
Appearance-based Keypoint Clustering

Francisco J. Estrada† Pascal Fua‡ Vincent Lepetit‡ Sabine Süsstrunk‡

†University of Toronto at Scarborough ‡Ecole Polytechnique Fédérale de Lausanne

1265 Military Trail, M1C 1A4, Toronto, On. EPFL - I&C, CH 1015, Lausanne

Canada Switzerland

strider@cs.utoronto.ca, [pascal.fua,vincent.lepetit,sabine.susstrunk]@epfl.ch

Abstract

We present an algorithm for clustering sets of detected

interest points into groups that correspond to visually dis-

tinct structure. Through the use of a suitable colour and tex-

ture representation, our clustering method is able to identify

keypoints that belong to separate objects or background re-

gions. These clusters are then used to constrain the match-

ing of keypoints over pairs of images, resulting in greatly

improved matching under difficult conditions. We present

a thorough evaluation of each component of the algorithm,

and show its usefulness on difficult matching problems.

1. Introduction

The fundamental motivation behind the continued devel-

opment of low-level perceptual grouping algorithms is the

belief that a correct organization of the scene into meaning-

ful regions or feature groups will lead to more efficient and

reliable algorithms for object detection, tracking, and scene

reconstruction. Existing algorithms, however, have limited

success. Current state-of-the-art methods produce good re-

sults on simple scenes, but fail on more realistic ones.

In this paper, we present a clustering algorithm that en-

ables standard keypoint matching techniques to recover use-

ful matches under very challenging conditions. We show

that through the use of a well designed representation of

colour and texture, a spectral embedding on a set of arbi-

trarily distributed image samples yields a meaningful set

of clusters that captures the structure of the scene, typi-

cally separating objects of interest from the background and

from each other. When applied to image patches that corre-

spond to the location of detected interest points, the result-

ing clusters provide strong constraints for typical interest

point matching algorithms, resulting in a significant reduc-

∗This work was partially supported by the PHAROS project

funded by the European Commission under the 6th Framework

Programme (IST Contract No. 045035).

Figure 1. Top row from left to right: Reference image of a chee-

tah, target frame from a video sequence, and clusters of keypoints

detected by our algorithm. bf Bottom row: The left side shows

standard SIFT matching illustrating the difficulty of this problem.

The right side shows the result of using our method to constrain

SIFT matches to keypoints within specific clusters as described in

the text. Our algorithm makes matching possible under very chal-

lenging conditions.

tion in the number of false matches. This process is illus-

trated in Fig. 1

To support the case for our proposed method, each com-

ponent of the algorithm is evaluated separately on images

from the Berkeley Segmentation Database (BSD) [16]. We

also present a clustering comparison with the normalized

cuts method [22], a standard graph-based clustering algo-

rithm that is closely related to spectral embedding. The

evaluation brings additional insights about the nature of the

problem of clustering keypoints by appearance, and pro-

vides solid evidence that the proposed framework is sound.

Having evaluated the performance of our algorithm on

a standard image database, we demonstrate its usefulness

for object detection and tracking on a series of difficult

matching problems characterized by clutter, non-uniform

illumination changes, and non-rigid transformations. It

is shown that the clustering process leads to significantly

better matches, allowing for the tracking of lightly tex-

ture objects in heavily cluttered backgrounds, matching un-

der conditions of significant perspective and non-rigid de-



formations, and matching under non-uniform illumination

changes.

2. Feature grouping in context

The algorithm we propose is related to a wider class

of methods in two fields of computer vision: perceptual

organization and image segmentation. Perceptual organi-

zation (perceptual grouping) deals with the general prob-

lem of grouping a set of observed features into meaningful

sets. It is based on the Gestalt school of psychology [25],

which studies how human observers organize visual stim-

uli. In computer vision, perceptual grouping has addressed

the fundamental problem of extracting complete