointer variable to
a Review_Node. This means whatever memory address is stored here, we can expect at that location to find a box
containing a Review_Node. The pointer is initialized to NULL as should be done with any pointers we declare.
The initial situation in memory looks like that shown in Fig. 3.23.

Figure 3.23: Memory model for the code in Example 3.14 just after space is reserved for main()’s variables.

Things to note
The pointer my_node is the only variable declared in main()
It is not a Review_Node, all that it can store is a memory address
It is initialized to NULL to indicate it is unassigned at the moment
Let’s not forget about main()’s return value!

Next we have a call to new_Review_Node(),
my_node=new_Review_Node();

the function new_Review_Node() declares a single pointer variable to a Review_Node, and also has a return
value that is a pointer to a Review_Node. These need to be reserved in memory as shown in Fig. 3.24.

Note that neither main() nor new_Review_Node() have declared any actual variables of type Review_Node.
We are using pointers exclusively. Next, the new_Review_Node() function dynamically allocates memory for the
new Review_Node, and initializes it to reasonable default values. The result of this is shown in Fig. 3.25.

Things to note:
The newly reserved Review_Node is shown outside any of the functions in the program. It does not belong
to either main() or new_Review_Node().
It doesn’t have a name tag because it is not a local variable declared by a function.
Since it doesn’t have a name tag, the only way to get to it is by having its address (#9871) in a pointer. The
pointer new_node stores the address of the newly created node.
The new Review_Node has two fields as expected: one field of type Review that we called ’rev’, and a
pointer called ’next’ that can be used to link this node to a linked list.

113

3.6 Implementing a Linked List in C (C) F. Estrada 2024

Figure 3.24: Memory model for the code in Example 3.14 just after the call to new_Review_Node() has reserved
space for the function’s variables.

.

Figure 3.25: Memory model for the code in Example 3.14 after the function new_Review_Node() has reserved
memory for a new Review_Node and filled it with default values.

.

114

3.6 Implementing a Linked List in C (C) F. Estrada 2024

Finally, the new_Review_Node() function returns the pointer to the newly allocated node back to main(), it
gets stored in the ’my_node’ variable, giving main() access to the box for the new node, as shown in Fig. 3.26.

Figure 3.26: Memory model for the code in Example 3.14 once the return statement copies the pointer to the
newly allocated node back to main()’s pointer variable ’my_node’.

.

Its work completed, memory reserved for the function new_Review_Node() is released. Importantly the box
for the newly allocated node is not released because it does not belong to the function, it is not attached to any
function in the program and is not released when functions end. We will get back to this point in a moment.

At that point, main() has access to the newly allocated box, and can use its pointer ’my_node’ to fill-in the
new node with information. The situation is shown in the memory model in Fig. 3.27.

The syntax for accessing information stored within a node is worth careful thought:
my_node->rev.score=3;

// ^---- We want to update the score for this review
// ^-------- ’score’ is a field in ’rev’, which is a variable
// so we use the ’.’ operator to access it
// ^------------- ’rev’ is a field in the Review_Node box that
// is stored at the address in ’my_node’, so we
// use the ’->’ operator to access it.
// ^--------------------- ’my_node’ is a pointer to a Review_Node
// and was declared in main()

a similar process is used to access the other fields in rev.
The last step in the program, right before the program ends, is releasing the memory we have dynamically

allocated. This is essential whenever we use dynamic memory to store information. The reason for this is that, as

115

3.6 Implementing a Linked List in C (C) F. Estrada 2024

Figure 3.27: Memory model for the code in Example 3.14 after main() has filled-in the new node with information.
.

116

3.6 Implementing a Linked List in C (C) F. Estrada 2024

shown in the memory model, any boxes that our program reserves dynamically are stored outside functions, and
have no attached tags. They are not local variables and are not released automatically when the function that
reserved them ends. We have to clean up after ourselves.

Note

The process for releasing memory that has been dynamically allocated by our program uses a built-in function
called free() that takes a single input argument: a pointer to a chunk of memory that was dynamically
reserved by our program. The function releases the memory for use by other programs (or by our own
program at a different point in time).

The last line in our program right before the final return statement releases memory for our newly acquired
node

free(my_node);

the process is straightforward but we have to be careful:
For each data item we dynamically allocated, there has to be a corresponding free().
Any dynamic memory we acquired that we do not release with free() becomes a memory leak.
We can not free() a chunk of memory more than once (if we try, the program will be terminated) - it is a bug.
We can not free() a NULL pointer (if we try, the program will be terminated) - this is also a bug.
We can not free() local variables, input arguments, or a return value - only dynamic memory can be freed in
this way.

In summary: From the above example, we have seen how to build a CDT for a node that contains a Review,
how to implement a function that dynamically allocates a new node when we need it, and that returns a pointer
to the new node (properly initialized with reasonable default values); and how to use this pointer to access and
update information stored in our dynamically allocated node. We will use all of these ideas very shortly in order to
implement a fully-working linked list of restaurant reviews.

117

3.7 Building a linked list of reviews (C) F. Estrada 2024

Note

Why did we bother with so much detail? In a different course, the code we wrote may have been explained
in a much more compact way. In particular, the line

my_node=new_Review_Node();

could just have been explained by saying the function new_Review_Node() allocates a new Review_Node,
and returns its address. This is an accurate statement, but it doesn’t help us really understand what is going
on when we reserve memory on-demand, or the process we have to follow if we ever have to (and we will
have to!) write code that creates and initializes different types of data items. So, it’s worth going through
the entire process once, in great detail, making sure we understand every single step.
At this point, given all the examples we have done of how variables, pointers, compound types, and function
calls are processed, we should have a pretty good understanding of what happens when we perform a
sequence of operations in C. So, from now on, we will spend less time looking at the very low-level detail
of how things change in memory when we run code, and start looking at programs at a higher level,
focusing on the conceptual aspects of what we’re doing - this is unavoidable since we will be implementing
more complex programs and looking at every single step in them would take too long and wouldn’t teach us
anything new.
But we should not forget - C is a very simple and straightforward language that doesn’t do anything we didn’t
ask it to do. We can always figure out exactly what is going on if we think in terms of boxes in memory
that correspond to the data our program is working with, and operations on these boxes. Whenever we are
not sure about what is happening, we should take a blank sheet of paper and a pencil, and draw a memory
diagram, then make sure we understand what our code is doing step by step.

� Exercise 3.8 Write a little program that
Creates an int_node CDT which represents a node in a linked list where the data items are single integer
values.
Has a function to allocate and initialize a new int_node.
Creates a new int_node in main(), and uses a pointer to update its integer value to 42.
Uses the pointer to print out the contents of the int_node.
Releases the memory for the int_node before the program ends.

3.7 Building a linked list of reviews

At this point we have all we need to create a linked list of restaurant reviews:

We know how to define a CDT to store the data for a single review.
We know how to define a linked list node CDT that we can use to link reviews into a list.
We know how to write a function that allocates new review nodes on-demand and returns a pointer to the
newly created nodes so we can access/modify information within.
We know how to read user input from the terminal so we can obtain information to fill our reviews.

118

3.7 Building a linked list of reviews (C) F. Estrada 2024

It’s time we put everything together into a little program that is able to read review information from the
terminal, fill-in the information typed in by the user into review nodes allocated on-demand, and link these nodes
to form a linked list.

In order to complete this program we will need to:

Implement a function to initialize a new (empty) linked list.
Implement a function to insert a newly created review into the linked list.
Implement a function to search for specific reviews we wish to inspect.
Implement a function to print the reviews in the list whenever we want.
Implement a function to delete a specific review the user no longer needs.
Add code to main() that allows the user to choose what they want to do, and obtains any review information
that is needed.

We will be looking at this code at a higher, more conceptual level, and stop only to look at details when such
details illustrate a new idea we haven’t seen before.

� Exercise 3.9 Write in pseudocode the steps we need to implement as per the description below (we will start with
only some of the linked list operations we need to implement, and extend our implementation afterwards).

Gives the user a choice between: a) Entering a new review, b) Printing out all the reviews entered thus far, or
c) Exiting the program.
If the user chooses a) the program should carry out all the steps needed to add the new review to the linked
list of reviews.
If the user chooses b) the program will traverse the list printing out each review in turn.
If the user chooses c) the program releases all memory allocated to the linked list, and exits.

Having completed the exercise above, have a look at how we would implement these steps in main().
int main()
{

Review_Node *head=NULL;
Review_Node *one_review=NULL;
char name[MAX_STRING_LENGTH];
char address[MAX_STRING_LENGTH];
int score;
int choice=1;

while (choice!=3)
{

printf("Please choose one of the following:\n");
printf("1 - Add a new review\n");
printf("2 - Print existing reviews\n");
printf("3 - Exit this program\n");

scanf("%d",&choice);
getchar();

if (choice==1)

119

3.7 Building a linked list of reviews (C) F. Estrada 2024

{
// Here we need code to add a new review to the linked list

}
else if (choice==2)
{

// Here we will add code to print the existing reviews
}

}

// User chose #3 - Release memory and exit the program.
}

The code above is not complete (and is also missing the #include statements, and the declarations for the
various CDTs we need). But, importantly, it contains the different sections we need to complete in main() in order
to implement all the functionality requested. It already does two important things:

Firstly, It declares a new, empty linked list:
Review_Node *head=NULL;

As you see, it’s just a pointer to a Review_Node, initially set to NULL. This is how we create any empty linked list
in C.

Question: How do we check if a linked list is empty?

Secondly, it provides a loop that prompts the user to choose a number from 1 to 3. Depending on the user’s
choice, different sections are executed. If the user chooses 3, the loop exits.

Question: What does the loop do if the user inputs anything other than values in 1-3?

Note

When you are writing a complicated program, it is a good idea to write a little driver function (in the case
above, we used main() for this but it could be a separate function called by main()) that has a loop like the
one above, and allows you to test different parts of the program separately giving you control over which
part gets tested, in what order to test the different program components, and what information to pass to each
of them. We will get back to this topic at the end of the Chapter.

Let’s now start filling in the missing parts of the implementation. First, let’s have a look at the code for option
1, it should insert a new review into our linked list.

3.7.1 Inserting a new node into the linked list, at the head

if (choice==1)
{

// Request a box for a new review node

one_review=new_Review_Node(); // We saw how this works in the previous section!
if (one_review==NULL) // Remember to check that we actually got a node..

120

3.7 Building a linked list of reviews (C) F. Estrada 2024

{
printf("main(): Error - there is no more memory, unable to create a new linked list

node!\n");
exit(1); // This ends the program at this point

}

// Read information from the terminal to fill-in this review
printf("Please enter the restaurant’s name\n");
fgets(name, MAX_STRING_LENGTH, stdin);

printf("Please enter the restaurant’s address\n");
fgets(address, MAX_STRING_LENGTH, stdin);

printf("Please enter the restaurant’s score\n");
scanf("%d",&score);
getchar();

// Fill-in the data in the new review node
strcpy(one_review->rev.restaurant_name,name);
strcpy(one_review->rev.restaurant_address,address);
one_review->rev.score=score;

// Insert the new review into the linked list
head=insert_at_head(head,one_review);

}

The code above uses the function we wrote before, new_Review_Node() to allocate and initialize a new
Review_Node. You already know how this function works, and what happens in memory when we call it. In the
code above, we can simply assume that we obtain a pointer to a newly allocated Review_Node. But notice we
always check to see if a problem occurred (in which case new_Review_Node() will return NULL).

The next step is to obtain information from the user to fill-in the review. Once we have this data, we can update
the fields inside the ’rev’ variable that is itself a field of the Review_Node.

The final step is to insert the new node into the linked list. For this we have a function (not yet implemented!)
called insert_at_head(). Remember we discussed above the three different ways in which we can insert a node into
a list: at the head, at the tail, or in between existing nodes.

Here we will insert new nodes at the head because our program does not require the reviews to be ordered
in some meaningful way. The order of the nodes in the list is not important, and we know that inserting a node
at the head is the least amount of work.

Let’s see how we can implement the insert_at_head() function by looking at an example of inserting a couple
of nodes into an initially empty list.

Example 3.15 The diagram in Fig. 3.28 shows how the linked list grows as we add new nodes at the head of the
list.

Initially, the list is empty, which is indicated by the fact that the head pointer is NULL.
The first node to be added to the list is a special case. Since the list is empty, the first node added to the
list becomes the head. This is easily done, we just need to copy the address of the new node to the head
pointer for the linked list.

121

3.7 Building a linked list of reviews (C) F. Estrada 2024

Thereafter, any new node can be added to the list by the following two-step process: 1) Copy the address
of the current head of the list into the next item pointer in the new node - which links the new node to
the rest of the list (at the start of it). 2) Update the head pointer to have the address of the new node - this
makes our list start with the newly added item.

Figure 3.28: Sequence showing how the linked list grows as nodes are added at the head of the list.
.

Note

Ensuring that the last node in the list has a next pointer that is NULL is crucial. If it contains junk, or
a previous pointer value, then any program using the linked list will believe there are more nodes and go
looking for them at whatever address it finds in the next pointer. This is a bad type of bug – it will produce
unpredictable behaviour or, if you’re lucky, crash your program. If you are seeing weird behaviour in code
that uses linked lists, check that the lists are properly ended with a NULL pointer at the tail.

� Exercise 3.10 Starting with the diagram in Fig. 3.28 show what the list would look like after we insert two more
reviews, the first node added has the address #3141, and the second one has the address #9811.

122

3.7 Building a linked list of reviews (C) F. Estrada 2024

Having understood how the insertion process works, let’s write a function to insert a new node into the list:
Review_Node *insert_at_head(Review_Node *head, Review_Node *new_node)
{

// This function adds a new node at the head of the list.
// Input parameters:
// head: The pointer to the current head of the list
// new_node: The pointer to the new node
// Returns:
// The new head pointer

new_node->next=head;
return new_node; // Same thing as doing

// head=new_node;
// return head;

}

As you can see, it’s a pretty short function! - It copies the current head node’s address to the new node’s next
pointer (using the ’->’ operator because new_node is a pointer). Then it returns the address of the new head
node – which is the same as the address stored in new_node.

Note that we do not explicitly check for an empty list! so as an exercise - trace the code in function
insert_at_head() and convince yourself that it works also when the list is initially empty!

� Exercise 3.11 Draw a memory model that shows what happens when we call the insert_at_head() function from
main() with the line

head=insert_at_head(head,new_node);

Assume the list is initially empty and that we requested a new node and got its address in ’new_node’. Your diagram
should show

The head pointer variable in main().
The new_node pointer variable in main().
The box for the new node, somewhere in memory.
All the variables, input arguments, and return value for insert_at_head() just before the memory for this
function is released.
The values for all pointers once the call to insert_at_head() returns.

Once you have completed the above, draw another memory model that shows what happens when the next
node is inserted into the list.

� Exercise 3.12 Implement a function insert_at_tail() that adds a new review to the linked list, but at the tail of the
list. You will need to add an option to main() to allow the user to select this function.

� Exercise 3.13 Given the memory models you created for Exercise 3.11, think about how you could verify that
both of the insert functions (at head, at tail) are doing the right thing. You want to think about this as a problem
in checking that the list is correctly organized in memory given the sequence of nodes that have been added to
it, and the type of insert function that was used. You should write down a sequence of insert operations your
program will carry out on the list, and for each of these operations, how to verify that the result is correct.

123

3.7 Building a linked list of reviews (C) F. Estrada 2024

Embedded in the above is the idea that we test and verify our program as we develop functionality. A topic
that we will explore in more detail shortly!

That completes option 1 - Add a new review. Let’s see now how we could implement option 2 - Print existing
reviews.

The process we have to carry out for implementing option 2 is one of the most common operations you will
have to do with linked lists: Traversing the linked list while carrying out some particular operation at each node.
The operation here is simply printing out the contents, but in more complex applications, where your linked list
contains all kinds of complex information, the operation itself may be fairly involved. Regardless of what operation
is being carried out, the list traversal process is identical. Let’s have a close look at how it works.

3.7.2 Traversing a linked list

The process of traversing a linked list requires you to:

Set up a traversal pointer that will be updated as we travel down the list to point to the node currently being
processed
Initializing the traversal pointer to the address of the head node for the list
Writing a loop that: 1) Processes the node whose address is in the current traversal pointer, 2) Updates the
traversal pointer to point to the next node in the list. The loop ends when the traversal pointer reaches the
end of the list

Let’s apply the above to write a small function that prints out all the reviews in the list.
void print_reviews(Review_Node *head)
{

Review_Node *p=NULL; // Traversal pointer

p=head; // Initialize the traversal pointer to
// point to the head node

while (p!=NULL) // Until we get to the end of the list
{

// Print out the review at this node
printf("Restaurant Name: %s\n",p->rev.restaurant_name);
printf("Restaurant Address: %s\n",p->rev.restaurant_address);
printf("Restaurant Score: %d\n",p->rev.score);

// Update the traversal pointer to point to the next node
p=p->next;

}
}

This deserves a bit of thought. Let’s see how it works with the example linked list from example 3.15. The
process is illustrated in Fig. 3.29.

Question: What happens if we pass an empty list to the print function? Does it work just fine or will it crash
our program?

124

3.7 Building a linked list of reviews (C) F. Estrada 2024

Figure 3.29: Sequence showing how the traversal pointer p moves down the linked list, visiting each node in
sequence until reaching the end of the list (indicated by a NULL pointer).

.

125

3.8 Searching for specific items in large data collections (C) F. Estrada 2024

The final part of our little program involves option 3, when the user wishes to exit. This would be trivial were
it not for the little detail of releasing all the memory we have requested for reviews in our list.

As it turns out, releasing memory for a linked list is just another list traversal process like the one we
discussed just above, except in this case, instead of printing the contents of the node, we will release the memory
allocated to that node. Here’s a little function that cleans up after our program:

void delete_list(Review_Node *head)
{

Review_Node *p=NULL;
Review_Node *q=NULL;

p=head;
while (p!=NULL)
{

q=p->next;
free(p);
p=q;

}
}

The delete_list() function above is a bit different from print_reviews() function. Notice we are using a
temporary pointer ’q’ which did not appear in the function that prints information. This is required because when
releasing memory, we get into a chicken and egg kind of problem:

We need to release memory allocated to the node currently indicated by the traversal pointer p.
But we then need to access the next pointer in order to know where the next item in the list is.
But we can not do that if we already released memory for the node.
So the temporary pointer ’q’ is used to store the value of the next pointer before we release the box where
it is stored.

3.7.3 What have we accomplished up to this point?

By now, we know how to build a linked list to store items for any data type. This is a big deal - there is a huge
number of applications out there that rely on linked lists to organize and process information. We will find linked
lists in a variety of flavours, and in different programming languages. But they all follow the process described
above, and are organized in the same way as the lists we studied in this Section.

You should be comfortable with the code for the program we developed above. Make sure you understand
what is going on at each step, and how each of the functions there works. A good way to check your understanding
is to explain how the code works to someone else, or to write a summary in your own words, for yourself, explaining
what the code is doing and why.

What’s next? There are two major operations on linked lists that we have yet to learn: searching for a specific
item, and deleting items from the list. Let’s have a look at those to complete our study of linked lists.

126

3.8 Searching for specific items in large data collections (C) F. Estrada 2024

3.8 Searching for specific items in large data collections

We started this section with the goal of understanding how to organize, store, and manipulate a large
collection of information. Perhaps the most important aspect of doing this is being able to search through a
collection of data for items of interest. Consider how many times in the past month you have:

Used Google to look for a document, class notes, news, or images
Used the search function in an on-line retail shop to find an item you wanted to buy
Searched for a particular music video by song title, or by artist name

A very large number of real-world applications have a built-in search function that allows us to find and explore
specific data items stored within a large collection. To a large degree, the usefulness of these applications is tied to
how efficiently and accurately they are able to find the information a user needs.

In computer science, a very large effort has been invested in figuring out what are the optimal ways to organize
information so that we can quickly search through very large collections. In this Chapter, we will begin looking
at this problem, see how far we can get with linked lists, and understand just how much work is needed to search
through a large collection that has been organized as a linked list.

This will open the door for us to start thinking in terms of the efficiency of a particular algorithm, or a
particular data structure, and thus allow us to choose between different data structures that implement the same
ADT, and/or between different ADTs, and select the one that provides the best performance (and as we will see,
the definition of performance depends on what we want to achieve with our program).

3.8.1 Searching through a linked list

The search process on a linked list is just a form of list traversal. We have already seen how a list traversal
works, and the only difference when we are searching is that the operation carried out at a node is a comparison
between a search key, and a value or set of values stored in the list node. The search process will either

Find the requested search key and return a pointer to the node that contains it, or
Go through the entire list without finding the key, and return NULL

Let’s see how we would write a search function for our linked list of restaurant reviews so that we can update
the score of a specific restaurant already in the list. The search function should accept a restaurant name as search
key, and return a pointer to the node that contains the review for that restaurant, or else return NULL to indicate
there is no restaurant with that name in our list.
Review_Node *search_by_name(Review_Node *head, char name_key[])
{

// Look through the linked list to find a node that contains a
// review for a restaurant whose name matches the ’name_key’
// If found, return a pointer to the node with the review. Else
// return NULL.

Review_Node *p=NULL; // Traversal pointer

p=head;
while (p!=NULL)
{

if (strcmp(p->rev.restaurant_name,name_key)==0)

127

3.8 Searching for specific items in large data collections (C) F. Estrada 2024

{
// Found the key! Return a pointer to this node

return p;
}
p=p->next;

}
return NULL; // The search key was not found!

}

The code above looks through the linked list. At each node, it compares the restaurant name in the review
stored at the node with the search key, and if they are equal, it returns the pointer to that node.

Note

This is one example of code in which it makes perfect sense to exit a loop early – as soon as we find the
search key we return the pointer to the node where we found it. Imagine a list with millions of entries, it
would make no sense to keep traversing each of those nodes after we have found what we were looking for.

We can now modify our original program - the one that handles restaurant reviews, so that it allows the user
the option of updating a review that has already been added to the list. This requires us to change a bit the option
listing in main():

printf("Please choose one of the following:\n");
printf("1 - Add a new review\n");
printf("2 - Print existing reviews\n");
printf("3 - Update review for one restaurant\n");
printf("4 - Exit this program\n");

scanf("%d",&choice);
getchar();

We need to update the while loop that prints these options and requests a number from the user, so that it exits
when the user selects 4 (previously it was 3), and we need to add code to use our search function to look for a
specific restaurant, and update its score:

else if (choice==3)
{

printf("Which restaurant’s score do you want to update?\n");
fgets(name,MAX_STRING_LENGTH,stdin);
one_review=search_by_name(head,name);
if (one_review==NULL)
{

printf("Sorry, that restaurant doesn’t seem to be in the list\n");
}
else
{

printf("Please enter the new score for the restaurant\n");
scanf("%d",&one_review->rev.score); // Store the new score directly in the review node!
getchar();

}
}

Adding these improvements to our code allows us to update reviews for restaurants already added to our linked
list.

128

3.8 Searching for specific items in large data collections (C) F. Estrada 2024

� Exercise 3.14 Compile and run the complete program (the full listing can be found in Section 3.14, you can
copy/paste it into a file), insert a few reviews, print the reviews in the list, and then modify one of the reviews. Be
sure to test what happens when:

You try to print a list that is empty
You try to update a review for a restaurant that does not exist
You choose an option not in 1-4 when prompted

Try to break the program. See what you can do to make it act weirdly or crash, and then think about how
you would prevent a user from breaking the program in that way.

With this we are taking our first steps into software testing, an incredibly important process that has to be
carefully and thoroughly carried out for every piece of software that we develop. We will explore it in more detail
at the end of the Chapter.

� Exercise 3.15 Write a search function search_by_address() that allows you to modify a restaurant’s score by
searching for that restaurant’s address. Add an option to the menu in main() to use your new function, and
implement the code that updates the score. Test your code and make sure it’s solid, updates the correct review,
and doesn’t break if the user enters a non-existent address.

Question: Should we do something to ensure the score entered by the user is valid?

� Exercise 3.16 Write a search function that prints out information for all restaurants with a review score greater
than, or equal to a user-specified value. Add an option to the menu in main() to allow the user to select this
functionality. Test your code and make sure it’s solid, prints out all the restaurants in the list that meet the specified
criteria, and doesn’t print any restaurants that don’t meet the criteria.

Question: Suppose we are searching for a specific restaurant by name in a list with 1,000,000 nodes. In the
worst possible case (i.e. if we are unlucky and have to do the longest possible traversal), how many nodes will we
have to examine before we find the desired restaurant or determine it’s not in the list? How does that number change
if the list has 10,000,000 nodes? What about 100,000,000 nodes?

What we should learn from the above:

Search on a linked list is just a list traversal checking each node to see if it contains the search key.
Because it is a list traversal, we may have to go through the entire list looking for a node.
This means the amount of work we have to do during search grows with the length of the list.
The amount of work search has to do in the worst case grows in direct proportion to the number of data
items in the list.

The next Chapter will explore in detail how we can estimate, quantify, compare, and think about the amount
of work a particular algorithm has to do when working on a collection of a given size. This will be a central concern
for us as we discover more and more ADTs and algorithms many of which can be applied to the same problem.

129

3.8 Searching for specific items in large data collections (C) F. Estrada 2024

We will need a principled way to choose the most efficient one (under a definition of efficiency that is general and
does not depend on particular implementations, languages, or hardware).

However, just from the discussion above it should be clear to us that for a very large collections of data (e.g.
the millions upon millions of documents indexed by Google), a linked list will simply not be a fast enough data
structure to allow users to frequently and quickly find the information they need. Imagine how long it would take
if every time you input a search keyword in Google it had to go through a list billions of nodes long looking for it!

We will need a faster way to do search through large collections. Unfortunately, there’s little we can do to
make searching on linked lists faster, so we’ll have to come up with smarter data structures. That’s a little later on
though. For now, let’s set down a few more important thoughts related to search that will have importance later on
(for example, if you choose to spend time studying and working with databases).

3.8.2 Thoughts on search

We should spend a bit of time thinking about the search key we are using to look through our list of reviews.

Question: What should be the properties of a good search key?

Think about the restaurant name. At first glance this may look like a good choice and it worked for our little
program with a few reviews entered by a single user. However, consider the following:

- What if the user typed in "MacDonald’s" as a search key?
* Would we expect there to be a single node for MacDonald’s?
* Would we expect to find multiple entries? (e.g. one for each different location, each

with a different address)
* If there are multiple matches for a specific search key what should the program do?

Update them all one by one?
Ask for more information to single out one location?
Give up and refuse to update?

The point to make here is that though we can search for information using any field, a good search engine will
have a way to uniquely identify each entry in a collection.

One of the fundamental tasks that have to be carried out when designing a database, is figuring out what data
items it will store, for each of these items, what data fields are required to store the relevant information, and the
list of search keys that can be used to find information within the database.

Of particular importance, we will require at least one primary key. A primary key is either a single data field,
or a collection of fields such that they uniquely identify each individual item in the database. For example, a social
insurance number can be used to uniquely identify an individual, regardless of how many different people may
have identical names. Most serious applications provide a unique numeric or alphanumeric identifier - such as
the social insurance number, a student number, an employee number, passport number, etc. to be used as primary
key while looking for information for a particular individual.

In the case of our restaurant review database, we do not have any data field that can serve as a unique
identifier. However, we can create a unique identifier by combining multiple fields. For example, we can use
the restaurant’s name together with the restaurant’s address, and ask the user to provide both of these when
searching for a particular review. The reason why this works is that we would not expect two different restaurants

130

3.9 Deleting nodes from a linked list (C) F. Estrada 2024

to have exactly the same name and be located at exactly the same address (if we find such a case, it means we have
a duplicate entry in our collection!).

Collections are made up of unique items, no duplicates are allowed. This is usually enforced by having the
insert function check whether or not a particular data item has already been added to the collection, and refuse to
insert duplicate items. In the case of our restaurant review application, the insert function would check that the
collection doesn’t already contain a review with the same restaurant name and address.

3.9 Deleting nodes from a linked list

The last operation we need to implement to complete our linked list is the delete or remove operation. As the
name implies, it removes a specific node from the list. Because it looks for a specific item, it involves a slightly
modified search process – so it is in essence a list traversal operation.

Let us have a look at the steps needed to delete a node.

Example 3.16
Figure 3.30 shows the different cases for deleting a node, and what the steps are depending on where the node

to be deleted is on the list. The process is:

Case a) - Deleting the node at the head of the list. Two-step process: update head=head->next; (which
moves the head pointer to the second node in the list), then delete (which means use free() on) the old list
head.
Case b) - Deleting the node at the tail of the list. Three-step process: traverse the linked list until we reach
the node that is second from last (this will become the new tail of the list), delete the current tail, then set
the next pointer in the new tail node to NULL.
Case c) - General case, the node we are deleting is in between two other nodes. Three-step process: traverse
the list until we reach the node immediately before the one being deleted (the predecessor of the node being
deleted). Update the predecessor’s next pointer to contain the address of the node immediately after the
one being deleted (the successor of the node being deleted). Finally, delete the node we want to remove.

These cases are illustrated in the figure, you should write an example of a list for yourself, and try out all three
cases to verify you can easily figure out which pointers need to be updated for each case.

There is more than one way to implement the deletion operation. The key here is that for cases b) and c) in
Example 3.16 we need to keep track of the predecessor of the node that is being removed. We can achieve this in
one of two ways:

1) Use two traversal pointers. One for the current node, and one that is always right behind it along the list
and points to the predecessor.
2) Use one traversal pointer, together with the current node’s next item pointer to look ahead for the node
we are deleting (or the tail of the list).

Both ways work, and you should use whichever makes more sense to you. A sample implementation of the
delete function is shown below:

131

3.9 Deleting nodes from a linked list (C) F. Estrada 2024

Figure 3.30: Three different cases for deleting nodes from the list, and what the list looks like after each node has
been correctly deleted.

.

132

3.9 Deleting nodes from a linked list (C) F. Estrada 2024

Review_Node *delete_by_name(Review_Node *head, const char name_key[])
{

// This function removes the node from the link list that contains the
// review with a matching restaurant name.

Review_Node *tr=NULL; // We will use the two pointer process
Review_Node *pre=NULL;

if (head==NULL) return NULL; // Empty linked list! nothing to do!

// Set up the predecessor and traversal pointers to point to the first
// two nodes in the list.
pre=head;
tr=head->next;

// Check if we have to remove the head node - case a)
if (strcmp(head->rev.restaurant_name, name_key)==0)
{

free(pre); // Delete the first node in the list
return tr; // Return pointer to the second node (new head!)

}

// This while loop takes care of cases b) and c)
while(tr!=NULL)
{

if (strcmp(tr->rev.restaurant_name, name_key)==0)
{

// Found the node we want to delete
pre->next=tr->next; // Update predecessor pointer
free(tr); // remove node
break; // Done!

}
tr=tr->next;
pre=pre->next;

}
return head; // Head did not change

}

The code above implements the list traversal using two pointers, a predecessor pointer and a traversal
pointer. It first checks whether we’re deleting the head node and if so, it returns the updated head node pointer.
Otherwise it proceeds through the loop that finds and removes the node that contains the specified search key (if
such a node can be found in the list).

� Exercise 3.17 Compile and run the program (the full listing can be found in Section 3.14), and test the
delete_by_name() function to verify it works correctly.

As we have discussed earlier, you need to
Come up with a sequence of linked-list operations that will thoroughly test the delete functionality.
Perform the operations in your sequence one by one, checking after each of them that the structure and
contents of the list are correct.

Question: How can we check that a linked list in the computer’s memory has the correct structure?

This is indeed the central problem we have to solve any time that we are testing code for correctness. It always
boils down to this: we must know what the expected situation would be after our program performs some

133

3.10 Queues (C) F. Estrada 2024

operation. For example, we can draw on paper a diagram of the linked list, and figure out how the nodes are linked
as we insert and delete nodes from the list.

We then have to check that the list that our program built in memory has the expected structure (i.e. nodes
are in the correct order, and linked as expected). To do this we need our program to provide us with information
about what is stored at each node, and how the nodes are linked.

The easiest way to do this is to write a small function that prints out the information we need, then call this
function after each operation and check the information printed against our hand-written diagram.

In the next Chapter, we will discuss how to use more sophisticated tools called debuggers that will allow us to
stop the program at particular points (where we want to check something), inspect what is stored in variables
and dynamic memory (to check that the information is correct), and if needed change values of memory contents
which may be useful to test particular parts of our code, or see what happens if variables take on certain values that
may cause trouble.

For now, printing the information we need will allow us to verify what the program does against our work on
paper, showing what the list should contain after each operation.

� Exercise 3.18 Re-implement the delete_by_name() function so that it uses one traversal pointer, and instead of a
predecessor pointer, it uses the next item pointer in the current node to look ahead for the node we want to delete.

Test the re-implemented function, ideally using the same tests you developed for the previous exercise. Verify
that the function correctly deletes nodes, and that the list has the correct ordering and is linked as expected after
each deletion.

� Exercise 3.19 Write a delete function that allows a user to delete reviews by specifying the restaurant address.
Test the function for correctness.

� Exercise 3.20 Write a delete function that allows a user to delete all reviews that have the specified score (e.g. we
may want to remove from our list all restaurants with really bad scores, such as 1). Test the function for correctness.

All that remains to complete our little program for storing, organizing, and updating restaurant reviews is to
add one more option to main() allowing the user to delete a review for the specified restaurant. This also completes
our study of linked lists in C. It is a very common data structure, and any implementations you find in the future
that are written in C will be very similar to what we covered above.

3.10 Queues

An important variation on the List ADT is the Queue ADT. A queue is simply a list where the insert/add and
delete/remove operations happen at very specific locations in the list.

In a queue, items are always added at the tail of the queue - this operation is called enqueue
In a queue, items are always removed from the head of the queue - this operation is called dequeue

134

3.10 Queues (C) F. Estrada 2024

In addition, other operations are often defined as well, for example, getting the length of the queue.
Queues are ubiquitous (they appear everywhere!). For instance, a network printer will have a print job queue.

Print jobs can arrive at any time, from any of a possibly large number of users. Jobs are printed in the order in
which they arrive.

Queues are also important in software that simulates scheduling operations. For example, Air Traffic Control
software will have queues for departing flights, inbound flights, and aircraft that are slotted for landing.

Online customer service systems often have a wait queue to which arriving users are added.
Finally, queues are essential for applications that use graphs to represent and process information. Graphs

are ADTs that represent collections of information in terms of data items and their relationships to one another.
One common example are social networks, these have nodes for users, and the links indicate connections between
users (see Fig. 3.31). We will study graphs in detail in a later Chapter.

Figure 3.31: This image shows a graph for the professional connections of a single individual. Each circle
represents an individual, and each line represents a professional connection between two individuals. Image: Dave
Wallace, Flickr, CC-SA 2.0

Processing information in graphs often involves placing nodes in a queue. Common instances of this include
the classical Artificial Intelligence search methods that do path-finding (think about the Maps application in your
cellphone), scheduling, finding solutions to constrained optimization problems, and so on.

You will have a chance to explore many more applications of queues, so do not forget what the Queue ADT
looks like. Importantly, you already know how to implement a Queue ADT! It can be implemented using a

135

3.11 Wrapping up and summary (C) F. Estrada 2024

linked-list in which the insert operation always adds nodes at the tail, and the delete operation always removes
the head of the list.

� Exercise 3.21 Extend the liked list implementation we developed in this Chapter so that it supports using the list as
Queue ADT. You should implement an enqueue() function, and a dequeue() function, and provide options for the
user to select these operations from the menu in main().

As ever with exercises for the rest of the book: thoroughly test your queue and make sure that it always has
the correct structure, items are in the right place, and links are correct at all times.

3.11 Wrapping up and summary

After working our way through this Chapter, carefully thinking through the examples and programs developed
here, and completing all the exercises, we should:

Be able to explain why we need to think carefully about how to store and organize collections of data.
Be able to explain why we need to be able to reserve space for data items on-demand - i.e. we should know
what the limitations of arrays are and why they are not a good solution for applications where the amount of
data is not specified at the start and changes over time.
We should know how to create compound data types (bento boxes!) for data so we can represent complex
items.
We should know how to create and manipulate variables and pointers for complex data types.
We should know what a List ADT specifies, how it organizes data, and what operations it supports.
We should understand how a linked list works, conceptually. How to search for an item, insert an item, and
delete an item in a linked list.
We should be able to implement a linked list data structure in C. including:

Defining compound data types to hold the information we need
Defining a node data type that we can use to build the list
Implementing the insert function, at head, at tail, or in-between nodes
Implementing the search function to find and update specific items
Implementing the delete function to remove nodes as needed
Releasing memory we allocated to nodes in the list

We should understand how much work is involved in list traversal. We should be able to explain why we say
that the amount of work for traversal is proportional to the number of items in the list.
We should be able to explain the difference between an ADT and a data structure.
We should be able to go through the program listing in Section 3.14 and understand everything that it is doing.
In addition to that we should have learned the specifics of the C implementation that we used to build the
restaurant reviews app:

How to read input from the terminal
How to allocate memory for a list node on-demand using calloc()
How to write a little driver program that allows us to test parts of our code

136

3.12 Problem Solving (C) F. Estrada 2024

How and when to pass and return pointers so functions can work on linked lists

3.11.1 Why this Chapter is important

We started this section needing a way to:

Store, organize, and manage a possibly large collection of complex data items
Be able to obtain space for data items on-demand
Be able to search for specific items, and to grow or shrink our collection as needed

We discussed the idea of containers; then we looked at a particular container type - the List ADT. We saw
how to use a linked list to implement a List ADT, and we spent time working out the implementation of a linked
list data structure.

We now have a working linked list implementation, and we can create variations of this list to handle pretty
much any data type we may ever need to store and keep organized. This is our first achievement for this part of the
book.

Indeed, linked lists or variations of them will appear on a large majority of applications. To give you a couple
examples you may find amusing:

Graphics rendering programs keep lists for most data items used to create images: objects to be rendered,
light sources, textures, animation key-frames, etc.
Music synthesizers keep a list of notes being played, to be fed to the sound synthesis engine. There are also
lists of digital effects, and even entire songs kept in a list in memory for playback.
A shopping cart for an on-line retailer can quickly and easily be implemented with a linked list.

These are only a couple applications, there are many, many more. However, at this point we also know that
linked lists have the disadvantage that search (and thus updating information for specific nodes), deletion, and list
traversal take a fair amount of work - we may have to go through the entire list checking each node in turn to find
what we want.

This means that for applications that will handle very large amounts of data, linked lists would result in an
unacceptably long wait for basic operations that need to be carried out thousands of times.

So, while lists provide us with a way for satisfying the data organization and storage goals we set out to fulfill
at the start of the section, we now know we need to find a smarter way to organize data if we want to ensure the
fastest possible access to possibly very large amounts of information. We also need to figure out a principled way
to study, and compare the amount of work that is done by different algorithms or data structures as they process
information.

These will be the topics of the next Chapter in the book. For now, let’s see what kinds of problems we can
solve having learned about containers and lists!

137

3.12 Problem Solving (C) F. Estrada 2024

3.12 Problem Solving

As we said at the start of the book, our goal is to learn general techniques for solving problems in computer
science. In this Chapter, we learned about containers and lists. Our motivation in doing this was the need to
understand how we can organize, store, and manage a possibly large amount of complex information so as to make
it useful within a program.

The problems below give you a chance to test your understanding of the material in this section, and to practice
problem solving. But first, let’s look at a reasonable approach you may want to consider when faced with a new
problem.

3.12.1 A suggested approach to solving programming-related problems in CS

Read the problem description carefully. If there is something in the problem’s statement that is unclear, seek
additional information - this may require a bit of research.
Consider the input for the problem - that means, what data will you be working with, whether you know
how much of it there will be from the start, or whether the amount will change (and likely grow) over time, as
well as any particular characteristics of the input data. Consider as well whether user input will be required.
Write down any assumptions you are making about the data:

Data types you think will be needed, new compound types you’ll have to create
Special conditions (e.g. range of input values, or description of valid inputs)
Uniqueness constraints (e.g. If an input field contains values that must be unique, such as student
numbers)
Amount of data you may expect to deal with
What kind of storage structure you think will be needed (e.g. arrays vs. lists)

Consider the task the problem requires you to solve: In order to find a good programming solution, you need
to understand what will happen to the input data once it’s in your program, make a note of what operations
or processing will be performed on the input data, and whether it will be applied to all or most of the data or
individual items.
Consider the output for the problem: This means thinking about what needs to be computed or produced by
your solution. Is the output used only for display (e.g. to be printed to the terminal), or is it going to be the
input for a different part of a program. Depending on this, you need to think about how to store the output.
Write down your assumptions about the output.
Write down the solution in plain language (not code). At this point you want to make sure you understand
the solution for the problem and can think of every step involved
Design and implement the solution. The design must be informed by your analysis of the input and output to
the program, as well as what processing will be done on the input data.
Test your solution thoroughly, make sure it solves the problem with reasonable input. That may involve
running your code multiple times with different possible inputs, carefully chosen to cover different possible
but valid inputs to the program. It must work every time.
Address any issues discovered during testing.

138

3.13 Problems involving containers and lists (C) F. Estrada 2024

Test your solution for special cases, e.g. empty or missing input values, input that is the wrong data type,
input that breaks your initial assumptions about the data (that’s why we wrote them down!). Resolve any
issues identified in testing.
Now try to break the program. See if you can come up with input that causes your program to crash or do
the wrong thing. This may include invalid input, empty fields, using special characters, and so on. The goal
here is to identify potential problems, and think about how to make your solution more robust.
Finally - if the output of your solution is going to be used as input for a different part of the program, Test
that the output is properly formatted and can be accessed by whichever functions need it.

The process is important - hacking away at a solution without having fully understood the problem will most
likely

Make it harder for you to come up with a good solution.
Make you think C is difficult - because you’re having a hard time implementing the solution, the problem is
not the language, it’s the fact you haven’t fully thought through what the solution should be.
Produce solutions that are of lower quality.
Produce a solution that is less organized, and is harder to test and maintain.
Produce a solution that needs to be re-worked because it doesn’t do what it’s supposed to do.
Lead to code that is fragile, and easy to break.

Get used to working through a solution methodically, and thinking carefully about every aspect of your
solution before you start coding. Remember: Being able to come up with a solid, well thought solution to a
problem is much more valuable than just being able to implement a solution someone else developed.

The problems below are intended to make you think, and tohelp you identify what material you still haven’t
mastered - do not stress if they seem challenging. They are meant to be, but with a bit of work and focused studying
you will be able to think of a way to approach, and eventually solve every one of them.

3.13 Problems involving containers and lists

Problem 3.1 In practice, we often need to find out the length of a linked list (we need to know, for example, how
many restaurant reviews we have in our system at a given time).

Write a small C function that takes as input the head of a linked list, and returns the length of the list (zero if
the list is empty). You can do this using the linked list for restaurant reviews, or use your own linked list.

Problem 3.2 You are working on a checkout module for an on-line store’s shopping cart. Because typical users
will only add a few things to the cart in any one visit, the store’s on-line system keeps the items currently in the cart
in a linked list. Each Item_Node CDT in the linked list contains:

Item item_info;
Item_Node *next;

The Item CDT contains

139

3.13 Problems involving containers and lists (C) F. Estrada 2024

int item_id; // A unique identifier for each item
char name[1024]; // The item’s name
float price; // The item’s price
float discount_pct; // Discount percentage in [0, .5] (0% up to 50%)
int quantity; // Item quantity in the cart

Part a) Complete the definition of the Item CDT and the Item_Node CDT in C. This is basically to practice
your grasp of the syntax needed for defining new data types.

Part b) Write down the implementation of a function that computes the total price for items in the shopping
cart:

First write down the steps of the solution in plain language, and check that your solution makes sense, and
computes the correct total considering the quantity, and discount_pct for each item.
Then write an implementation in C for a function that computes and returns the total price for items
currently in the shopping cart. You may assume the function will take in a pointer to the head of the linked
list for the shopping cart.
Thoroughly test your solution for correctness.

Problem 3.3 You have found a summer job at the central Toronto Public Library. The TPL has been expanding its
digital collection that includes eBooks, movies, audio recordings, and photographs. The library’s digital collection
is stored in a central server, and you have a linked list of items available.

The Item_Node CDT for the list is as shown below:
typedef struct Item_List_Node{

int item_id; // Unique identifier
char title[1024]; // Title for this item
int type; // Type of resource

// 0 - eBook, 1 - video,
// 2 - music, 3 - photograph

// There are many more fields we don’t need for this problem

struct Item_List_Node *next; // Pointer to next node in the list
} Item_Node;

Your problem is as follows: Each local branch of the library houses its own collection of video, and music
(these are in the form of actual DVDs and CDs). They are now seldom accessed since most users would rather
access the same content electronically on their handheld devices. So the library has decided to remove from each
branch any videos or music recordings that are already part of the central digital collection.

Library personnel have already cataloged the content at each branch, and stored it in a (you guessed it!) linked
list.

Part a) Finding duplicate content: Write down the steps of an algorithm that takes as input two linked lists of
Item_Nodes (one for the central digital collection, one for a local branch collection), and prints out any duplicate
videos or music entries so the duplicates can be removed from the local branch collection.

140

3.13 Problems involving containers and lists (C) F. Estrada 2024

Be sure to write down any assumptions you are making regarding the fields in the item node. Write your
solution in plain language, with enough detail that someone else could implement it in C.

Once you’re satisfied with your solution, write an implementation in C.

Part b) Think about the data representation. Note that whoever designed the data representation for the
library’s linked list didn’t bother to build a separate data type for each item’s information. DVDs and eBooks, for
instance, will likely require different fields, the Item_Node has to be able to properly capture information for all
supported types. To do this, the Item_Node will have to contain every possible field that may need to be captured
for all supported media resources. Write down what you believe would be:

Advantages of representing items in this way
Disadvantages of representing items in this way

Problem 3.4 You are working on an open source project for a web browser that provides the user with full control
over the amount and type of personal information that is made available to websites. One of the key components
of any web browser is the bookmarks section. For simplicity, the bookmarks are organized as a simple linked list.
New bookmarks are inserted at the head of the list.

However, the user can choose to organize the bookmarks in many different ways. In particular, they may choose
to sort the bookmarks by url by pressing a button on the browser’s main window.

Part a) Implement a function that builds a sorted linked list. Write down the steps required to
Take as input an un-sorted linked list of bookmarks.
Create a new linked list where the bookmarks are sorted by url by inserting each node from the original input
list into the sorted list at the right location according to its sorting order (you may want to review insertion
sort).

Use plain language, but do make sure your solution is detailed enough that someone else could implement
it in C.

Illustrate with a diagram how your solution works.

Now, assuming that the linked list nodes contain:
char url[1024];
Url_Node *next;

Write a function in C that takes as input the head of an un-sorted linked list of Url_Nodes, builds a sorted
linked list of Url_Nodes, and returns a pointer to the head of the sorted list. You can assume you have already
written a function

Url_Node *copyUrlNode(Url_Node *orig);

that takes as input a pointer to a Url_Node and creates a new node with the same URL but with the next pointer
set to NULL (so you can insert it into the growing, sorted linked list). Yes, we are duplicating information at this
point!

141

3.13 Problems involving containers and lists (C) F. Estrada 2024

Part b) More challenging - Implement a function that takes an un-sorted input linked list of URLs, and sorts
it without making a new list.

As in part a), you should write your solution steps first in plain language, draw a diagram to show how the
process works on one node of the input list, and finally write an implementation in C.

Because you haven’t written a full program to work with the linked lists in this problem, you can’t test your
implementation as you normally would. However, you can still test your solution! in this case, you can trace
through the steps of your algorithm (on paper) making sure that each step is doing the right thing, keeping track
of a diagram of the linked list(s) as the algorithm is working, and checking that it produces the correct result (at
least on paper).

It is important to always walk through an algorithm you just developed, and to make sure it isn’t missing
steps, and that it does the right thing.

Problem 3.5 You have been hired for a Co-Op placement at the University Health Network. Having seen that
you learned C during your studies, they decided to give you the task of designing the storage framework for a new
system keeping track of the sequence of patients to be seen at an emergency room.

You are asked to:
Develop a suitable data representation to keep track of each patient’s information as captured by the triage
nurse.
Develop the storage framework (decide what data structures to use to organize and access the information),
as well as the functionality required to:

Add patients as they arrive
Remove patients once they have been seen by a doctor, or if they leave
Search for specific patients by name
Print out a list of patients in the order they expect to be seen by a doctor

Part a) - Designing the data representation for patients. The nurse at the triage station will capture the following
information:

Patient’s name (Last, First, and Middle)
Patient’s street address
Patient’s postal code
Phone number
Health card number
Body temperature in degrees Celsius
A short description of the problem

Design a data representation model that would allow your program to organize and store information for one
patient. This model will be the foundation of your triage system.

142

3.13 Problems involving containers and lists (C) F. Estrada 2024

Show a list of the data fields and their data type. You should justify (explain) why the data type is appropriate
to each field. If you added fields beyond what the nurse captured, explain why these are needed and how they
will be used.
Indicate special constraints you can identify for each field (e.g. range of values, uniqueness constraints, etc.)
Mark which field(s) will be used for searching for specific items, e.g. to remove specific items, or to implement
functionality required by the system.
Write an implementation in C of your data representation model - this will require designing appropriate
CDTs.

Part b) - Design the core of the triage patient management system. Required functionality:
The system must allow you to add patients as they arrive at triage:

Patients should be seen in the order they arrive
Unless their body temperature is > 40.5C, in which case they must be seen first

A nurse must be able to bump a patient to the front of the list at any point if they believe the patient needs
immediate attention.
Patients must be removed from the system once they’ve been seen, or if they leave (they may, or may not
notify the nurse).
The current list of patients in the order they will be seen is printed to a screen so the triage nurse can keep
track of what’s happening at all times.
Nurses must be able to look-up patient data by health card number, and update any data field as needed.

You need to provide an overall description of the solution that clearly shows:
What data structure(s) you will use, explaining why you chose that particular data structure and why you
think it suits the problem well. Be sure to note any possible limitations of your particular choice.
How you will break your solution into modules that can be implemented as separate functions.
A pseudocode description of the main function showing what happens:

when a patient arrives
when a patient is seen or leaves
when a nurse bumps a patient to the front of the list
when a nurse updates a patient’s record because their body temperature has changed

A pseudocode description of the part of your solution that adds a new patient to the list.
A pseudocode description of the part of your solution that moves a patient to the front of the list.

At this point you have solved the problem - that’s the important part! All that remains is implementing the
solution and testing it for correctness.

Part c) - Implement and thoroughly test your solution!

What you will achieve by solving this problem:
You’ll have gone through the full process of designing and implementing a solution to a data organization/s-
torage/management problem that applies to a real world situation

143

3.14 Program listing for the linked list implementation in C (C) F. Estrada 2024

You will find any gaps in your understanding of this Chapter’s material
You will practice every concept covered in this Chapter as you are developing your solution
You will practice implementing C code that deals with compound data types, and data collections

3.14 Program listing for the linked list implementation in C

/*
Introduction to CS - Chapter 3 - Containers, ADTs, and Linked Lists

This program implements a linked list of restaurant reviews.
The program allows the user to enter as many reviews as needed,
to print the existing reviews, and when finished, it releases
all memory allocated to the list before exiting.

(c) 2024 - F. Estrada, M. Ponce, I. Huang
*/

#include<stdio.h>
#include<stdlib.h>
#include<string.h>

#define MAX_STRING_LENGTH 1024

typedef struct Restaurant_Score
{

char restaurant_name[MAX_STRING_LENGTH];
char restaurant_address[MAX_STRING_LENGTH];
int score;

} Review;

typedef struct Review_List_Node
{

Review rev;
struct Review_List_Node *next;

} Review_Node;

Review_Node *new_Review_Node(void)
{

Review_Node *new_review=NULL; // Pointer to the new node

new_review=(Review_Node *)calloc(1, sizeof(Review_Node));
if (new_review==NULL)
{

printf("new_Review_Node(): Error! - no memory left, can not create new node!\n");
return NULL;

}

// Initialize the new node’s content with values that show
// it has not been filled. In our case, we set the score to -1,
// and both the address and restaurant name to empty strings ""
// Very importantly! Set the ’next’ pointer to NULL

new_review->rev.score=-1;
strcpy(new_review->rev.restaurant_name,"");
strcpy(new_review->rev.restaurant_address,"");
new_review->next=NULL;

144

3.14 Program listing for the linked list implementation in C (C) F. Estrada 2024

return new_review;
}

Review_Node *insert_at_head(Review_Node *head, Review_Node *new_node)
{

// This function adds a new node at the head of the list.
// Input parameters:
// head : The pointer to the current head of the list
// new_node: The pointer to the new node
// Returns:
// The new head pointer

new_node->next=head;
return new_node;

}

void print_reviews(Review_Node *head)
{

Review_Node *p=NULL; // Traversal pointer

p=head; // Initialize the traversal pointer to
// point to the head node

while (p!=NULL)
{

// Print out the review at this node
printf("**\n");
printf("Restaurant Name: %s\n",p->rev.restaurant_name);
printf("Restaurant Address: %s\n",p->rev.restaurant_address);
printf("Restaurant Score: %d\n",p->rev.score);
printf("**\n");
// Update the traversal pointer to point to the next node
p=p->next;

}
}

Review_Node *delete_list(Review_Node *head)
{

/*
This function releases all memory reserved for restaurant
reviews in our linked list. It returns NULL so we can
update the head pointer in main() to indicate the list
is empty

*/

Review_Node *p=NULL;
Review_Node *q=NULL;

p=head;
while (p!=NULL)
{

q=p->next;
free(p);
p=q;

}

return NULL;
}

Review_Node *search_by_name(Review_Node *head,\
const char name_key[MAX_STRING_LENGTH])

145

3.14 Program listing for the linked list implementation in C (C) F. Estrada 2024

{
// Look through the linked list to find a node that contains a
// review for a restaurant whose name matches the ’name_key’
// If found, return a pointer to the node with the review. Else
// return NULL.

Review_Node *p=NULL; // Traversal pointer

p=head;
while (p!=NULL)
{

if (strcmp(p->rev.restaurant_name,name_key)==0)
{

// Found the key!
return p;

}
p=p->next;

}
return NULL; // The search key was not found!

}

Review_Node *delete_by_name(Review_Node *head, const char name_key[])
{

// This function removes the node from the link list that contains the
// review with a matching restaurant name.

Review_Node *tr=NULL;
Review_Node *pre=NULL;

if (head==NULL) return NULL; // Empty linked list!

// Set up the predecessor and traversal pointers to point to the first
// two nodes in the list.
pre=head;
tr=head->next;

// Check if we have to remove the head node
if (strcmp(head->rev.restaurant_name, name_key)==0)
{

free(pre); // Delete the first node in the list
return tr; // Return pointer to the second node (new head!)

}

while(tr!=NULL)
{

if (strcmp(tr->rev.restaurant_name, name_key)==0)
{

// Found the node we want to delete
pre->next=tr->next; // Update predecessor pointer
free(tr); // remove node

break; // Done!
}
tr=tr->next;
pre=pre->next;

}
return head; // Head did not change

}

int main()
{

146

3.14 Program listing for the linked list implementation in C (C) F. Estrada 2024

Review_Node *head=NULL;
Review_Node *one_review=NULL;
char name[MAX_STRING_LENGTH];
char address[MAX_STRING_LENGTH];
int score;
int choice=1;

while (choice!=5)
{

printf("Please choose one of the following:\n");
printf("1 - Add a new review\n");
printf("2 - Print existing reviews\n");
printf("3 - Update review for one restaurant\n");
printf("4 - Delete a review\n");
printf("5 - Exit this program\n");

scanf("%d",&choice);
getchar();

if (choice==1)
{

// Get a new review node
one_review=new_Review_Node();
if (one_review==NULL)
{

printf("main(): Error! can not reserve space for a new node. Ending the program
now\n");

return 1;
}

// Read information from the terminal to fill-in this review
printf("Please enter the restaurant’s name\n");
fgets(name, MAX_STRING_LENGTH, stdin);
printf("Please enter the restaurant’s address\n");
fgets(address, MAX_STRING_LENGTH, stdin);
printf("Please enter the restaurant’s score\n");
scanf("%d",&score);
getchar();

// Fill-in the data in the new review node
strcpy(one_review->rev.restaurant_name,name);
strcpy(one_review->rev.restaurant_address,address);
one_review->rev.score=score;

// Insert the new review into the linked list
head=insert_at_head(head,one_review);

}
else if (choice==2)
{

print_reviews(head);
}
else if (choice==3)
{

printf("Which restaurant’s score do you want to update?\n");
fgets(name,MAX_STRING_LENGTH,stdin);
one_review=search_by_name(head,name);
if (one_review==NULL)
{

printf("Sorry, that restaurant doesn’t seem to be in the list\n");
}

147

3.15 Building Programs that Work - Part 3 (C) F. Estrada 2024

else
{

printf("Please enter the new score for the restaurant\n");
scanf("%d",&one_review->rev.score);
getchar();

}
}
else if (choice==4)
{

printf("Which restaurant’s review do you want to delete?\n");
fgets(name,MAX_STRING_LENGTH,stdin);
head=delete_by_name(head,name);

}
}

// User chose #5 - Release memory and exit the program.
head=delete_list(head);
return 0;

}

3.15 Building Programs that Work - Part 3

At this point, we are building programs that consist of many different (non-trivial) functions, they use arrays,
pointers, strings, and can manipulate a significant amount of information.

We have to develop a process that will enable us to check our programs for correctness to the degree that
we can be highly confident our software does not contain errors of logic or programming bugs, that it stores and
manipulates data in the way that was intended by the algorithm we set out to implement, and that it correctly solves
the problem or performs the task it was designed for on any reasonable input that may be presented to it.

Achieving the above requires discipline and the developing both a habit for testing thoroughly and the skill
for knowing when you have tested enough. The latter only comes from experience, and you will develop it over
time. But the habit can be developed with a bit of help from having a good software development process to follow.

In the previous Chapter, we set out a starting point for our software development process. We discussed the
importance of thinking through the problem carefully, and writing a detailed solution on paper before any
actual coding happens.

Here, we will add a key component of our software development process: careful and thorough testing
while we are developing a program, and thorough testing of the finished software.

3.15.1 Testing software as we are writing it

The first type of testing that we have to perform for every piece of code that we produce has the job of
checking individual functions or self-contained sections of our code for correctness. Here’s a solid, basic process
we can use to help us produce code that is correct as we are developing a complex piece of software.

In order to be able to properly test code that you are writing:

You must have completed the design of the software you are writing - in particular, you need to know which
functions will be required, and the order in which they are going to be used.

148

3.15 Building Programs that Work - Part 3 (C) F. Estrada 2024

For each function you have to implement, you need to know what the input is (data type(s), constraints on
possible valid or invalid values, whether or not it uses arrays or pointers, etc).
For each function you have to implement, you need to know what is the correct output or result after calling
the function given some specific input(s) - you can not test code if you do not know what the correct
result of a test case should be.

These conditions should all be satisfied if you are following the procedure we discussed in Chapter 2 for
developing your solution.

How to test your code as you’re writing it:

Step 1 Decide the order in which you will implement the different functions that are part of your design.
This has to be done carefully, because you should only use parts of the code that have already been tested in
building more complex functionality. For example, if we have two functions

int function_A(int n)
{

// This function does some processing
// on an input integer n, and returns
// an integer value.
// It doesn’t call any other functions
// in the program

// Here we would have some code
// that does something interesting

return result; // And eventually a result is returned
}

int function_B(int n)
{

// This function does some more complex
// processing of an input integer n, and
// returns an integer result.
// But, at some point, it uses function_A()
// as part of the process

// Here we would have some code
// that does part of the work,
// then we call function_A() to do
// something as part of the process

r=function_A(x);

// and then the processing continues...

return result; // Until the result is returned
}

the point of the example above is not the actual instructions in either function_A() or function_B(), but instead, it
is to show that in order to be able to test that function_B() works correctly, we need to be sure that function_A()
works correctly. If we have not tested function_A() and made sure it works as intended, then we will not be able
to tell if any problems found while testing function_B() are the result of a problem with its own code, or whether
perhaps the problem is in function_A() instead.

149

3.15 Building Programs that Work - Part 3 (C) F. Estrada 2024

As another example, in the program that implements the linked list of restaurant reviews, we have to implement
and test the new_Review_Node() function before we can use it in order to create and then insert nodes into the linked
list. We can not test insert_at_head() if we are not sure that nodes being allocated for us by the new_Review_Node()
function are correctly structured and initialized.

This means that our program will be implemented and tested starting from simpler (self-contained) functions,
progressing toward more complex functionality only when the required smaller pieces have already been tested
and found to be correct.

Step 2) Create a function in the program that will serve as a test driver. This function will contain all the
different tests that you will be running over the functions and parts of your code, along with (if appropriate) the
code that verifies the results of each test. We will be adding tests to the test driver as we implement functions in
the code.

Step 3) Repeat the steps below for each function you implement (in the order determined in Step 1), until all
the functions in your program have been implemented.

Write down (on paper!) a set of tests designed to put this function through its paces, and see how it behaves
under different conditions. For instance:

For functions that process input and produce a result, this means checking various valid and also not-
valid inputs, and verifying the function produces the correct result for the valid cases, and behaves in
a reasonable way for non-valid inputs (e.g. prints an error message, or returns a default value, but does
not cause the program to crash or produce a result that looks valid).
For functions that work on arrays or strings, this means creating input cases that check the function
works on a wide range of possible inputs. This means testing inputs of different lengths, including
empty ones, as well as testing for any special cases such as strings that contain special characters, or
are not properly terminated with an end-of-string delimiter (once more, the function should handle
these cases gracefully, without causing the program to crash).
For functions that work on collections and use data structures (such as our linked lists), this will require
you to write sequences of operations that have been carefully designed to test that the function handles
the data correctly, preserves the correct organization of the data structure, and produces the correct
result on the data and/or structure of the collection.

Think of ways in which you may break the function (cause it to fail or produce the wrong result), this could
include non-valid inputs, tricky cases, unique arrangements of items in a collection, etc. Turn these into
separate tests.
For each of the tests you came up with, write down (on paper!) the expected (correct) result. This could
be a number, the content of an array or a string after the function is called, or the structure of a collection
after using a function that modifies it. For tests intended to break the function, the expected result would be
that the function does not fail and behaves in a way that makes sense even for weird, unexpected, or tricky
inputs.
Now add each test to the test driver function along with code that checks that the result matches what
you expected:

150

3.15 Building Programs that Work - Part 3 (C) F. Estrada 2024

The test usually requires you to set up some data (whatever is appropriate for the function to work
with), and then call the function to work on your test case and produce a result.
The correctness check can be done in multiple ways. You could hard code the expected values in the
test driver (e.g. by setting some variable, or array, or string to have the content you expect to have if the
function worked correctly) and then check the function’s output against these hard coded value(s). You
could write a function that processes the result of the test to check it is correct (we did that in Chapter
2 to check the prime-finding function). You could check by hand (against your written test results) by
having the test driver print out the relevant information .
However you choose to check, the test driver should not continue past any test that failed. That
means that if at some point the expected result, and what your function did are not in agreement, the test
driver has to let you know which test failed and exit so you can get to work on finding and correcting
the problem (more on that in a moment).

Run the test driver. If your function passes all the tests you designed you can move on to implementing
(and testing) the next function in your design. If any of the tests failed, it’s time to do some debugging!

This may seem like a lot of work, and it actually takes a good amount of thought, effort, and time. But it
reduces by a huge amount the time, thought, work, and frustration that you will undergo while chasing bugs
in code that was not tested as it was being developed. More importantly, it leads to overall better software that
has fewer bugs, is more reliable, and requires less maintenance. So work hard to develop the habit of testing
as you write your programs.

3.15.2 Testing the finished software

Testing every single individual function for correctness as we write our code does not guarantee that the
finished program will work as intended. After we have completed the development process, it is essential to test
the completed program and ensure that everything works well together. This could involve testing independent
subsets of the software as well as the complete program.

Testing the completed software requires you to think in terms of the user or the problem that the software
needs to solve, and to come up with a thorough sequence of tests that covers as many reasonable use cases for
the software as you can think of. If you can interact with the user, you definitely want their help in designing a full
set of tests for the completed program. If you don’t then it’s up to you to come up with the tests.

However you go about generating the tests, it’s important to keep in mind that:

The tests must cover all the common, typical operations the user may perform on the software.
The tests must consider a realistic amount of data. Many common problems show themselves only after a
certain amount of data is being manipulated.
They must provide a wide variety of reasonable inputs that achieve meaningful coverage of normal software
use. This will involve different input lengths, different sequences of operations, and/or different paths to
completion for the task the program is performing.
The tests must also include simulating input or behaviour that may be expected from users with different
levels of familiarity with the software.

151

3.15 Building Programs that Work - Part 3 (C) F. Estrada 2024

For programs that handle sensitive information, the tests must include checking that information is properly
protected throughout the entire process, and no sensitive data is exposed to unauthorized users.
In this final case, testing should also simulate input or behaviour that may be expected from a malicious
user attempting to gain access to sensitive information.

You can follow a process similar to the one described above for the testing on individual functions, except this
time it applies to the finished program. You may need to implement a separate test driver function to carry out these
tests, as they will likely be more involved, require more input data to be set up, and require more work to check for
correctness.

Ultimately there is no single set of steps to be followed in order to design and carry out the testing for any
given program. Testing must reflect the complexity of the software we are developing, the type of information it
deals with, the requirements set forth by the user (or in the absence of a user, the requirements set by the problem
being solved through the software). You have to decide for each program, within its own context, how much testing
is needed at each level to convince yourself that the software performs its work correctly and reliably.

Much like in Physics, we can never categorically state that a complicated piece of software is bug free.
Through careful testing we can ensure that we have removed as many bugs as possible, and that the likelihood that
a serious issue remains in the code is small.

Software testing is a complex, rich, and interesting area of study and research. What we have described above
is not a formal testing methodology, it is just a starting point for good software development practice. We will
continue to develop our ability to test and verify software for correctness as we gain experience and expand our
knowledge of computer science and its many sub fields.

152

Chapter 4 Solving Problems Efficiently

Up to this point, we have learned how to represent, store, organize, and search through a collection of
possibly complex data items. We know what an Abstract Data Type is and why they are useful for coming up with
solutions to problems in a way that makes the solution independent from a specific implementation. We studied
lists, and their implementation as linked lists, and we used these for building a simple database able to answer a
few queries on items in our collection.

We will no doubt use lists in the future for a variety of applications. So before we close our discussion on lists,
it’s worth taking time to think about how efficient they are as a solution to problems that require frequent look-up
of items in the collection (whether it is to look at their content, update the data stored there, or carry out aggregate
computations).

Suppose we wanted to use linked lists to implement a fully functional database engine. The database should
be able to store information for a large number of data items (think big - tens of millions, hundreds of millions, or
even billions of nodes in the linked list). The question is, what can we expect in terms of the time it takes for us
to perform a search on the database?

Note

Having such a large number of data items in a collection is very common.

IBM’s Watson used millions of documents to answer game questions for Jeopardy
Google Image Search was indexing well over 10 billion images by 2010
Facebook had about 1.5 billion daily active users in September 2018
Amazon sells over 3 billion different products worldwide

So, thinking about what is the most efficient way to maintain a very large collection is of great importance.

To fully understand this question, we have to think a bit about how data was stored in the list. A common
assumption, and one that is reasonable for many database applications, is that the data was added in no particular
order, or what is the same thing the entries in the list are randomly ordered with respect to any data fields we
may want to use for answering database queries.

We also typically assume that queries arrive in random order. This is a reasonable assumption - think about
Google searches arriving over a span of 1 minute from everywhere in the world - chances are, there will be no
order or pattern to the searches carried out by people from Mexico, Australia, Singapore, and Finland, all of whom
happen to be online at that particular time.

Finally, we have to provide some definition of efficiency so we can evaluate how well our list is doing. For a
database engine, one reasonable measure is how many data items have to be inspected before we find the one we
are looking for.

Now, recall from the last unit that to perform a search in a linked list, we have to do a list traversal. This
means starting at the head of the list, and traveling along the list’s nodes until we find the one that contains the
information we are looking for.

(C) F. Estrada 2024

Question: How many nodes do we need to look at before we find the one we want?

If we are super lucky, the data we want will be in the head node and thus we only look at 1 node to find
what we want, but with randomly ordered data, the chance of this happening is 1/N, where N is the number
of nodes in our list. For a list with 1,000,000,000 entries, the odds are very large against this ever happening.
If we are super unlucky, the data we want will be at the tail of the list (or not in the list at all), and we have
to look at all N nodes before we find it or can be sure it’s not there.
Most of the time, we are neither super lucky, not super un-lucky. The data is somewhere in the list,
sometimes closer to the head, sometimes closer to the tail. Because the data is randomly ordered, the number
of nodes we need to examine averages out to N/2 after we run many, many queries.

This makes sense: Sometimes we find the data closer to the head, sometimes closer to the tail, but these two
balance each other out so on average we have to look at about half of the linked list to answer any given query.

This is really not too bad if our list is a few thousand entries long. But once our linked list grows into the
millions of items and beyond, the cost of answering a query becomes too large. Simply put, our linked list has to
look at too many data items in order to find a specific one. This translates into a longer wait time for a program
requesting information from the database. At some point, the list is so long that the wait time becomes impractically
long.

4.0.1 Why we need to look through all that data to find something

We may be inclined to think that the root cause of our problem is the structure of our linked list. And indeed,
our linked list has a major limitation in that we can not access an element inside the list without doing list
traversal. However, the root cause of our problem is not due to this limitation of the linked list.

Consider for example an array that contains the names of all of the hit songs from 2017 and 2018 as shown
in Fig. 4.1 (it’s a small list so we can show an example here, but you should be thinking this applies to an array of
any size).

Figure 4.1: A simple array that contains the names of hit songs from 2017 and 2018.

The question we want to answer is: Is searching for a specific item in an array with randomly ordered entries

154

(C) F. Estrada 2024

more efficient than searching in a linked list with the same (unordered) entries? Or, what amounts to the same thing,
we are asking if using an array allows us to find what we want with fewer than N/2 items examined on average.

Looking at the array in 4.1, it should be fairly clear that there is no pattern to how the data is ordered. If
we need to find a specific song name, we have to start at the top and look through the array until we find what we
want. This is called linear search. Just like a linked list, there is a chance we get super lucky and our query is right
at the first entry in the array, we can be super un-lucky so the query item is at the end, or not in the array; and on
average we have to look through half the array before we find our information. If the array has N entries, we’re back
to looking through N/2 entries on average.

This means that from the point of view of the number of items we need to look at to answer a query, a
linked list and an array are equally efficient. While there may be a slight performance difference in terms of
actual run-time (because there is more overhead to a linked list than an array), any small difference becomes
irrelevant as the collection size grows: both of these containers for storing information become inadequate for
quickly answering queries.

4.0.2 Organizing our data for efficient search

If we are to find a faster way to answer queries, we need to deal with the random order of our data. We
need to sort it. Once our data is in sorted order, we can do a much more efficient job of searching for specific items.
Fig. 4.2 shows a sorted version of the array from Fig. 4.1.

Figure 4.2: A sorted array that contains the names of hit songs from 2017 and 2018.

For a person, looking up a song in the sorted array above is much easier. We understand the entries are in
order, so we can easily find the spot where a particular song should be. This is why all content indexes in the backs
of books, library shelves, or the phone directory (back in the days when it was actually a printed book) are sorted.

In programming terms, sorting data has the immediate benefit of making that data much easier to search,
with the result that on a sorted array of pretty much any size, we only have to examine a few items in order to find
what we’re looking for.

155

(C) F. Estrada 2024

4.0.3 Binary Search

The process of finding an item in a sorted array is called binary search. Suppose we want to find the song
"I’m the One" in the array above. The binary search process is illustrated in Fig. 4.3.

Figure 4.3: The binary search process illustrated on a small sorted array.

Binary Search Algorithm
1) Go to the entry at the middle of the current array - this is the entry at index ⌊N/2⌋ (the floor of N/2).
2) Compare the middle entry with the query term, if they match return the index of the matching item.
3) If the current array has only one entry, the query term is not in the array, return -1 to indicate the term
was not found.
4) If the query term is less than the middle entry in the current array, then it has to be in the first half of
the array, so the first half becomes the current array, go back to 1). Otherwise, the query term must be
in the second half of the array, so the second half becomes the current array, go back to 1).

Binary search is a straightforward process, and it is incredibly efficient. This is not evident in the example
from Fig. 4.3 because the array shown there is tiny. Let’s think about what happens with larger arrays.

Key ideas:
The binary search process uses the fact that the array is sorted to predict in which half of the array the
data we want has to be.
This means that for every item we check, we can discard from the search half of the remaining entries.
When we choose which half of the array to search next, we can be sure we will never have to look at any
items in the other half.

156

4.1 Computational Complexity (C) F. Estrada 2024

Thus, every round of binary search that we complete, the number of items that remain to be checked is cut in
half.

This very quickly reduces large collections to very manageable sizes. For example, if our initial array has a
length of 1024 entries

After the first round of binary search, we are left with 512 entries to check
After the second round of binary search, we have 256 entries left to check
After round 3, we have 128 entries left to check
After round 4, we have 64 entries left
After round 5, we have 32 entries left
After round 6, we have 16 entries left
After round 7, we have 8 entries left
After round 8, we have 4 entries left
After round 9, we have 2 entries left
After round 10, we have only 1 entry left to check

This is quite remarkable: In an array with over one thousand entries, we can find any item we want with 10 or
fewer checks. Compare that with the un-sorted array or the linked-list, in which case we would expect to have to
check on average 512 entries.

So binary search is a lot more efficient than linear search for finding information in large collections, but
just how efficient is binary search?

This is equivalent to asking: Given an initial value for N, the number of entries in the array, how many steps
are needed to reach the point where only one element is left? (this tells us the maximum number of entries we need
to examine to find what we want).

The answer turns out to be k = log2(N).

For the array with 1024 entries, k = log2(N) = 10, which is exactly the number of steps we had to do above
to get to a single item. To get a sense of just how big a difference this makes, Fig. 4.4 shows a comparison of the
number of checks that are performed by binary search compared with linear search as the size of the collection
grows, and showing three cases:

a) The maximum (worst case) number of items we need to look at for binary search
b) The average number of items we need to look at for linear search
c) The maximum (worst case) number of items we need to look at for linear search

From Fig. 4.4 it should be very clear to you that binary search is incredibly efficient. Even in the worst
possible case, with only 25 checks we can find any one item in a collection with over 33 million entries! Conversely,
linear search on an un-sorted array or linked list would be expected to have to check over 16 million items, on
average, and all 33 million if we are unlucky.

157

4.1 Computational Complexity (C) F. Estrada 2024

Figure 4.4: Comparison of the amount of work done by binary search (worst case) and linear search (on average,
and worst case) as the size of the collection grows.

4.1 Computational Complexity

The ideas above can be refined into a concrete, general framework for comparing different algorithms in
terms of the computational cost of carrying out a task.

One key idea in understanding how we can compare different algorithms is that we want to find a measure of
the amount of work a particular algorithm has to do as a function of N, the number of data items the algorithm
is working on. We call this measure the computational complexity of the algorithm.

In the examples above, we saw that linear search has to examine N items in the worst case, while binary search
only has to look at log2(N). The reason for wanting to look at a function of N is that it allows us to predict how
an algorithm will perform for increasingly larger data collections. In our search example, we have two different
functions:

fBinSearch(N) = log2(N)

fLinSearch(N) = N

So we say that binary search has a complexity of log2(N) and that linear search has a complexity of N.
Because the value of log2(N) grows much more slowly than N, we can conclude (without having to test on every
possible array) that binary search is much more efficient than linear search for large collections. We can
visualize this by plotting both functions for increasing values of N and comparing the predicted amount of work
they will have to do, this is shown in Fig. 4.5.

It should be obvious from the plots in Fig. 4.5 that one of these algorithms is a whole lot more efficient than
the other at finding information in a large collection. The key observation we can make from this is:

Given two algorithm and the functions of N that describe their computational complexity, the function that
grows more slowly will always win-out as the number of data items increases. So the algorithm with the

158

4.1 Computational Complexity (C) F. Estrada 2024

Figure 4.5: Visualization of the complexity of two different search algorithms: Linear search (red) and binary
search (blue). Binary search is incredibly efficient, to the point of looking like it does no work at all compared to
linear search on large arrays. The shape of each function’s curve is easier to compare on a graph for smaller values
of N (left side graph)

slower-growing function is said to have a lower complexity, and is therefore shown to be more efficient for large
data collections.

Question: What can we conclude at this point about the run-time of two programs that do search on the same
data, but where one uses binary search, and the other uses linear search?

Being able to compare different possible ways of carrying out some task is essential for implementing good
solutions to any problem. In computer science, we compare algorithms by studying and measuring their
computational complexity. Computational complexity is expressed as a function of N, the number of data items
the program has to work on.

4.1.1 The Big O Notation

In order to be able to better understand and compare the complexity of different algorithms, we use a special
notation called the Big O notation. The importance of the Big O notation is that it allows us to reason about the
efficiency of algorithms in terms of general classes of functions. Here’s what we mean by that:

Suppose that we have different implementations of linear search on arrays (perhaps written by different
developers, in different programming languages), and we also have different implementations of binary search.
We then set out to carefully measure their actual run-time for arrays of different sizes, on a particular computer,
and we find that they behave as follows:

a) .75 ·N (e.g. for N=10, this implementation runs in 7.5 seconds)
b) 1.25 ·N + .25 (this one has a .25 second start-up time that is not dependent on N)
c) 2.43 ·N
d) 1.15 · log2(N) + 1.12 (this one also has a start-up time, in this case 1.12 seconds independent of N)

159

4.1 Computational Complexity (C) F. Estrada 2024

e) 1.75 · log2(N)

c) 15.245 · log2(N) + 15.25 (large start-up time! maybe it needs to load libraries before it runs)

The results above require some thought - we know how much work linear search has to do to find an item in
the array, and that in the worst case that would be looking at all N entries in the array. But we hadn’t considered
what could happen when variations between implementations are introduced.

Perhaps an implementation in C will be slightly faster than one in Java, and perhaps the one in Java will
be somewhat faster than one written in Matlab. But the important thing to note is that all of them are linear
functions of N. It is a property of the linear search algorithm. The only thing that can change among (correct)
implementations is the constant that multiplies N, and maybe the presence of a constant term independent of N.

We can say exactly the same in a different way: Any correct implementation of the linear search algorithm will
have a complexity that is characterized by c ·N + k, where c and k are constants, for large values of N.

The same is true for different implementations of binary search. They are all logarithmic functions of N
multiplied by some constant that is implementation dependent, and perhaps including a constant term independent
of N.

We want a way to compare algorithms in an implementation independent way. We need to know which is the
better algorithm, the one requiring less work to solve a given task. And if we can analyze algorithms in this way,
we can always pick the most efficient one. The Big O notation makes explicit the slowest-growing function of N
that characterizes the complexity of some algorithm. The definition of Big O states that:

Definition 4.1 (Big O Notation)

♣

To state that f(N) = O(g(N)), which is to say that a function f(N) has a Big O complexity of g(N) means
that f(N) ≤ c · g(N) for a sufficiently large value of N (usually stated as N > N0). It is assumed that
f(n), c, and g(n) are positive.

As an example, f(N) could represent the run-time of binary search. We know that a correctly implemented
binary search will have to check at most log2(N) entries to find the one we need, so we can state f(N) = O(log2(N))

- this immediately tells us that we expect f(N) ≤ c · log2(N) for sufficiently large N. We are categorically stating
that whatever the implementation of binary search (regardless of programming language, which computer it’s
running on, or who wrote the program), we can always find a function g(N) = c · log2(N) such that the run-time
of the algorithm f(N) is always less than, or equal to g(N).

We say that binary search has a worst-case complexity of O(log2(N)). Similarly, we can state that the
worst-case complexity of linear search is O(N) because whatever the implementation, we can always find a
function g(N) = c ·N such that the runtime f(N) of linear search is always less than or equal to g(N).

From the above, we can categorically conclude that binary search is significantly more efficient than linear
search for large N, and this is regardless of any possible differences in the implementation of the algorithms, or the
hardware they are running on. We can visualize why this statement is true by looking at the run-time plots for the
different implementations of linear search and binary search listed above. This is shown in Fig. 4.6.

160

4.1 Computational Complexity (C) F. Estrada 2024

Figure 4.6: Plots of run-time for the different versions of linear search and binary search. Each graph shows
what happens for different ranges of values of N, increasing from left to right. For small values of N, linear search
would appear to be more efficient. However, by the time N=170 all the linear search implementations have overtaken
the slowest binary search implementation, and by the time N=1000 it’s all over for linear search. The conclusion
is: Binary search will win out in the end, regardless of how it’s implemented, if N is large enough.

The point not to be missed in the plots shown in Fig. 4.6 is that the algorithm with the smallest Big O
complexity will win for large enough N. The log2(N) function (or in fact, any log function, regardless of the
base) is much slower growing than any linear function, so we will always expect binary search to be faster on
a large enough array. The note about any log function being slower growing than any linear function means we
usually ignore the base of the log function, and we simply state that binary search is O(log(N)).

Note

Why do we want the slowest-growing function that characterizes the complexity of an algorithm? Consider
the graph shown in Fig. 4.7 that plots the runtime of an implementation of binary search written in C for
various values of N.
The plot also shows two functions both of which can be used as worst case upper bounds on the algorithm’s
run-time. From the definition of Big O complexity, if we take f(N) to be the run-time for the binary search
program, both of the following statements are correct:

f(N) = O(log2(N))

f(N) = O(N)

The Figure clearly shows we can find a logarithmic function such that c1 · log2(N) ≥ f(N) for all values
of N in the plot. We can also find a linear function such that c2 · N ≥ f(N) for all N in the graph.
However, notice that the linear function really does not provide a good prediction for what the run-time of
the program will be for any particular value of N . Indeed, for large N , the linear function over-estimates
run-time by a very large amount, whereas the prediction from the logarithmic function is much closer
to the real-world behaviour of the program.

Therefore, in order to be able to reason about, or compare the amount of work that different algorithms will
have to do while solving a problem, we need to find the slowest-growing function of N that provides a
bound on how much work the algorithm does as N grows.

161

4.1 Computational Complexity (C) F. Estrada 2024

Figure 4.7: Run-times for a C implementation of binary search (blue markers) for different array sizes (x-axis).
The two functions shown can both be used as bounds for the algorithm’s run-time. However, the linear function is
not useful for predicting what the run-time should be for a particular value of N.

4.1.2 From algorithm complexity to problem complexity

We started with the goal of understanding how efficient two different algorithms for finding a particular item
in an array can be. Complexity analysis is a wonderful tool for doing this. However, there is an even more powerful
idea behind the use of complexity analysis in computer science:

We can study, quantify, and prove results regarding the complexity of solving a given problem. What is the
difference? Let’s take an example: Sorting an array (and we will come back to this example soon in more detail).

Algorithm complexity means we can look at different algorithms to sort an array, and figure out which one
is going to be more efficient as the array size grows.
Problem complexity means we study the actual problem of sorting, and we try to figure out what is the
theoretical lower-limit on how much work the best possible algorithm has to do to sort an array.

For example, proving that linear search has a complexity of O(N) is equivalent to showing that it is not
possible to find an algorithm that can do linear search with complexity less than O(N).

This is a powerful and important idea because it allows us to classify problems by how hard (in terms of
complexity) they are to solve computationally. Harder problems are characterized by a Big O complexity given
by fast-growing, or very-fast growing functions of N. As a developer, it’s important to become familiar with the
different classes of problems you may have to work with one day, and to consider carefully what is reasonable
to expect of an algorithm, given the complexity of the problem it is working on. A comparison of a handful of
important algorithms and problems in terms of their computational complexity is shown in Fig. 4.8.

162

4.1 Computational Complexity (C) F. Estrada 2024

Figure 4.8: The plot above shows examples of algorithms (on top) and problems (at the bottom) with different
Big O complexity. Note that for a given problem (e.g. sorting), you can easily find algorithms whose complexity
is greater (bubble sort) than the best known complexity for the problem. Knowing what the best known complexity
estimate is for a given problem allows you to evaluate how good an algorithm is at solving that problem.

Note

We can measure complexity in terms of different quantities: the number of times we have to check an item
in a collection, the run-time of an algorithm, the number of mathematical operations a certain function
has to perform. Which measure to use depends on what problem we are solving, but the analysis, and
what it tells us about an algorithm or problem is stated in the same way using the Big O notation.
Computational complexity analysis applies to every type of problem, not only searching for information in
a collection. For example, it is incredibly important in all areas of computer science that deal with numerical
computation, for example machine learning and artificial intelligence. We can learn a lot more about
computational complexity, and about how to study, analyze, and prove estimates of a problem’s complexity
by reading up on the topic. It requires a deeper and more serious study than is appropriate for this book.

4.1.3 So this means the implementation doesn’t matter right?

Not quite - solving a problem efficiently requires us to first think of the complexity of the algorithm for
solving the problem. Once we have selected an algorithm with the best known complexity for solving a particular
problem, we have to write a good implementation of it.

Going back to our original example of search algorithms, the difference between the implementations of
algorithms that have the same Big O complexity becomes important once N is large enough, e.g. N=1000000:

1.15 · log2(N) + 1.12 = 24.041

15.245 · log2(N) + 15.25 = 319.11

So the implementation makes all the difference between us having to wait around 20 sec. for the result, or

163

4.2 How to make search more efficient (C) F. Estrada 2024

having to wait over 5 minutes!

� Exercise 4.1 Consider a function that takes 2 input arrays:
void multiply_accumulate(float input[N], float output[N])

The function computes each value in the output array as output[i] =
∑

j input[i] · input[j]

That is, the ith entry in the output array is the result of multiplying the ith entry in the input array with every
other entry in the input array (including itself), and adding all of these up.

One way to implement this function is shown below:
void multiply_accumulate(float input[N], float output[N])
{

int i,j;

for (i=0; i<N; i++)
{

output[i]=0;
for (j=0; j<N; j++)
{

output[i]=output[i]+(input[i]*input[j]);
}

}
}

Question: What is the Big O complexity of the function shown above? For this exercise, define the complexity
in terms of how many multiplications are carried out. If you’re having a tough time figuring that out from the
code, try and list the operations the loops are doing for a small value of N and see if that suggests something to you.

Question: Would the Big O complexity change if instead of multiplications we defined complexity in terms
of the number of additions that are carried out by the function?

Question: Is the complexity result we found above the best that we can do for this problem? Is there a better
algorithm? And if there is, what is the Big O complexity of that algorithm?

4.2 How to make search more efficient

We started this unit trying to understand how efficient linked lists are in terms of letting us search for items
in our collection. We have now seen that searching in linked-lists has a Big O complexity of O(N), and because
of that, for large collections, they are not the optimal way of storing information that will need to be searched
frequently.

As a side question: Why is it not possible to perform binary search on a linked list whose items are in sorted
order?

We also saw that binary search has a complexity of O(Log(N)) which makes it incredibly efficient for finding
information even for very large collections. So based on this we may conclude that we should give up on linked-lists
and that we should simply stick to sorted arrays of items so we can have efficient search.

164

4.2 How to make search more efficient (C) F. Estrada 2024

However, we left arrays behind when we realized that their limitations (fixed capacity, either insufficient for
data, or wasteful of space) made them hardly a good solution for the management and storage of large collections
of items whose quantity is not known in advance, and in cases where the size of the collection can change a lot over
time.

So we have a serious problem now:

At this point it looks like we can have either

1) A dynamic data structure that allows us to organize and maintain a large collection of items without
wasting space.

or

2) A sorted array with fixed capacity (and the associated known limitations), but where we can perform binary
search to efficiently search for information.

What are we missing?

Suppose we decided that efficient search is more important to us than not wasting space, so we are willing to
use an array large enough for our collection, so we can do binary search and find items quickly. Sounds like a good
plan, except that we haven’t accounted for the fact that we expect items to be added to our collection in random
order. Binary search requires our array to be sorted.

So before we decide that our best bet is to use a sorted array along with binary search, we have to consider
the computational cost (and you know now that by this we mean the computational complexity in terms of Big O)
of sorting the array in the first place.

4.2.1 The computational cost of sorting

Consider an (unsorted) array with N entries. Let’s consider the simplest sorting algorithm we can come up
with: bubble sort. If you haven’t seen bubble sort before, here’s a simple implementation:
void BubbleSort(int array[], int N)
{

// Traverse an array swapping any entries such that
// array[i] < array[j]. Keep doing that until the
// array is sorted (at most, N iterations of the
// loop on i)

int t;

for (int i=0; i<N; i++)
{

for (int j=i+1; j<N; j++)
{

if (array[i]<array[j])
{

t=array[j];
array[j]=array[i];

165

4.2 How to make search more efficient (C) F. Estrada 2024

array[i]=t;
}

}
}

}

In bubble-sort, the larger elements float to the top of the array like bubbles. After the first iteration of the
loop on ’i’, the largest number in the array is in the correct location (the first entry in the array), after the second
iteration of the loop on ’i’ the next largest number is at the correct location (second entry in the array), and so on.

The question is: what is the worst-case Big O complexity of bubble sort? In this case, let’s measure work in
terms of how many comparisons of pairs of entries the algorithm has to perform - which is a common measure of
work for sorting methods. Let’s take a look at how many swaps would be needed to sort the array:

For the first iteration of the loop on ’i’, the loop on ’j’ would perform N-1 comparisons
For the second iteration of the loop on ’i’, the loop on ’j’ would perform N-2 comparisons
For the third iteration of the loop on ’i’, the loop on ’j’ would perform N-3 comparisons
... and by now you can see the pattern arising ...
For the (N − 1)th iteration of the loop on ’i’, the loop on ’j’ would perform 1 comparison
And finally, for the N th iteration of the loop on ’i’, the loop on ’j’ would perform 0 comparisons

The total amount of work performed by bubble sort is the sum of the comparisons performed for the N

iterations of the loop on ’i’. We can figure out what that is by noting that matching pairs of iterations combine to
perform a constant number of comparisons. The first and last iteration combined carry out N − 1 comparisons
(N − 1 from the first iteration, 0 from the last one). The second iteration and the next-to-last iteration combined
also carry out N − 1 comparisons (N − 2 and 1, respectively). The third iteration and the second from last
combine to carry out N − 1 comparisons as well, and so on. In total, there are N/2 pairs of iterations each of
which combines to perform N − 1 comparisons. So the total number of comparisons performed by the bubble sort
algorithm is:

N
2 · (N − 1) = N ·(N−1)

2 = N2

2 − N
2

Question: The total work done (in the worst case) by bubble sort has two different terms both of which
involve N , so what is the worst-case Big O complexity of bubble sort?

To answer that question, all we have to do is consider what happens to each of these terms as N grows. The
quadratic term N2/2 grows a whole lot faster than the linear term N/2. For instance, for N = 1000, we have that
N2/2 = 500, 000 and N/2 = 500 so the linear term is 1000 times smaller. As N grows to 10000 we have that
N2/2 = 50, 000, 000 and N/2 = 5000 which is 10, 000 times smaller.

From this you can glean an important principle: Whenever you have a complexity result that involves different
terms involving N, the fastest growing term will dominate the complexity of the algorithm as N grows.

In the case of bubble sort, that means we need only consider the quadratic term N2/2. And we say that
worst-case Big O complexity of bubble-sort is O(N2).

166

4.2 How to make search more efficient (C) F. Estrada 2024

Note

Don’t forget that this is appropriate for comparing and choosing among algorithms that have different Big
O complexity. If what we are doing is trying to choose between algorithms that have the same Big O
complexity (e.g. the different versions of binary search we discussed earlier on) then we have to include
everything. That means, any terms that depend on N as well as the constants that may appear in our estimate
of how much work the algorithms are doing.

Houston, we have a problem:

We want to use a sorted array and binary search so that searching for items in our large collection has a
complexity of O(log(N))

But in order to do that, we have to first sort the array, which (if done with bubble sort) has a complexity of
O(N2)

that is not a nice result. The quadratic cost of sorting will dominate the complexity of the process, and this cost
grows a lot faster than even the linear search complexity which is only O(N). Suddenly, using a sorted array
doesn’t seem like such a good idea.

4.2.2 It gets more interesting

Bubble sort is definitely not the best sorting algorithm out there (President Obama knows this, see Fig. 4.9) - we
sometimes use it for small arrays because it’s so simple and quick to implement, but we can do much better. If you
recall from our discussion above on the computational complexity of problems, the best known sorting algorithms
have a complexity ofO(N ·log(N)). There are several algorithms that can reach this level of performance, including
a couple we will study in detail in the next Chapter. For now let’s see how far we can get if we replace our costly
bubble sort with the more efficient merge sort.

Figure 4.9: "I think the bubble sort would be the wrong way to go". Photo: U.S. Federal Government – public
domain

How would this change our decision on whether or not sorting an array and then using binary search to find
information efficiently is reasonable? What we have now is the following situation:

167

4.2 How to make search more efficient (C) F. Estrada 2024

We have to sort the collection, which has a worst case Big O complexity of N · log(N) using merge sort
Thereafter we can find any item in the collection in O(log(N)) time

Unfortunately, N · log(N) is still bigger than N , so we could be led into thinking that doing linear search
remains the best option. But it’s actually more complicated than that.

Suppose we are working with a collection that doesn’t change much - for example, suppose we are maintaining
a database of all the streets in a particular city. New streets don’t appear every day, and existing streets don’t
disappear very often either. Under these conditions we could do the sorting once, and once we have a sorted
collection we can carry out many, many searches efficiently using binary search.

In this situation, whether we should use sorting and binary search or simple linear search in an unsorted
linked list or array comes down to how many searches are we going to do?. The table below illustrates the total
cost of carrying out a sequence of searches using either sorting and binary search or an unsorted array.
Example 4.1

In the table below, N is the number of entries in the collection, M is the
number of searches we want to perform, ’A’ is the cost of
sorting the array (it’s done only once), ’B’ is the total cost of doing M
searches using binary search (M*log(N)), and ’C’ is the cost of
linear search (N*M). The line marked [+] indicates where the cost of
using linear search (C) becomes greater than the cost of sorting and using
binary search (A+B).

N=1000

A B C
M Sorting Cost (N * log(N)) Searching Cost (M*log(N)) A+B N*M

1 6907.8 6.9 6914.7 1000
10 6907.8 69.0 6976.9 10000 [+]
100 6907.8 690.7 7598.6 100000
1000 6907.8 6907.8 138165.6 1000000

N=10000

A B C
M Sorting Cost (N * log(N)) Searching Cost (M*log(N)) A+B N*M

1 92103 9.2 97112 10000
10 92103 92.1 97195 100000 [+]
100 92103 921.0 98024 1000000
1000 92103 9210.3 106313 10000000

The table above is interesting because it shows that even though the initial cost of sorting can be significant
(as seen, for instance, for N = 10000), that cost is the same whether we do 10, or 1000 searches. Because
binary search is so efficient, it only takes a few searches to make linear search more costly than sorting once and
searching many times. In both of the cases above, it takes only 10 searches for linear search to do more work than
our solution using merge sort and binary search.

So, you should keep in mind that Big O complexity results have to be used carefully - the actual decision on
what algorithm or combination of algorithms you should use for working with a particular collection involves

168

4.3 Trees, Binary Trees, and Binary Search Trees (C) F. Estrada 2024

not only the Big O complexities for each of the components of the algorithms you’re comparing, but also the type
of operations you are expecting will be carried out on the collection, and their frequency (how often they take
place).

If our collection had frequent insertions and/or deletions, we would need to re-sort the collection (or use
insertion sort) to keep the array in sorted order, and if this happens often that would quickly make the solution that
uses sorting much worse than the linear search.

� Exercise 4.2 Build a table like the one shown in Example 4.1, But this time, in addition to the searches, there are
Q insertions, where Q can be 10 or 100 and after each insertion the array must be re-sorted (i.e. the cost of each
insertion is N · log(N)).

� Exercise 4.3 Build a table like the one shown in Example 4.1, but instead of merge sort, we are using bubble sort
for sorting the array before doing binary search. Fill in the table and find out how many searches are needed for
linear search to become less efficient than the combination of bubble sort and binary search. Your table should
show what happens for N=1000 and N=10000.

So have we found an efficient way to make a large collection searchable?

Not quite...
The array solution has space limitations (fixed size can be either insufficient, or wasteful of space).
It requires sorting. With the best sorting algorithm this has complexity O(NLog(N)) which is already worse
than linear search (it can still be worth it if we sort once and then search many times).
But, we expect most collections to change over time - insertions, deletions, and modifications will require
work to ensure the array remains sorted.
The conclusion is that a sorted array with binary search is not necessarily the best solution for organizing,
storing, and searching over a large and changing collection of items.

What do we need?
It is clear that for efficient search data has to stay organized in some way. We need an ADT than can
facilitate this without requiring a separate sorting step.
The ADT must support efficient search, insertion, and deletion; and these operations must remain efficient
(in terms of Big O complexity) as the collection grows in size.
The implementation of this ADT as a data structure should be dynamic and request/use space only as
needed by the items in our collection.

We will now learn about an ADT and associated data structure that can do just that. We will study its properties,
learn how it handles searches, insertions, and deletions, figure out the Big O complexity of the typical operations it
supports, and look at some of its applications.

4.3 Trees, Binary Trees, and Binary Search Trees

Recall that a linked-list is a data structure in which nodes contain one item from a collection, and one link to a
successor node which is the next node in the list.

169

4.4 Binary Search Trees (C) F. Estrada 2024

A tree is a generalization of this idea, it consists of nodes, each of which contains one or more data items
from a collection, and one of more links to children nodes (the equivalent of the successor node, but now we can
have many).

Trees are extremely common structures in computer science, used for a wide range of purposes.
A particularly common type of tree is the binary tree, which has the property that each node has two child

nodes, the left child, and the right child.
The diagram in Fig. 4.10 illustrates a binary tree. Note the following:

Each node has two spaces for links - one for the left child (shown with red arrows), and one for the right
child (shown with blue arrows).
Nodes may have zero, one, or two children.
The node at the top of the tree is called the root node. Similarly to the head of a linked list, we manage a tree
by keeping a pointer to the root node.
Each level in the tree consists of nodes that are at the same distance or depth with regard to the root node.
Each level contains up to 2 times the number of nodes of the previous level.
Leaf nodes are nodes with no children.

Figure 4.10: Structure of a binary tree, each node has up to two children and contains data for one item in a
collection.

Without any additional refinements, binary trees may be useful for various tasks. However, for efficient
management of a data collection, we have to satisfy the requirement that the tree keeps data organized in a way that
makes the various operations efficient. With an additional constraint on how the tree is built we can achieve this
last requirement.

4.4 Binary Search Trees

A Binary Search Tree (BST) is binary tree such that for each node in the tree, the BST property holds:

170

4.4 Binary Search Trees (C) F. Estrada 2024

Data in the left sub-tree of a node have value less than, or equal to the value of the data in the node
Data in the right sub-tree of a node have value greater than the value of the data in the node

This means that at each node, we can quickly determine which of the following three situations is true:

The data is in the current node
The data is not in the current node, but if it is in the tree, it must be in the left sub-tree
The data is not in the current node, but if it is in the tree, it must be in the right sub-tree

The above should make you think about binary search! The BST is intended to allow us to organize a large
collection in such a way that we can quickly search through it. Indeed, under the assumption that our data is inserted
into the tree in random order, the BST can provide an average case search complexity of O(Log(N)) .

4.4.1 Search in a BST

The purpose of a BST is to support efficient search for data stored in the tree. Let’s consider the search process
in a BST as shown in the pseudocode below:

// This function takes the root of a subtree <subtreeRoot>
// and a key value we are searching for <queryKey>. If an
// item in the tree contains a matching key, the function
// returns the data contained in that node.

searchForKey <-- <subtreeRoot>, <queryKey>

if the <queryKey> is equal to the <key> at <subtreeRoot>
// Found the key: Return the data stored at this node

otherwise
if the <queryKey> is less than the <key> in <subtreeRoot>

// The node we want must be to the left of <subtreeRoot>
searchForKey <-- <leftSubtreeRoot>, <queryKey>

otherwise
// The node we want must be to the right of <subtreeRoot>
searchForKey <-- <rightSubtreeRoot>, <queryKey>

The search process starts at the top of the tree, checking the query value against the value stored at a node. If
the value is found the search succeeds and returns the requested data item, otherwise, it checks whether the query
value should be in the left or the right subtree (which is possible because of the BST property), and continues
searching on the corresponding subtree.

The search process is illustrated in Fig. 4.11.

171

4.4 Binary Search Trees (C) F. Estrada 2024

Note

With BSTs, we normally call the values used to search for information in the tree search keys. If the tree
contains data items which are simple data types then the keys and the data values are the same. But remember
that we intend to use these data structures to organize and maintain large collections of compound data types.
So in general, the key will be a suitable field, or a subset of fields from the CDTs. Keys have to be
comparable (i.e. besides checking for equality, we must be able to tell which of the two keys is greater
and which is lesser according to some ordering that makes sense for our data). This often involves writing
a comparison function that works with our data type. Finally, as we discussed in the previous Chapter,
search keys must uniquely identify each item in a collection.

Figure 4.11: Search in a BST involves checking nodes starting at the top, at each step deciding whether we have
found the data we are looking for (the queryKey) or whether we should look for it in the right subtree or the
left subtree. Nodes shaded in gray will never be checked because they belong in a subtree where we know the
queryKey could never be placed.

You can see how, similarly to binary search, the search process in a BST quickly discards from search a large
portion of all the values stored in the tree. The question is how many items need to be examined for us to find
the query key (or determine it’s not in the tree)?.

The search moves down one level in the BST for every comparison between the queryKey and values in the
tree. This means that at most, the search has to examine a number of nodes equal to the height of the BST - the
number of levels in the tree. The height of a BST is defined as the length of the longest path from the root of the
tree to a leaf node. This is the number we need to know in order to estimate how muck work is needed to find a

172

4.4 Binary Search Trees (C) F. Estrada 2024

specific item in a BST.
So, how many levels are there in a full BST? To answer that question we need to figure the maximum height

and the minimum height that a BST with N items in it could have.
The height of the tree depends on where data items are relative to each other. To understand how the tree is

shaped, we need to take a look at how the tree is built by inserting data items in some order into an initially empty
BST.

4.4.2 Inserting nodes into a BST

For linked lists, we had to keep around a pointer to the head of the list. In the case of a BST, we will need to
keep around a pointer to the root of the tree (the node at the very top). The insert process must ensure that the
BST property is enforced when a new item is inserted in the tree.

The pseudocode for the BST insert operation is shown below:
// Given the <root> of the BST
// and a new data item whose key is <newKey>
// to be inserted in the tree.

if the BST is empty (root is NULL) // The first key inserted in the
<root> := <newKey> // tree becomes ROOT

otherwise
BST_insert <-- <root>, <newKey>

// The insert function takes the root of some
// subtree (or the whole tree) and the newKey
// and inserts the new node in the right place
// so the BST property is preserved

BST_insert <-- subtreeRoot, newKey

if the <newKey> is equal to the <key> at <subtreeRoot>
then this is a duplicate key: Return without inserting anything

otherwise

if the <newKey> is less than the <key> in <subtreeRoot>
// <newKey> should be on the left-side from <subtreeRoot>
if the <leftSubtree> of <subtreeRoot> is empty

<leftSubtreeRoot> := <newKey>
else

BST_insert <-- <leftSubtreeRoot>, <newKey>

otherwise
// <newKey> should be on the right-side from <subtreeRoot>
if the <rightSubtree> of <subtreeRoot> is empty

<rightSubtreeRoot> := <newKey>
else

BST_insert <-- <rightSubtreeRoot>, <newKey>

The insert operation works very similarly to the search operation. It starts at the top of the tree, working its
way downward and choosing either the left or the right subtree at each level depending on whether the new key is
less than or greater than the key at each node visited. Once it finds an empty subtree, it inserts the new node
there. Fig. 4.12 shows several examples of this process.

173

4.4 Binary Search Trees (C) F. Estrada 2024

Figure 4.12: Examples of BST insert starting with an empty tree. The process works its way down from the top
of the tree, choosing the left or right subtree as is appropriate at each level, until an empty subtree is found where
the new data item should be stored.

174

4.4 Binary Search Trees (C) F. Estrada 2024

� Exercise 4.4 Starting with the last BST in Fig. 4.12 (after 22 is inserted), list the steps carried out, and draw the
resulting tree, after inserting: 19, 4, 1, 6 , and 21 (in that order)

With this in mind, let’s revisit our question regarding the possible values for the height of a BST that contains
N items. Because of how the insertion process works, the shape of the BST (the location of the nodes) will be
dependent on the order in which keys are inserted. To see this, have a look at the example below, which inserts the
numbers 1 to 7 in an initially empty BST.
Example 4.2

Let’s first see what happens when we insert the numbers 1-7 in order into an intially
empty BST.

1 1 1 1 .. etc .. 1
\ \ \ \
2 2 2 2

\ \ \
3 3 3

\ \
4 4

.
.
\
7

Because the numbers are inserted in order, each key we add must be placed to the right
of the one that was inserted just before. The resulting BST is completely one-sided
and in fact looks like a linked list!

The height of a BST that results from inserting N items in order is N-1

Now let’s see what happens when we insert the same numbers in the order
4, 2, 6, 1, 3, 5, 7

4 4 4 4 4 4 4
/ / \ / \ / \ / \ / \

2 2 6 2 6 2 6 2 6 2 6
/ / \ / \ / / \ / \

1 1 3 1 3 5 1 3 5 7

In this case, the keys are inserted in such a way that the resulting BST is
balanced - which means that there are no large differences in height between
different subtrees at any place. This latter tree is an example of a
’complete’ BST.

So the height of the BST depends on the order in which items are added to the tree. From the example above
we can immediately tell that in the worst case the height of the BST will be N-1 which means that both search
and insert have a worst case Big O complexity of O(N). That should not be surprising because in the worst case,
the BST looks like a linked list.

Conversely, when the tree is as short as possible, the height of the tree is given by ⌊log2(N)⌋. This follows
from the fact that each successive level in the tree contains twice as many nodes as the one before - or what amounts
to the same thing: each additional level in the tree doubles the number of nodes it can contain. This can only
happen when the BST is complete, which means that every level of the tree is full with the possible exception of
the last one, and any nodes in the last level are packed to the left, with no gaps in between.

175

4.4 Binary Search Trees (C) F. Estrada 2024

Therefore the the Big O complexity of search and insert is O(log2(N)) on a complete BST.
At this point let us remember one important assumption regarding our collection: Items are added in random

order. This means we would have to be very very lucky (or very very unlucky) to get either of these special cases
of BSTs. Most of the time we have a tree whose height is between that of a complete BST and that of a misshapen
tree that looks like a linked list.

In order to get a useful estimage of what we can expect from a typical BST, we need to know what is the
average height of a BST that results from items being added in random order. The surprising, but very helpful
result is that the average height of a BST built from a random sequence of insertions is O(log2(N)) - it is not
exactly log2(N) but it is within some constant factor of it. Detailed proofs for this result can be found in standard
textbooks on algorithms.

This is a good result because it means that on average, the Big O complexity of search and insert on a BST is
O(log(N)). And now we’re getting somewhere! in the average case, BST search is as efficient as binary search,
and we do not have to sort the data because the BST insert operation (which is also O(log(N))) ensures the BST
property holds everywhere in the tree at all times.

Note

We can not trick the Universe. The total computational cost (on average) of building a BST with N keys
is O(N · log(N)) because we are performing N insert operations, each with a cost of O(log(N)). This
is just the same as the cost of sorting an array so we can use binary search. However, once we have the
BST we can insert new items into it at a cost of O(log(N)), whereas to insert a new item into the sorted
array we would need to use insertion sort which has a complexity of O(N) or re-sort the array at a cost
of O(N · log(N)). The real advantage of the BST is not in the initial setup but in the fact it allows us to
perform any succeeding operations efficiently.

� Exercise 4.5
Draw the BST that results from inserting the following keys in sequence: 49, 85, 22, 15, 97, 67, 4, 71, 35, 8,

99, 64, 2, 17, 69, 50

4.4.3 Deleting items from a BST

The delete operation is a bit more interesting than both search and insert. This is because we must ensure that
after deletion the BST property still holds everywhere in the tree.

There are three cases we must consider for deletion:

Case a) The item to be deleted is a leaf node (it has no children). Figure 4.13 shows an example of this case.
The process to be carried out is:

Find the node with the item we want to remove - same process as BST search.
Since this a leaf node, there is nothing else in its subtree. Once we remove this node, there is nothing left.
Therefore, we set the corresponding pointer in the parent node to NULL to indicate that there is now an
empty subtree on the side where the deleted item used to be.

176

4.4 Binary Search Trees (C) F. Estrada 2024

Figure 4.13: Example of case a) of BST delete. The item being deleted (40) is in a leaf node, therefore we simply
delete the node and set the corresponding pointer in the parent node to NULL.

Case b) The item to be deleted has one child only. This is very similar to deleting an item inside a linked list
as shown in Fig. 4.14. The process to be carried out is:

Find the node with the item we want to remove - same process as BST search.
The node’s child is guaranteed to be on the correct side with regard to the node’s parent because BST
insert ensures the BST property holds throughout the whole tree.
Therefore, we have to link the node’s parent to the node’s child and then delete the node.

Figure 4.14: Example of case b) of BST delete. The item being deleted (19) has a single child (22). Linking the
parent node (27) to the child node (22) preserves the BST property and we can then delete (19).

Case c) The most general case, the item to be deleted has two children. In this case, deleting the node and
trying to re-link the tree results in a problem: we would have two dangling nodes (the children of the node we just
deleted) and only one link where to attach them. Rather than try to figure out where to attach the two children while
preserving the BST property, we can solve this problem by carefully moving data items inside the tree as shown
in Fig. 4.15. The process is as follows:

Find the node with the item we want to remove - same process as BST search.
Search in the right-side subtree for the successor of this node - this is the smallest key in the right subtree
of the node we are deleting. The successor is easily found by starting at the top of the right subtree and then
traversing as far down and to the left as possible (i.e. without following any right-child links).
Promote the successor to the node we are deleting - this means copying the data (and key) stored at the
successor node into the node we are deleting.
Finally, delete the successor node from the right subtree - this will be either case a) or case b).

177

4.4 Binary Search Trees (C) F. Estrada 2024

The point of this process is that we do not remove internal nodes in the BST. Instead, we move data around such
that we are left with a valid BST (the BST property holds everywhere after we have moved the data), and an easier
case of deletion either case a) or case b) since the successor node can never have two children (think through the
process of finding the successor to see why that has to be the case).

Figure 4.15: Example of case c) of deletion. The node has two children so we do not want to remove it, instead
we promote the successor (smallest key in the right subtree) to the node we want to delete, and then delete the
successor from the right subtree.

Note

It should be noted that deletion would work equally well if we used the predecessor (largest key in the
left subtree) instead of the successor. Both of these options will result in a valid BST (the BST property
is maintained throughout the tree), and they involve the same amount of work in terms of computational
complexity - there is no difference. For consistency, in this book we will use the successor when deleting
nodes from a BST.

� Exercise 4.6 Beginning with the tree in Fig. 4.15 after (29) was deleted, draw the trees resulting from deleting: 9,
29, 22, and 11 in that order. Be sure to identify which case of deletion is needed for each number.

Question: What is the average case Big O complexity of deleting a node from a BST? The process of finding
the node we want to delete is O(log(N)), it is just a regular BST search. The actual deletion requires a fixed
number of operations for cases a) and b). For case c) it involves one additional search with cost O(log(N))

to find the node’s successor. So just like search and insert, the average case Big O complexity of delete is
O(log(N)).

178

4.5 Tree traversals (C) F. Estrada 2024

This last is important. It means that we can expect all BST operations to be as efficient as binary search in
the average case.

Note

In practice, BSTs perform incredibly well under general conditions, but you may be concerned that they
perform well only in the average case. It’s worth pointing out that there are several other types of trees such
as AVL-trees and B-trees that have the property that they remain balanced regardless of the order in which
keys are inserted. Such balanced trees guarantee that the Big O complexity of search, insert, and delete
operations remains O(log(N)) in the worst case. You can learn about these more sophisticated trees in any
standard algorithms book.

4.5 Tree traversals

In linked lists, an implicit operation that needs to be carried out frequently is a list traversal. A full list
traversal involves visiting each node in the list exactly once. There are many situations in which we need to visit
nodes in a binary tree (for example, in a tree that stores numbers we may want to compute the average of the values
in the tree). Because in BSTs there is more than one link at each node, that means there is a choice in terms of the
order in which we visit the nodes to carry out whatever work we need to do.

The process of visiting each node in a BST exactly once is known as a tree traversal, and because there is a
choice in terms of the order in which we visit nodes and work with the data stored in them, there are 3 different
types of tree traversals for binary trees.

4.5.1 In-order traversal

Possibly the most common type, it specifies nodes will be visited in the order given by the following procedure,
starting at the root of the BST

At any particular node i:
1) Perform an in-order traversal of the left subtree
2) Carry out the specified work at node i
3) Perform an in-order traversal of the right subtree

The process is illustrated in Fig. 4.16. For this figure, the work being done at each node consists very simply
of printing the value in the node. But in general this could involve more complicated processing of whatever data
is stored in the corresponding BST node. What is important in the figure is understanding the how the steps of the
process are applied at each node, and the order in which nodes are processed.

In-order traversal visits nodes in sorted order with respect to their key value. So in the sample case above,
the process will print a sorted list of keys in the tree: 5, 11, 15, 17, 19, 27, 34.

What is the Big O complexity of in-order traversal? Just like list traversal, a tree traversal will need to
visit each node in the tree. If there are N nodes, that means the traversal process will be O(N).

179

4.5 Tree traversals (C) F. Estrada 2024

Figure 4.16: Step-by-step in-order traversal in a sample BST, note the order in which the three steps of the process
are applied at each node. In particular, nodes whose left subtree is not empty have to wait until their left subtree
has been processed before they get their turn.

Note

In-order traversal of a BST can be used for sorting. The process is called tree sort.

Insert all items to be sorted into the BST using as key whatever data field or fields we want the data
sorted by
Perform an in-order traversal of the resulting tree - this produces the sorted list of items

What is the worst-case Big O complexity of tree sort?. We can figure this out by accounting for the Big
O complexity of each of the two steps in the tree sort process.

Inserting items into the BST: In the worst case the items are already sorted, and inserting them into
the BST produces a structure that resembles a linked list. The cost of each insert is O(N) because
each new item will go to the bottom of the growing tree, and we perform N insertions which gives
a complexity of O(N2) for building the BST
The in-order traversal has a cost of O(N) regardless of the shape of the tree

This gives a total cost of O(N2 + N) and as we saw above, the fastest-growing term will dominate this
complexity bound, so the worst case Big O complexity of tree sort is O(N2). Which is the same as bubble
sort and not very good.
However, if the input is not sorted, as we might expect if data arrives in random order, things look a lot
better:

180

4.6 Implementing a BST (C) F. Estrada 2024

Inserting items into the BST will in the average case have a computational cost of O(N · log(N))

The in-order traversal has a cost of O(N)

This gives a total cost of O(N · log(N)+N) and as usual the fastest-growing term dominates the complexity
bound. So the average case cost of tree sort isO(N ·log(N))which is on par (in terms of Big O complexity)
with the best known sorting methods. If instead of a BST we use a balanced tree such as an AVL, then the
O(N · log(N)) cost is guaranteed in the worst case.

4.5.2 Pre-order traversal

One of the most common uses of a pre-order traversal is making an exact duplicate of a BST. By traversing
the BST in pre-order, making a copy of each data item, and inserting the new item into another (initially empty)
BST we obtain two identical trees - each corresponding node is in exactly the same location with respect to the root
of the tree. Other applications include search algorithms on graphs, which we will study in the next chapter. The
pre-order traversal is as follows:

At any particular node i:
1) Carry out the specified work at node i
2) Perform a pre-order traversal of the left subtree
3) Perform a pre-order traversal of the right subtree

The process is illustrated in Fig. 4.17. Same as for the in-order example, the work being done at each node is
simply printing the value at the node. In this example, the traversal will print: 17, 11, 5, 15, 27, 19, 34. Which is
pretty different from what we got out of the pre-order traversal.

4.5.3 Post-order traversal

The last type of traversal for binary trees is the post-order traversal. It has applications in compilers and
parsing languages. It is also essential for managing BSTs because whenever we want to delete a BST this has to
be done in post-order. Post-order traversal consists of:

At any particular node i:
1) Perform a post-order traversal of the left subtree
2) Perform a post-order traversal of the right subtree
3) Carry out the specified work at node i

The process is illustrated in Fig. 4.18. As in the previous traversal examples, the work being done at each node
is simply printing the value at the node. Post-order traversal will print: 5, 15, 11, 19, 34, 27, 17. Note that the
parent node has to wait until both of its subtrees have been processed, which is what we want when deleting a
BST - we can not delete a node until both of its subtrees have been removed.

181

4.6 Implementing a BST (C) F. Estrada 2024

Figure 4.17: Step-by-step pre-order traversal in a sample BST. In this traversal method, the work at the node is
done before either of the subtrees is processed.

4.6 Implementing a BST

Now that we have learned about all the operations that a BST supports, as well as the different tree traversal
methods we can perform on a binary tree, the last step is to turn our BST ADT into a data structure by implementing
all of the BST operations in C. The implementation of each function is listed below, you should read through it
carefully and review the pseudocode and examples of the different operations as you work your way through the
program code.

Firstly, let’s define the CDTs we will need. We are going to work with the same example application as in the
previous chapter (a collection of restaurant reviews), so we need a CDT for the reviews, and another one for the
BST nodes.
typedef struct Restaurant_Score
{

char restaurant_name[MAX_STRING_LENGTH];
char restaurant_address[MAX_STRING_LENGTH];
int score;

}Review;

typedef struct BST_Node_Struct
{

Review rev; // Stores one review
struct BST_Node_Struct *left; // A pointer to its left child
struct BST_Node_Struct *right; // and a pointer to its right child

} BST_Node;

182

4.6 Implementing a BST (C) F. Estrada 2024

Figure 4.18: Step-by-step post-order traversal in a sample BST. In this traversal method, both subtrees of a node
are processed before the node itself.

183

4.6 Implementing a BST (C) F. Estrada 2024

The Review CDT should be perfectly familiar to you by now. The BST_Node CDT is just a small modification of
the Review_Node CDT we used for linked lists. The only difference is that instead of a single next pointer, we
now have two pointers to BST_Node CDTs. One for the left child, and one for the right child. By convention, in
most BST implementations you will ever come across, these pointers are called left and right.

Next we have to write a function to allocate and return a newly created BST_node.
BST_Node *new_BST_Node(void)
{

BST_Node *new_node=NULL; // Pointer to the new node

new_node=(BST_Node *)calloc(1, sizeof(BST_Node));
if (new_node==NULL)
{

printf("new_BST_Node(): Error, there is not enough memory to create new node, returning
NULL\n");

return NULL;
}

// Initialize the new node’s content (same as with linked list)
new_node->rev.score=-1;
strcpy(new_node->rev.restaurant_name,"");
strcpy(new_node->rev.restaurant_address,"");
new_node->left=NULL;
new_node->right=NULL;

return new_node;
}

This function is very similar to the one we wrote for linked lists, nothing new here except for having to initialize
two pointers rather than one.

Next up is the function that inserts a new item into the BST:
BST_Node *BST_insert(BST_Node *root, BST_Node *new_node)
{

// This function takes as input the <root> of a subtree
// (it can be any subtree, or the whole BST), and a
// <new_node> that contains a review (already filled
// with valid information).
// It inserts the <new_node> into the BST

if (root==NULL) // Tree is empty, new node becomes
return new_node; // the root

// Check for duplicates (and refuse to insert duplicates)
if (strcmp(new_node->rev.restaurant_name,\

root->rev.restaurant_name)==0)
{

printf("BST_insert(): Duplicate data item detected. Ignoring\n");
return root; // The root did not change

}

// This node is occupied, we need to figure out on which
// side of this node the <new_node> needs to go, and then
// go and insert the <new_node> in that subtree.

184

4.6 Implementing a BST (C) F. Estrada 2024

if (strcmp(new_node->rev.restaurant_name,\
root->rev.restaurant_name)<=0)

{
// <new_node>’s key is less than the key at <root>,
// it must be inserted in the left subtree

root->left=BST_insert(root->left,new_node);

// The situation at this point is as shown below:
//
// /
// /
// root <-- we’re working here
// /
// /
// leftRoot <-- The <new_node> should
// go in this subtree
//
// leftRoot is stored in ’root->left’
//
// So, we tell the BST_insert() function to go and
// insert the <new_node> in the subtree that
// starts at ’root->left’.
//
// Why are we updating ’root->left’ with the return
// value of BST_insert()?
//
// Because if the situation is as follows:
//
// /
// /
// root
// /
// /
// NULL
//
// Then the first check in BST_insert will simply
// return <new_node> because this node will
// become the top of a new subtree. Updating
// ’root->left’ results in
//
// /
// /
// root
// /
// /
// new_node
//
// If ’root->left’ is NOT NULL when we call
// BST_insert(), nothing will happen as
// BST_insert() will simply return the same
// ’root->left’ it received.

}
else
{

// <new_node>’s key is greater than the key at <root>
// it must be inserted in the right subtree

root->right=BST_insert(root->right,new_review);

185

4.6 Implementing a BST (C) F. Estrada 2024

// Which works exactly as shown above, but on the
// subtree that is on the right side of <root>

}

return root; // Return the same <root> we received
}

The only thing worth commenting in the code above is that the BST_insert() function is that we use it within the
function itself to get the work done. This is an example of recursion. We will take a detailed look at recursion
as a general tool for solving a very large variety of problems that have particular characteristics. In this case, we
observe that inserting a node into a tree requires us to be able to insert a node into a subtree (the left or right
one, depending on the key). But every subtree of a BST is also a BST (see Fig. 4.19).

Figure 4.19: Each subtree in a BST is itself a fully valid BST - so inserting a key in a particular BST subtree is
exactly the same thing as inserting a key in a BST.

We take advantage of this property to use the same BST_insert() function to handle the process as we traverse
from the root of the BST to the place where the new node should go.

Because C reserves space for a function’s variables at the moment we call the function (see Chapter 2), each
call to BST_insert() will have its own reserved space for input arguments, local variables, and return value.
The structure of the function shown above directly matches the pseudo-code description of how BST insert is
supposed to work, there really is nothing special about recursion, it is the natural way to implement operations on
trees.

The next function to implement is search:
BST_Node *BST_search(BST_Node *root, char name[1024])
{

// The function takes as input the <root> of some
// subtree in the BST (can be the root of the whole
// tree).
// It searches for the node that contains the matching
// restaurant name, and if found, it returns a pointer
// to the node containing the matching review.

if (root==NULL) return NULL; // We reached an empty
// subtree, the queryKey
// is not in the BST

186

4.6 Implementing a BST (C) F. Estrada 2024

// Check if this node contains the review we want, if so, return
// the pointer to this node
if (strcmp(root->rev.restaurant_name, name)==0)

return root;

// The queryKey is not in the current node, decide
// if we need to search in the left subtree or
// in the righ subtree.

if (strcmp(name, root->rev.restaurant_name)<=0)
{

// queryKey is less than the key at <root>
// so we must go search in the left subtree

return BST_search(root->left,name);

// The call above performs a search on
// the left subtree, and will return
// whatever we find there i.e. NULL if
// the queryKey is not found in the
// left subtree, or the pointer to the
// node that contains the matching
// review, whereved it may be in the
// left subtree.

}
else
{

// queryKey is greater than the key at <root>
// so we must go search in the right subtree

return BST_search(root->right,name);
}

}

Not surprisingly, BST_search() is also recursive. But if you work your way through it, you will see it is simply a
direct implementation of the pseudo-code for search that we studied above.

The last operation we need to implement for a fully working BST is the insert operation:
BST_Node *BST_delete(BST_Node *root, char name[1024])
{

// Takes as input the <root> of a subtree, and
// the key of a node we want to remove. In this case
// a restaurant’s name.

BST_Node *tmp;

if (root==NULL) return NULL; // Tree or sub-tree is empty
// nothing to do.

// Check if this node contains the review we want to delete

if (strcmp(name,root->rev.restaurant_name)==0)
{

// Determine which of the three cases of
// deletion we are dealing with.

if (root->left==NULL && root->right==NULL)

187

4.6 Implementing a BST (C) F. Estrada 2024

{
// Case a), no children. The parent will
// be updated to have NULL instead of this
// node’s address, and we delete this node

free(root);
return NULL;

// The situation here is as follows:
//
// parent
// /
// /
// root <-- We are at this node
//
// We need to delete the current node,
// and because there are no children, the
// ’parent’ node will have an empty
// subtree. So, the function returns
// NULL so the parent can update its
// subtree to look like so:
//
// parent
// /
// /
// NULL
//

}
else if (root->right==NULL)
{

// Case b), only one child, left subtree
// The parent has to be linked to the left
// child of this node, and we free this node

tmp=root->left; // Store the pointer to the
free(root); // child!
return tmp;

// The situation is as follows:
//
// parent
// /
// /
// root <-- We are at this node
// /
// /
// child
//
// We need to connect ’parent’ to ’child’
// and remove <root>. So, we store
// ’child’ in a temporary pointer
// (once we delete <root> that pointer
// would be gone!)
//
// parent
// /
// /
// (deleted)
//
// tmp-->child

188

4.6 Implementing a BST (C) F. Estrada 2024

//
// The function then returns ’tmp’ which
// allows the ’parent’ node to update its
// own link so point to ’child’
//
// parent
// /
// /
// child

}
else if (root->left==NULL)
{

// Case b), only one child, right subtree
// The parent has to be linked to the right
// child of this node, and we free this node

tmp=root->right;
free(root);
return tmp;

// Same as the case above, but the child node
// is to the right of <root>

}
else
{

// Case c), two children.
// We need to find the successor to this
// node, promote it (copy the data to this
// node), and then delete the successor
// from the right subtree.

tmp=root->right; // Top of the right subtree
while (tmp->left!=NULL) // Successor is the

tmp=tmp->left; // leftmost key

// Promote the successor (copy the data over
// to <root>)
root->rev = tmp->rev;

// And finally delete the successor in the
// right subtree
root->right=BST_delete(root->right,tmp->rev.name);

return root;
}

}

// The review we want to delete is not in this node,
// determine if it should be on the left or right
// subtree, and call delete on the corresponding
// subtree.

if (strcmp(name, root->rev.restaurant_name)<=0)
{

// The review we want should be on the left
// subtree

root->left=BST_delete(root->left,name);
}
else

189

4.6 Implementing a BST (C) F. Estrada 2024

{
// The review we want should be on the right
// subtree

root->right=BST_delete(root->right,name);
}
return root; // Nothing changed here,

// return the <root> we
// received.

}

Just like insert, and search, the BST_delete() is recursive. It follows the pseudo-code for the insert operation as
discussed above. While it does a bit more work than either of the other operations, the fundamental process is
identical: Starting at the top of the tree, traverse downward choosing either the left or the right subtree until we find
the place where work needs to be done.

This completes the implementation of all the BST operations required to build, maintain, and use a BST in C.

� Exercise 4.7 Modify the app you created in the previous Chapter to manage the restaurant reviews so that it uses
BSTs instead of linked lists. The goal here is to see how you can achieve the same functionality with different
data structures.

There are two ways to go about this:
a) Modify the listing from the previous Chapter to use BST Nodes and BST functions using the code above
b) Expand on the code above by adding a main() function providing the same functionality as the program
from the previous chapter. You will also need to implement any extra functions (i.e. beyond insert, search,
and delete) that were present in the linked-list version

As you are building the application: Follow the test-as-we-develop process described at the end of Chapter
3. Make sure each function you add to your program is thoroughly tested before moving on to the next thing.

After your implementation is complete: Add a comprehensive set of full program tests to your test driver
as discussed in Chapter 3. After all your testing is complete, you should be able to confidently state the program you
implemented is solid, works on reasonable input, and handles tricky or erroneous input in a reasonable fashion.

� Exercise 4.8 Implement the three types of tree traversals. The traversal functions should print the restaurant
name, and the review score for each visited node, in the order specified by the traversal process. Add options in
main() so that the user can request each of the three types of traversal.

Follow the test-as-we-develop process described at the end of Chapter 3.

� Exercise 4.9 Crunchy! As we know, if we are unlucky with the order in which items are inserted into a BST, we
could end up with a very unbalanced tree in which some branches are much longer than others (and in the worst
case, there is a single branch with all the keys in it).

Write pseudo-code for a process that can be used to take as input an unbalanced BST, and that will then create
a new, balanced BST (and delete the old unbalanced one). Make sure that your design follows the guidelines set
at the end of Chapter 2.

190

4.7 Have we solved the problem? (C) F. Estrada 2024

Once you are happy with your design, expand the program that handles restaurant reviews to provide an option
to re-balance the BST and implement your process into a function that produces a balanced BST from whatever
the current BST looks like.

Test-as-you-develop - write the function that balances a BST, and test it thoroughly before integrating it with
the rest of your application. Then perform full program testing. Follow the testing guidelines at the end of Chapter
3. Your tests should include verification that the resulting tree is balanced.

How do we verify that a tree is balanced? there are several ways in which we can define balanced. But for
simplicity, for this exercise we will define a balanced BST as one in which the difference in height between the
leaf node that is closest to root and the leaf node that is farthest from root is less than 2.

How do we find the minimum (or maximum) height of a leaf node? - that’s for you to work out, but perhaps
tree traversals could be handy...

4.7 Have we solved the problem?

At this point we have a good understanding of what BSTs can do, and how to implement them, but we have
yet to determine whether all this work has helped us solve the problem of finding a more efficient way to store,
organize, and access a large collection of information. We may suspect that the BST is likely to give us faster
search because its average search complexity is better than the linked list’s average search complexity, but we still
have to tie a few loose ends:

a) The time it takes to build the BST compared to the time needed to build a linked list

For N items, the linked list can be built in O(N) time - each item is added at the head so no traversal is
needed. That’s pretty good!
For the same N items, the BST can be built in O(N · log(N)) time on average since insertions always happen
at the bottom of the tree, and the tree has height O(log(N))

Advantage: Linked list

b) The time it takes to build a BST compared with the time needed to sort an array (so we can use binary
search)

Using merge sort an array can be sorted in O(N · log(N)) time on the worst case
As we saw above, the BST can be built in O(N · log(N)) time on average

Advantage: Array - merge sort guarantees O(N · log(N)) even in the worst case, while for BSTs the worst case is
O(N2) - the worst case happens with data that is initially sorted or close to sorted, so it can come up on real-world
situations.

c) Search complexity

191

4.7 Have we solved the problem? (C) F. Estrada 2024

Sorted array: O(log(N)) worst case using binary search
Linked list: O(N) both average and worst case
BST: O(log(N)) average case, O(N) worst case

Advantage: The BST and sorted array on the average, sorted array in worst case. The linked list is not
competitive, it is simply too slow on average.

d) Storage use

Sorted array: Fixed size, not suitable for growing/shrinking collections as that would require re-allocating
the whole array
Linked list: Space usage is O(N) - one node per item
BST: Space usage is O(N) - one node per item

Advantage: The BST and linked-list, because they only use space for items actually present in the collection,
whereas the array has to pre-reserve space and we have the problem of estimating in advance how much we may
need which is not trivial. A lot of the space reserved may go unused.

4.7.1 So what do we choose?

The point of going through all of this work is to help you see that there is a fair number of factors you have
to consider when choosing how to store and organize a collection of data. Up to this point we have studied
3 different ways of storing items: arrays, linked-lists, and BSTs, and as shown above, each one of them has
advantages and disadvantages. So how are we to choose?

a) Consider how large your collection is going to be:

For very large collections that change frequently, you want to choose the data structure that gives you the
best Big O complexity for common operations like insert, delete, and search.
Consider the space requirements: For items with small memory requirements (e.g. just numeric data,
like ints or floats, or small compound data types) it’s not unreasonable to pre-allocate a large array even
though entries in it may go un-used. Conversely, for items with a large memory footprint (e.g. compound
data types with lots of data, or multi-media content like images, sound clips, etc.) we prefer a dynamic data
structure.
For smaller collections, you may want to choose based on ease of implementation. There is a trade-off
between ease of implementation (arrays require less complicated code to work with than BSTs) since it saves
developer time, and is likely to produce code with smaller likelihood of having difficult to find bugs.

b) Consider what kind of operations will be performed on the collection’s items:

If you will mostly perform operations over the entire set, choose a linked list or an un-sorted array. An
example of this is the 3D point meshes used in computer graphics which may contain millions of points,
but we don’t usually perform individual point look-ups; instead, we almost always render the whole mesh.
Meshes are often kept in arrays.

192

4.7 Have we solved the problem? (C) F. Estrada 2024

Conversely, if individual item look-ups (search), insertions, or deletions make-up the majority of the opera-
tions on your collection, then you should choose a data structure that gives you the best Big O complexity
for these operations.

Note

However, keep in mind that there is no pre-set definition for what it means for a collection to be small or
large or very large. So likely what you will need to do is sit down and create a table such as the one shown
in Exercise 4.1, then run a few numbers to see what storage method will result in the best performance for
the specific collection you will be working with, then consider ease of implementation. Document your
findings, and then make the best choice you can supported by having thoroughly thought through the
issues mentioned above.

4.7.2 A brief note on databases

Real world systems that manage large collections of data do not rely on a single kind of data structure.
For example, typical databases organize the actual item information into tables - these are basically huge arrays
(stored on disk, not computer memory), where each row contains all the data fields for one item in the collection
(in effect, one row in a database table is equivalent to a CDT we may have in memory). The tables are most often
un-sorted.

Separately from the table that contains the actual data, the database keeps an index in the form of a balanced
tree (typically a B-tree or a variation thereof) which contains search keys the user may want to run queries with.
Each node in the index contains the location in the original table where the information for the item matching
the query key can be found (this is just like a pointer, but instead of containing a memory location, it contains a
disk location).

This has several important benefits: Firstly, the index data structure is very small compared to the size of
the collection because it only stores keys and pointers to entries in database tables. Often, the whole index can
be kept in memory (whereas the entire data collection may be too big for this). This is important because working
with information that is in the computer memory is much faster than working with information stored on disk.
Secondly, we can define multiple indexes over the same collection. For instance, a database that stores information
about students at a University may have an index based on student number, and another index based on student
name plus date of birth. This allows the users to perform queries using either the student’s name and birth date,
or their student number, and both will be equally fast.

Separating the index from the data has the advantage that it allows us to provide different ways to find
information within the collection efficiently.

The above motivates one final thought regarding the problem of managing a large collection of information:
It involves thinking at multiple levels of detail. Knowing how particular ADTs and their corresponding data
structures work, as well as the complexity of typical data operations when we use these data structures is only
the foundation. Once you have understood that part, you can begin thinking at a higher level of abstraction: How
will the collection be used? what kinds of operations will be more frequent? what kinds of look-ups may be often
required and therefore should be made very fast? and how do we organize the information available into possibly

193

4.8 Wrapping up (C) F. Estrada 2024

many different data structures so that the overall system provides excellent performance for all required uses?
This is an extensive and fascinating topic, and you can learn a whole lot more about it by picking up a good

book on databases.

4.8 Wrapping up

We have spent some time carefully studying the problem of how to efficiently manage large collections of
information. Along the way we studied the problem of measuring, characterizing, and reasoning about the
complexity of algorithms and problems. We have thought about how to determine which data structure will
provide a better performance in a particular case (as described by the size of a collection and the types of operations
that we will carry out on it), and we have thought about how and when we should use the different ADTs we have
learned up to this point.

Keep in mind that the theoretical analysis of complexity is only one layer of the difficult problem of figuring
out the most efficient way to carry out some task. You need to learn about computer architecture, how modern CPUs
work, and how to optimize programs for maximum efficiency if you really want to write the best (most efficient,
fastest) software to solve any given problem.

As for the worst-case complexity. The discussion above may lead you to believe you don’t have to worry
about it if your data structure has a good average-case complexity. Indeed, for most applications you will find you
can get excellent results from using data structures such as BSTs. However, for safety-critical applications, or for
real-time applications, examples of which include industrial control software, medical equipment, electrical
power generation, transportation (aircraft flight control), robotics, manufacturing, and so on; you can not
afford to use a data structure whose worst-case performance is bad. The point being that even if you need to
be very unlucky to get the input that triggers worst-case or close to worst-case performance, you can not afford
to take that risk. And this is due to the fact we often have to worry about malicious parties (i.e. hackers and
other adversarial entities) who may use knowledge of how your system is built to find a weak point and exploit it.
Applications of the type just mentioned require guaranteed performance bounds from all the data structures and
algorithms used within their software.

4.9 Additional Exercises

� Exercise 4.10 Draw the BST that results from inserting the following keys in sequence into an initially empty BST.
Keys are sorted alphabetically.

“Iron Man 3”, “Black Panther”, “The Avengers”, “Captain America”, “Iron Man 2”, “Aquaman”, “Batman
Returns”, “Thor”, “Spider Man: Into the Spiderverse”

� Exercise 4.11 Draw the BST after we delete “Aquaman”

� Exercise 4.12 Draw the BST after we delete “Iron Man 3”

� Exercise 4.13 What is the list of movies generated by a post-order traversal of the BST from Exercise 4.12?

194

4.10 Building programs that work - Part 4 (C) F. Estrada 2024

� Exercise 4.14 It is highly likely that a BST whose keys are movie titles will run into the problem that there are
multiple entries with the same key. As we discussed above this is really not a great situation. Give at least 3
different suggestions regarding how we can build a BST where entries are organized by movie title, yet, there are
no duplicate keys.

� Exercise 4.15 Which of the following has the lowest complexity for large values of N?

250000 · log(N)

.001 ·N

.000001 ·N2

5000 · log(N2)

.01 ·N · log(N)

� Exercise 4.16 Which of the following has the lowest complexity for small values of N?

5.25 ·N
1.11 ·N
5 · log(N)

2.1 · log(N2)

.00001 ·N2

� Exercise 4.17 Typically, changes to the key values in nodes for a BST are not allowed because they could break the
BST property. However, in practice we may come upon a situation in which we may have to update a data field
used as key. List the steps we could take to accomplish this without breaking the BST property in the tree. Write
the process in pseudo-code, and then provide a function in C that does this and add it to your BST application to
handle movie reviews.

Use the test-as-we-develop approach as described at the end of Chapter 3, documenting your tests for the new
function and adding them to the test-driver you have been working on for the restaurant reviews app.

After your new function is thoroughly tested on its own, add a set of tests to verify it works well with the rest
of the program, as per the guidelines in Chapter 3.

Finally, add an option to main() so the user has access to the new functionality. It should allow the user to
change the name of the restaurant (which we are using as key) for any of the reviews already present in the BST.

� Exercise 4.18 Implement tree sort from the description in the text (at the end of the subsection on in-order
traversals). Your tree sort function should take as input an un-sorted array of integers (or floats, up to you), and
return the sorted array using tree sort to carry out the sorting process.

4.10 Building programs that work - Part 4

In the previous Chapter we discussed the process for having a solid testing strategy that will allow us to
thoroughly check that our program’s functions are working as intended, and to verify that the completed software
performs its task correctly on any input that may be provided to it.

195

4.10 Building programs that work - Part 4 (C) F. Estrada 2024

A solid testing process will allow you to find bugs - errors in the way the program handles information that
result in wrong behaviour. Examples of this can be output that is not correct given the input, it can be behaviour in
the application that is not expected, it can be a serious problem that causes the program to break, or it can produce
unexpected changes to information being managed by your program. The term debugging has been around for a
long time (some say since the late 1800’s) but you can see the first actual bug found inside a computer in Fig. 4.20.

Figure 4.20: The first bug found inside a computer. This is from 1947 and resulted in erroneous results from math
computations. Photo: U.S. Government, Public Domain

Though the variety of bugs that you will encounter while developing software is very large, the process for
finding and correcting them is the same. The first step is to identify the existing of a bug. This may occur in
different ways:

The program fails one or more of your tests during development. This is normal while developing software
and is the best way of finding and fixing bugs.
A user reports a problem with the software once it’s been released. Which should happen much less often if
you have done your work properly. We want to avoid this, it is harder to find and fix bugs that were reported
by users.
Another developer, working with your program, reports a bug. This is common when working on open
source projects which involve a community of developers working together.

Regardless of how the bug was initially identified, the process for fixing it involves:

Figuring out how to reproduce the bug. With a failed test this is easy, you know which test failed and can run
this test anytime to trigger the bug. With user-reported bugs it is a bit more difficult as we often don’t have
enough information about what was going on when the bug occurred. With bugs identified by a developer, we

196

4.10 Building programs that work - Part 4 (C) F. Estrada 2024

usually get more information but we also have the option to contact the developer to figure out what sequence
of inputs or actions can be used to trigger the bug.
Once we have a way to trigger the bug, we need to determine what is the correct behaviour the program
should have for this test case, input sequence, or user action (whatever the case may be) - we can not fix a
bug if we do not know what the program should do in the correct case.
Once we have both a way to trigger the bug, and a thorough understanding of what the program should
do in the correct case it’s time to debug the program.

4.10.1 What does it mean to debug a program?

The process of fixing a bug, i.e. debugging, consists of tracing through the program to check each step
the program carries out to identify at which point the program produces an unexpected/wrong result or
behaviour. Usually, in a well designed program, we start by identifying the function (or perhaps a small sequence
of function calls) within which the bug occurs.

Once we have identified the function(s) where the bug occurs:
We have to check what is happening at each step/line within the function(s) on the input that triggers the
bug. We need to know what each step in the function is supposed to do, so we can verify each step and find
which ones produce the wrong results.
Once we have identified the line(s) where what the program does is different from what it should be doing:

Inspect the content of local variables, input arguments, arrays, and any other data that the program is
using.
If the information the program is using is correct, then the lines of code that produce the wrong behaviour
are likely wrong. Think through them carefully, trace the program on paper for the lines that are the
likely problem and figure out which step(s) are incorrect, then fix them.
If the data the program is using is not as expected, then the source of the bug is somewhere else. You
need to go back to tracing the program but this time you need to pay attention to where the data you
identified as having the wrong value is being manipulated. Once you identify the section of the code
where data gets modified or set incorrectly, think through that code, trace what it does on paper, and fix
any problems you find.

Keep in mind that if the problem is with information being used by a function, the actual origin of the
bug may be in an entirely different part of the program. However, once you know which piece of information
is getting wrong values you can trace the program looking at parts that have access and can change that specific
information to figure out where things are going wrong.

4.10.2 How do we trace a program?

The simplest way is to add a lot of print statements, each of which has to provide you with (at the very least):

197

4.10 Building programs that work - Part 4 (C) F. Estrada 2024

The specific location at which the print statement is taking place - so when you see something wrong you can
immediately find what part of the program the corresponding information was printed from.
Values of any variables, input arguments, arrays, or data structures that are being used at the program at that
specific point, and which you need to know in order to determine if the program is doing the right thing at
that particular point.
If the print statement is within a loop, the iteration of the loop, so if a problem is detected you know at what
point in the loop it happened.

Your task is then to read through the sequence of printed information, to identify where in the sequence
something is not correct, and then to go into the program to determine what may be the problem at the location
corresponding to where the print statement was produced.

This is a general way to trace through a program, and will work on a wide range of settings. It doesn’t require
special tools being available. But on the flip side, it doesn’t provide you with control over the process of tracing.
You can not stop the program to inspect what is happening in memory, and you have to dig through possibly very
long sequences of printed information.

A more powerful, but also more complex alternative to using print statements is the use of a debugger. This
is a specialized tool that allows you to control the process of tracing through a program so you can run each step,
then have a look at what is going on in memory with the program’s variables and data, and then continue with the
next step once you have checked everything is ok up to that point.

A standard debugger is called gdb, and is available in all Unix/Linux systems, which includes a large
proportion of computing servers and other systems you may need to work with. So knowing how to use gdb is
a valuable skill. The gdb debugger is a fairly sophisticated program, so if you want to learn to use it you should
spend a meaningful amount of time working through a tutorial on the subject. Many such tutorials are available
both as electronic documents and in the form of how-to videos. If you want to follow up on this, here’s a good place
to get started: https://users.ece.utexas.edu/~adnan/gdb-refcard.pdf.

The goal of using a debugger is the same as that of using print statements - you want to be able to inspect
what is happening with the program at each step so that you can check what is happening against what you
know should be happening and identify the place(s) where something is wrong.

4.10.3 Pitfalls to avoid

Whenever there is a problem with a program it is very important to remember: computers are deterministic,
predictable, and execute the instructions the program contains. It is easy to fall into one of the following pitfalls
by thinking that:

The program is correct, it must be some random thing with the computer. This is incorrect. Computers
are predictable and deterministic. If they do something, it is because the program caused them to do that.
Believing the program is correct against the evidence that there is a problem is one sure way to fail to fix the
problem.
It works on a different computer, therefore it’s a problem with the computer. This is most often incorrect. It
can actually happen that a hardware problem may cause a program to fail in weird ways but this is very rare.

198

https://users.ece.utexas.edu/~adnan/gdb-refcard.pdf

4.11 Time to Practice (C) F. Estrada 2024

Most likely, there are differences in how the program is running on these computers and these differences
cause the bug to trigger in one but not the other. This requires very careful investigation - with very high
probability the program has a bug and thorough testing will find it.
It fails because the test was tricky so it is ok, we don’t need to fix anything. This is incorrect. Thorough testing
requires that we try to break the program. This means testing on unexpected or possibly incomplete or
incorrect inputs and verifying that the program does the right thing and doesn’t fail. Our programs should
not fail because we have not devoted enough thought to making them solid.
The bug is probably very difficult to trigger by a real user (i.e. it would show very very rarely) so it is ok not
to fix it. This is also incorrect and unethical. If we know there is a problem with the code, it is our duty to
fix it. Something like this: https://www.cnn.com/2019/05/05/us/boeing-737-max-disagree-ale
rt/index.html is bf wrong and should never be accepted.

Some bugs will be much harder to find and fix than others, and the more complex the software is, the more
time and effort it will likely take to test and debug thoroughly. However, if you are careful and follow a thorough,
logical process to testing and debugging you can find and fix any reported bug. Avoid convincing yourself that it
is acceptable to ignore a problem.

4.11 Time to Practice

In order to practice the process we have established for developing working software, from program design, to
testing, to debugging, we will look at one fairly short example that nevertheless will allow us to practice all of the
ideas we have covered thus far.

The problem: Our task is to implement a signal filtering function. Signal filtering is a common task in
applications that deal with media, communications, and machine learning among others. A common example of
filtering is smoothing a signal, for instance in order to reduce noise. Typically, we will have access to an input
which usually represents a signal of interest, such as an audio recording; and a filter which is a pattern of values
we will use to combine data in the input to produce a result. The filtering process is illustrated in Fig. 4.21.

The filter must be odd-length since we have to align its central entry with each input entry in order to compute
the corresponding output. Normally, the length of the filter is much smaller than the length of the signal. For
example one second of high-quality sounds data would contain over 40,000 entries, whereas a typical smoothing
filter would have 5, 7, or 9 entries.

The process itself is straightforward, as shown in the Figure.

4.11.1 Step 1 - Understanding the problem and designing the solution

As discussed at the end of Chapter 2, the first step in implementing a program that works for solving the above
problem is to understand the problem thoroughly. One way to verify you’ve understood the process above, is to
do an example of the filtering process on paper, with a short filter and maybe one or two different input locations.
You can use this later on when designing the tests for functions in the program.

199

https://www.cnn.com/2019/05/05/us/boeing-737-max-disagree-alert/index.html
https://www.cnn.com/2019/05/05/us/boeing-737-max-disagree-alert/index.html

4.11 Time to Practice (C) F. Estrada 2024

Figure 4.21: The process of filtering a 1D signal. The value of output[i] is the result of aligning the center of the
filter with the entry at input[i], and then adding up the result of mutiplying corresponding values. This has to be
done at every valid entry in input. Valid entries are those for which after aligning the filter with the input, there is
one input entry to multiply with each filter entry. For simplicity, the output value will be set to zero for non-valid
entries.

200

4.11 Time to Practice (C) F. Estrada 2024

� Exercise 4.19 Carefully review the description of the problem in the figure, and make notes to yourself that clearly
describe the process of filtering a 1D signal, including any conditions placed on the inputs and/or output of the
filtering process. Work out at least one short example on paper showing the computation that has to be carried out
by the filtering program.

The next step in our process is to come up with a written description of the algorithm, in enough detail that it
can be implemented.

� Exercise 4.20 Before continuing, write a complete description of the algorithm for 1D filtering. You can do this
as a list of steps in bullet point format, or as pseudo code. Do not attempt to write C code at this point.

You can compare your description of the algorithm with the pseudocode below (take special note of any steps
that are different/missing and if needed review the algorithm description to resolve any differences).

Algorithm: Filter1D - performs 1D filtering of an <input> array
with the specified <filter>.
Produces an <output> array with the same
length as the <input>, where each entry is
the result of applying the <filter> to the
corresponding entries in the <input> array.

Procedure:

* Loop over entries in the <input> array, one by one, using index <i>

- For each value of <i>
* Align the central entry in <filter> with the <input> entry <i>
* Check that the every entry in <filter> has a corresponding

entry in <input>
- if this is not the case, set <output[i] := 0> and

continue with the next <i>
* Compute the result of applying the <filter> to the

<input> at <i>: Multiply corresponding entries, and
add up the result of these products (this operation is
called a cross-correlation)

* Update <output[i]> to be the result of the cross-correlation

Having understood the problem, we have to design our solution. There is always more than one way, and
often many ways to do this, and in most cases there is no single correct way to solve any reasonably interesting
problem. So your focus here is not to find the one right solution but rather to design a solution that makes sense
to you, follows good design practice in terms of breaking up your algorithm into self-contained functions, that
you can test and debug with reasonable ease, and that, where applicable, uses data structures and algorithms
with good known complexity for the problem at hand.

� Exercise 4.21 Before continuing, come up with your own design for a program that implements the pseudocode
shown above. This means deciding how to break the problem into functions, and figuring out what the information
flow will be between these functions and main().

In the case above, a reasonable way to break up the problem into functions we have to implement could involve:

201

4.11 Time to Practice (C) F. Estrada 2024

A function called crossCorrelation() that computes the cross-correlation between an input array and a filter
array at a specified index i
A function called filter1D() that loops over the input array calling the cross-correlation function to obtain
the value of the output

As noted above, this is only one way to solve the problem, someone else may decide to do everything in the
algorithm within as single function. Both of these solutions have their own advantages and disadvantages. We will
proceed with the breakdown above.

4.11.2 Step 2 - Testing as we develop

At the end of Chapter 3, we looked at the process of testing a program as we are developing it. This
involves choosing the order of implementation for the various functions, then implementing them in order and
thoroughly testing each function as we complete it before moving on to the next one.

For the problem at hand, we have two functions, and it is fairly clear that cross-correlation has to be
implemented first because it is used by the function that computes the output array. Therefore, we will

Implement crossCorrelation()
Thoroughly test crossCorrelation()
Implement filter1D()
Thoroughly test filter1D()

and once we have completed the steps above, we will then thoroughly test the complete process of filtering
1D signals to make sure it works for a variety of possible inputs as well as a variety of filters.

� Exercise 4.22 Implement crossCorrelation() and filter1D() following the design and pseudocode described above.
There is a reference implementation below, which you will use for testing and debugging, but you should first
implement these functions yourself - compare your implementation with the reference below and carefully consider
any differences. You can apply the tests and debugging process described below to your own implementation as
well as the reference one.

� Exercise 4.23 Write down a set of tests for the crossCorrelation() function, the filter1D() function, and the
complete working code. The tests should be thorough and allow you to discover any potential bugs or errors in the
computation being performed by the filter.

4.11.2.1 Step 3 - Debugging

In order to practice debugging, consider the implementation below for the two functions that comprise our 1D
filter:

double crossCorrelation(double input[],int n, double filter[], int m, int idx)
{

// This function returns the cross-correlation between an input
// array and a filter array at input location ’idx’.

202

4.11 Time to Practice (C) F. Estrada 2024

//
// Inputs: input[] - a 1D array of size n
// filter[] - a 1D array of size m
//
// n>m , and m must be an odd integer number
// (n-1)-hs >= idx >= hs
//
// The cross correlation is defined as
//
// cross_correlation=sum_{i = -hs}^(hs) input[idx-i]*filter[i+hs]
//

double cross_correlation=0;
int hs=(m-1)/2; // Half the filter size
int i;

for (i=-hs; i<hs; i++);
{

cross_correlation+=input[idx-i]*filter[hs-i];
}

return cross_correlation;
}

void filter1d(double input[], int n, double filter[], int m, double output[])
{
// This function takes a 1D input array of size n, and a 1D filter of
// size m, and produces an output result (same size as the input) that
// is the result of evaluating the cross-correlation between the input
// and the filter at each valid location.
//
// Inputs: input[] - a 1D array of size n
// filter[] - a 1D array of size m, m<n, m is odd
// output[] - a 1D array of size n
//

double cc;
int hs;
int i;

hs=(m-1)/2;

for (i=0;i<=n;i++) // Initialize output array to zeros
output[i]=0;

for (i=0; i<=n; i++)
output[i]=crossCorrelation(input,n,filter,m,i);

}

The code above looks reasonable and correct, but it in fact contains bugs. Your task now is to use the tests
you developed above to identify problems with the implementation, and once you have found a problem, debug it
by following the process described in this Chapter.

� Exercise 4.24 Use the set of tests you developed to find bugs in the implementation above. Once you identify a bug,
carefully trace through the code using either carefully placed, informative printf() statements, or a debugger
such as gdb in order to identify where the problem is, and then correct it. Remember you must be able to follow
each instruction in the implementation, and you must know what the correct result of each instruction must be (in

203

4.11 Time to Practice (C) F. Estrada 2024

terms of the variables and data involved in them).

If you do not discover any problems with your tests, that would indicate your set of tests was not thorough
enough, and you should revisit Chapter 3 and the process of testing, then expand or change your set of tests
accordingly. The end result of working your way through this section and completing all of its exercises as well as
the debugging task should be an implementation that is thoroughly tested, solid, and that will perform 1D filtering
on any input signal and valid filter correctly.

� Exercise 4.25 Carry out the testing and debugging process on your own implementation of the functions for the 1D
filter. Once you are satisfied that your own implementation works correctly, perform an additional set of high-level
tests that consist of filtering multiple, different input signals with various filters, using both the (now fixed) reference
implementation, as well as your own. compare the output from both of these for each input/filter test case, and
ensure they are identical for every test. If you find any differences, then either or both of the implementations still
contain bugs. Find and correct any problems found in this manner.

The final exercise in this section illustrates one more way in which we can test a program we have developed:
by comparing it with a different implementation (which can be in a different programming language, or simply
written by a different developer or team). This is common practice for software that implements functionality that
is well known or common, and for which we can easily find reference implementations available for our testing.
However, be careful:

Do not copy or immitate code from the reference library - Code that has been developed by someone else
is protected by copyright, copying it or using trivial variations of it is an infraction. You are expected to
develop your own solution independently and without looking at the work of others. We will discuss how to
incorporate and re-use code from open source or creative-commons libraries in a later Chapter.
Do not assume that the reference implementation is free of bugs. If you find a disagreement between results
obtained with your own code, and that of the reference implementation, all that you can conclude from this is
that at least one of them has a bug, you have to carefully trace through your program, and if necessary also
the reference implementation in order to determine which one(s) have errors.

204

Chapter 5 Graphs and Recursion

At this point, we have a pretty good handle on how to store, organize, and access data. We have learned about
computational complexity, and how we can use complexity analysis to gain a better understanding of different
problems, and of the algorithms we implement to solve them. We have in our toolkit a couple of very useful ADTs,
and we have spent a good amount of time practicing how and where to use them.

In this Chapter, we will add to our toolkit two of the most general and powerful tools for problem solving in
computer science: Graphs, and recursion.

Graphs are used to model all kinds of real-world items, and real world problems, where the key to understanding
the particular problem is the relationship between items in our collection. Recursion gives us the ability to
understand, manipulate, and solve problems whose particular properties make regular processing with loops and
conditionals very difficult.

Together, graphs and recursion will open the door for you to work on a variety of fascinating applications in
all fields of knowledge. So let’s dive in and find out what we can do with these two tools.

5.1 Graphs

In computer science, graphs are used as a model to represent items of interest, where the relationship between
items is relevant to the problem we wish to study or solve. To understand this, let’s take a look at the sort of
information we have been working with up to this point, and the kinds of problems we have been solving with the
tools we have acquired in previous Chapters.

Thus far, we can work with (possibly very large) collections of data items, these items can be regular C types,
or CDTs which contain multiple fields. However, one key property of the data we have been working with, and the
problems we have been looking at, is that each item is fundamentally independent from the rest.

For example, we have been working with restaurant reviews - we can search for specific restaurants, find
out which restaurants have a review score above a specific value, check out the restaurant addresses, and so on.
Importantly: Each review is processed independently of the rest, and the problems we have been solving do not
require us to model in any way the possible relationships between reviews for different restaurants.

However, relationships between data items are extremely important. In the case of our restaurant reviews,
for instance, we may want to consider that different locations of the same food chain are related to each other: They
serve the same food, so we should expect their scores to be similar to a large degree. Restaurants offering a particular
type of food (e.g. Mexican tacos) are related, and comparing their reviews is informative. Restaurants in the same
part of town are also related (geographically), and this is an additional source of information that we haven’t used
thus far: Perhaps users in a particular part of town are more picky and like to give worse reviews regardless of how
good a restaurant is, or perhaps they just enjoy certain kinds of food more than others. The tools we have available
up to this point do not allow us to study any of these meaningful connections.

Graphs provide us with a way to model, reason about, and manipulate data items and the relationships
between them. With graphs, we can ask questions such as what kinds of restaurants do my friends like?, what are
the best courses people I know take in the 2nd year?, How good are movies directed by Martin Scorsese?, and What

5.1 Graphs (C) F. Estrada 2024

is the fastest route to get from my home to the wonderful pizza place that I love best?
Graphs store data items, and their relationships or interactions, in a way that allows us to implement

algorithms that explore the structure of the data we are studying, and because of that, they allow us to find
meaningful interactions between data items, and to look for interesting patterns in complex data sets. Because
of this, graphs are central to a large variety of methods in machine learning, artificial intelligence, and data
visualization. They are used to represent information that can be conceptualized in the form of a network - that is,
nodes and their connections. We already know what a node is in terms of data representation and storage, let us
look at the connections and what they may mean. Typical applications of graphs include:

Social networks - where nodes represent people, and connections join pairs of people who interact socially
in some particular context.
Transportation - where nodes represent locations, and connections join pairs of locations that we can travel
between (for example, two intersections joined by a street). This also applies to internet routing, electrical
or water distribution grids, and other similar problems.
Genomics and bio informatics - where nodes can represent things like proteins, DNA sequences, enzymes,
etc., and connections join together pairs of these that interact within a biological system we are modelling.
Courses and their pre-requisites - where nodes represent courses, and connections represent the pre-requisite
structure (if there is one) for pairs of courses to be taken.
Databases - where nodes represent data tables (we briefly read about them in the previous Chapter), and
connections represent the structure of the data in the Database. For example, one table may contain
information about a company’s employees, a separate table may contain information about payroll, and the
connection between them indicates that the payroll table provides information about the salaries of employees
in the employee table.
Recommendation systems, which suggest items of interest based on a user’s tastes - nodes represent items of
interest (e.g. movies, books, music, or products in an online store), and connections represent similarity so
that the system can decide which items to recommend for a particular user.

The above is just a small sample of the wide range of applications for graphs. Because they can be conceptual-
ized as networks, and because they represent relationships between data items, graphs can often be visualized by
plotting nodes in some particular pattern, and showing the connections between them - when designed carefully,
such visualizations can help humans get an overview of the data they are working with at a glance, and to visually
discover interesting patterns that may be worth exploring with software. Examples of graph visualizations are
shown in Fig. 5.1.

5.1.1 Definition of a graph

A graph consists of:

A set V of nodes corresponding to data items we are working with. In books, lecture notes, and future
courses, you may find the term vertex is used instead of node, they are the same thing. The size of V (the
number of nodes in the graph) is N .

206

5.1 Graphs (C) F. Estrada 2024

Figure 5.1: Sample visualizations of graphs in different domains.

A set E of edges which are the connections between nodes. They represent the relationships existing between
data items in our collection. The size of E (the number of edges in the graph) is M .

Together, they define the graph G = (V,E). Graphs are a very general way of representing information and
relationships between items. You can build a graph for pretty much any problem you can think of, as long as you
can find some meaningful way in which data items for that particular problem relate to each other.

We have already been working with graphs! Trees, such as BSTs are graphs (the nodes in the tree are related
to each other by parent-child relationships), linked-lists are also graphs (nodes are related to each other by a
predecessor-successor relationship). So in fact, you already have plenty of experience working with information
stored in graphs.

5.1.2 Types of Graphs

There are two general types of graphs we will use widely:

Un-directed graphs: Edges between nodes are shared, and the relationship between the nodes goes both
ways. An example of an un-directed graph is shown in Fig. 5.2.
Directed graphs: In this type of graph, edges have a direction, the relationship between the nodes goes one
way. Examples of these are trees like the BSTs you’ve been working with: Edges in BSTs go from parent to
child. If node a is a parent to node b, the reverse can not be true. An example of a directed graph is shown
in Fig. 5.3.

207

5.1 Graphs (C) F. Estrada 2024

Figure 5.2: Un-directed graph representing countries in Europe. Edges in this graph indicate the corresponding
countries have a shared land border (this relationship goes both ways by definition).

Figure 5.3: Directed graph representing binary (TRUE/FALSE) variables in an inference problem. The direction
of the edges (represented by arrows) indicates which variables have a direct effect on each other. For instance, the
Rain variable (indicating whether or not it has been raining) can directly affect the value of the Wet Grass variable.
The converse is not true - wet grass can not direcly cause rain to happen.

208

5.1 Graphs (C) F. Estrada 2024

What type of graph we use depends on the data we are working with, and the problem we are trying to solve.

5.1.3 Terminology for graphs

The following are definitions of important terms related to graphs that are often used in studying graph-based
algorithms:

Neighbours: For un-directed graphs, a node v is a neighbour of node u if there exists an edge joining both
nodes - we say the two nodes are adjacent. For directed graphs, a node v is an out-neighbour of node u if
there is an edge from u to v. Conversely, v is an in-neighbour of u if there is an edge from v to u.
Neighbourhood: For un-directed graphs, the neighbourhood of node u is the set of all nodes that
are neighbours of u. For directed graphs, there is an out-neighbourhood and an in-neighbourhood,
corresponding to the sets of out-neighbours and in-neighbours respectively.
Degree: For un-directed graphs the degree of a node u is the size (number of nodes) in the neighbourhood
of u. For directed graphs we have an equivalent out-degree, and in-degree.
Path: A path through a graph is a sequence of consecutive nodes that can be visited by following existing
edges between pairs of connected nodes. Figure 5.4 shows an example: there is a path from Portugal to
Germany that visits in sequence Portugal → Spain → France → Italy → Austria → Germany. (Incidentally,
that would probably be an amazing trip to make!)
Cycles: For un-directed graphs, a cycle is a path with at least 3 nodes that starts and ends at the same node.
For directed graphs, a cycle is a path that begins and ends at the same node, but in this case the path can
have any number of nodes.

Figure 5.4: Example of a path in a un-directed graph. The path is the sequence of nodes visited while going
from one node to another.

209

5.1 Graphs (C) F. Estrada 2024

Note

For un-directed graphs, we can travel along edges in either direction while forming a path. But for directed
graphs, we can only go from node u to node v if an edge exists that goes from u to v. This is very much
like travelling in a city with lots of one-way streets, we must follow the direction of the streets while going
from one place to another.

� Exercise 5.1 For the graph in Fig. 5.2, what is the neighbourhood for the Germany node? What is the degree of
this node? which node has the largest degree?, what node has the smallest degree?

� Exercise 5.2 For the graph in Fig. 5.3, what is the out-neighbourhood of the node for Cloudy? What is the
out-degree for this node? Which node has the largest in-degree? Is there a path from Wet Grass to Cloudy?

Note

A graph is an ADT. As we know, an ADT describes a way of organizing information, as well as a list of
operations that must be supported by the ADT. In the case of graphs, the operations that must be supported
include:

Adding a node
Removing a node
Adding an edge
Removing an edge
Edge query (finding whether or not there is an edge joining two specific nodes) - this is sometimes
called adjacent

In addition to the above, specific graph types may provide additional operations, such as finding the
neighbourhood or the degree of a node.

5.1.4 Example applications of graphs

1) Network modeling: Including the Internet, social networks, professional networks, the electricity grid, a
city’s network of streets, protein interaction networks, transportation networks, etc. Graphs can be used in such
networks for: Analysis of structure, simulation, detection of points of failure, route planning, determining the
relative importance of individual nodes, and many other applications. A visual example of one such network is
shown in Fig. 5.5.

2) Document analysis: Representing a collection of documents. These can be text, such as articles, books,
on-line blogs, tweets, etc.), or any other kind of media such as images, music and sound recordings, video, etc.
Documents can be connected in a number of ways, for instance, they can be linked by source (who generated the
document), by type (e.g. linking together newspaper articles, separately from book chapters, journal papers, etc.),
by topic (for instance, linking together all music videos of classical music), or by any other property or combination

210

5.1 Graphs (C) F. Estrada 2024

Figure 5.5: Social network analysis. Each circle is a node representing a person, the colour and size of the node
indicate how important each node is in the graph - this is related to how well connected the node is, and whether
its neighbours are themselves important.

of properties that is relevant to the problem we are studying. Once the graph has been created, we can use it to:
cluster documents (group them by a relevant property), determine relevance (which documents are more commonly
accessed or referenced), and discover structure in the collection. This forms the basis of recommendation systems
used to determine what a user is likely to be interested in. An example of a document clustering graph is shown in
Fig. 5.6.

Figure 5.6: Top 2500 Wikipedia pages, grouped by similarity of content. Note that colour corresponds loosely to
topic. Image by Matt Biddulph, Flickr, CC-SA2.0.

3) Numerical simulation: Many applications in physics, engineering, medicine, weather analysis, computer
aided design, and computer graphics rely on numerical simulations performed on a mesh decomposition of a surface
or volume - that is, nodes are placed at pre-defined locations on the surface or inside the volume, and then these
nodes are linked to form a mesh. The values of interest for the simulation (e.g. wind speed in a weather model for

211

5.2 Representing graphs (C) F. Estrada 2024

a storm) are computed at each node, and information is propagated via the edges linking neighbouring nodes to
carry out the desired simulation. Fig. 5.7 shows a visualization of turbulence patterns for airplane modelling.

Figure 5.7: Simulation of the turbulence generated by an A340. A mesh of nodes (not visible in the image)
distributed over the volume of this simulation forms the basis of the computation. The same mesh is used for
visualization, by assigning a colour to nodes of interest. Image: Deutsches Zentrum für Luft und Raumfahrt,
Wikimedia Commons, CC-By3.0.

4) Artificial Intelligence: A significant number of important applications in AI (and hence in Machine
Learning) rely on graphs for representing information and for carrying out relevant processing. A very small
sample of the kind of problems you can solve with graphs in AI include: path planning and route-finding, constraint
satisfaction (scheduling and industrial process optimization), game playing (this has serious applications in finance,
advertising, etc.), inference and decision making under uncertainty, and the current and very promising field of
deep learning and its applications. One such application is illustrated in Fig. 5.8 in the context of path finding for
an aerial robot.

It should be clear to you that graphs have an amazingly wide range of applications, and there is a variety
of courses in computer science and other scientific disciplines in which you can learn as much as you like about
particular problems you are interested in. In this book, our goal will be to understand the fundamental concepts
related to storing, manipulating, and using graphs defined over collections of data. What you learn here will be
the basis for later understanding specialized material in almost all areas of application of computer science.

5.2 Representing graphs

There are several different ways of representing graphs (both un-directed and directed). They each have their
own advantages and disadvantages, and the choice of method for any particular application will depend on how the
graph will be used and must include a careful analysis of the complexity of performing the tasks the graph is meant
to support. In what follows, we will consider two of the most often used methods for representing and managing
graphs. Each method must solve two problems:

212

5.2 Representing graphs (C) F. Estrada 2024

Figure 5.8: A path-planning simulation for an autonomous flying vehicle carrying a search and rescue mission in
a forest. Image: Elucidation, Wikimedia Commons, CC-SA3.0.

First, storing and managing the set V of nodes that correspond to the data items in our problem. These can
be stored using any of the data structures we have studied up to this point (e.g. arrays, linked lists, trees, etc.). The
choice must be considered carefully, and has to be based on what operations will be performed on these data items,
and the complexity of these operations.

That leaves the problem of storing the set E of edges for the graph. We need a way to keep track of which
nodes are connected, and in the case of directed graphs, the direction of each edge. The two methods we will
discuss below deal with this particular problem in different ways - which will affect the complexity of performing
all supported graph operations, as well as the amount of space required to store the edge information.

1) Adjacency List: The adjacency list is an array with one entry per node. The ith entry in the array
contains a pointer to a linked list that stores the indexes of nodes to which node i is connected. This is illustrated
in Fig. 5.9. Adjacency lists have the advantage of being space efficient - if the graph has a large number of nodes,
but each node is connected to at most a few neighbours, then the adjacency list stores the required edge information
in a very compact format - without wasting memory. Conversely, common graph operations such as the edge query
require list traversal, which as we know can be slow.

2) Adjacency Matrix: As the name implies, the adjacency matrix is a 2D array of size N × N , For
un-directed graphs, entries A[i][j] and A[j][i] are both 1 if there is an edge joining node i and node j; it is 0

otherwise. For directed graphs, entry A[i][j] is set to 1 if there is an edge from i to j, and is 0 otherwise. This is
illustrated in Fig. 5.10. Note that for un-directed graphs, the adjacency matrix is symmetric.

Adjacency matrices have the same advantages and disadvantages of arrays: Edge queries are fast (no traversal
required). Adding or deleting edges, and finding out whether two nodes are connected requires a single access to

213

5.2 Representing graphs (C) F. Estrada 2024

Figure 5.9: An adjacency list for the European countries graph. There is one entry per node, and each entry
points to a linked list containing the indexes of the neighbours for that node. Therefore each entry in this linked list
represents an edge in the graph.

the matrix. Conversely, they are not space efficient. Even in the small example in Fig. 5.10, you can see that the
majority of the entries in the matrix are zero. For a very large graph, the adjacency matrix will waste a significant
amount of space and may in fact not fit within the available memory.

Figure 5.10: An adjacency matrix for the European countries graph. An edge is indicated by an entry in the matrix
whose value is 1, for example, A[0][1] and A[1][0] are set to 1 to account for the edge joining Portugal and Spain.

Note

For general graph applications, each edge may be associated with a value that represents relevant informa-
tion about the relationship between the two bf nodes. For example in a graph that describes the similarity
of songs, the edge value may represent how similar two songs are, with higher values indicating greater
similarity and low values indicating the opposite.
If the graph has weighted edges, the edge values have to be stored. If using an adjacency list, each entry in
the list will store the index of the connected node as well as the edge value. If using an adjacency matrix
we simply store the edge value in the corresponding entry of the matrix. In this latter case, the edge value
can not be zero (which indicates no connection).

� Exercise 5.3 For the small example graph shown in Fig. 5.11:

214

5.3 Complexity of Graph Operations (C) F. Estrada 2024

Show the adjacency list, use indexes 0− 6 corresponding to the nodes labeled A− F

Show the equivalent adjacency matrix for this graph

Figure 5.11: A small directed graph. Image: David W., Wikimedia Commons, Public Domain.

5.3 Complexity of Graph Operations

Let us consider the complexity of each of the operations the graph ADT specifies must be supported in the
context of the two strategies discussed above for storing the edge information.

1) Adding an edge to the graph. Adding an edge to connect node i to node j has a worst case complexity of
O(1) for an adjacency list - we need to go to the entry for node i, and insert index j in the linked list found
there. We can insert this index at the head of the list so the cost is O(1) - if the graph is un-directed we
also have to add index i to the linked list for node j.
O(1) for an adjacency matrix - we need to set entry A[i][j] to 1, with a cost of O(1). For an un-directed
graph we also have to set entry A[j][i] to 1.

2) Removing an edge from the graph. Removing an edge connecting node i with node j has a worst case
complexity of

O(N) for an adjacency list - we need to go to the entry for node i, and there we will need to traverse the
linked list until we find the entry for node j which we will remove. The linked list for node i will have a
length equal to degree(i) (the number of neighbours of node i), which in the worst case is N − 1 (the node is
connected to every other node in the graph). For an un-directed graph we have to repeat the process with
the linked list for node j to remove the entry for i.
O(1) for an adjacency matrix - we have to set entry A[i][j] to zero (and also entry A[j][i] to zero if the
graph is un-directed). These operations have a cost of O(1) for the 2D array that stores the matrix.

3) Adding a node to the graph. Adding a new node has a worst case complexity of
O(N) for an adjacency list - the list is an array with size N, so to add one node we have to create a new
array of size N+1 then we have to copy the N entries in the original array to the new one.
O(N2) for an adjacency matrix - the matrix is an N ×N array, so to add a node we have to create a new
array of size N + 1 × N + 1 and then copy the N × N entries from the original matrix to the new one.
This is a computationally expensive operation for large graphs, and we also have to consider that we will
need at least 2 × N2 memory space to carry out the copying process, which may not be feasible. For this

215

5.4 Recursion as a tool for problem solving (C) F. Estrada 2024

reason adjacency matrices are appropriate only for cases in which the graph isn’t changing frequently, or
for smaller graphs.

4) Removing a node from the graph. This has worst case complexity of
O(M) for an adjacency list - to remove a node, we have to remove all edges to and from this node in the
adjacency list. This requires traversing all linked lists of edges and removing any that correspond to the node
we are removing. There are M entries in these lists for a directed graph, or 2M entries for un-directed
graphs. In the worst case, for a fully connected graph, M = N2 so it is also correct to state that the
worst-case complexity of removing a node when using an adjacency list is O(N2).
O(N) for an adjacency matrix - removing all edges to and from a node requires us to set to zero all the
entries in the row and column corresponding to that node. This involves visiting 2N entries in the adjacency
matrix.

Note

In the above, the actual adjacency matrix or adjacency list are not resized - this is the most common way to
implement node removal because it allows all other existing nodes to keep their current index. Remember
that the actual data items for each of the nodes in the graph are stored in a separate data structure - and the
node indexes connect our adjacency list or adjacency matrix to entries in this data structure so we have
access to the relevant data when we need it.

5) Edge query. Figuring out whether there is an edge connecting node i to node j has a worst case complexity
of

O(N) for an adjacency list - we have to traverse the linked list for node i and see if we can find an entry
for j in this list. The list has a length of degree(i) (the number of neighbours of i). I the worst case, for a
fully-connected graph, degree(i) = N − 1.
O(1) for an adjacency matrix - we can directly check the value of entry A[i][j] in the adjacency matrix and
see if it is non-zero.

� Exercise 5.4 Figure out and explain the worst case complexity of finding the degree of node i (degree(i)) using
an adjacency list and using an adjacency matrix. This is for an un-directed graph.

� Exercise 5.5 Figure out and explain the worst case complexity of finding the in-degree of node i (in− degree(i))
using an adjacency list and using an adjacency matrix. This is for an directed graph.

Now that we know how to represent and store a graph, and have looked at the complexity of the fundamental
operations we can perform on graphs, we are ready to start thinking about the kinds of problems we can solve using
them. However, before we can really explore interesting applications of graphs, we first need to study a general
problem solving technique that is very often used together with graphs, as an essential component of algorithms
that use the graph to process information: Recursion.

216

5.4 Recursion as a tool for problem solving (C) F. Estrada 2024

5.4 Recursion as a tool for problem solving

The first thing to point out with regard to recursion is that you already know it, and have been using it for
some time. Recall we made the point in the text above that both linked-lists and BSTs are graphs. And we just
said that recursion is strongly tied to algorithms that work on graphs.

As we noted at the time, the operations we defined on BSTs in the previous section are recursive by nature.
Consider the insertion of a new node into a BST: Start with the root node for the tree, check if it’s NULL, and if
not, decide whether the node should be inserted on the left or right subtree. Then recursively insert the node on the
correct subtree. The process intuitively made sense from looking at the structure of the tree and thinking about how
the insertion process had to work.

The same applies to BST search, deletion, and tree traversals. All of them are recursive in nature, which
follows from the structure of the tree (remember we noted that every sub-tree of a BST is also a BST).

What we will do now is develop a general picture of what recursion is
A way of thinking about problems that have particular structure
A way to implement programs that solve such problems
A tool for simplifying complex tasks that are difficult to handle otherwise

5.4.1 Examples of recursive problems and data structures

1) Graph search: Graphs are a recursive form of data representation. Every sub-graph of a graph is also
a graph as illustrated in Fig. 5.12.

Figure 5.12: A graph and several possible sub-graphs (in colour), each sub-graph is itself a graph with its sets
V of nodes and E of edges.

We had already seen this property with BSTs, but now we know it is a general property of graphs. Linked-lists,
which are also graphs, are also recursive in nature: Every sub-list of a linked-list is also a linked-list.

And why is that interesting?

Because we can take advantage of the recursive structure of the graph to solve a seemingly complex problem
by:

217

5.4 Recursion as a tool for problem solving (C) F. Estrada 2024

Taking the original input graph
Breaking it up into smaller subgraphs

Breaking those up into even smaller subgraphs
And so on...

Until the subgraphs are so tiny solving the problem is trivial
Solve the smallest problem and use that solution to solve the slightly larger one

And then the even larger one
And then the even larger one

Until we have the solution to the original complex problem

This general process for looking for a specific node in a graph is an example of recursion. Variations of the
process described above are used for path finding, robot activity planning, scheduling, image pattern detection,
and many other applications. Let’s see an example in path planning. The setup is as follows: any map whether
it represents city streets, network routers available within some region, or in the case below, a little maze in a
simulation, can be represented by a graph with one node per location, and edges linking together neighbouring
locations that are connected (i.e. one can move from one such location to the next, there are no barriers in between).

In the case of city maps, the nodes can represent street intersections, and the edges can represent streets
linking intersections together (question: would this be a directed graph or an un-directed graph?). For computer
networks, the nodes would correspond to routers through which network traffic can flow, and the edges would
correspond to data links between routers. In the example below, we have an 8 × 8 map, each location has been
assigned a node in a graph, and the nodes are connected if the corresponding map locations are neighbours and
there are no walls in between them. This is illustrated in Fig. 5.13.

Figure 5.13: An example of a graph representing a small 8× 8 maze. Each node corresponds to a location in the
map, edges link together neighbouring locations that are connected (no walls between them), and represent the fact
that someone walking around this maze could move from one location to another if the corresponding nodes in the
graph are linked.

Problem: How do we find a path from the mouse to the cheese? In terms of our graph this means finding a
path from the node labeled M to the node labeled Ch. For you, looking at the graph above, it’s very easy to see the
path the mouse should take. For a computer working on a graph this is not so simple.

� Exercise 5.6 Develop pseudo code to solve this problem using only iteration (loops) but no recursion. You must
follow the problem solving process we developed in Chapter 2, fully understand the problem, and develop a solution

218

5.4 Recursion as a tool for problem solving (C) F. Estrada 2024

that is clear and detailed enough to serve as a basis for implementing a program to solve this task. Specifically, you
should carefully consider how the graph will be processed (the order in which nodes will be considered, how to
get information about neighbours, etc.) as well as ow to keep track of any information your process needs to form
a complete path from the mouse to the cheese.

If you spend any time at all solving the previous exercise, you will quickly realize that using loops on graphs
quickly leads to code that is (at best) long, cumbersome, full of special cases, and that will not work well on slightly
different versions of the problem above. Since graphs are a recursive ADT by nature, you should expect that
non-recursive algorithms working on graphs will be cumbersome and difficult to implement, test, and maintain.
Conversely, the recursive solution is simple, elegant, and easy to implement.

The process is illustrated in Fig. 5.14 and we will take a detailed look at how it works later on in this Chapter.

2) Divide and conquer methods: Divide-and-conquer methods are behind some of the most powerful
and useful algorithms we can find in computer science - including binary search, quicksort, the Fast Fourier
Transform (used extensively in signal processing and signal analysis), mergesort (a sorting algorithm with a
guaranteed worst case complexity of O(NLog(N)), and the binary space-partitioning trees for determining
object visibility in computer graphics.

They are naturally recursive in that, by definition, they work by splitting a problem into smaller and smaller
instances, applying to each of these the same algorithm, until the problem is easily solvable - then combining
solutions for smaller instances of the problem to build the solution to larger and larger instances all the way back to
the original one.

For example, mergesort is a sorting algorithm guaranteed to sort an input collection with complexity
O(NLog(N)). The method works as follows (pseudo code):
mergesort(input_array)

if the length of input_array is <= 1, then array is sorted: return input_array

else
split array into 2 sub-arrays: lower_half, and upper_half

sorted_low = mergesort(lower_half)
sorted_high = mergesort(upper_half)

Merge in sorted order the two sub-arrays ’sorted_low’ and ’sorted_high’
to build the complete ’sorted_array’

return sorted_array

We will look at this process in detail later on in this Chapter.

3) Computer graphics: Recursive structures are common in computer graphics, for example:

Objects are often composed of parts (e.g. the various limbs of a person or animal, and different parts of plants
or buildings). These are often modeled using tree-like structures - that brings us back to graphs which have
recursive structure
The rendering (drawing) process for certain plants like ferns and trees is naturally recursive because it involves
drawing the same shape but at different sizes. This is shown in Fig. 5.15.

219

5.4 Recursion as a tool for problem solving (C) F. Estrada 2024

Figure 5.14: Illustration of the recursive path-finding process for the maze example. At each step, nodes farther
and farther away from the mouse are asked to find a path to the cheese. Eventually, one of the nodes is a neighbour
of the cheese and knows where to go. The information then propagates backward neighbour to neighbour until the
full path from the mouse to the cheese is obtained.

220

5.4 Recursion as a tool for problem solving (C) F. Estrada 2024

Animation of objects routinely requires us to recursively apply transformations (changing the shape, size,
orientation, or some other property of the object) to objects and their parts and sub parts - for example: To
animate an arm, we move the upper arm, then the lower arm moves relative to the upper arm, then the hand
moves relative to the lower-arm, and so on.
The most advanced rendering methods (capable of creating movie-quality, photo-realistic scenes) are naturally
recursive. They rely on tracing the path of light as it bounces from one object to another, then another, then
another, and so on until the entire path of light from a light-emitting object to the camera has been found.

Figure 5.15: A real fern (left), a computer model of a fern (center) showing how the fern’s parts are just smaller
versions of the whole shape, and a computer rendering (right) created using a tree-based representation and a
recursive rendering algorithm to create a life-like virtual plant. Images: (left) Pixbay, used with permission,
(center) A. M. Campos, Wikimedia Commons, public domain, (right) Solkoll, Wikimedia Commons, public domain.

Recursion is a fundamental tool in computer graphics. It is used in some way for almost every component of
the process of defining, representing, storing, and rendering computer generated images.

4) Programming languages: If you plan to be a serious software developer, you will need to learn different
programming paradigms. C is based on the imperative programming model - program statements change the value
of data and the state of the program in order to achieve the program’s goal. Many other programming languages
work in basically the same way, but change the syntax used as well as the features they offer to make your work as
a developer easier.

The programs that parse and compile programs use graph representations and graph methods for representing
the structure of instructions in the program, checking them for syntactical correctness, determining their meaning,
and generating the relevant code. These tasks are often solved with recursion.

A different class of programming languages follow what is called a functional programming model (note
that this doesn’t have anything to do with using functions, the term has a different meaning here). Functional
programming is built on the concept of a program being the result of the evaluation of a set of mathematical
expressions or functions. Functional programming languages include LISP and its derivatives (Scheme, Racket),
as well as Haskell. Recursion is often at the centre of such languages and is a fundamental part of how we have to
think about problems if we want to approach them using functional programming.

5) File-system organization: As a final example of recursive problems and data structures, consider the
organization of the file system in your computer. The information you have stored there is organized into folders,
each of which will contain multiple items which themselves can be folders. The directory structure in the file

221

5.5 General principles of recursion (C) F. Estrada 2024

system is in fact a tree (graphs again!), and is recursive. How would we go about finding a file, if we do not know
in which folder it is stored? a general recursive solution would look like so:

// Find the name of the folder in which the requested file is stored

findFile(directory, file name)
if a file matching ’file_name’ is in ’directory’

return ’directory’
else

for every ’sub_directory’ in ’directory’
directory_name = findFile(sub_directory, file_name)
if ’directory_name’ is not [empty]

return ’directory_name’

return [empty]

The above process travels through the directory structure in the computer, starting at an initially specified
directory, looking for the file. For any given directory, if the file is not in that directory it then checks each of the
sub directories recursively until either the file is found, or the entire directory structure in the computer has been
searched.

The recursive structure of the file system is not limited to directories and files. For example, in Linux, the
actual data blocks that make up a file are organized into a tree-structure in an inode (this has nothing to do with a
certain company that sells phones, tablets, and computers) as shown in Fig. 5.16.

Figure 5.16: Structure of the data component of a Linux EXT2 File System inode. Image: timtjtim, Wikimedia
Commons, CC-SA4.0.

5.5 General principles of recursion

By now you should have general idea of the kinds of problems that are suitable for solving with recursion, as
a summary, we should consider using recursion to solve a problem when:

The problem itself is complex - if there is a simple, direct solution using loops, you should go for that instead.
The problem can be broken down into smaller or simpler versions of itself - e.g. a large graph can be broken
up into smaller and smaller subgraphs.

222

5.5 General principles of recursion (C) F. Estrada 2024

The nature of the problem is the same regardless of the size of the input - e.g. the problem of finding a path
between two nodes is the same regardless of the size of the graph.
At some point, the solution to one of the smaller problems becomes easy to compute - this allows us to stop
breaking the problem down.
We can use solutions to smaller problems to build the solution for larger problems easily.

This is fairly informal, so let us take a look at the components and process involved in working out a recursive
solution to a problem.

5.5.1 Structure of a Recursive Solution

Because of the properties noted above, we can say that every recursive solution to a problem will have the
following components:

1) The Base Case: This corresponds to the simplest (trivial) form of the problem we are solving, we should
be able to easily and directly solve the problem for the base case without having to break the problem down any
further. Every recursive solution must have at least one base case otherwise the recursive process keeps endlessly
trying to simplify the problem and never returns a solution.

Example 5.1 Some examples of base cases for common applications of recursion include:
For problems involving strings, the base case often is an empty string, or a string with one character - whatever
the task, we can easily carry it out on a single character, and there is often nothing to do for the empty string.
For numeric arrays, the base case often is an array with 1 entry, or an empty array - for instance, sorting an
array with a single entry is trivial.
For graph problems, the base case often involves a graph with a single node, or a graph where the node being
processed has a specific property - for instance, for mapping applications, it could be that the node being
processed represents the location we are looking for.
For information search (on lists, trees, or other data structures) the base case can be an empty data structure,
or having found the node with the information we need.

Note

As you can see there can be several different base cases for a given problem. It is important to consider all
the possible base cases that apply. In the examples above we have listed a few of the common base cases
for a few common problems. But notice that we only say these apply often. For a particular problem, they
may not apply, or there may be additional base cases not listed above. The importance of making sure all
the relevant base cases have been accounted for is that, when one or more of them are missing, there would
be inputs for which our recursive solution would not work. It would reach one of the missing base cases and
just keep going endlessly (which in practice often results in the program crashing).

2) The Recursive Case: This corresponds to the general form of our problem, which we have to split, simplify,
or otherwise make smaller in order to get one of the base cases. The interesting part of solving a problem with
recursion involves thinking about how to break down our specific problem. After we have split the problem in an

223

5.5 General principles of recursion (C) F. Estrada 2024

appropriate way into two or more sub problems, we then recursively solve the smaller sub problems. The recursive
case implementation is also responsible for building a solution for the original problem from the solutions to the
separate sub problems we split it into.

Example 5.2 Here are a few examples of how different types of problems can be broken down
For strings, the recursive case often consists of breaking the string into chunks. Some problems will require
taking out a particular character (e.g. the first, or the last one), others will split the string in chunks at a
specific point. Either way, if we keep splitting each chunk we will eventually reach the base case.
For numeric arrays, the recursive case often splits the array into a pair of sub-arrays. Some problems split
the first or last entry from the rest of the array, others (like mergesort) split the array in two. Either way the
resulting sub-arrays are closer to the base case.
For graphs, the recursive case will often perform processing on subgraphs - for example, in the path-finding
problem discussed above, the process considers at each step only a small set of neighbours that have not yet
been checked for a path to the destination. Another possibility is that the recursive case may split the graph
into disjoint subsets and process each of them recursively (similarly to how mergesort processes an array).
Examples of this would be tree traversals. The traversal process splits a tree into left and right subtrees, and
processes these recursively until reaching the base case of an empty subtree.
For search, the recursive case often involves searching over a subset of the data structure. For example, for
BSTs, the search process determines which sub-tree the desired item should be in, and recursively searches
that subtree. At each step, the remaining sub-tree is closer to the base case (either finding the item we want,
or reaching an empty subtree).

Note

It is essential for the recursive case to bring the problem closer to a base case. If the problem is not getting
easier to solve despite repeated application of the recursive case, or if it takes too many steps to reach a base
case, we should carefully re-think our process. As we shall see in short order, the choice of how to break
down a problem for the recursive case can have a significant impact on the computational complexity of
our recursive solution.

5.5.2 How to design a recursive solution

The first step of the process is exactly as discussed at the end of Chapter 2 - thoroughly understand what the
problem is, write down and illustrate an example - e.g. if you are working on arrays, draw a representative sample
array with data, and consider if the problem has the requisite properties that make it a good candidate for a recursive
solution.

Then develop the algorithm in pseudo code as per the discussion in Chapter 2, paying special attention to:

What are the the base cases for this problem? It is important to work out on paper a few examples of how
small versions of the problem may look, and ensure that no base cases are missing.

224

5.5 General principles of recursion (C) F. Estrada 2024

Once you we have the base cases, determine how you could split an instance of the problem that is not a base
case into smaller or simpler sub problems that will get closer to the base case - this gives you the recursive
case. At this point it is also important to work out how to build the solution for the original problem from
the solutions to smaller sub problems. Once more work out a few examples on paper and make sure the
process works, this will often allow you to find any missing base cases.
Consider different ways of splitting the problem for the recursive case. Try to figure out if different choices
make your solution do more or less work in terms of the number of times the recursive case needs to be
applied, and in terms of the complexity of building bigger solutions from those for smaller sub problems.
Your pseudo code algorithm should clearly involve recursively solving sub problems.

Note

Recursive solutions that have not been carefully constructed can be difficult to test, trace, debug, and
maintain. So special care has to be taken to ensure the proposed algorithm is clean - with reasonable and
easy to understand base and recursive cases, carefully thought out, and well documented - this means
carefully noting design choices and your rationale for how the recursive case was selected.

Let us see how the process described above can be applied to solve a very common problem: sorting a large
collection of information.

5.5.3 Sorting data recursively

Let us consider the problem of sorting data stored in an array. In the discussion below the array contains
integers but this is not a limitation, any data for which we can implement a meaningful comparison function can
be sorted in the same way. Our goal will be to develop a recursive solution by following the process described
above, and to study the effect of different ways to implement the recursive case on the computational complexity
of the resulting sorting algorithm.

The Problem: Given an input array of un-sorted data, return an array with the same number of entries sorted
in ascending order. We will work with the following sample array:

[9 | 6 | 3 | 7 | 0 |2 | 8 | 1 | 4 | 5]

this is a very small array, but it is enough for us to understand the problem and develop our recursive solution.

Step 1) Find the base cases: We can figure out what these should be by considering the easiest instance
of our problem. For sorting, it doesn’t get any easier than having an empty array - there is nothing to do, since
it contains no data. It is a valid base case and we will see shortly that it comes up during the process of sorting
non-empty arrays. There is another base case corresponding to an array with a single entry. This is a base case
because a single-entry array is already sorted.

Any array that has more than one entry may need to be sorted, it can also be split into smaller arrays that are
closer to one of the two base cases above. Therefore arrays with more than 1 entry are not base cases.

2) The recursive case: As noted above, there are many ways in which we could split our problem into
sub problems that are closer to the base case. We also noted that depending on the choice we will end up with

225

5.5 General principles of recursion (C) F. Estrada 2024

simpler/more intuitive solutions, or with more complex solutions. And that the different possibilities may result in
algorithms that are less or more efficient.

Let’s have a look at three different ways we could split the problem of sorting an array, each of which leads to
a different sorting method. We will study the complexity of the sorting process for each of the splitting methods,
and realize that seemingly small differences in how the recursive case works can have a large effect on complexity.

Algorithm: sort_case1()

// Recursively sort an array of integers

Input: An ’array’ of length N containing integers
Output: A ’sorted’ array of integers of length N

If ’array’ is a base case: {empty array, array of size 1}

return ’array’ // Base case - it’s already sorted!

Otherwise

Split ’array’ into ’sub1’ and ’sub2’ such that:

// Recursive case #1: split the array into first entry and everything else

sub1=array[1] // First entry in the array
sub2=array[2:end] // All remaining entries in the array

Recursively sort ’sub1’ and ’sub2’ using recursive case #1

subsort1=sort_case1(sub1)
subsort2=sort_case1(sub2)

Merge the sorted sub-arrays in order to build the complete
sorted array corresponding to the input

sort=merge_in_order(subsort1, subsort2)
return ’sort’

Question: Does the recursive case work? does it eventually reduce an array of any size to sub-arrays that are
one of our two base cases?. The splitting process will be applied to any array of size 2 or greater. It will split
the array into two smaller sub-arrays. These will undergo further splitting as needed. At each step the resulting
sub-arrays are smaller, so eventually we must arrive at one of our base cases.

Let’s see the process in action, on the small input array shown above:
[9 | 6 | 3 | 7 | 0 | 2 | 8 | 1 | 4 | 5] // Original array

[9] : [6 | 3 | 7 |0 | 2 | 8 | 1 | 4 | 5] // First split

// [9] is in base case, but we have to wait for the second
// sub-array to be sorted in order to re-build the complete
// sorted array

[9] : [6] : [3 | 7 | 0 | 2 | 8 | 1 | 4 | 5] // Second split

226

5.5 General principles of recursion (C) F. Estrada 2024

// [6] is in base case, but we need to wait for the second
// sub-array to be sorted... [9] is still waiting!

[9] : [6] : [3] : [7 | 0 | 2 | 8 | 1 | 4 | 5] // Third split

// [3] is in base case, need to wait for the second sub-array
// to be sorted. [9] and [6] are still waiting for a result

.

. // splitting continues...

.

[9] : [6] : [3] : [7] : [0] : [2] : [8] : [1] : [4 | 5] // Eight split

// 9, 6, 3, 7, 0, 2, 8, and 1 are waiting, need to sort
// [4 | 5] which is not in base case

[9] : [6] : [3] : [7] : [0] : [2] : [8] : [1] : [4] : [5] // Final split

// [4] and [5] are base case, so the recursive calls simply
// return the same two sub-arrays and they can be merged
// (they are merged in sorted order)

[9] : [6] : [3] : [7] : [0] : [2] : [8] : [1] : [4 | 5] // First merge

// [1] was waiting for [4 | 5] to be sorted, it is now
// sorted so it gets merged with [1]

[9] : [6] : [3] : [7] : [0] : [2] : [8] : [1 | 4 | 5] // Second merge

// [8] was waiting for [1 | 4 | 5] to be sorted, it is
// now sorted so it gets merged with [8]

[9] : [6] : [3] : [7] : [0] : [2] : [1 | 4 | 5 | 8] // Third merge

.

. // merging continues...

.

[9] : [6] : [0 | 1 | 2 | 3 | 4 | 5 | 7 | 8] // Seventh merge

// [6] was waiting, it can now be merged into a larger
// sorted array

[9] : [0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8] // Eight merge

// Finally, [9] was waiting, and it can be marged with the
// remaining (now sorted!) entries to produce the final
// sorted array

[0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9] // Final merge

As you can see, the process itself is fairly straightforward. The array is reduced to individual entries one element at
a time, until all the sub-arrays are in base case, then they are merged in order one by one to build the final sorted
array.

227

5.5 General principles of recursion (C) F. Estrada 2024

Note

Merging two sorted sub-arrays with N entries in total into a single sorted array requires O(N) time. The
process is as follows:

// Procedure merge_in_sorted_order()
// input: two sorted sub-arrays ’sub1[]’ and ’sub2[]’
// output: a single ’sorted[]’ array containing the entries from both sub-arrays

out_index=0; // Indexes into the output array and each
sub1_index=0; // input sub-array. Initially 0 (first entry)
sub2_index=0;

while out_index is less than N // This loops exactly N times

choose whichever entry is smaller between

sub1[sub1_index] and sub2[sub2_index]

copy the chosen entry to sorted[out_index]

if the entry from sub1 was selected, increment sub1_index by 1
otherwise, increment sub2_index by 1

increment out_index by one

Complexity of sorting using recursive case #1: Let’s see how much work needs to be done by the sorting
process when we split arrays according to recursive case #1.

The recursive case has to perform N-1 splits and N-1 merges - this is because each split except for the last
one leaves a single entry of the array in the base case (the last split takes care of two entries). So there is a
factor of N here.
For an array of size N, the split has a cost of O(N) because N elements have to be placed in sub-arrays
(copying the N entries into sub arrays requires N copy operations).
Combining two sorted sub-arrays with N entries (combined) into a single sorted array of size N has a cost
of O(N).
Therefore, each split together with the corresponding merge has a cost of O(N).
Since there are N-1 split/merge steps, each with a cost of O(N), the total cost for the sorting process is
O(N2).

This means that the recursive sorting algorithm based on recursive case #1 is just as slow as bubble-sort. This
is not a good result. Looking at the example above with the 10-entry array, we note that it takes a lot of splitting
and merging to get the job done. This is because recursive case #1 reduces the size of the problem by 1 at each
step. What can we do to reduce the number of steps required to reduce the sub-arrays to a base case?

Algorithm: sort_case2()

228

5.5 General principles of recursion (C) F. Estrada 2024

// Recursively sort an array of integers

Input: An ’array’ of length N containing integers
Output: A ’sorted’ array of integers of length N

If ’array’ is a base case: {empty array, array of size 1}

return ’array’ // Base case - it’s already sorted!

Otherwise

Split ’array’ into ’sub1’ and ’sub2’ such that:

// Recursive case #2: split the array in two halves

m=floor(N/2) // Half the size of the input array, rounded down.
sub1=array[1:m] // First half of the array
sub2=array[m+1:end] // Second half of the array

Recursively sort ’sub1’ and ’sub2’ using recursive case #1

subsort1=sort_case2(sub1)
subsort2=sort_case2(sub2)

Merge the sorted sub-arrays in order to build the complete
sorted array corresponding to the input

sort=merge_in_order(subsort1, subsort2)
return ’sort’

Let’s see how the above process works on the same input array we used with recursive case #1:

[9 | 6 | 3 | 7 | 0 | 2 | 8 | 1 | 4 | 5] // Original array

(A)
[9 | 6 | 3 | 7 | 0] : [2 | 8 | 1 | 4 | 5] // First split

// Both arrays are not base case, each has to be sorted using
// recursive case #2, this means 9,6,3,7,0 will be split in
// half, and 2,8,1,4,5 will be split in half (splits are
// labeled B for clarity)

(B1) (B2)
[9 | 6] : [3 | 7 | 0] : [2 | 8] : [1 | 4 | 5] // Second split

// All the sub-arrays are still not base case, so each will be
// sorted using recursive case #2 and split in half again
// (splits are labeled C for clarity)

(C1) (C2) (C3) (C4)
[9] : [6] : [3] : [7 | 0] : [2] : [8] : [1] : [4 | 5] // Third split

// The splits C2 and C4 still have one sub-array (each) that
// is not a base case, so one more round of recursive case #2
// is applied (with splits labeled D for clarity)

(D1) (D2)
[6] : [9] : [3] : [7] : [0] : [2] : [8] : [1] : [4] : [5] // Final split

229

5.5 General principles of recursion (C) F. Estrada 2024

// Reached base case for all sub-arrays, now we just merge
// in the reverse order - first the D splits merge

[6]: [9] : [3] : [0 | 7] : [2] : [8] : [1] : [4 | 5] // First merge

// Now the C splits merge

[6 | 9] : [0 | 3 | 7] : [2 | 8] : [1 | 4 | 5] // Second merge

// Now the B splits merge

[0 | 3 | 6 | 7 | 9] : [1 | 2 | 4 | 5 | 8] // Third split

// And finally the A split merges to create the final ourput array

[0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9]

You can probably already see that recursive case #2 takes fewer steps to reach the base case for all the sub-arrays.
Since at each step, the size of the arrays is halved, the number of steps required to reach the base case is Log2(N) -
the progressive halving of the size of the input is the same process that allows binary search to achieve O(Log(N))

search complexity and that allows BSTs to (on average) provide O(Log(N)) complexity for search, insert, and
delete.

Complexity of sorting using recursive case #2: Let’s see how much work needs to be done by the sorting
process when we split arrays according to recursive case #2.

The recursive case has to perform Log2(N) splits and Log2(N) merges - this is because each split reduces
the size of the input by a factor of 2, and each merge produces a sorted array twice the size of the input
sub-arrays.
For an array of size N, the split has a cost of O(N) because N elements have to be placed in sub-arrays
(copying the N entries into sub arrays requires N copy operations).
Merging two sorted sub-arrays with N entries (combined) into a single sorted array of size N has a cost of
O(N).
Therefore, each split together with the corresponding merge has a cost of O(N).
Since there are O(Log2(N)) split/merge steps, each with a cost of O(N), the total cost for the sorting process
is O(N · Log(N)).

This is a great result - the sorting algorithm that uses recursive case #2 has a guaranteed worst case complexity
of O(N · Log(N)). You will recognize that this is in fact merge-sort, a solid, reliable, and easy to implement
method that shows the power of recursion. It should give you a moment of pause to consider that the two sorting
algorithms we discussed thus far are identical save for the choice of recursive case. Splitting the array in two rather
than one-versus-the-rest gives us an algorithm whose complexity matches the best known complexity for general
sorting algorithms.

There is one more choice of recursive case that is worth thinking about:

230

5.5 General principles of recursion (C) F. Estrada 2024

Algorithm: sort_case3()

// Recursively sort an array of integers

Input: An ’array’ of length N containing integers
Output: A ’sorted’ array of integers of length N

If ’array’ is a base case: {empty array, array of size 1}

return ’array’ // Base case - it’s already sorted!

Otherwise

Split ’array’ into ’sub1’ ’pivot’ and ’sub2’ such that:

// Recursive case #3: split with regard to a pivot entry

choose m=random entry in 0:N-1 // Select a random entry
pivot=input[m] // The pivot is the value

// of this entry
sub1 := All entries in input whose value < pivot
sub2 := All entries in input whose value > pivot

Recursively sort ’sub1’ and ’sub2’ using recursive case #3

subsort1=sort_case3(sub1)
subsort2=sort_case3(sub2)

Merge the sorted sub-arrays in order to build the complete
sorted array corresponding to the input

sort=merge_in_order(subsort1, pivot, subsort2)
return ’sort’

This process doesn’t split the input into sub-arrays of a pre-defined size. Instead, it chooses a random entry in the
input array (called the pivot) and then splits the input into two sub-arrays consisting of the elements that are lesser
than the pivot and the entries with value greater than the pivot, plus the pivot itself (notice this is a three-way
split). The splitting process does not sort the entries in each sub array - but it does sort the input values with
regard to the pivot.

Let’s see how recursive case #3 works on the sample input array:
[9 | 6 | 3 | 7 | 0 | 2 | 8 | 1 | 4 | 5] // Original array

m=2, pivot=3 (input[2]=3)
(A)

[0 | 2 | 1] : [3] : [9 | 6 | 7 | 8 | 4 | 5] // 1st split

// Notice the sub-arrays are not the same size, and that
// within each sub-array the entries are not sorted, but
// each set is sorted w.r.t. the pivot. The pivot is
// now in the correct sorted spot!
// The two sub-arrays are not base-case, we have to
// apply recursive case #3 to each of them (the splits
// are labeled B for clarity)

m=1, pivot=2 m=5, pivot=5 // 2nd split

231

5.5 General principles of recursion (C) F. Estrada 2024

(B1) (B2)
[0 | 1] : [2] : [] : [3] : [4] : [5] : [9 | 6 | 7 | 8]

// Each split will have a different pivot. We still have
// several arrays not in base case, so apply
// recursive case #3 again (splits labeled C for
// clarity - pivot is under the label)

(C1) (C2)
[] : [0] : [1] : [2] : [] : [3] : [4] : [5] : [6 | 7] : [8] : [9] // 3rd split

// Need one more round of recursive case #3 to bring
// everything to base case (splits labeled D for
// clarity, pivot is under the label)

(D1)
[] : [0] : [1] : [2] : [] : [3] : [4] : [5] : [6] : [7] : [] : [8] : [9] // Done!

// At this point we are done splitiing, merge sub-arrays
// in reverse order. Start with D splits

[] : [0] : [1] : [2] : [] : [3] : [4] : [5] : [6 | 7] : [8] : [9] // 1st merge

// Then the C splits

[0 | 1] : [2] : [] : [3] : [4] : [5] : [6 | 7 | 8 | 9] // 2nd merge

// Then B splits

[0 | 1 | 2] : [3] : [4 | 5 | 6 | 7 | 8 | 9] // 3rd merge

// And finally the A split to yield the complete sorted result

[0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9] // Final merge

This sorting method is called quicksort and is one of the most commonly used, and most reliable general sorting
algorithms. As the name implies, it is often fast, but it’s not clear just from the example above why that would be
the case.

However, you may be able to see a few features of quicksort in the example above: The splits are not symmetric
- they can happen anywhere along the array. Sometimes they are close to the one-versus-the-rest case, sometimes
they are closer to the split-in-half case, and sometimes we even have an empty sub-array on one side or the other
from the pivot. It all depends on luck since we choose the pivot randomly for each split. You can also see that
recursive case #3 appears to do less splitting and merging than recursive case #1, but it’s not clear just how much
more or how much less work it does compared to merge sort.

So the question is: What can we say about the complexity of sorting with quicksort?

In the worst-case, we get very unlucky with each and every split and choose the pivot that corresponds either
to the smallest, or the largest value in the array. The result is one empty sub-array, the 1-entry array with the pivot
itself, and one sub-array that contains the rest of the entries in the original. This is identical to recursive case #1,
and results in an algorithm that performs N-1 splits and N-1 merges, with a computational cost of O(N2). The
worst case complexity of sorting an array using quicksort is O(N2).

That doesn’t seem good - why is quicksort so popular, so often used, and said to be fast when we have just

232

5.5 General principles of recursion (C) F. Estrada 2024

seen that it’s worst case complexity is just as bad as bubble-sort?

The usefulness of quicksort results from what happens in the average case. The question we need to ask is
what is the probability that we hit the worst-case split? For an array of size N, choosing the smallest or largest
value by random chance has a probability of 2/N . For a large N this is very very small! - of course, we could worry
about splits that are close to the worst case, even if not the very worst, but it turns out even if we pick the smallest
100, and the biggest 100 pivot values, the probability of randomly selecting one of them is 200/N which again, for
a large value of N will be very small.

Not only that, but the worst case complexity of quicksort happens when we consistently get the worst split - at
every step of the sorting process. The probability of that happening with random pivot selection is astronomically
small for a large input array.

So in practice, we don’t have to worry much about encountering the worst case for quicksort. But that doesn’t
tell us anything about what to expect on average. The mathematical analysis of quicksort is beyond the scope
of this Chapter, however, we can gain an understanding of why quicksort works so well by studying the results
of simulating quicksort millions of times (with different, randomly generated, unsorted input arrays) for different
values of N. Fig. 5.17 shows the results of simulating the quicksort splitting process 1, 000, 000 times for arrays of
size N = 10, 000 and counting the number of splits required to reach base case for all sub-arrays.

Figure 5.17: Number of levels required to reduce arrays of size N = 10, 000 to base case. One million trials with
different random arrays were simulated for this graph.

What we can see from Fig. 5.17 is that while the number of splits is not Log2(N) which for N = 10, 000

is just over 13 splits, the maximum number of splits that were required over the entire set of one million different
arrays is still pretty small (close to 50 which is tiny compared to the value of N). This indicates that quicksort can
reach the base case for all sub-arrays quickly, without too many splits.

An even more interesting and encouraging picture emerges once we simulate the quicksort splitting process
for different values of N, and plot the average number of splits required to bring all the sub-arrays to base case.
This is shown in Fig. 5.18.

233

5.5 General principles of recursion (C) F. Estrada 2024

Figure 5.18: Average number of splits required to reduce arrays of size N to base case for N from 10, 000 to just
under 8, 000, 000. One million trials with different random arrays were simulated for each value of N in the graph.

The shape of the graph in Fig. 5.18 should be familiar - it is a logarithmic curve, and illustrates a well known
result: The average case complexity of quicksort is O(N · Log(N)). This is because on average, quicksort will
carry out a number of splits and merges proportional to Log(N), and each of these has a cost of O(N). This is
a very good result. In the average case, quicksort has the same complexity as mergesort and achieves the best
known complexity for general sorting methods.

Note

You may be concerned that quicksort does more work during the splitting step than mergesort - it needs
to compare each entry in the input array against the pivot and decide which sub-array it should go into.
Conversely, mergesort just splits the arrays in half without additional work.
However, the extra work quicksort does when splitting evens out during the merging step - you can see in
the example above that merging sub-arrays sorted with quicksort is easy because all the entries are in the
correct location, no additional comparisons are needed. Conversely, mergesort has to compare entries
from the sorted sub-arrays during merging in order to build the larger sorted array.

The conclusion from the above is that quicksort is competitive with mergesort and other efficient sorting
methods. Both quicksort and mergesort are readily available in all common programming languages via standard
libraries, you can use them for any sorting tasks you may encounter while solving interesting problems, and now
you understand how they work. Both of them are recursive, and the central difference between the algorithms is
how the recursive case is handled. We have seen that the choice of recursive case matters greatly, and can mean
the difference between an efficient algorithm, and a slow, impractical one.

We have also gone through the process of designing a recursive solution for a general problem: Sorting. This
should help you when you find a need to approach other problems with recursion. Next, we should spend some

234

5.6 Implementation considerations for recursive methods (C) F. Estrada 2024

time considering the performance implications of recursive algorithms, as they deserve careful thought and should
not be ignored when considering whether or not recursion is the right tool for a specific task or problem.

5.6 Implementation considerations for recursive methods

Recursion requires a function to call itself a (possibly large) number of times. Recall, from the memory model
in Chapter 2, that every time call a function is called, space has to be reserved for the function’s parameters,
variables, and return value. In non-recursive code, we don’t usually worry about it because we know that after a
function is called, its work is completed, and it returns a value, the space reserved for the function is released.

However, with recursive code this can become a problem unless we are careful - at any given time, there will be
multiple (and possibly many) active calls to the recursive function. These are function calls that are waiting from a
result from another recursive call, and until they receive that result, they hang around in memory and occupy space.

To understand this problem, let’s have a look at a short example of a function that sums up an array of integers
recursively (as we’ve noted before, this is not a problem where we would immediately think of recursion, but it’s
simple enough it will help us illustrate what happens in memory with recursive function calls).

The recursive function that computes the sum of the entries in an array works as follows (pseudo code):
sum(array, n) : L1

if (n==0) return array[0]; : L2
else return array[n] + sum(array, n-1) : L3

The function takes an input array, and recursively computes the sum of its elements. The base case is an array
with a single entry in which case the sum is simply the value for that element.

The input parameter n is used to indicate the element of the array that the function is adding at a specific point
in the process - it is intended to start at the end of the array and work backward toward the first element in the array.
The recursive case simply decreases n by one, which has the effect of reducing the size of the array at each step.
Once the base case is reached, the recursion rebuilds the sum from the first element back to the last.

The recursive process for a small input array would look as follows:
sum([10,5,3,2,1,8],5) // First call, n=5, not base case (A)

sum([10,5,3,2,1,8],4) // recursive call with n=4, not base case (B)
sum([10,5,3,2,1,8],3) // recursive call with n=3, not base case (C)

sum([10,5,3,2,1,8),2) // recursive call with n=2, not base case (D)
sum([10,5,3,2,1,8],1) // recursive call with n=1, not base case (E)

sum([10,5,3,2,1,8],0) // recursive call with n=0, base case! (F)

// At this point there are 6 active calls to ’sum()’, each with
// their own input parameters, local variables, and space for
// a return value! - these correspond to (A) - (F)

// The last call can be completed, so (F) returns 10 to (E)
// space for (F) is released

(E) - can now be completed, returns 5+10, space for (E) is released
(D) - can now be completed, returns 3+15, space for (D) is released

(C) - can now be completed, returns 2+18, space for (C) is released
(B) - can now be completed, returns 1+20, space for (B) is released

(A) - finally, the original call can be completed, returns 29, and space for (A) is
released

235

5.6 Implementation considerations for recursive methods (C) F. Estrada 2024

The same process is illustrated in Fig. 5.19 where you can see how memory is reserved for each function tall inside
a call stack - this is a region of the computer memory that is set aside for the function calls. Any memory requested
by any of the functions in the program is reserved in the stack, and it is reserved directly on top of any memory
being used by other active calls. The specific region of memory assigned to each function call is referred to as the
function’s stack frame. In Fig. 5.19, each block (shown as a rectangle) for one function call represents a separate
stack frame.

Figure 5.19: Illustration of how memory space is reserved in the function call stack for the recursive function
calls to sum(). Each successive call goes to the top of the stack, previous calls remain active - they are waiting for
a result and can not finish their work until the recursion returns the values they need.

There are two important implications from the way the process shown above develops:

Recursive function calls take up space. Depending on the depth of the recursion, which is the number of
calls required until the base case is reached, the space required may be significant. For an array of size N ,
the sum() function above will require N separate chunks of space in the call stack.
Reserving space in the function call stack and releasing it when function calls return requires work. It
is done automatically, but the computer still takes some small amount of time to reserve space and then to

236

5.6 Implementation considerations for recursive methods (C) F. Estrada 2024

release it when no longer needed. Once again, this may become significant if the recursion depth is large.

These two factors have important implications for recursive functions: They require significantly more
memory than non-recursive functions, and in fact if we are not careful we run the risk of running out of memory
in the call stack which causes a program to crash. Secondly, they are slower than non-recursive functions because
of the extra work required to reserve and later release memory from the call stack.

When used for problems that have a recursive nature (as explained in detail in Section 5.5), the additional
memory requirements and small overhead of handling memory in the call stack are balanced by the simplicity,
elegance, and intuitive nature of the recursive solution - in such cases, a non-recursive solution is likely to be much
more involved, harder to understand, maintain, test, and debug; and likely will require its own additional memory
in order to keep track of information that the recursive solution automatically maintains via the call stack.

However, for certain problems that could equally well be solved with and without recursion, the choice of
whether or not to implement a recursive algorithm should have carefully considered the extra space and slower
nature of the recursive process.

Note

It is important to remember that for every problem we can solve with a computer, it is possible to find a
recursive solution, as well as a non-recursive solution. Though for many cases it may not be obvious how
to develop one or the other. There is no in-principle limitation to what kind of problems can be solved
recursively, and the same is true for iterative (non-recursive) methods.

5.6.1 Tail-recursion optimization

The extra memory required for recursion, and the overhead of managing the function call stack can sometimes
be avoided by using a technique called tail-recursion optimization.

In the example above, the sum() function builds the result we want from the partial sums returned by
recursive calls - the last recursive call (the one that reaches the base case) returns a value, which then is used to
compute and return the next partial sum, which then is used to compute and return the next partial sum, and so on
all the way back to the first call to sum() which computes and returns the final result.

This line of pseudo code takes care of this part:
else return array[n] + sum(array, n-1) : L3

The thing to notice is that once the recursive call to sum() returns a value, we still need to add array[n] before
we can return a result. Because the function still has work to do after the recursive call is complete, we need to have
access to the local variables and parameters for this function call (which, as we know, are stored in the stack). This
forces us to keep the function’s stack frame in the stack until the function’s work is done.

However, we could achieve the same result in a slightly different way. Instead of building the sum backward
from each successive recursive call, we could pass the partial sums forward into the recursion - each successive
call to the recursive function does all of its work before the recursive call, and thus it no longer needs to hang
around in the call stack.

Let’s have a look at how we could write the sum() function in that way:

237

5.6 Implementation considerations for recursive methods (C) F. Estrada 2024

sum_TR(array, n, part_sum) : L1
if (n==0) return part_sum+array[0] : L2
else return sum_TR(array,n-1,part_sum+array[n]) : L3

This version is very similar to our original one but: It takes one extra parameter, the partial sum computed by
previous calls to sum_TR(). The recursive case in L3 is a bit different as well:

else return sum_TR(array,n-1,part_sum+array[n]) : L3

In this version, there is no computation and no work done after the recursive call - once we call sum_TR()
recursively, we are done and whatever the recursive call returns, that is the result we want. Because the recursive
call is the last thing the function does, we call this a tail-recursive function.

Let’s see how this may change the process when the tail-recursive version of the sum function is called with
the same sample array as the original, recursive sum() function discussed earlier:

sum_TR([10,5,3,2,1,8],5,0) // First call, n=5, part_sum=0 (A)

// The call in (A) passes a partial result, array[5]+0 = 8 into the recursive call.
// it’s work is done so we do not need to keep it in the stack! memory for (A) is released

sum_TR([10,5,3,2,1,8],4,8) // Second call, n=4, part_sum=8 (B)

// The call in (B) passes a partial result, array[4]+8 = 9 into the recursive call.
// (B) is done, we can release its memory from the stack

sum_TR([10,5,3,2,1,8],3,9) // Third call, n=3, part_sum=9 (C)

// (C) passes a partial result, array[3]+9 = 11 into the recursive call.
// (C) is done, we release its memory from the stack

sum_TR([10,5,3,2,1,8],2,11) // 4th call, n=2, part_sum=11 (D)

// (D) passes a partial result, array[2]+11 = 14 into the recursive call
// (D) is done, removed from the stack

sum_TR([10,5,3,2,1,8],1,14) // 5th call, n=1, part_sum=11 (E)

// (E) passes a partial result, array[1]+14 = 19 into the recursive call
// (E) is done, removed from the stack

sum_TR([10,5,3,2,1,8],0,19) // 6th call, n=0, part_sum=19 (F)

// (F) reaches the base case, and returns array[0]+19 = 29, which is the final
// result. (F) is done and removed from the stack, the final result is returned.

The process above is illustrated in Fig. 5.20.

With a small change to how our recursive function is implemented, we eliminate the need to keep multiple
stack frames for the function within the call stack. This means the tail-recursive version can handle inputs that
are much bigger (i.e. it works for much larger N) than the original non-tail-recursive version. Secondly, the result
of the computation is available as soon as we hit the base case, no additional work is needed. The result of these
two factors means that the tail-recursive version of the sum function is as efficient as a iterative (non-recursive,
using for loops) function that computes the sum of the entries in an array.

238

5.6 Implementation considerations for recursive methods (C) F. Estrada 2024

Figure 5.20: Illustration of how the tail-recursive function works at the function call stack level. Because each
call completes its work before the recursive call takes place, it does not need to be kept in the stack. As a result
there is never more than one stack frame reserved for the function in the stack, and in fact the same stack frame
can be re-used by each successive call - thereby eliminating the overhead of reserving and releasing space from
the call stack.

To test this, we can measure the time it takes to compute the sum of the entries in an array with 10, 00 floating
point numbers using three different implementations of the sum function:

Iterative sum - with for loops
Recursive sum - the original sum()
Tail-recursive sum - the sum_TR() we just developed

the sum is performed 100, 000 times with each function, and the total time is reported (doing the sum a single time
is just too fast to accurately measure time taken on modern computers). The results are as follows:
./sum_runtime_analysis
For loops, sum=4988.303693, time taken=0.805763
Recursion, sum=4988.303693, time taken=1.389484
Tail recursion, sum=4988.303693, time taken=0.797839

We can quickly see that the plain recursive version of the sum function is about 70% slower than the iterative
function using only for-loops. We can also see that the tail-recursive version is just as fast - there is no visible
overhead caused by the use of recursion (the tiny difference is not meaningful, and likely caused by timing
inaccuracies in the computer where the program was run).

239

5.7 Solving graph problems with recursion (C) F. Estrada 2024

Note

Tail recursion optimization is a feature of modern programming languages and modern compilers. The
compiler, or the interpreter for the language, must be able to recognize that a function is tail-recursive,
and must be able to carry out the required optimizations to ensure no space is reserved in the call stack for
successive calls to the recursive function, and that the result is returned directly from the last call when it
reaches the base case. Put in a different way, if the compiler or language does not support tail recursion
optimization, the two functions sum() and sum_TR() will behave in exactly the same way, use up a lot of
space in the stack, and both would be just as slow when compared to the iterative version. Luckily, most
current compilers and programming languages support this optimization.

So, in conclusion, when you are thinking of solving a problem with recursion, it is well worth the time to think
of whether or not you can design your solution so that it is tail-recursive. It should be noted that not all recursive
functions can be made tail-recursive. In such cases, the overhead of recursion must be carefully considered and
accounted for.

5.7 Solving graph problems with recursion

We started this Chapter by learning about graphs and the kinds of problems we can solve with them. We said
that recursion is a natural tool for working with graphs since graphs are recursive in nature. Now that we have
learned about recursion, let’s go back and solve the path-finding problem shown in Fig. 5.21. In this problem, we
have a start location (the mouse), a destination (the cheese), and a graph that has 8× 8 = 64 different locations.
Each of these is represented by a node. To identify which node corresponds to which location, we can number the
nodes starting with 0 at the top-left corner of the maze, and going all the way to 63 at the bottom-right.

Figure 5.21: The problem of finding a path in a maze. Each location in the maze becomes a node in a graph, the
index for the node corresponds to its location in the maze as shown.

We can represent the connectivity of the maze with the edges in the graph. If two neighbouring locations are
connected (i.e. if the mouse can move from one to the next, because there is no wall separating them) we will have
an edge joining the corresponding nodes. Edge information can be stored in an adjacency matrix or an adjacency
list. For simplicity, here we will assume an adjacency matrix is used.

The problem we have to solve is finding a path, which consists of a sequence of connected nodes, leading from
the start node to the destination. Let’s formulate a recursive solution for this problem.

240

5.7 Solving graph problems with recursion (C) F. Estrada 2024

The base case: The simplest version of this problem occurs when the start node is the same as the destination
node, in which case we are done. This is analogous to how a single-entry array is already sorted and there is nothing
more to do. This is, however, not the only base case - what would happen if there was no path from start to
destination? in that case we would expect to search through the entire graph and come up with no solution. So
another base case is: there are no more nodes in the graph that we can reach from the start node.

The recursive case: This will deal with finding a path from some starting node (let’s call it the current node)
to the destination. It must reduce the size of the problem in some way so that eventually we reach one of our base
cases. In the case of path finding, a common recursive case:

Removes the current node from the graph (to create a smaller sub-graph).
Recursively finds a path from each neighbour of the current node to the destination in the smaller sub-graph.
If any of the neighbours returns a valid path, build a longer path from the current node to the destination
by pre-pending the current node to the path returned by the neighbour.

Implicit in the above is that the recursive case will consider each node in the graph at most once (once it is
removed by the recursive case, it will never again be reached from any of the sub-graphs).

The order in which we check for a path from the neighbours to the destination is important, it is called the
exploration strategy. Different strategies will result in different search patterns (much like different ways for
splitting an array result in different sorting methods). Depending on our choice of strategy, we may find completely
different paths from one node to another. The choice of ordering strategy is a topic for an Artificial Intelligence
book. There is no strategy that is optimal for every graph search problem, instead, different problems require
different strategies.

For the purpose of understanding how we can apply recursion to solve path finding on graphs, let’s look at
the pseudo-code for the simplest strategy - one that is purely recursive. This exploration strategy is called DFS for
Depth-First Search and it is a fundamental technique in graph search. DFS forms the basis of algorithms used for
scheduling and other constraint satisfaction problems.
// Inputs: current (index for the current node)
// destination (index for the destination node)
// adjacency_matrix[][] (NxN array representing edges in the graph)
// visited[] (an array of size N, initially all zeros)

DFS(current, destination, adjacency_matrix, visited)

visited[current]=1; // Mark current node as ’visited’ (this
// removes it from the subgraph)

if ’current’ is the same as ’destination’

return destination // We got to our first base case

otherwise

for each neighbour of current, if visited[neighbour]==0

subpath=DFS(neighbour, destination, adjacency_matrix, visited)

241

5.8 Debugging recursive code (C) F. Estrada 2024

if ’subpath’ is not <empty>

// prepend current to subpath to build full path
return {current -> subpath}

// We checked all neighbours and found no path...

return (<empty>) // Second base case, no subpath from ’current’
// to ’destination’ can be found

The DFS algorithm as shown above is well worth knowing. If is found in many application domains, and can
be used to solve many general problems that require exploring a graph.

� Exercise 5.7 Implement DFS for path finding on a grid of locations just as in Fig. 5.21. You don’t need to actually
create data for nodes in the graph! Since we are not actually doing any information processing at this point (only
finding paths from one node to another by their index in the grid) it is enough to create an adjacency matrix (for a
grid of size m× n the adjacency matrix has a size of mn×mn) and then implement the DFS algorithm above.

Here is a sample adjacency matrix you can use to develop and test your DFS implementation. This is for a
4× 4 grid:
int Adj[16][16]={{0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0}

{0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0}
{0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0}
{0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0}
{1,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0}
{0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0}
{0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,0}
{0,0,0,1,0,0,1,0,0,0,0,1,0,0,0,0}
{0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0}
{0,0,0,0,0,1,0,0,0,0,1,0,0,1,0,0}
{0,0,0,0,0,0,1,0,0,1,0,1,0,0,1,0}
{0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,1}
{0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0}
{0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0}
{0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0}
{0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0}};

Once you have completed the implementation of DFS, test it by finding paths between different pairs of nodes
in the graph and checking that they make sense for the grid we have. This will require you to:

Draw the graph as a grid of 4× 4 nodes, linked as per the adjacency matrix
Follow the paths returned by DFS for each of your tests, and verify they are valid (i.e. they visit neighbouring
nodes that are connected in a sequence that leads from start to destination)

Note: The DFS process includes a step where the path is grown by pre-pending the current node to a subpath
returned by a recursive call to DFS. This step requires thought. You’re expanding a data structure whose size is not
known in advance (you don’t know the length of the path you will find). So think carefully about how to implement
this, and remember we have several data structures we can use at this point which allow you to add data on-demand.

242

5.8 Debugging recursive code (C) F. Estrada 2024

5.8 Debugging recursive code

Testing and debugging recursive code can be tricky. But with a bit of practice, and if you think carefully about
what your recursion is supposed to be doing, you’ll be able to handle any recursive function.

What we need to understand before we start debugging:
The base cases - double-check that every base case has been considered, and that they are all in the imple-
mentation.
The recursive case - check that the the splitting strategy is reasonable, and that it is implemented properly.
Write down a step-by-step example of the entire process for an input that is small (so you can walk through
the entire process by hand) but large enough to get the recursion going for a couple of levels at least.

Tracing your recursive code: The tricky part here is that the same function gets called over-and-over-and-
over. So we need additional information in order to figure out what step of the recursion each call corresponds
to, and then determine at which step something is not working right. How can we do this?

First find a small-enough case that fails: As we saw at the end of Chapter 4, debugging starts with a failed
test. So it is important to find an input that is small enough you can verify the process by hand and for which the
program produces an incorrect result. Once we have the test case as well as a hand-written step-by-step solution
for that test case, choose whether we want to use a debugger or whether we want to use print statements to trace
through the program.

Tracing using a debugger: If we are using a debugger, then we want to insert breakpoints at the start of
the recursive function, so that once the recursive function begins we can step through the code in the function
and compare what it is doing against our hand-written solution for the selected test case. The goal is to verify that
at each step the function carries out the correct process, that the recursive case is correctly splitting the problem
into sub-problems, and that the base cases are being triggered when found. We will need to have pen and paper, as
we will need to keep track of recursion depth and possibly other information needed to indicate what step of the
process we are looking at.

Tracing using printf(): The goal is the same as when we are using a debugger, only in this case it is not
interactive. Information is printed out for us to examine after the program has run. Because the recursion involves
a sequence of calls, there will likely be a sizable number of lines of text with information for us to walk through and
compare with out hand-written solution. To make the process easier we can do one or more of the following:

We can add a parameter to your function that indicates the recursion depth - that is, the step within the
recursion to which any printed information for this particular call corresponds. The recursion depth starts
at zero when we first call the recursive function, and thereafter is increased by 1 by each successive recursive
call.
We can indent the information printed based on the recursion depth - so there is a visual indication of what
level within the recursion the printed data corresponds to.
We can dump the printed information to a log file - because reading from the screen makes it harder to
go back and forth as we are looking for a problem, and it is possible that if there is a large number of print

243

5.8 Debugging recursive code (C) F. Estrada 2024

statements, the earlier ones may have been lost because the terminal keeps only a fixed number of lines of
text.
We can add a pause within the recursive function (at an appropriate place) to give us time to check the
information that was printed out for each recursive call before continuing with the next one.

Note

Dumping the program’s output into a log file is easily done:

// On Linux/Mac (from the terminal)
./my_program > log.txt

// On Windows
.\my_program.exe > log.txt

// The above will result in a new text file called ’log.txt’
// that contains the output of any printf() statements in
// ’my_program’

Adding a pause statement is easily accomplished by adding something like this:
printf("Press [ENTER] to continue...\n");
fgets(&dummy[0], 10, stdin);

// you must have declared a dummy string somewhere else in the
// function:
// char dummy[10];

this simply waits for the user to input some string. For the purpose of debugging, it waits for you to press
ENTER. Notice that any text that is typed-in will be ignored.

Having a well organized log can make the difference between being able to quickly locate a problem, or
spending a large amount of time trying to make sense of the information printed out in the log. The closer the
structure of the printed output resembles the structure of the recursion (illustrated in Fig. 5.22) the easier it will be
for us to figure out where any problems may be.

A couple common problems often found with code that uses recursion:
It never reaches the base case (we can see the depth increasing to unreasonable values given the input) - we
should check the recursive case, make sure it is making the problem smaller, and then check that the base
cases have all been identified and implemented.
It runs out of stack space for recursive calls. This can happen with large problems which require very deep
sequences of recursive calls and use a large amount of memory for each call. Consider whether it would be
possible to implement a tail recursive version of the function. It this is not feasible, we can use the depth
variable to enforce a maximum allowed recursion depth. Our recursive call checks the depth value, and if
it is equal to the maximum allowed recursion depth, it prints a message to let the user know the problem is
too big to solve with the available stack memory. The advantage of doing this is that it prevents the program
from crashing.
The recursion doesn’t return the correct solution - we should check that the base case is returning the correct

244

5.9 Additional Exercises (C) F. Estrada 2024

Figure 5.22: Structure of the recursive process showing how data at different depths relates to previous recursive
calls. Whatever tracing process we choose to use, we need to remain aware of what step in the recursion we are
looking at, so we can check the information available to us against our hand-written solution.

result, and then check for correctness the process of building a bigger solution from the smaller one.

This concludes our study of recursion, one of the most important and useful tools for problem solving in
computer science. It is a concept that is often in the minds of people who work with computers, so we close this
Section with a couple of cartoons about recursion, courtesy of Randall Munroe of XKCD (http://www.xkcd.com).

5.9 Additional Exercises

The importance of choosing the right tool - We have claimed that you can solve any problem in either a
recursive way or with loops. Choosing the right tool for a job matters. See if you can figure out how to solve the
following problems using the tool indicated with each exercise.

� Exercise 5.8 Assume we have a BST that stores unique integer keys. Write an algorithm that performs in-order
BST traversal on this BST and prints the keys in sorted order. However, you are not allowed to use recursion.
Use only loops to solve this task. You can use helper data structures as needed (hint, you will need to do some
book-keeping that a recursive solution implicitly takes care of).

� Exercise 5.9 Flood-fill: A common operation in paint programs is that of filling a closed region with colour. This
is called flood-fill because we can think of it as pouring paint into the region, which then spreads out until it reaches
the boundary of the region. The process is illustrated in Fig. 5.24.

245

http://www.xkcd.com

5.9 Additional Exercises (C) F. Estrada 2024

Figure 5.23: A couple of cartoons about recursion from XKCD. Courtesy of Randall Munroe, xkcd.com.

Figure 5.24: The flood-fill process simulates pouring paint into a closed shape. The paint spreads out until it
reaches the boundaries of the shape. The process stops when the entire shape is filled with paint.

246

5.9 Additional Exercises (C) F. Estrada 2024

For the purpose of this exercise, the image will be a 2D array of size 500× 500, and it will represent a black
and white picture. Black pixels will have a value of 0 and white pixels will have a value of 1.

Write the algorithm for performing flood-fill on a closed shape such as shown in Fig. 5.24 using only loops,
no recursion
Write the algorithm for performing flood-fill using recursion.

Hint: For both cases, it helps to think of the process of paint spreading in order to figure out what the algorithm
should do next.

� Exercise 5.10 Graph distance - One common problem in graph-based applications is finding the subset of nodes
that is reachable from a given node within a certain number of hops (i.e. going from one node to a neighbouring
node is one hop). For example, suppose we have a graph representing the pre-requisite structure of courses at
a University, and we want to know which courses have Introduction to Cell Biology as a pre-requisite, or as a
pre-requisite to their pre-requisite. This would require us to find any nodes in the pre-requisite graph that are
up to two hops away from Introduction to Cell Biology. Another example, in a social network representing
people (as nodes) and their social connections as edges, we may ask for a list of people who are either friends,
friends-of-friends, or friends-of-friends-of-friends of a particular person in order to invite everyone to a big party.
This is equivalent to finding all the nodes in the social network graph that are at a distance of 3 or less from the
one representing the person whose friends we want to invite over.

The task: Given the adjacency matrix for the graph:

Propose an algorithm that finds all nodes within a distance k or fewer hops from a selected start node using
only loops.
Propose an equivalent algorithm (i.e. one that solves exactly the same task) using recursion.

Question: Which of the two versions of the algorithm is more intuitive and easier to understand and
generalize?

� Exercise 5.11 Crunchy! - DFS is only one possible strategy for exploring a graph. A different method, called
breadth-first search (BFS) uses a different order of exploration. For DFS, a node’s grand-children, great-grand-
children, and so on, will be explored before all of the node’s children are explored. To see this, trace through the
DFS pseudo code on a small graph (say, 4× 4) and notice the order in which nodes are visited.

With BFS on the other hand, all the node’s children are all explored first (before any grand-children). Then all
of the grand-children are explored (before any great-grand-children), and so on until the entire graph is explored.

BFS is normally implemented using a queue (no need for recursion). Develop pseudo code for implementing
the BFS algorithm for exploring a graph. Assume you have an implementation of a queue (you may want to review
the operations supported by a queue in Chapter 3).

BFS is used for graph search, so it may help to think in terms of the path-finding problem described earlier
in the chapter. You can assume there will be a start node and a destination node, and we want BFS to find and
return a path from start to destination.

247

5.10 Building programs that work - Part 5 (C) F. Estrada 2024

� Exercise 5.12 Tail recursion: - Implement a function that computes the factorial of an integer n iteratively (using
only loops). Then implement a recursive version of the function. Finally, see if you can implement the recursive
version so that it is tail-recursive.

Once you have the three different implementations, test them for speed by
Writing a pair of nested for loops. The outer loop runs 100 iterations, the inner loop runs 1,000,000
iterations. In the body of the inner loop there is a single instruction that computes the factorial of some
number, e.g. 25, using one the three functions you wrote
Compile and run the program, and time how long it takes to complete
Change the function used to compute the factorial, and run the program again. Record the run-time for all
three different implementations

Note: To measure the time it takes for a program to complete you can do the following on Linux and Mac:
>time my_program

this will print out the time taken by my_program

� Exercise 5.13 Tail recursion: - Implement a function that computes the nth Fibonacci number using only loops.
Then implement a recursive version of the function. Finally, implement a tail-recursive version of the function.
Once you have the three different implementations, test them for speed as described in the previous exercise.

5.10 Building programs that work - Part 5

Through the previous chapters, we developed a process for solving a problem, developing our solution into
a program design, implementing and testing as we develop to produce code that works, and debugging to find
and resolve problems identified through testing or that show up once users are running our programs.

Now we should look at two very powerful tools to help us find and fix a wide variety of problems that result
from bugs in how our program uses or accesses memory. This class of bugs tends to be particularly tricky to
find and fix using standard tools such as debuggers or print statements. This is because often their behaviour
is somewhat random, and may or may not be triggered by a specific test, or may occur under particular testing
conditions which are hard to identify.

Luckily, there are tools designed to check every memory access our program does, and report any problems
so we can fix them. These tools are:

valgrind, a free open-source tool that has been the standard for memory checking and debugging on Linux
and Mac for a long time. This can be installed directly from your computer’s package manager.
Dr. Memory, a newer, free open-source tool that is available for all platforms: Linux, Mac, and Windows,
you can find it here: https://drmemory.org/.

Both carry out a thorough check of your program’s memory accesses, and can help you find a large variety of
bugs including very common ones such as:

Off-by-one errors - and in general index-out-of-bounds errors when working with arrays.

248

https://drmemory.org/

5.10 Building programs that work - Part 5 (C) F. Estrada 2024

Invalid memory access - such as using a pointer and an offset to read or write into memory that is not
reserved for the program.
Use of uninitialized variables - which happens when we declare a variable, and then use it before we actually
assign a value to it. As you remember, variables contain junk until we give them a value.
Use of uninitialized data - similar to uninitialized variables, but happens when we use malloc() to get
memory and then forget to fill that memory with valid data before using it in the program in some way.
Memory leaks - which occur when we reserve memory with malloc() or calloc() but forget to release it with
free() before the program ends.
Double free or invalid free - which happens when we try to release memory more than once, or when we
try to release memory that was not reserved with malloc() or calloc().

Both of these tools offer a significant advantage when trying to resolve bugs related to memory access. But bear
in mind that both of these tools are complex and they will require you to practice using them and understanding
the output. There are extensive tutorials for both valgrind and Dr. Memory, and you should spend a bit of time
learning how to use at least one of these.

But, to give you an idea of what these tools do, here is a short program with plenty of memory access problems:

#include<stdio.h>
#include<stdlib.h>

int main()
{

int array[10];
int d;
int *p;
float *fp;

// Fill the array with values
// depending on if d=0 or
// d=1 (unfortunately, it seems we
// forgot to set d to some value!)
if (d==0) // Problem #0
{

for (int i=0; i<10; i++)
array[i]=i;

}
else
{

for (int i=0; i<10; i++)
array[i]=i*i;

}

// Print the array, unfortunately
// we have an off-by-one error
// in the for loop!
for (int i=0; i<=10; i++) // Problem #1
printf("array[%d]=%d\n",i,array[i]);

// Get a pointer to the array and use
// it to change some values,
// unfortunately we are trying to access

249

5.10 Building programs that work - Part 5 (C) F. Estrada 2024

// values that are not in the array
p=&array[0];
*(p+250)=15; // Problem #2

// Let’s get some memory for floating point
// data
fp=(float *)malloc(5*sizeof(float)); // 5 floats requested

// And the line below should crash the program
// because we are trying to free memory for
// an array that was not dynamically allocated!

free(p); // Problem #3

return 0; // All good?

// No! we forgot to free() the memory assigned to
// fp, so there is a memory leak!

// Problem #4
}

See what happens when we compile and run the program:
>./a.out
array[0]=0
array[1]=1
array[2]=2
array[3]=3
array[4]=4
array[5]=5
array[6]=6
array[7]=7
array[8]=8
array[9]=9
array[10]=1955339008
double free or corruption (out)
Aborted (core dumped)

Obviously something went wrong, so we need to trace and debug the program - in the example above it is
easy because it is short and we already know what the problems are, but you can imagine in a large, complex piece
of software finding a memory access issue will be difficult. Let’s see what we can learn by running Dr. Memory
and valgrind on the program above. The output from Dr. Memory is shown below:
> ./drmemory -- ./a.out
~~Dr.M~~ Dr. Memory version 2.6.0
~~Dr.M~~ WARNING: application is missing line number information.
~~Dr.M~~
~~Dr.M~~ Error #1: UNINITIALIZED READ: reading 0x00007ffeffd5495c-0x00007ffeffd54960 4 byte(s)
~~Dr.M~~ # 0 main
~~Dr.M~~ Note: @0:00:00.297 in thread 5316
~~Dr.M~~ Note: instruction: cmp 0xffffffbc(%rbp) $0x00000000
array[0]=0
array[1]=1
array[2]=2
array[3]=3
array[4]=4
array[5]=5
array[6]=6

250

5.10 Building programs that work - Part 5 (C) F. Estrada 2024

array[7]=7
array[8]=8
array[9]=9
array[10]=-1084233984
~~Dr.M~~
~~Dr.M~~ Error #2: INVALID HEAP ARGUMENT to free 0x00007ffeffd54970
~~Dr.M~~ # 0 replace_free [/home/runner/work/drmemory/drmemory/common/alloc_replace.c

:2710]
~~Dr.M~~ # 1 main
~~Dr.M~~ Note: @0:00:00.324 in thread 5316
~~Dr.M~~
~~Dr.M~~ Error #3: LEAK 20 direct bytes 0x00007f8cec2f13a0-0x00007f8cec2f13b4 + 0 indirect

bytes
~~Dr.M~~ # 0 replace_malloc [/home/runner/work/drmemory/drmemory/common/alloc_replace

.c:2580]
~~Dr.M~~ # 1 main
~~Dr.M~~
~~Dr.M~~ ERRORS FOUND:
~~Dr.M~~ 0 unique, 0 total unaddressable access(es)
~~Dr.M~~ 1 unique, 1 total uninitialized access(es)
~~Dr.M~~ 1 unique, 1 total invalid heap argument(s)
~~Dr.M~~ 0 unique, 0 total warning(s)
~~Dr.M~~ 1 unique, 1 total, 20 byte(s) of leak(s)
~~Dr.M~~ 0 unique, 0 total, 0 byte(s) of possible leak(s)
~~Dr.M~~ ERRORS IGNORED:
~~Dr.M~~ 14 unique, 17 total, 7610 byte(s) of still-reachable allocation(s)
~~Dr.M~~ (re-run with "-show_reachable" for details)
~~Dr.M~~ Details: /home/strider/mtvp/DrMemory-Linux-2.6.0/drmemory/logs/DrMemory-a.out

.5316.000/results.txt

Notice the line
~~Dr.M~~ Error #1: UNINITIALIZED READ: reading 0x00007ffeffd5495c-0x00007ffeffd54960 4 byte(s)

It indicates we are accessing uninitialized memory in the program. it is not clear exactly where this happens
because Dr. Memory is working on the executable program and can’t reference your program’s code.

In order to help understand what memory debugging tools provide us, it helps to use print statements to tell
us which part of the program is running. We are limited to using print statements because we can not run a
debugger together with a memory checking tool. So - let us change our program and add a few print statements:
#include<stdio.h>
#include<stdlib.h>

int main()
{

int array[10];
int d;
int *p;
float *fp;

// Fill the array with values
// depending on if d=0 or
// d=1 (unfortunately, it seems we
// forgot to set d to some value!)

printf("Initializing integer array... \n");
if (d==0) // Problem #0

251

5.10 Building programs that work - Part 5 (C) F. Estrada 2024

{
for (int i=0; i<10; i++)

array[i]=i;
}
else
{

for (int i=0; i<10; i++)
array[i]=i*i;

}

// Print the array, unfortunately
// we have an off-by-one error
// in the for loop!

printf("Printing the contents of the integer array... \n");
for (int i=0; i<=10; i++) // Problem #1
printf("array[%d]=%d\n",i,array[i]);

// Get a pointer to the array and use
// it to change some values,
// unfortunately we are trying to acces
// values that are not in the array
printf("Using pointers to access array data... \n");
p=&array[0];
*(p+250)=15; // Problem #2

// Let’s get some memory for floating point
// data
printf("Reserving dynamic memory... \n");
fp=(float *)malloc(5*sizeof(float)); // 5 floats requested

// And the line below should crash the program
// because we are trying to free memory for
// an array that was not dynamically allocated!

printf("Releasing memory before the program exits... \n");
free(p); // Problem #3

return 0; // All good?

// No! we forgot to free() the memory assigned to
// fp, so there is a memory leak!

// Problem #4
}

Now let’s re-compile the program and run Dr. Memory again, which results in the following output:
>./drmemory -- ./a.out
~~Dr.M~~ Dr. Memory version 2.6.0
Initializing integer array...
~~Dr.M~~ WARNING: application is missing line number information.
~~Dr.M~~
~~Dr.M~~ Error #1: UNINITIALIZED READ: reading 0x00007ffcce72498c-0x00007ffcce724990 4 byte(s)
~~Dr.M~~ # 0 main
~~Dr.M~~ Note: @0:00:00.272 in thread 5502
~~Dr.M~~ Note: instruction: cmp 0xffffffbc(%rbp) $0x00000000
Printing the contents of the integer array...
array[0]=0
array[1]=1

252

5.10 Building programs that work - Part 5 (C) F. Estrada 2024

array[2]=2
array[3]=3
array[4]=4
array[5]=5
array[6]=6
array[7]=7
array[8]=8
array[9]=9
array[10]=724062720
Using pointers to access array data...
Reserving dynamic memory...
Releasing memory before the program exits...
~~Dr.M~~
~~Dr.M~~ Error #2: INVALID HEAP ARGUMENT to free 0x00007ffcce7249a0
~~Dr.M~~ # 0 replace_free [/home/runner/work/drmemory/drmemory/common/alloc_replace.c

:2710]
~~Dr.M~~ # 1 main
~~Dr.M~~ Note: @0:00:00.295 in thread 5502
~~Dr.M~~
~~Dr.M~~ Error #3: LEAK 20 direct bytes 0x00007f0c80e213a0-0x00007f0c80e213b4 + 0 indirect

bytes
~~Dr.M~~ # 0 replace_malloc [/home/runner/work/drmemory/drmemory/common/alloc_replace

.c:2580]
~~Dr.M~~ # 1 main
~~Dr.M~~
~~Dr.M~~ ERRORS FOUND:
~~Dr.M~~ 0 unique, 0 total unaddressable access(es)
~~Dr.M~~ 1 unique, 1 total uninitialized access(es)
~~Dr.M~~ 1 unique, 1 total invalid heap argument(s)
~~Dr.M~~ 0 unique, 0 total warning(s)
~~Dr.M~~ 1 unique, 1 total, 20 byte(s) of leak(s)
~~Dr.M~~ 0 unique, 0 total, 0 byte(s) of possible leak(s)
~~Dr.M~~ ERRORS IGNORED:
~~Dr.M~~ 14 unique, 17 total, 7610 byte(s) of still-reachable allocation(s)
~~Dr.M~~ (re-run with "-show_reachable" for details)
~~Dr.M~~ Details: /home/strider/mtvp/DrMemory-Linux-2.6.0/drmemory/logs/DrMemory-a.out

.5502.000/results.txt

Now we can see that Error #1 occurred while initializing integer array, so it must be reporting the use of d,
which was declared but not initialized (this is labeled problem #0 in the program listing).

Interestingly, Dr. Memory did not catch the off-by-one error printing the array, or the invalid pointer access
- this is likely because whatever memory locations were accessed are still within the program’s reserved memory.

The next error to be reported, Error #2 happens when releasing memory before the program exits..., and it
states that an invalid argument was passed to free(). This corresponds to problem #3 in the program listing.

Finally, Dr. Memory reports in Error #3 that there were 20 bytes of memory leaks (problem #4 in the
listing) corresponding to the 5 floating point values we allocated with malloc() and assigned to pointer fp but forgot
to release.

All things considered, by using a combination of carefully placed print statements together with Dr. Memory,
we were able to quickly identify 3 out of 5 problems in the program above. The remaining two would require specific
tests that cause the program to fail to be run, together with the print statement + memory checking combination.

253

5.10 Building programs that work - Part 5 (C) F. Estrada 2024

Let’s see what valgrind does with the same program (valgrind prints a lot of information messages that are
not relevant for debugging, the output below contains only the lines pertaining problems with the program):
> valgrind --verbose ./a.out
==5911== Memcheck, a memory error detector
==5911== Copyright (C) 2002-2017, and GNU GPL’d, by Julian Seward et al.
==5911== Using Valgrind-3.13.0 and LibVEX; rerun with -h for copyright info
==5911== Command: ./a.out
==5911==
--5911-- Valgrind options:
--5911-- --verbose

.

.

.

--5911-- REDIR: 0x4ed5020 (libc.so.6:malloc) redirected to 0x4c31aa0 (malloc)
Initializing integer array...
==5911== Conditional jump or move depends on uninitialised value(s)
==5911== at 0x1087B1: main (in /home/strider/CS/course_material/MyCourses/Sabbatical_23-24/

ICS_BOOK/scratch/a.out)
==5911==
--5911-- REDIR: 0x4fcc970 (libc.so.6:__mempcpy_avx_unaligned_erms) redirected to 0x4c39130 (

mempcpy)
Printing the contents of the integer array...
--5911-- REDIR: 0x4fcc090 (libc.so.6:__strchrnul_avx2) redirected to 0x4c39020 (strchrnul)
array[0]=0
array[1]=1
array[2]=2
array[3]=3
array[4]=4
array[5]=5
array[6]=6
array[7]=7
array[8]=8
array[9]=9
array[10]=1001336320
Using pointers to access array data...
Reserving dynamic memory...
Releasing memory before the program exits...
--5911-- REDIR: 0x4ed5910 (libc.so.6:free) redirected to 0x4c32cd0 (free)
==5911== Invalid free() / delete / delete[] / realloc()
==5911== at 0x4C32D3B: free (in /usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so)
==5911== by 0x10888C: main (in /home/strider/CS/course_material/MyCourses/Sabbatical_23-24/

ICS_BOOK/scratch/a.out)
==5911== Address 0x1ffefffb50 is on thread 1’s stack
==5911== in frame #1, created by main (???:)

.

.

.

==5911==
==5911== LEAK SUMMARY:
==5911== definitely lost: 20 bytes in 1 blocks
==5911== indirectly lost: 0 bytes in 0 blocks
==5911== possibly lost: 0 bytes in 0 blocks
==5911== still reachable: 0 bytes in 0 blocks
==5911== suppressed: 0 bytes in 0 blocks
==5911== Rerun with --leak-check=full to see details of leaked memory

254

5.10 Building programs that work - Part 5 (C) F. Estrada 2024

==5911==

Similar to Dr. Memory, valgrind finds:

Conditional jump or move depends on uninitalized value(s) - problem #0
Invalid free() - problem #3
Memory leaks ’definitely lost: 20 bytes in 1 block’ - problem #4

Also just like Dr. Memory, valgrind didn’t catch the off-by-one array access problem, or the invalid pointer
access. However, any test case where your program crashes will be caught by either of these tools, and the possible
cause will be reported.

In conclusion: You should learn to use, and then always check your programs with a memory checking tool.
It will likely reveal problems that were not visible during your testing and that would go undetected otherwise.
While the tools aren’t perfect and will not catch every single problem with a program, used in conjunction with a
thorough and well designed testing strategy they will enable you to produce code that is sound and correct in
terms of how your programs access information within the computer’s memory. Spending time learning how to use
a memory checking tool will turn you into a much more capable software developer, and is well worth the effort.
Another good habit to develop, and a valuable skill to add to your toolbox.

255

Chapter 6 Designing and Building Good Software

So far, we have been thinking of problem solving in terms of the concepts, ideas, and algorithms we may
need to use to get a particular task done. We should also spend some time considering the related issue of how to
organize the software we are writing in a way that makes our solution as useful to others as possible.

In this Chapter, we will discuss the general principles that guide the organization of larger pieces of software.
The goal is to understand how and why we need to think very carefully about the way we design the software we
are writing, and to learn about the principles that have been developed to help us better organize, maintain, and
expand on a given software solution.

The principles we will learn in this Chapter will be the foundation on which we will build a full understanding
of the software design process, a topic you can explore in depth by reading up on software design, software
engineering, and software architecture.

6.1 Software as a collection of modules

As we have worked our way through previous chapters, we have already been taking advantage of the significant
amount of work done by others on our behalf. All the functions in standard C libraries that we have used to implement
the different algorithms discussed in the book had to be designed, developed, and tested well before they shipped
with your compiler so you could easily have things like printf() or qsort() at your disposal.

Question: what would software look like if we didn’t have any libraries for commonly used functions? If we
think about it for a moment, we will realize that such software would look like the illustration in Fig. 6.1.

Figure 6.1: Software as a disorganized collection of stuff that does something. Courtesy of Randall Munroe,
http://www.xkcd.com.

Without some form of organization, our software would be a big pile of code, with all kinds of functionality
mixed in - there would be functions for carrying out the algorithms we need, but also all kinds of unrelated things

h

6.2 A wish list for building good software (C) F. Estrada 2024

like printing to the terminal, reading user input, managing files, implementing basic math, etc.
Anyone trying to understand our software, or worse, someone with the task of finding and fixing any existing

bugs in our software would have a very difficult time dealing with our code.
So instead of writing large piles of code that does every kind of thing, we should instead figure out how to

break down our application into a set of separate components each of which can be implemented as a module
with its own code, and which can be understood, tested, and debugged without having to sift through the rest of
the application’s components (or with only minimal need to do so). As an additional but very important benefit -
these modules can be easily reused, which means that they can be either directly combined with entirely different
applications we are developing, or re-used with only minimal changes.

In effect, what we want is to build a large library of modules that we can reuse with ease to build any software
we want. For example - we may want to write a module that provides support for creating, storing, managing, and
running standard algorithms on graphs. It could, for instance, provide path-finding using DFS, allow us to modify
the graph by adding or removing edges and nodes, and handle all the required data structures so that we don’t have
to re-write all of that code whenever we need to use a graph. We want to write this module in such a way that
anyone else writing a program that needs to do path finding can easily take our module for handling graphs and use
it without needing to read through our code in detail, and without needing to worry about our code being full of
bugs or being unnecessarily inefficient (in terms of complexity).

This is not a trivial problem - out software needs to be designed carefully and correctly, so that it can work
on a graph representing any data a developer may need to handle, so that it can easily be called from software
not written by us, and so that the resulting programs can be tested, debugged, and possibly expanded by other
developers who don’t know (and don’t need to know) the details of how we developed the graph module or even
how the algorithms contained in the module work.

Note

If you think back to Chapter 3, we already have discussed this idea. Back then we said that ADTs are useful
because they provide a developer with a concise idea of how the particular ADT organizes data and what
operations it supports in a way that is independent from implementation details. This allows a developer
to use any implementation of the ADT in their programs at the level of data and operations on data
without needing to know how these are actually implemented.
With well designed software modules we are pursuing a similar result: We want to design modules that
can be used in terms of data being stored and manipulated, and a set of operations and algorithms that
can be applied to the data managed by the module. We want a developer to be able to use the module
without needing to know or understand how the actual operations and algorithms are implemented, as this
will free them to focus on their actual task and allow them to build sophisticated software with advanced
functionality quickly, reliably, and without being experts on every possible aspect of computer science that
may be involved in solving a particular problem.

Let us look at some of the key principles that should be in our mind when we start exploring the world of
software design.

257

6.2 A wish list for building good software (C) F. Estrada 2024

6.2 A wish list for building good software

If we are going to put our time and effort into developing software for solving a problem, we want to make sure
the effort we put into it results in the best possible software. Below is a list of properties that we should carefully
consider when designing our software - not every single one will apply to every single problem, but we must always
consider them all before we sit down to design and develop our solution.

1) Modularity: Our software is composed of separate modules each of which has one specific task, and
each of which is self-contained, so it can be understood, tested, and maintained independently of the others. A
well designed modular program will help:

Reduce replication of code
Improve the chance that code we write will be reused
Make it easier to test the code and verify it is correct
Help a developer focus on the big picture of how a particular software is structured and how it works

2) Reusability: Writing good software requires a lot of thought and hard work, we want to ensure any modules
we write for a specific task can be re-used by any other application that requires the same functionality . For
instance, if we develop a module that implements shortest-path finding between two nodes in a graph (which, as
we saw, is a common problem in many application domains). We want our implementation to be such that anyone
needing to find the shortest path between graph nodes can simply take our code and use it to build their application.

3) Extendibility: We want our software to be easy to extend and improve. This allows us to build better,
more capable software over time by improving and expanding its functionality.

4) Maintainability: Our software must be well organized, easy to understand, well documented, and free
of unnecessary complexity. This improves our ability to test it, debug it, and upgrade it as needed. A competent
developer not familiar with our code should be able to quickly get to the point where they can work on/with it.

5) Correctness: Any software we develop and release must have been thoroughly tested and made as close to
bug-free as possible. Where appropriate, suitable tools should be used to determine correctness. Our code should
have been reviewed by experienced developers not related to its implementation, and a suitable process must be in
place for documenting, tracking, and resolving bugs found after the software is released.

6) Efficiency: We have spent a good amount of time thinking about complexity and how to study the efficiency
of our algorithms. We expect good code to be efficient both in terms of the algorithm chosen to solve a problem,
and also in terms of how that algorithm is implemented.

7) Openness: When possible (e.g. when we’re not developing software for a company that has a claim
of ownership over the code they pay us to write), we should consider contributing our work to the open source
software (OSS) community. There is a lot of good work already out there that is done for no other gain than to
provide something useful for others. And we can contribute to this effort. Open source software projects are a

258

6.3 How modules are organized and used in C (C) F. Estrada 2024

good way to make sure your work directly benefits others. We will get back to this at the end of the Chapter, in the
last section on how to build software that works.

8) Privacy and security: A significant portion, or even the majority of the software we write will be handling
potentially sensitive information. The data the program works with should be protected from unauthorized access,
use, or distribution. Consideration must be carefully given to the privacy of a user’s personal information,
and if the software is accessible over a network then we have to follow best known practices for securing access
to the software, protecting information from falling in the hands of hackers, and ensuring no unauthorized
copies of any information managed by the application can be made or distributed without proper authorization.
Very importantly the user must always grant informed consent before any personal information about them can
be requested and stored by our application. This means clearly and transparently indicating what information
will be requested and stored, how the information will be used, how long it will be stored, and how (if at all)
it will be shared with any third parties. No information should be gathered without informed consent.

The above is not a comprehensive list. Specific applications will require additional consideration to be given
to factors such as reliability, failure-tolerance, computational performance, data storage requirements, and
many other possible factors. However, the properties listed above are a solid starting point on which we can build
good software and apply to the vast majority of applications we may need to develop.

6.3 How modules are organized and used in C

So far, we have been working with applications that contain only a couple program files at the most, and we
have not needed to break up our application into multiple independent modules. This is only suitable for small
programs, and for applications with limited functionality. As we said above, we want to split complex applications
into modules that implement part of the application’s functionality. Each module will have its own program file(s),
and they all need to be brought together in the right way to generate the executable program for our application.

In C, this is done by splitting each module into:

A header file: These are files with extension .h, and contain only the function declarations, without any
of the code. Header files also provide definitions for common things such as for instance mathematical
constants. You have already been using header files for common C libraries such as stdio.h, and stdlib.h.
These provide the function definitions the compiler needs in order to know what to do when you call functions
such as printf() or malloc() that are provided by these libraries.
One of more program files: These have the extension .c and contain the actual code needed to implement
the functions declared in the header file. To create a working executable program we eventually need to
have access to the implementation of every function that is used by the application, regardless of whether it
is part of a library, or whether it is part of the code we have written ourselves.

Applications are built from multiple such modules by

Compiling each separate module into executable code with placeholders for functions from other modules.

259

6.4 Interacting with modules: The Application Programming Interface (API) (C) F. Estrada 2024

Linking all the modules together: this means bringing together the executable code that implements the
functionality from each of the modules being used, and updating the place-holders with the actual function
calls to each implemented function’s code.

The entire process is illustrated in Fig. 6.2. An application consisting of four different modules is split into
multiple files - there are four header (.h) files, one for each module. There are also four implementation (.c)
files with the corresponding implementation. Note that each module may use functions from the others, and uses
#include statements to import the function declarations for those modules during compilation.

Figure 6.2: The process for combining multiple modules into a single executable program.

Each module is compiled into an object (.o) file that contains executable code for that particular module’s
functions. This file contains placeholders wherever functions from other modules are used. Once all the modules
have been compiled into object files, all the .o files are linked together. This process involves combining the
implementation of any functions used in the program into a single executable file and replacing the placeholders
with actual working function calls. The result is a single, working, executable program.

All the C programs you have implemented and compiled up to this point had to go through this process.
We did not have to think about it because since we have only used standard C libraries, the entire process was
done automatically and transparently. However, once we start developing our own modules and developing
applications consisting of multiple components, we will need to keep in mind how the different parts work together
to build our application.

260

6.4 Interacting with modules: The Application Programming Interface (API) (C) F. Estrada 2024

6.4 Interacting with modules: The Application Programming Interface (API)

Back to the problem of how to build our software properly. The key problem that concern us is how will
other programs interact with our module? that means we have to think about the functionality that will be
provided by our module, which usually means the set of functions other programs can call, and the way in which
information will be passed to and from between other programs and our module’s functions.

Setting down the details of how modules communicate and interact with each other is the job of the Application
Programming Interface or API. The API contains all the specifications needed to make use of, and to interact
with different software modules, application libraries, local or remote computer systems, and even internet
based applications.

Note

Here are some examples of commonly used APIs you may need to work with in the future:

Google Maps: Allows us to make use of the Google maps framework for plotting locations and
for finding paths between points in maps - among many other things. You can check out the API at
https://developers.google.com/maps/documentation/javascript/tutorial
TensorFlow: Allows us to set up, train, test, evaluate, and operate machine learning algorithms,
including neural networks for solving a task that require learning from a very large dataset. Nowadays
such algorithms are behind some of the most useful applications in A.I. including Large Language
Models (LLMs). The API can be found at https://www.tensorflow.org/
Amazon AWS: Amazon’s cloud-based AWS runs a large portion of internet-hosted services, and
powers all kinds of applications from on-line trade to providing computing power for large simulations.
The API can be found at https://docs.aws.amazon.com/index.html#lang/en_us
Unity: Possibly the most popular API for creating, manipulating, and rendering 3D content; from
graphical user interfaces and simulations, to interactive programs and games. The API is at https:
//docs.unity3d.com/ScriptReference/

The above is just a tiny sample of the universe of APIs out there. Each of them is a world of complexity but
the key is - we don’t have to ever look at the code that implements any of the functionality they provide if we
don’t want to.

The usefulness of an API is that it allows us to use a module, library, or service, without having to know the
details of how it’s implemented. All we need to know is how to pass information to the functions in that module,
and how to get back results. This will be easier or harder, depending on whether the API is well designed or not. A
badly designed API will make software building cumbersome and reduce the usability of the module for which
the API was designed.

In C, the API consists of the function declarations (in the .h) file, along with any constants and other
important values defined there - it also includes all the documentation (at the top of each function) that describes
what each of the functions does and their parameters and return values. In addition to this (but not necessarily
required), there often exists some form of externally maintained documentation (e.g. manual pages, a wiki, or a
webpage) that describes and summarizes the API, and often also provides examples of how to use it.

261

https://developers.google.com/maps/documentation/javascript/tutorial
https://www.tensorflow.org/
https://docs.aws.amazon.com/index.html#lang/en_us
https://docs.unity3d.com/ScriptReference/
https://docs.unity3d.com/ScriptReference/

6.4 Interacting with modules: The Application Programming Interface (API) (C) F. Estrada 2024

Let’s now see what goes into designing a good API, and why it is a challenging but important process worth a
significant amount of thought and care.

6.4.1 Why thinking carefully about API design matters

Suppose we are writing a module for graph manipulation that supports finding a path between nodes in the
graph. The algorithm is implemented by this function:

intList *findPath(int Adj[][], int start, int goal)
{

/*
This function returns a linked-list of nodes that from a path
from:

start
to:

goal

If no path can be found, the function returns NULL.

Adj[][] is the adjacency matrix for a graph with size N

Assumes: Adj(i,j) is 1 if there is an edge from i to j, and 0
otherwise. i,j are node indexes in [0,N-1]

intList is a linked list of nodes, each of which has:
int nodeIndex;
intList *next;

}

We don’t need to know how the function works. All that matters is that the function declaration and the
comments tell the developer that this function will return the path between start and goal, that the path will be in
the form of a linked list of node indices, and that it describes the input parameters the function requires in order
to do its work.

Thereafter, if we need to use that function in our program all we need to do is:
Set up an adjacency matrix for my graph with size N ×N

Find the indexes of the start and goal nodes
Call the function

However, while considering this very straightforward use case, we will notice that our API is not designed
properly - it does not provide a way for us to specify N , the size of the graph. So we need to change our API a bit:

intList *findPath(int Adj[N][N], int N, int start, int goal);

With the above change, it seems our API is good to go and we can release this little function for other developers
to use. However, as soon as we release the API, another developer comes along who wants to use our function but
their use case is somewhat different. They need to find a path from a start node to one of a number of possible
goal nodes (for example, to find a path from a current location to any nearby gas station while driving). With the
current API, the developer is stuck doing something like this:

Set up an array of possible goal locations
for each location j in the goals array

path = findPath(A,N,s,goals[j])

262

6.4 Interacting with modules: The Application Programming Interface (API) (C) F. Estrada 2024

if path is not NULL break

Which is not too bad, but this seems like a common-enough use case that we may want to provide the API with a
way to to this, so we now re-define our API as follows:

intList *findPath(int Adj[][], int N, int start, int goals[k], int k)
{

/*
This function returns a linked-list of nodes that from a path
from:

start
to:

the *first* goal node in goals[] that can be
reached during search.

If no path can be found, the function returns NULL.

Adj[][] is the adjacency matrix for a graph with size N

goals[] is an array of integers with the index of any
goal nodes that should be considered by the
function.

k is the number of entries in goals[]

Assumes: Adj(i,j) is 1 if there is an edge from i to j, and 0
otherwise. i,j are node indexes in [0,N-1]

intList is a linked list of nodes, each of which has:
int nodeIndex;
intList *next;

*/
}

Question: Is the above actually better? is the latest version of the API more useful? is it easier to use and
more general? As it happens, the answer may not be straightforward, and likely there won’t be an answer that
suits every developer who wants to use this module.

Example 6.1 After the module is released on GitHub, one of the developers who would like to use the module
reports that their graph is too big and the adjacency matrix doesn’t fit in memory. They would like to have a way
to use an adjacency list instead.

That sounds reasonable, but we can not update the function call that uses an adjacency matrix to also work
with an adjacency list. This is a problem we will return to again soon, we can solve it, but in C it would be pretty
ugly, so we should solve it with a more advanced language.

For now, we decide we can help developers who have an adjacency list by adding one more function to the
API:

intList *findPath_l(intList* A[], int N, int start, int goals[k], int k)
{

This function returns a linked-list of nodes that from a path
from:

start
to:

the *first* goal node in goals[] that can be

263

6.4 Interacting with modules: The Application Programming Interface (API) (C) F. Estrada 2024

reached during search.

If no path can be found, the function returns NULL.

A[] is the adjacency list for a graph with size N

goals[] is an array of integers with the index of any
goal nodes that should be considered by the
function.

k is the number of entries in goals[]

intList is a linked list of nodes, each of which has:
int nodeIndex;
intList *next;

}

The example above illustrates a common problem when designing APIs. Often there are many small variations
on a problem that users of a module or library may need support for - depending on their specific task and the
rest of their program. However, adding functions that are small variations of each other is not a good solution:
it creates a lot of code duplication since the functions have the same task, but they work on slight variations of
the input which means a lot of the code in each function will be identical and yet not easily separable into smaller,
independent functions. It also makes the API cumbersome since developers now have to worry about figuring out
which among the many similar functions they should be using.

Consider what happens if a bug is found in findPath() - because there are two versions of it, we will have to
fix a problem in two places. The more variants of findPath() that we provide for the convenience of developers
using our module, the more places we will likely need to check and possibly update when problems are found.
This makes our module more difficult to maintain and increases the likelihood we will miss something that needs
updating. So it is far from an ideal situation.

This brings us to what happens whenever the API is updated. For instance, because bugs were fixed. Since
this doesn’t change any of the function declarations for the module, the change doesn’t affect how programs using
our module are written or how they interact with our module. However, in order for the update to take place on
programs that use our module, every program using it must be recompiled. This is illustrated in Fig. 6.3.

Figure 6.3: Updates to the module that do not change the function declarations in the API still require that all
programs using the module be recompiled.

264

6.4 Interacting with modules: The Application Programming Interface (API) (C) F. Estrada 2024

This is not uncommon, and should highlight the importance of having a solid development and testing
process for any module that is going to be made available for use by others - the more users out there for a particular
API, the larger the impact of any bugs or security vulnerabilities. This will place a burden on the developers of a
successful API as they will be expected to stay on top of any bug reports or reported security issues.

A final issue of note is that once the API has been released and it’s been picked up by a population of developers,
it becomes very difficult to make changes to it even if we realize that it was not designed properly in the first
place. To see why this is the case, consider the following situation:

Example 6.2 A developer who wants to use the path finding module requests that the path finding functions support
graphs with weighted edges. These are very common in all kinds of applications, so it is expected that a potentially
large number of people who need a module that does path finding would find this useful.

Unfortunately, this is not something we can easily change without significantly impacting any current users of
the API. The original functions that perform path finding specify that the edge information is integer and only the
presence or absence of an edge is indicated.

Weighted edges could have any real value, so the integer data type will not work in general. To provide the
desired functionality, we would have to change the declaration for findPath() so that it receives an adjacency
matrix that stores float or double values (we would also need to change findPath_l() to use an adjacency list that
stores the edge weights).

In terms of updating our module and API this may not seem too big a change - but it has major implications
to any existing users of the API all of whom have programs that interact with our original API. Because we can
not simply typecast an integer array into a floating point array, each of the existing users of our API will need
to change their program so that their graphs (currently not weighted) are stored in a suitable floating point array
or adjacency list. This is shown in Fig. 6.4.

Figure 6.4: Updates to the module that change the function declarations in the API will require all existing users
to modify their own programs so that they work with the updated API. This may involve significant effort, and
even if it does not, it is still unwelcome and annoying to developers.

The situation is far from ideal. We have to choose between making the API more useful to a wider range of
developers, or avoiding annoyance for existing users. Note that if we had thought more carefully about how to
handle graphs before writing and releasing our API this problem could have been avoided.

265

6.4 Interacting with modules: The Application Programming Interface (API) (C) F. Estrada 2024

We could try to solve the problem by adding yet another variant to the findPath() function, maybe something
called findPath_d() which takes a double precision floating point adjacency matrix. We may as well go ahead
and add findPath_dl() which is the equivalent for adjacency lists. But now we have four variants of the findPath()
function, with the inherent problem of code duplication and the corresponding increase to the work needed to fix
bugs and keep the module up to date.

One last attempt at making everyone happy may involve simply telling developers how to modify the API
themselves - for instance, by providing them with instructions on how to patch their own copy of the module so
that it supports weighted graphs. However, this has two major drawbacks:

Developers using a modified version of the API and module would be unable to get updates unless they are
willing to re-do the work of patching each update themselves (and this may not even be feasible depending
on what was updated).
If a module using a modified version of the API is part of a larger software project that uses other modules that
incorporate the original API, the larger project may no longer compile because of incompatibilities between
the versions of the module (this is illustrated in Fig. 6.5). There are ways to get around this problem, but they
are band-aid solutions to a problem that should not exist in the first place, and may not work depending on
how different the versions of the module become.

Figure 6.5: Allowing developers to modify the API themselves could easily cause larger software projects to break,
as incompatibilities between versions of the API used by different modules would show up during compilation
and/or linking.

All of the above is to motivate the idea that we have to be very careful when we set out to design an API, and
we have to think very hard about what use cases the module we are developing may be applied to, and about how
to write the API in such a way that it will be reasonably easy to maintain and expand without a significant impact
to applications that use it.

266

6.4 Interacting with modules: The Application Programming Interface (API) (C) F. Estrada 2024

Note

The discussion above introduces a couple very important concepts:

Use case: This is simply a specific situation or problem that a module or software component may
be required to handle, or provide support for.
Dependency: It is a relation between software modules where a particular piece of software uses
functionality from, and therefore requires that a library or module be available and have the correct
version in order work.

In C, anything we add to our code via #include statements introduces a dependency. For instance, our
programs almost always depend on the system libraries stdio, and stdlib at the very least. If these are not
present, we can’t compile the program. If they have the wrong version, the executable may not run and may
have to be re-compiled with the correct version.

6.4.2 Designing a good API

Advice on how to design a good API is best received from those who have the most experience designing
some of the most widely used APIs currently available. The suggestions and advice below are a summary of the
advice provided by Google in their article How to Design a Good API and Why it Matters which can be found
here: https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/32
713.pdf.

According to Google’s experts, a good API should be:

Easy to learn and use
Difficult to use incorrectly
Easy to maintain (the code in it is readable and well written)
Easy to extend and improve
Suitable for those who will be using it

The principles they propose for us to consider are:

The API should do one thing, and do it well - the functionality should be easy to explain and make sense
of. If it can’t be explained in simple terms, it’s probably not well done.
The API should be as small as possible, but not smaller. It should satisfy the need it’s serving, but should
not try to add every single possible thing we can think of. The key idea here is that we can add to it later, but
once it’s there, it’s hard to remove functionality.
The API should be implementation independent. This is a particularly important point. It should be
possible for us to completely change the way a function is implemented, without needing to change the API.
This also makes it possible to provide API implementations for different systems and platforms - they should
be identical as far as the user is concerned.

267

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/32713.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/32713.pdf

6.5 Limitations of our programming language (C) F. Estrada 2024

Maximize information hiding - The API should only make available to the user the functionality and data
that the user needs. This is harder to do with C. We will see shortly how to do a much better job of controlling
what data and functions a user of an API has access to.
Names should be self-explanatory. Use naming consistently, the same goes for the use of underscores and
capitalization.
Good documentation must be provided. Every component of the API must be documented properly.
Think about performance, and avoid decisions in the API that will have a negative impact on performance.
The user of the API should not be surprised by the behaviour of the API.
The API should report errors as soon as possible after they occur. It should be clear what the error is, and
where it happened.
If the API makes information available in strings, provide functions to parse the string into any components
the user may need to handle separately. This prevents annoyance and keeps the user from having to write
parsers for the API’s output.

There are also a couple of suggestions about good programming practice that are not specific to the design of
good APIs.

Use the most appropriate return value for each function.
Where functions have similar lists of parameters, be consistent with the ordering of the parameters (reduces
the chance of the user making a mistake because they got used to the parameter ordering in a different
function).
Avoid long parameter lists.

The Google document has several more recommendations specific to Java and object oriented code, so make
sure to revisit the advice there as you become familiar with object oriented programming. For now, keep in mind
the above, and note that even Google developers admit that designing and implementing a good API is a hard task,
and that we can never achieve perfection.

6.5 Limitations of our programming language

Once we start working with APIs, and thinking in terms of modules that are self-contained and provide
functionality to the users without them needing to know the internal details of how this functionality is implemented,
we will realize that there are limitations to what we can do with C as our programming language.

To illustrate the key issue that should concern us here, suppose we are providing a module for creating and
managing linked lists of strings (this could be used by an app, for instance, to keep the names of all the eBooks a
user has in their cellphone). We have determined the appropriate API, and written both our (very well documented)
header file, and the corresponding implementation file. Any user needing a linked list can include our module in
their code and have all the functionality of linked lists at their disposal. However, there is a catch - any programs
that use a linked list provided by our module must have access to the head of the list, so the pointer to the head of
the list has to be declared and is owned by code outside of the module. The situation is illustrated in Fig.6.6.

268

6.6 Object Oriented Programming (OOP) (C) F. Estrada 2024

Figure 6.6: A module that provides functions to handle linked lists of strings. Unfortunately, the head pointer
has to be declared and is owned by code that is outside the module.

This is not great - the user of our module has access to all the CDT definitions from the module (which it
needs in order to be able to declare and use the head pointer), and could easily create its own nodes, pointers, and
even lists without using the API functionality. Worse than that, the code outside the module has access to all the
information stored in the linked list, and could easily access, modify, or even delete any of the data stored there
without going through API. This is a problem because it allows users whether by mistake, or intentionally, to do
things with information that the module should be handling that were not intended and are not provided by the API.

The situation above breaks the concept of a module being a self-contained entity that can be used without
knowledge of the details of how the module is implemented. It introduces the potential for bugs created by users
unintentionally modifying data needed by the module, and it introduces security and privacy concerns because
there is no way to hide or protect information that should not be available outside of the module.

The root cause of this problem is that C provides no mechanism for protecting sensitive data from being
misused or accessed in a way that was not intended by us when we developed the module. We can’t solve this in
C without severely impacting the usefulness of our module. So at this point we have to look beyond the language
we’ve been using and find a different way to organize our code and data so that we can implement software modules
that are truly self-contained. We have to be able to control access to the data managed by the module in a way that
prevents users from unintentionally, or intentionally, accessing anything we did not intend for them to have access
to. This is called information hiding, and is one of the fundamental principles of good software design.

6.6 Object Oriented Programming (OOP)

Object Oriented Programming is built around two principles: Encapsulation, and information hiding.

Definition 6.1 (Encapsulation)
Encapsulation means wrapping together all the components required to implement the functionality of
particular software module. This includes all the data as well as the functions that manipulate it.
Object oriented programming languages must provide support for encapsulation as a central feature of

269

6.6 Object Oriented Programming (OOP) (C) F. Estrada 2024

♣

the language (as opposed to something that can be achieved by being creative with language features not
designed to provide encapsulation).

Definition 6.2 (Information hiding)

♣

This refers to the ability of the designer of a software module to decide which functionality and data should
be visible to a user of the module, and to hide everything else. This includes implementation details, data
that is essential for the correct working of the module, and functionality that is part of how the module
gets its work done but should not be directly accessed by a user. Object oriented programming languages
provide support for information hiding by allowing a designer to control access to the data and functions
that are part of a module.

To support encapsulation and information hiding, Object Oriented Programming introduces the concept of
an object as the fundamental unit of functionality, which includes data storage, as well as information processing.
We will now spend a bit of time understanding how objects are built, what features they have, and what we can do
with them as software designers. But in order to actually understand what an object is, we first need to learn how
to design and implement the principles of OOP that we discussed above.

6.6.1 Classes

In Object Oriented Programming, we expand on the idea of compound data types that we discussed in
Chapter 3 so that we are not limited to storing data. With OOP, we want to bundle together all the data and all the
functionality required to manipulate it. The resulting entity is called a class. This is illustrated in the figure 6.7.

Figure 6.7: A comparison between non-object oriented model (a CDT plus separate implementation) versus an
object oriented model. In the OOP model, everything is bundled into a single class.

The idea of bundling together the code and data that comprise a single module, data type, or data structure,
is important; but you have already worked with CDTs, so you know there really is nothing fundamentally new in

270

6.6 Object Oriented Programming (OOP) (C) F. Estrada 2024

the concept of a class. The importance of the class idea lies in how the programming language uses classes to
provide you with information hiding as well as a number of other powerful features that are very difficult (or even
impossible) to implement without the support of object oriented languages, and that allow us to build software that
is conceptually easier to understand, maintain, expand, test, and debug.

In OOP, the data components of the class are called member variables, and the functions that provide the
functionality for the class are called class methods.

6.6.2 Information hiding in classes

Recall that in C all our variables and functions have an associated data type that is fixed and used by the
compiler to determine what code needs to be generated to implement the functionality specified in your program.

In Object Oriented Programming, in addition to their data type, both the member variables and the class
methods have an associated access control modifier. These specify the visibility of each of these components
much the same way that scope determines the visibility of variables within the code.

The smallest subset of access control modifiers that has to be implemented by an object-oriented language
is:

public - This modifier states that a member variable or class method can be accessed by (is visible to) any
code whether that code is part of the class or whether it belongs to an external program using the class to
do some work. It is appropriate for all the components of the class that the user will need to call in order to
use the class for its intended purpose.
private - This modifier states that a member variable or class method can be accessed by (is visible to)
exclusively the code that is part of the class methods. No external program can see, access, or use any of the
private data or methods.

There are further modifiers that may or may not be available depending on the language we are using, but
the two above constitute the minimum subset that will allow us to implement information hiding. The diagram
in Fig. 6.8 shows how a class implementing our string list API could be structured - it shows both the member
variables, and the class methods. Access modifiers indicate which components of the class are visible to (can be
accessed/used by) the user’s program. Any private methods are only accessible from within the class.

In the example from Fig. 6.8, the head pointer is not visible to the user, it can not be changed from outside
the class. However, functions such as insert() which are class methods can access and change the value of the
head pointer. In this way, we expose to the user only the functionality of the class that we want to provide, and
can do so in a way that prevents misuse of the class and its member variables and methods.

There are two methods we haven’t seen before in the class example from Fig. 6.8: the constructor and the
destructor. These two functions have an important role for the class:

The constructor - Is a method that is automatically called by the when we create a new instance of the
class in a program. The constructor has the job of initializing the member variables and any data that the
class will need to suitable values. In the example on Fig. 6.8, we could expect it to set the head pointer to
NULL, and the list_length to zero. For more complex classes, the constructor may do a lot more work.

271

6.7 Implementing a class in C++ (C) F. Estrada 2024

Figure 6.8: Example of class structure showing components with different visibility. Any part of the class declared
as private will only be accessible from within the class itself. Any public variables and methods are accessible
from any code where the class is being used.

The destructor - Is a method that is automatically called when an instance of the class goes out of scope
or when we want to delete an instance of the class. It has the job of cleaning up after the class. For instance,
in the example from Fig. 6.8, the destructor would be in charge or freeing all memory allocated to the nodes
of the linked list. For more complex classes, the destructor may do a lot more work.

The important thing to keep in mind is that these methods are provided in order to automate work so the user
of the class doesn’t have to do it themselves.

Note

Just what is an object? In non-object oriented programming, we create variables out of any CDT. We
simply call them variables and think of them as units of data. The equivalent in OOP is a class instance
or for short an object. This is where the object part of object oriented programming comes from.

The class is the template for building objects, just like the declaration of a CDT is a template for declaring
variables of that particular compound data type.
Each object should be thought of as a big box in memory that has all the member variables and class
methods specified by the class declaration. Objects are the essential functional unit in OOP. The
difference between a class and an object is illustrated in Fig. 6.9.

6.7 Implementing a class in C++

In order to explore some of the features of OOP that help us design and implement good software, we need to
see how these features work in the context of an actual Object Oriented programming language. For this chapter

272

6.7 Implementing a class in C++ (C) F. Estrada 2024

Figure 6.9: The class is a blueprint for building objects, the class specifies all the parts, components, and
functionality each object must have. From the class, we create objects which are specific instances of a class.
Images: Left-side, Wikimedia Commons, by Eryn Blaireova, CC-SA2.5. Right-side, U.S. National Archives, Public
Domain.

we will use C++. This will allow us to apply all the work we have done thus far in learning C as we work on
developing an understanding of how object oriented programming allows us to build software in ways that were
not possible with regular C.

C++ was developed in the 80’s as a significant improvement over standard C. It was provided with the syntax
and features required to support object oriented programming, and has been continuously expanded and improved
over the years. C++ is one of the more important languages in software development. Areas such as operating
systems, security, networking, embedded systems, media-related software (e.g. encoding/decoding video and
audio), and compilers; among others make extensive use of software written in C++. Because it is developed from
C, the basic building blocks of C++ programs are already well known to us. Function declarations, variables and
standard data types, loops and program control structures are all the same as in C. All the regular C programs we
have written thus far are also valid C++ programs. But the range and flexibility of features provided by modern
C++ compilers far exceeds anything regular C can do.

With that in mind, let’s see how a class is declared in C++, and consider the similarities a class declaration has
with regard to compound data types in C. The following listing could be stored in a header file called StringList.h

#include<stdio.h>
#include<stdlib.h>
#include<string.h>

// Notice the #include statements above. We are using standard
// C libraries (which is allowed since C++ compiles any standard
// C code} for familiarity.
// However, if you want to write pure C++, you should use the
// object oriented libraries that provide much more advanced
// (and object-based) functionality! We will not do that here
// because this is not meant to be a book on C++ programming.
// Here is a good-ol’ CDT to store nodes in a
// linked list - for comparison with the class
// just below. There is nothing fancy in the CDT,
// just a bento box with data in it.

typedef struct ListNodeStruct
{

273

6.7 Implementing a class in C++ (C) F. Estrada 2024

char string[1024];
struct ListNodeStruct *next;

} ListNode;

// Here is something new. A StringList class,
// which bundles together all the variables
// and data needed for the list, as well as
// the functions that implement the functionality
// required of the list of strings.
class StringList
{

// Member variables
private:

ListNode *head;
int list_length;

// Class methods
public:

StringList()
{

head=NULL;
list_length=0;

}
~StringList()
{

clear_list();
}

void insert_string(char string[1024]);
void delete_string(char string[1024]);
void print_strings(void);
ListNode search(char string[1024]);
void clear_list();
int get_length();

private:
void remove_head(void);

};

A few things to note in the example above:

The typedef for the ListNode is not part of the class, but we need it to define the nodes of the string linked
list we are building.
The class declaration is just like any other CDT declaration we have done before in C, except we use the
keyword class so the C++ compiler knows we are bundling data and functions into one nice package.
All the member variables in our class are private. No functions or code outside of the class can access or
change these variables. They are hidden from user code.
The function StringList() is the class constructor. It has no return value or type. It gets called automatically
when we create objects of this class, and will initialize the class’ member variables as needed.
The function ~StringList() is the class destructor. Like the constructor, it has no return value or type,
and gets called automatically when an object of the class goes out of scope or gets deleted. Its job is to clean
up after the class - so in effect, free any memory that was dynamically allocated by class methods, close
any open files, etc.

274

6.7 Implementing a class in C++ (C) F. Estrada 2024

The remaining public methods are analogous to the functions you would normally find in any regular linked
list. We have insert_string(), delete_string(), and search().
There is one private class method: update_length(). This method can only be called by other methods
within the class. It can not be directly called by the user.

In order for the class to be useful, we need to provide an implementation for the class methods. The
implementation typically goes into a separate program file with the extension .cpp. Here is what the implementation
looks like for the short class we declared above:
#include "StringList.h"

// Notice the ’StringList::’ prefix for function declarations.
// This is a class name qualifier and tells the compiler we are
// providing an implementation for a function of the ’StringList’
// class. Without it, the compiler would assume we are
// implementing a regular (non-class member) function that
// happens to be called ’insert_string()’.
// All functions that are part of the class must have the
// corresponding qualifier.

void StringList::insert_string(char string[1024])
{

// Insert a new string into the linked list
// at the head of the list (for simplicity)

ListNode *p=new ListNode; // This is how we dynamically
// allocate data on-demand in C++
// (no need for calloc)

if (p==NULL)
{

printf("There is no memory for more strings!\n");
return;

}

strcpy(&p->string[0],string);

if (this->head==NULL) // ’this’ is a pointer to
{ // the specific object for

this->head=p; // which the function was called
this->list_length++;
return;

}
else
{

p->next=this->head;
this->head=p;
this->list_length++;
return;

}
}

void StringList::delete_string(char string[1024])
{

// Deletes a string from the linked list if it
// is found there

275

6.7 Implementing a class in C++ (C) F. Estrada 2024

ListNode *p, *q;

p=this->head;
// If requested string is at the head of the list
if (strcmp(p->string,string)==0)
{

this->head=this->head->next;
this->list_length--;
delete p;
return;

}

// Otherwise
while(p->next!=NULL)
{

q=p->next;
if (strcmp(q->string,string)==0)
{

p->next=q->next;
delete q;
this->list_length--;

}
p=q;

}
}

void StringList::print_strings(void)
{

// Print out all the strings currently in the list

ListNode *p;

printf("*** The strings currently in our list are:\n");
p=this->head;
while(p!=NULL)
{

printf("%s\n",p->string);
p=p->next;

}
}

ListNode StringList::search(char string[1024])
{

// Find a node in the list that contains the requested
// string. Return a *COPY* of the node that has no
// pointers to list data. If no matching string is found,
// it returns an <empty> ListNode.

ListNode *p, copy;

strcpy(©.string[0],"");
copy.next=NULL;

p=head;
while (p!=NULL)
{

if (strcmp(string,p->string)==0)
{

copy=*(p);
copy.next=NULL;

276

6.7 Implementing a class in C++ (C) F. Estrada 2024

return copy;
}
p=p->next;

}

return copy;
}

void StringList::clear_list(void)
{

// Free all memory allocated to the linked list, reset
// length to zero, and set head pointer to NULL
while (this->head!=NULL)

remove_head();
}

int StringList::get_length(void)
{

// This is what in object-oriented programming is called
// a ’getter’. A function that returns the *value* of
// a private variable so the user can find out what it is
// without actually getting direct access to read or change
// the variable.

return this->list_length;
}

void StringList::remove_head(void)
{

// Removes the node at the head of the linked list
// and releases the memory allocated to the list
// node. It reduces the length of the list by 1
//
// This function is used by the function that
// clears the linked list. We do not give the users
// of the class access to it because they could
// use it to remove list data without
// regard for the contents. Hence, we make this
// function private.

ListNode *p;

if (this->head==NULL) return;

p=this->head;
this->head=this->head->next;
delete p;
this->list_length--;

}

A few syntax notes are worth a quick look:

The declarations for the class methods have to be preceded by the name of the class and a ’::’. This is used
by the compiler to figure out which class each function is a part of (there may be many different classes with
functions that have the same name, or there can be functions that are not part of any class that have the same
name as a class member.
We no longer have to use malloc() or calloc() to dynamically allocate memory. C++ provides a keyword

277

6.7 Implementing a class in C++ (C) F. Estrada 2024

new that allocates and initializes new memory on request, as well as a corresponding delete keyword that
releases space once we are done using it. These two keywords exist because with objects some extra work has
to be done. Whenever we create a new dynamic object, the constructor has to be called. The new operator
does this. Similarly when we are done using an object and want to release its memory, the destructor has to
be called. The delete operator takes care of that.
To access any of the variables or class methods from within the class member functions, we use the ’this’
pointer. It works just like any other pointer in C and C++ and we can get to any component of the class by
using the -> (arrow) operator. What’s up with ’this’? If we think about it, to access a field in a CDT we
use variable_name.field_name (or pointer_name->field_name). However, we do not know the name the
object will have in advance. The user will call their objects whatever they want, and there will most likely
be many objects with different names from the same class - so we can’t use the object’s name while writing
the implementation of the class member functions. The ’this’ pointer is a convenient way for the compiler
to know that whatever name the user gives an object, a member function needs access to a specific field
within that particular object.

At this point, it’s worth spending a moment or two thinking about how the StringList class we just created
compares to the non-object oriented linked lists we developed in Chapter 3. The fact that both the data and
functionality are bundled together as part of the StringList class makes the design of the software cleaner, more
intuitive, and easier to understand. Much like CDTs allowed us to represent complex data items as individual
units of information, classes allow us to represent software components as individual units of functionality.

Not only that, with our original linked lists written in C there was no protection against a user of the code
accidentally (or maliciously) accessing sensitive information (such as, for instance, the pointers that keep the list
organized and properly linked). The StringList class uses information hiding to ensure that users have no access
to such sensitive variables and/or class methods. To understand how this works, let’s look at a very simple program
that creates one object of the StringList class, and then tries to access private variables or private class methods.
#include "StringList.h"

int main(void)
{

// This is a very short example of using the StringList library to
// create a linked-list of strings.

StringList my_list; // Here is an actual object of the
// StringList class.

// Let’s see what happens if we try to access private variables or
// methods:

printf("The length of the list is: %d\n",my_list.list_length);

// Try and call a private class method
my_list.remove_head();

return 0;
}

If we try to compile the program above, we will see the following:

278

6.7 Implementing a class in C++ (C) F. Estrada 2024

> g++ -c stringExample.cpp
stringExample.cpp: In function ’int main()’:
stringExample.cpp:14:54: error: ’int StringList::list_length’ is private within this context

printf("The length of the list is: %d\n",my_list.list_length);
^~~~~~~~~~~

In file included from stringExample.cpp:1:0:
StringList.h:33:21: note: declared private here

int list_length;
^~~~~~~~~~~

stringExample.cpp:17:25: error: ’void StringList::remove_head()’ is private within this context
my_list.remove_head();

^
In file included from stringExample.cpp:1:0:
StringList.h:55:23: note: declared private here

void remove_head(void);
^~~~~~~~~~~

The compiler will throw an error any time that user programs attempt to access private data or methods contained
in an object. There is no way to build a working executable program unless these errors are resolved by removing
any attempts to access private components of the class. In this way, the compiler enforces our decision to hide
certain parts of our class from users of the module.

Let’s now see a short example of a program using our StringList class as intended, to store and manipulate
strings:
#include "StringList.h"

int main(void)
{

// This is a very short example of using the StringList library to
// create a linked-list of strings.

StringList my_list; // This is is an actual object (and instance)
// of the StringList class.

printf("Adding a couple of strings to the list...\n");
my_list.insert_string("First String");
my_list.insert_string("Second String");
printf("The length of the list is %d\n",my_list.get_length());
my_list.print_strings();

printf("Add one string and delete another...\n");
my_list.insert_string("Third String");
my_list.delete_string("First String");
printf("The length of the list is %d\n",my_list.get_length());
my_list.print_strings();

printf("Clear the list of strings...\n");
my_list.clear_list();
printf("The length of the list is %d\n",my_list.get_length());
my_list.print_strings();

return 0;
}

The listing above should not be too surprising. But it illustrates just how clean, intuitive, and easy to follow a

279

6.7 Implementing a class in C++ (C) F. Estrada 2024

program becomes when it uses objects to do its work. The equivalent C code would have much longer and more
cumbersome function calls (which require additional parameters) and would be longer and less tightly integrated
than the object oriented program shown above.

As a very simple example, consider the task of figuring out the length of the list. In the C implementation
there was no easy way to keep track of this value, and we had to do a list traversal to count the number of entries
every time we needed to find the length. In the StringList class this is easily resolved by having a member variable
that keeps track of the length, and that is directly manipulated by functions that insert or remove entries from the
list. This removes the need for a list traversal.

Compiling and running the code above produces the following output:
> ./a.out
Adding a couple of strings to the list...
The length of the list is 2
*** The strings currently in our list are:
Second String
First String
Add one string and delete another...
The length of the list is 2
*** The strings currently in our list are:
Third String
Second String
Clear the list of strings...
The length of the list is 0
*** The strings currently in our list are:

6.7.1 Method Overloading

Recall that as we were designing a simple API for path finding, we ran into a situation where one some of
the users of our module wanted to use an adjacency list instead of an adjacency matrix. In C there is no clean
solution that allows users to use either of these (as needed) to access the functionality provided by our module,
and we were stuck creating multiple functions with similar names and significant amounts of code duplication in
order to provide the needed functionality. Code duplication is not a good thing and should be avoided whenever
possible. We will soon see ways in which object orientation allows us to elegantly expand and refine an object’s
functionality without unnecessary code duplication. But first, let’s look at a feature of object oriented languages
that allows us to avoid having multiple functions with similar names all of which are intended to provide the same
functionality.

In C++ and other object oriented languages, we are allowed to declare multiple functions with the same
name but different arguments and/or return value types. This is called method overloading.

In our API example, we had a situation where some users needed a function that worked with an integer
adjacency matrix, some users wanted a function that worked with a floating point adjacency matrix so they
could use it on graphs with weighted edges, and some users wanted a function that worked with an adjacency list
(we decided we should also support weighted and non-weighted edges). This created four functions with different
names in C. With C++ the situation is different, we are allowed to declare the functions as follows:
intList *findPath(int Adj[N][N], int N, int start, int goals[k], int k);
intList *findPath(double Adj[N][N], int N, int start, int goals[k], int k);
intList *findPath(intList* A[N], int N, int start, int goals[k], int k);

280

6.8 Inheritance and class hierarchies (C) F. Estrada 2024

intList *findPath(floatList* A[N], int N, int start, int goals[k], int k);

This may not seem like a big change - after all we still have four functions with slightly different functionality
which all do the same thing. However, they all have the exact same name which makes it conceptually easier for a
developer to work with them. Method overloading makes the code for programs using a module easier to read, and
allows an API to provide the functionality required in a clean and concise way. With an object oriented language,
there is no possible confusion between functions that have similar names but provide different functionality, and
variations of the same function which have different names because the language doesn’t support overloading.

How does method overloading work in practice? The compiler has access to all the different variations of the
function, when a user program calls the function, the compiler checks the list of arguments passed to the function
and finds a matching definition among the overloaded methods we provide in our module. If a matching method
is found, the compiler will use the correct function all. Otherwise it reports that there is no matching method for
the specific list of parameters the user provided.

Just a word of caution: While we can provide as many different overloads for any given method as we want,
we should not simply create code blot by providing every possible combination of parameters we can think of.
Instead, every version of an overloaded method that we decide to add to the API should be supported by a valid
use case.

Note

Method overloading is an example of what in object oriented programming is called polymorphism.
Polymorphism is a term for a thing that has multiple different shapes. In the case of method overloading,
it refers to a function that has the same purpose (same functionality, same name) but different lists of
parameters and/or return type. We will soon see that polymorphism also occurs at the level of objects
and that it provides us with incredible power in terms of building functionality into our classes.

6.8 Inheritance and class hierarchies

A very common situation in software design involves writing programs that can work with a variety of data
items that are variations, or refinements of each other. For example, software to run a library catalog will need
to handle records for books, magazines, journals, periodicals, graphic novels and other media types. These are
all related, they have some common properties (e.g. a name, a date of publication, a library code), and some
different attributes that are specific to each particular type of item. As another example, consider a media player
application - it is required to handle a large variety of media types and media formats. The corresponding media
files have common properties as well as attributes that are specific to each media type.

Handling such situations without object oriented programming results is code that is cumbersome, hard to
maintain, test, debug, and expand, and that contains significant amounts of code duplication. To see why this
is the case, consider the following concrete problem:

Example 6.3 We are implementing a software synthesizer. This is a program that takes a music file that contains
information about notes in a song, the timing and duration of each note, and also the instrument that plays

281

6.8 Inheritance and class hierarchies (C) F. Estrada 2024

each note. The synthesizer then generates sound to play the song. One way to think of it is this: Give the software
synthesizer a musical score, and it will play the music shown in that score. It is not the same as a recording
such as you would get from a streaming service or store on your smartphone - they key is that the user can change
the score and the music will change accordingly.

A key component of the software synthesizer is a list of notes that are playing at a particular time. Each of
these is then processed to generate the corresponding sounds. In C, we would normally represent a note as a CDT
using something like this:

typedef struct note_struct
{

double time_position; // Note’s position in the musical score
double frequency; // The note’s frequency
double duration; // How long the note is played
int volume; // The loudness of the note
int instrument_ID; // Indicates which instrument this note

// should be played with
double *note_data; // Pointer to the note’s data array

} Note;

But if you think about it, this is very limiting. Different instruments may require additional information in
order to play a note properly. For example, if a note is being played by a guitar, we may need to know which of the
guitar’s strings is used to play it (which will change the sound). If in addition the note is being played by an electric
guitar, we may need to know the state of the distortion pedal or the wah-wah lever. The point is, if we are using
CDTs, and we need the software to work with notes as a fundamental unit of information, we would need to pack
every single piece of information that any of the instruments may need into the same CDT - there is no way to
modify or adapt the CDT for each instrument. The resulting CDT will look like so:

typedef struct note_struct
{

double time_position; // Note’s position in the musical score
double frequency; // The note’s frequency
double duration; // How long the note is played
int volume; // The loudness of the note
int instrument_ID; // Indicates which instrument this note

// should be played with
int stringNo; // Which string is used (for guitar only)
double pedal_val; // State of the pedal (for electric guitar only)
double wahwah; // State of the wah-wah level (electric guitar only)
double soft_p; // State of the soft pedal (piano only)
double damper_p; // State of the damper pedal (piano only)
.
. // Many, many more variables needed by each of the
. // different instruments
.
double *note_data; // Pointer to the note’s data array

} Note;

This is not a very elegant solution, and also wastes a significant amount of storage space, as most notes will use
only a handful of the variables contained in the CDT to generate their sound.

Having a big and bulky CDT is not ideal, but it is not our only problem. Somewhere in the software synthesizer
code there will be a function whose job is to generate the actual sound data for a particular note. You can imagine

282

6.8 Inheritance and class hierarchies (C) F. Estrada 2024

a loop that goes over each of the notes that need to be played at some point in time, and for each node, it calls the
function that actually produces the corresponding sound. The sound producing function will look as shown below:

double get_sound_sample(note *my_note, double time_index)
{

// Computes and returns the sound value for the specified note
// and time index.

if (note->instrument_ID==0)
{

// Do the processing required to get a sound value
// for instrument 0, using the required variables
// from the CDT

}
else if (note->instrument_ID==1)
{

// Do the processing required to get a sound value
// for instrument 1, using the required variables
// from the CDT

}
else if (note->instrument_ID==2)
{

// Do the processing required to get a sound value
// for instrument 2, using the required variables
// from the CDT

}
else if ... // for as many instruments as the synthesizer

// supports (this can be hundreds!)

}

Within each if...else block, there will be code that produces sound for a specific note and specific instrument.
A significant portion of this code will be identical, so there is a lot of code duplication going on here. Beyond
being long, cumbersome, and hard to read for a developer, we have a serious problem in terms of maintaining,
expanding, testing, and debugging this function. With so much duplicated code, if we find a bug chances are we
will have to apply fixes (and then test them) at multiple places in this function. This increases the likelihood we
will miss something. Expanding the functionality of the function (e.g. to add another instrument) only makes this
situation worse.

In a situation like this, it is not difficult for the code to become unmanageable, unmaintainable, and eventually
stale as the effort required to keep it up to date, fix bugs, and add functionality becomes too great.

We would like to solve a problem similar to the one we just described above, but at the same time we need to:

Maximize code reuse - Any code that is shared among the different variations of our items should be
implemented only once.
Minimize data duplication - Common variables and data should be declared only once.
We want to be able to extend and/or refine the behavior of any of our items without affecting the rest.
We want our resulting software to be organized in a way that makes the relationship between our data items
clear, and easy to understand conceptually.

283

6.8 Inheritance and class hierarchies (C) F. Estrada 2024

6.8.1 Hierarchies of objects

With object orientation, we can build programs that take advantage of the idea that related objects can be
organized into hierarchies in such a way that shared characteristics and functionality are not duplicated but
we can, at the same time, provide any level of refinement that we need for each of the different objects in the
hierarchy.

For our software synthesizer and the various types of notes it has to handle, a possible hierarchy would look
like the diagram shown in Fig. 6.10.

Figure 6.10: A diagram illustrating the hierarchical relationships between different types of notes. The idea being
that we can build functionality by starting with more general (abstract) items, and then creating multiple specialized
versions of them that share common attributes.

The diagram illustrates the notion that there are attributes (variables and functionality) that all notes must
have. It makes sense to bundle them together into a plain Note. We can then derive different versions of the plain
Note, one for each of the instruments our synthesizer supports. The specialized note types will inherit all the
common attributes of their parent (the plain Note), and add their own specialized attributes that are required to
generate their particular type of sound. We can create as many levels of specialization as we need, so for example
we can derive various specialized types of Guitar Note, or Piano Note, or Violin Note in order to further enrich
our synthesizer’s capabilities.

Because our different notes are organized in this hierarchical fashion, there is little or no duplication of either
data or functionality. Each specialized type will define only those attributes that are not shared with other types
of note, and that make each specialized type unique. Any common attributes are created once and then shared
according to the relationships described by the hierarchy.

284

6.8 Inheritance and class hierarchies (C) F. Estrada 2024

6.8.2 Implementing hierarchies and inheritance

Object oriented languages allow us to implement hierarchies like the one shown in Fig.6.10 by allowing us
take any class, and derive specialized versions of it. The derived classes are often called child classes, while the
original class is usually called either base class or parent class. Let’s see how that would work in the example of
the software synthesizer and see how the use of class hierarchies results in a program that is much cleaner, and
easier to read, maintain, test, and debug.

Example 6.4
One of the first step in designing the software synthesizer would have been to figure out the hierarchy of

object types that we need to handle. This is not always straightforward and should receive careful attention because
once the hierarchy is implemented, it can be difficult to change it in a significant way. So as part of our design
process (as described in Chapter 2), with OOP we have to spend a good amount of time figuring out how to organize
our data and functionality into classes and class hierarchies, and we need to figure out which attributes will
belong in which class within the hierarchy. This work is well worth the effort, as a well designed class hierarchy
will make our work all that much easier when implementing, testing, and debugging our software.

For this example, we will work with the hierarchy shown in Fig. 6.10 and implement the plain Note as well
as two child classes, the Guitar Note and the Piano Note. This is simply to illustrate how the process works
and the principles involved in building and using a simple class hierarchy. The example can easily be extended to
incorporate more child classes at different levels of specialization.

Let’s have a look at the implementation of the Note class which is the parent class for both Piano Note and
Guitar Note.
class Note
{
// Member variables
protected:

double time_position; // When the note starts
double frequency; // The note’s frequency
double duration; // Duration in milliseconds
int volume; // Volume in 0-10
double *note_data; // Data array for the note

// Class methods
public:

Note()
{

// Default constructor, used when we do something
// like this: my_note = new Note;
this->time_position=0;
this->frequency=0;
this->duration=0;
this->volume=0;
this->note_data=NULL;

}

Note(double t, double f, double d, int v)
{

// A constructor that initializes the various values
// for this note, used when we do something like

285

6.8 Inheritance and class hierarchies (C) F. Estrada 2024

// this: my_note = new Note(1.25,440,1.5,7);

// It is an example of member overloading. The
// compiler chooses the right constructor based
// on the parameters we specify while creating the
// Note!

this->time_position=t;
this->frequency=f;
this->duration=d;
this->volume=v;
this->note_data=NULL;

}

virtual ~Note()
{

printf("* Note class destructor called!\n");
// Release memory for this note!
if (note_data!=NULL) delete note_data;

}

virtual double get_sound_sample(double time_idx)
{

// This function would generate the
// correct sound value for a plain Note
// (maybe sounds like a beep?) at the
// specified time index, given the
// note’s frequency, duration, and volume.

// Here, for simplicity, it will simply
// print a message

printf("A plain Note with frequency %f is making sound at time %f\n",this->
frequency,time_idx);

return 0;
}

virtual void print_note_info()
{

// Prints out the values of the note’s
// variables
printf("This generic Note has frequency %f\n",this->frequency);
printf("This generic Note has duration %f\n",this->duration);
printf("This generic Note has volume %d\n",this->volume);
printf("This generic Note plays at time index %f\n",this->time_position);

}
};

The Note class contains all the attributes that are common across all the possible types of notes that our synthesizer
may need to handle. This includes a few key member variables, and two methods that are common to all notes.
A couple of notes on syntax:

The protected access modifier is something we didn’t see before. It allows us to share common attributes
amongst objects that are part of a class hierarchy while preserving information hiding. Specifically,
protected components of a class are visible within code in the derived classes but are hidden from code
that is not part of the parent or derived classes. As far as code outside the classes is concerned, protected

286

6.8 Inheritance and class hierarchies (C) F. Estrada 2024

components behave as if they were private. We do not use the private access modifier here because any
private attributes would not be visible within derived classes (notice that they still can be used by a derived
class object through any inherited methods implemented in the base class). Having both private and protected
access modifiers allows us to have very fine control regarding how class attributes are shared or not across
a hierarchy, and at the same time enforce information hiding.
There are two constructors, the default constructor which takes no parameters and initializes the class’
attributes to default values, and a constructor that accepts a list of initialization values for the data members
of the class. This is an example of method overloading and is very common - often we want to provide
different constructors corresponding to different ways in which users may need to create objects of a given
class.
The get_sound_sample() method is declared as virtual - this tells the compiler that we expect this function
to be specialized by the derived classes. This doesn’t mean that child classes are forced to re-implement the
function, it simply means that they could and often will do just that. If the derived class provides their own
version of get_sound_sample(), then their specialized version will be used. Otherwise the implementation
from the Note class will be used.

In the listing above, we created a very simple dummy function to generate sound samples. It doesn’t actually
make any sound, it prints a message instead - we will use this in a moment to see how the class hierarchy works,
but in a real implementation there would be a whole lot of code in this function, related to computing and returning
the appropriate sound value for the Note at the specified time index.

Now that we have the parent class, let’s see how we would create the two child classes: Piano Note and
Guitar Note:

class PianoNote : public Note
{

// This is a derived or child class. The parent is ’Note’
// and the ’public’ access modifier states that:
// All ’public’ attributes of ’Note’ will be ’public’ in PianoNote
// all ’protected’ attributes of ’Note’ will be ’protected’ in PianoNote

protected:
double soft_p; // State of the soft pedal
double damper_p; // State of the damper pedal

public:
PianoNote():Note()
{

// Default constructor - it calls the default constructor of the parent class!
this->soft_p=0;
this->damper_p=0;

}

PianoNote(double t, double f, double d, int v, double sp, double dp) : Note(t, f, d,
v)

{
// Constructor with initialization data, calls the corresponding constructor
// in Note for initializing common attributes.
this->soft_p=sp;
this->damper_p=sp;

287

6.8 Inheritance and class hierarchies (C) F. Estrada 2024

}

~PianoNote() override
{

// Should do anything needed to clean up after
// PianoNote information *but* not the common
// information from ’Note’, since the destructor
// for ’Note’ will be called immediately after this
// function is done.
// So, here, we don’t need to do anything at all...
printf("** PianoNote class destructor called!\n");

}

double get_sound_sample(double time_idx) override
{

// This is the implementation of the get_sound_sample
// which should be different from a PianoNote. Here
// we will simply place a print statement to indicate
// this function is being called

printf("A PianoNote with frequency %f is playing at time index %f\n",this->
frequency,time_idx);

return 0;
}

void print_note_info() override
{

// Prints information for this PianoNote
printf("This PianoNote has frequency %f\n",this->frequency);
printf("This PianoNote has duration %f\n",this->duration);
printf("This PianoNote has volume %d\n",this->volume);
printf("This PianoNote’s soft pedal is at %f\n",this->soft_p);
printf("This PianoNote’s damper pedal is at %f\n",this->damper_p);
printf("This PianoNote plays at time index %f\n",this->time_position);

}

};

Consider how easily we created a new type of note. We used the common attributes from Note, and simply
added the data members that are specific to the PianoNote. Just two variables, because PianoNote will inherit
frequency, duration, time_position, and volume from Note. We are actually using those common attributes
within the implementation for PianoNote, for instance, in the function that prints the values of the PianoNote
variables. But we don’t have to declare them within the PianoNote class, they are passed down from the parent
class.

Notice as well that the constructors for PianoNote are short and do not duplicate code - we simply call
the constructor for the parent class and let that constructor deal with the common attributes. The PianoNote
constructors need only worry about the attributes that are specific to piano notes. Similarly, the destructor for
PianoNote doesn’t need to do anything - because the compiler will call the Note destructor automatically after the
PianoNote destructor has done its work, so as to ensure that proper cleanup of common attributes is performed.

Finally, and importantly, notice that PianoNote provides its own implementation of get_sound_sample().
This is possibly the most important bit since it is what allows PianoNote to refine or specialize its behaviour over
that of a generic Note. This is called method overriding (do not confuse this with method overloading which we

288

6.8 Inheritance and class hierarchies (C) F. Estrada 2024

discussed earlier) and is explicitly indicated in the declaration of the function.
When the get_sound_sample() function is called, the compiler checks if the child class has provided an

override, and if so, it uses the child class function. If, on the other hand, the child class did not provide its own
implementation, then the parent’s class version is called.

This provides us with the flexibility to decide which functionality will be refined by the child class, and which
functionality will be identical to what is provided by the parent class.

To complete the example, here’s the declaration for GuitarNote:
class GuitarNote : public Note
{

// GuitarNote is also a child of Note

protected:
int stringNo; // Which string was plucked

public:
GuitarNote():Note()
{

// Default constructor - it calls the default constructor of the parent class!
this->stringNo=0;

}

GuitarNote(double t, double f, double d, int v, double strNo) : Note(t, f, d, v)
{

// Constructor with initialization data, calls the corresponding constructor
// in Note for initializing common attributes.
this->stringNo=strNo;

}

~GuitarNote() override
{

// Nothing to do here, the compiler will call the destructor from
// ’Note’ after this function is called to ensure proper cleanup.
// GuitarNote didn’t add any dynamic data that needs cleanup!
printf("** GuitarNote class destructor called!\n");

}

double get_sound_sample(double time_idx) override
{

// This is the implementation of the get_sound_sample
// which should be different from a GuitarNote. Here
// we will simply place a print statement to indicate
// this function is being called

printf("A GuitarNote with frequency %f is playing at time index %f\n",this->
frequency,time_idx);

return 0;
}

};

The definition for GuitarNote is similarly small, and doesn’t duplicate any of the work that is already done in
Note. Notice that we did not create a specialized version of print_note_info(), so if we call this function from a
GuitarNote, we will in effect be using the function inherited from the parent class.

To complete the example, let’s see how, once we have spent time and energy building a nice class hierarchy

289

6.8 Inheritance and class hierarchies (C) F. Estrada 2024

of notes, we can easily write a program that is easy to read and understand, doesn’t have to deal with the
complexities of different types of notes, and yet is able to use any of the types of notes we have provided.
int main()
{

// Let’s declare an array of pointers to ’Note’ objects
// so we can simulate a loop that would ’play’ music
// from a set of notes.

Note *all_notes[10];

// Pay close attention, the array is for ’Note’ objects!
// but see what we can do now that we have a class hierarchy:

all_notes[0]=new Note(1.25, 440, 2.0, 7); // A generic ’Note’
all_notes[1]=new PianoNote(1.5, 880, 1.0, 5,0,0); // A ’PianoNote’
all_notes[2]=new GuitarNote(2.0, 550, .5, 8,1); // A ’GuitarNote’

// We don’t need to fill the remaining entries, but we could.
// The key point here is: The program thinks its working with
// ’Note’ objects - but we can put *any derived* class objects
// in this array. Why?
// Because a PianoNote is a Note (just a specialized one!)
// and a GuitarNote is also a Note
// So software that works with ’Note’ objects can use
// any of the specialized versions without modification!

// Let’s see what happens when we want to ’play’ sound from
// these notes:

printf("******************\n");
printf("Playing all notes:\n");
all_notes[0]->get_sound_sample(1.0);
all_notes[1]->get_sound_sample(1.0);
all_notes[2]->get_sound_sample(1.0);
printf("\n");

// Notice that the code above doesn’t need to worry about the
// fact each of these notes is actually a different type of
// object! but the correct behaviour is obtained. For the
// PianoNote, the PianoNote function is used, for the GuitarNote
// the corresponding function is called.

// Now see what happens when we call the print_note_info()
// function:

printf("******************\n");
printf("Printing info for a generic Note:\n");
all_notes[0]->print_note_info();
printf("\nPrinting info for a PianoNote:\n");
all_notes[1]->print_note_info();
printf("\nPrinting info for a GuitarNote:\n");
all_notes[2]->print_note_info();
printf("\n");

// The last call above is interesting. GuitarNote does not provide
// a specialized version of ’print_note_info()’, so the
// function from ’Note’ is automatically called instead!

// That’s it for this short example, let’s clean up!

290

6.8 Inheritance and class hierarchies (C) F. Estrada 2024

printf("Deleting a generic Note\n");
delete all_notes[0];
printf("\nDeleting a PianoNote\n");
delete all_notes[1];
printf("\nDeleting a GuitarNote\n");
delete all_notes[2];

return 0;
}

The most important thing to notice in the listing above is that the program concerns itself only with Note
objects - it doesn’t know or care about PianoNotes or GuitarNotes (and if we had many, many more derived note
classes, it wouldn’t worry about those either). The program defines an array of Note objects, and then proceeds to
use it to handle all of the types of notes that exist in our class hierarchy.

This works for a reason that is both elegant and intuitive: a PianoNote is a Note. A GuitarNote is also a Note.
And if we had defined ElectricGuitarNote objects, we would realize that they are GuitarNotes and therefore also
Notes. The result of this is that if we write a program that can handle Notes, the same program will be able to
handle every derived class that is a specialized version of a Note. This is a fundamental idea in OOP and makes
software design and implementation a lot easier and cleaner. Compare the code above with the long, cumbersome,
and repetitive get_sound_sample() we tried to implement in C, and it should be clear that OOP has allowed us to
create software that is significantly better in terms of the properties we described earlier in this Chapter.

Compiling and running the program in the listing above results in this output:
> ./a.out

Playing all notes:
A plain Note with frequency 440.000000 is making sound at time 1.000000
A PianoNote with frequency 880.000000 is playing at time index 1.000000
A GuitarNote with frequency 550.000000 is playing at time index 1.000000

Printing info for a generic Note:
This generic Note has frequency 440.000000
This generic Note has duration 2.000000
This generic Note has volume 7
This generic Note plays at time index 1.250000

Printing info for a PianoNote:
This PianoNote has frequency 880.000000
This PianoNote has duration 1.000000
This PianoNote has volume 5
This PianoNote’s soft pedal is at 0.000000
This PianoNote’s damper pedal is at 0.000000
This PianoNote plays at time index 1.500000

Printing info for a GuitarNote:
This generic Note has frequency 550.000000
This generic Note has duration 0.500000
This generic Note has volume 8
This generic Note plays at time index 2.000000

Deleting a generic Note
* Note class destructor called!

291

6.9 Building programs that work - Part 6 (C) F. Estrada 2024

Deleting a PianoNote
** PianoNote class destructor called!
* Note class destructor called!

Deleting a GuitarNote
** GuitarNote class destructor called!
* Note class destructor called!

As you can see from the output - the program correctly handles each subtype of note - the compiler generates
a program that automatically calls the correct function based on the subtype of note that is actually being used at
any given time. We can see that the overrides work properly: The correct get_sound_function() is being called
for each of the subtypes of note, and where no override is provided (as is the case for the print_note_info() in the
GuitarNote class), the function provided by the parent class is called. Finally, the destructors are being called in
order (as expected) - first the destructor for the child class and then the destructor for the base class.

In summary, object oriented languages provide a way for us to build rich hierarchies of related objects that
provide a conceptually clear model for the objects our software will be working with, allow us to implement
functionality and store information with little or no duplication, and with flexibility in deciding what behaviours
will be refined by derived classes, and what behaviours will be inherited. A lot of tedious work is taken care of
automatically (e.g. calling constructors and destructors, figuring out which version of a function to call), and
this allows us to think of, design, and implement software at a more abstract level.

The result is better software - assuming that the proper amount of thought and care was put into the design
of the class hierarchy and how to use the features of OOP to make the software solid with regard to our good
software wish list.

This wraps up our very short look at Object Oriented Programming and good software design. This is
really just a tiny overview of what is a complex, rich, and fascinating discipline. If you are interested in it, try a
book on Software Design, or OOP next! There’s just one more thing for us to discuss before the end of the Chapter.

6.9 Building programs that work - Part 6

Now that we have spent some time considering the issues involved in designing good software, and we know
just how much work, thought, and time goes into building solid, useful libraries and software modules for others
to use; it is time for us to think about the huge amount of software that has already been written and is available
for us to build upon. The goal here is not to understand the technical details of how to use a software module
implemented by someone else for our own projects. In this last section we want to learn about things we want
to keep in mind when deciding whether or not we want to incorporate a specific software module developed by
someone else into our own project. As we will see, the choices we make in this regard can have some meaningful
impact for our project, including imposing certain conditions regarding how our work can be used, distributed,
and/or commercialized.

The most important thing to remember here is that we can not simply take software we did not create and
put it into our project. We have to think through how to properly give credit where and as needed, and we have
to be certain we understand any copyright, licensing, and distribution conditions that come with any software we
pick up to use with our projects.

292

6.9 Building programs that work - Part 6 (C) F. Estrada 2024

6.9.1 Common libraries distributed with the compiler and operating system

The first source of software that we can definitely use for our own projects consists of all the system libraries
that are distributed with your compiler. They include a fairly wide range of common functionality that many projects
will need. You’ve already used some of these libraries: stdio, stdlib, string and math at the very least. These are
provided to us free of any charge and with no expectation regarding how we will distribute or commercialize our
programs.

If you want to see which libraries are included with your compiler, you want to find the directory that contains
the header files (on a Linux system this is typically in /usr/include, there will be a corresponding location on
Windows and Mac).

Beyond the libraries already included with your compiler, there are many libraries you can in install to provide
specialized functionality, and this includes anything from handling image files, network connectivity, machine
learning, security and cryptography and much more. Compiler libraries are usually distributed under the GNU
Lesser General Public License (https://www.gnu.org/licenses/lgpl-3.0.en.html). This is something
we should think about for a moment - it means there are terms and conditions that we have to be aware of and
willing to accept if we use any of these libraries within our programs.

Fortunately, the LGPL is fairly permissive - this makes sense, if these libraries placed too many conditions on
what users can do with programs that contain them, no one would use them. An important section of the license
states the following: You may convey a Combined Work under terms of your choice that, taken together,
effectively do not restrict modification of the portions of the Library contained in the Combined Work and
reverse engineering for debugging such modifications. This tells us that if we incorporate libraries distributed
under the LGPL within our programs, we are not restricted in how we can distribute our work and what licensing
terms we apply to the resulting programs as long as the users of the software are still able to freely modify and
reverse engineer the parts of the libraries that were used within the software.

In other words - we can’t lock down any portion of the libraries distributed under LGPL that are part of our
software, which is not usually a problem unless we are distributing the library’s source code in some form. Most
commercial software comes in the form of executable programs that do not contain the source code for libraries
used to build them, so there are no restrictions placed by the LGPL on such software and how we can distribute or
commercialize it.

But, you should always check the licensing terms for any non-standard libraries that you may be thinking of
using and make sure you are aware of what restrictions, if any, they place on software you are building.

6.9.2 Free and Open Source Software (FOSS)

An immense variety of software out there is distributed as Free and Open Source Software (FOSS). You
can find FOSS for pretty much any purpose and written in any programming language. The part that makes FOSS
interesting to us is that modules distributed under open source licenses allow us to use, modify, and distribute the
source code for the module free of charge. That means we have access to an incredibly rich software base which
could allow us to build fairly sophisticated programs quickly and with more functionality than we could provide if
we had to write every piece of the software ourselves.

However, before we go ahead and start using that wonderful package we just saw on GitHub, we should

293

https://www.gnu.org/licenses/lgpl-3.0.en.html

6.9 Building programs that work - Part 6 (C) F. Estrada 2024

consider:

There are many different licenses for FOSS. The type of license makes a big difference on what you can do
with the resulting software.
Permissive licenses such as BSD, MIT, or Apache allow you to distribute and sell resulting software with
almost no restriction.
CopyLeft licenses such as GPL require that the resulting software’s source code be provided to users - in
other words, any software you write that uses modules distributed under such a license must remain open
source.

So depending on what we intend to do with the software we are developing, we may or may not want to
use a particular FOSS module. Our process should always include checking the license terms for any piece of
software we want to use as part of our code. And we have to be aware of the terms of the license and comfortable
complying with any restrictions it places on our software.

One more thought along these lines: If we develop a software package and we want to distribute it as a FOSS
project, we definitely want to give considerable thought to the issue of choosing which license we want to be applied
to our software. The choice will place conditions on what other developers can do with it, and as a result it will
also change the set of projects that will ultimately feature our work. So becoming familiar with these licenses will
eventually be important.

294

6.9 Building programs that work - Part 6 (C) F. Estrada 2024

Note

Here is another important thing to remember: whether you are using standard C libraries, or whether you
are using FOSS modules, keep the following in mind:

We can not assume the software is correct (free of bugs) simply because it is used extensively by
many developers.
We can not assume the software is safe in terms of data privacy or prevention of software vulnera-
bilities.
We can not assume the software is efficient in its use of resources.

All of these issues have to be considered while deciding whether or not to incorporate a particular software
module into something we are building. However, there are also advantages to using open source software:

Because it is open source, there are no hidden features - it is difficult to hide malware and spyware
on software that can be openly inspected by anyone at anytime.
While we can’t assume the software is bug free, known problems are openly documented and there
is often a solid process for resolving bugs and updating the software - this can be slow, but at least
developers are aware of known problems.
We can benefit from the experience of a large group of software developers who are using or have
used the software and can provide help if issues arise.

As long as we are aware of what is involved in using open source software, we can always find a way to get
the most out of the work many others have done and made available for the benefit of everyone.

6.9.3 Large Language Models and other A.I. tools

A completely different source of help in building software is now extensively available in the form of a number
of Artificial Intelligence platforms whose functionality and ability to interact with users has grown incredibly fast
in a very short span of time. Of particular note among current A.I. tools are the so-called Large Language Models
(LLMs) which power platforms such as ChatGPT and Gemini.

These tools do anything from providing help with concepts, and explaining details about algorithms,
to summarizing algorithms in pseudocode, to providing program code that performs a specified task and
suggesting tests for software we are writing. Current LLMs are already incredibly powerful, and are becoming
better and more capable by the day. We should definitely learn how to use them to support our work and increase
our ability to build good software.

But we have to do this with full awareness that we are entirely responsible for the result of the work we
produce regardless of whatever information or help we obtained from A.I. tools. And we should remember that the
information we obtain is not always correct. This includes both conceptual information, as well as program
code. Let’s see a couple of examples of this to make the point clear.

295

6.9 Building programs that work - Part 6 (C) F. Estrada 2024

Suppose we want to consult factual information about a specific programming language because we want
to understand what its features are, and what we can expect from it. This type of information is what we may expect
to find in a book or technical blog, or perhaps class lecture notes, and as such it is often reliably and accurately
provided by the latest LLMs. Fig. 6.11 shows an example interaction in which we are attempting to find out how
well Python implements the key components of OOP we discussed earlier in the chapter.

Figure 6.11: Asking an LLM how well Python supports encapsulation and information hiding.

As you can see, the response is correct and describes concisely what Python does in terms of encapsulation
and information hiding. The response obtained was actually longer and provided examples supporting each of
the claims the LLM made. Current LLMs are quite good at summarizing information from multiple sources and
presenting it in a concise form, which can be very useful when we are trying to verify our understanding of a
concept, algorithm, or problem. The flipside of this is that the more specific the query, the higher the likelihood
the information may be not entirely correct - as an example, suppose we are trying to recall what the complexity
of a particular graph operation is, and we decide to ask an LLM about it. The resulting conversation is shown in
Fig. 6.12

Notice two things: Firstly the LLM will provide a very confident answer that tends to seem correct and
therein the danger - if you are not constantly thinking through what you’re being told, and making sure it is
consistent with your own hard-earned understanding of how things work in computer science, you could easily
just take the explanation as correct and go with it. Which would be a mistake. In this case, we know (from what
we learned in Chapter 5) that this answer is not correct, and prodding the LLM results in confirmation of our own
understanding of things.

Why does this happen? - what we must keep in mind is that the current generation of LLMs works by
predicting each successive token (which is a word, or symbol) in the answer given the prompt and any part
of the answer that has already been produced. It is a matter of choosing among all possible tokens the one
that has the highest likelihood of being the correct one. As it turns out, with a large enough LLM, and with a
sufficiently large and rich set of training data, the LLM can do this task extremely well. Of course, this is an over
simplification and truly understanding how the LLM works requires long and serious study.

296

6.9 Building programs that work - Part 6 (C) F. Estrada 2024

Figure 6.12: A more specific technical query does not produce the right result.

But it is enough to tell us something: The LLM is not checking its own answer against a thought process of
some sort, or checking it is accurate against its own knowledge base. It just predicts tokens one after the other and
comes up with an answer that has high probability of being correct. You should expect that for material for which
there is a lot of available training information - such as general concepts in computer science, or implementations
of common algorithms, or material that is discussed in books, blogs, lecture notes, and so on; the LLM will likely
come up with the correct response - in effect, it has seen the answer (many times) before.

For more specialized queries, ones for which the training data may not contain enough examples (or in fact
may even contain incorrect information), the LLM should be expected to have a harder time and can possibly give
us an incorrect answer, it will do this with great confidence, and it will fail to notice obvious mistakes - to drive
home this point, see the conversation in Fig. 6.13 in which a fairly obvious mistake is made for a technical question
that a human observer would not be confused by.

Figure 6.13: The answer by the LLM is clearly incorrect - inspection of its own BST example shows there are only
2 edges between 5 and 9, yet the LLM confidently asserts that there are 3 edges between these nodes.

297

6.9 Building programs that work - Part 6 (C) F. Estrada 2024

The point here is not to criticize or make less of the usefulness of LLMs - they are fantastic tools and used
correctly they can make our work a lot easier, more fun, and improve your productivity significantly. But the
key to this is that we must always remember to think through the information we are getting back, consider whether
or not it is consistent with what we have learned and what we would expect, as well as common sense, and then
decide how to use the information. If anything seems odd or not consistent with what we think is correct - then
we must do the work of asking further questions and/or checking with other sources before we proceed with
information whose accuracy we can’t determine by ourselves.

A special problem is posed by the use of advanced A.I. tools for generating code. Much like with conceptual
answers, LLMs can be expected to provide solid, correct, working code for very common problems. For
instance, if you need code to insert a node into a linked list - well, chances are that the training data for coding
A.I. contains hundreds if not thousands of examples of this procedure, in different languages, with different types
of data structures. So the answer you get will likely be correct.

So A.I. tools for code generation can be incredibly useful, once more, if used correctly. In particular, they
can be very helpful with tasks that require us to write in a language we are not familiar with. For instance, Fig. 6.14
shows the result of requesting a fairly specialized Linux shell script to carry out a file counting task.

Figure 6.14: Current LLMs that can produce program code have become quite capable, and can produce fairly
specialized, correct, and well documented code for tasks they have encountered in their training set (or those that
are very similar).

The resulting script works, and the LLM output also included instructions on how to use it, examples, and
comments on possible variations or different ways to carry out this particular task. In all, it is incredibly helpful
and saved a lot of time. But of course, just as with factual answers the program code you obtain may be incorrect
and the LLM will not notice it.

There is also a potential issue with copyright - because these tools generate program code based on the

298

6.9 Building programs that work - Part 6 (C) F. Estrada 2024

examples it has seen in training data, and the training data consists of programs that have been written by human
developers, the code produced by the LLM can often closely resemble or even replicate existing programs or parts
of programs written by developers who put their code somewhere accessible online.

Because it is often the case that LLMs use code from online repositories as training data, often without
the knowledge or explicit consent from the authors, and offering no financial compensation for the use of their
code. It is at the present not entirely clear that program code produced by an LLM is free of potential copyright
infringement issues. At the very least, we as users of an A.I. tool that produces code we intend to use have to be
fully aware that we are potentially taking advantage of someone else’s work - without due credit being given, and
providing nothing in return. Not an ideal situation.

So, how are we to proceed with code-generating tools? The rules are changing quickly, the LLMs themselves
are evolving very fast and their capabilities are improving and expanding in a very short time frame. But at the
present time, here are a couple of generally good ideas to keep in mind if you intend to use LLMs to generate code
for you:

We must always carefully read through, the code we obtain, carefully following the process and under-
standing the algorithm and how it is implemented to determine whether is does the right thing. If we do
not understand either the algorithm, or the implementation, or we can’t decide whether it is correct or
not, then we should NOT use it.
We must be aware of potential copyright issues and check whether the use we are making of the automatically
generated code may turn into a problem. If working in industry we must always check the company’s policy
on use of A.I. tools for generating code and follow their guidelines. If we are going through a program of
study, for instance at a University, we must be aware that many institutions forbid the use of A.I. tools or place
very strong restrictions on how and where they can be used - we should check the rules that apply and steer
clear of potential trouble.
Always develop a thorough testing framework - just as we would for code we are developing ourselves, for
testing any A.I. generated code. The point is that since the code we obtain is the result of training data which
is itself human-generated code, there is every expectation that it can and will contain bugs. So we have to
thoroughly test it and check it for correctness as discussed in Chapter 3.

We can always use an LLM to improve our own understanding of things, and automated code generation can
be a powerful learning tool. So we should consider getting help with specific syntax or use cases in a language
we are learning, or request examples of how a particular algorithm works, or asking for examples on how to
work with a particular tool, framework, or API. There are many, many possible uses of an LLM in the context
of computer science and software development that make the most of the LLMs capabilities without tripping on
issues such as we described above. So it is worth spending time learning how to interact with these tools, and
training ourselves to correctly interpret, learn from, and when necessary correct the information we receive from
them.

With that, we wrap up this book on introductory computer science, and on how to build programs that work.
Now let’s get out there, apply all that we have learned to the task of solving exciting problems, and choose what we
want to learn next. This book is just a glance at a fascinating and incredibly rich area of science, and whatever our
interests and goals, there will be more to explore that will match our interests and help us get to where we are going.

299

	1 Introduction
	1.1 What this book is about
	1.2 Our programming language
	1.3 Structure of a program in C
	1.4 Saying Hello!
	1.5 Your first exercise!
	1.6 How to deal with compiler errors
	1.7 A few notes on printf()
	1.8 The fundamental C control structures
	1.9 Exercises
	1.10 Building Programs That Work - Part 1

	2 The C Memory Model
	2.1 Computer memory is like a room full of lockers
	2.2 What happens in memory when we declare a variable in C?
	2.3 Functions in C – how information moves about
	2.4 Arrays
	2.5 What is a pointer, and why do we need them?
	2.6 Model versus Reality
	2.7 Additional Exercises
	2.8 Building Programs That Work - Part 2

	3 Organizing, Storing, and Accessing Information
	3.1 How to build a Bento Box
	3.2 Getting user input
	3.3 Handling realistic amounts of data
	3.4 Containers and Lists
	3.5 Linked Lists
	3.6 Implementing a Linked List in C
	3.7 Building a linked list of reviews
	3.8 Searching for specific items in large data collections
	3.9 Deleting nodes from a linked list
	3.10 Queues
	3.11 Wrapping up and summary
	3.12 Problem Solving
	3.13 Problems involving containers and lists
	3.14 Program listing for the linked list implementation in C
	3.15 Building Programs that Work - Part 3

	4 Solving Problems Efficiently
	4.1 Computational Complexity
	4.2 How to make search more efficient
	4.3 Trees, Binary Trees, and Binary Search Trees
	4.4 Binary Search Trees
	4.5 Tree traversals
	4.6 Implementing a BST
	4.7 Have we solved the problem?
	4.8 Wrapping up
	4.9 Additional Exercises
	4.10 Building programs that work - Part 4
	4.11 Time to Practice

	5 Graphs and Recursion
	5.1 Graphs
	5.2 Representing graphs
	5.3 Complexity of Graph Operations
	5.4 Recursion as a tool for problem solving
	5.5 General principles of recursion
	5.6 Implementation considerations for recursive methods
	5.7 Solving graph problems with recursion
	5.8 Debugging recursive code
	5.9 Additional Exercises
	5.10 Building programs that work - Part 5

	6 Designing and Building Good Software
	6.1 Software as a collection of modules
	6.2 A wish list for building good software
	6.3 How modules are organized and used in C
	6.4 Interacting with modules: The Application Programming Interface (API)
	6.5 Limitations of our programming language
	6.6 Object Oriented Programming (OOP)
	6.7 Implementing a class in C++
	6.8 Inheritance and class hierarchies
	6.9 Building programs that work - Part 6

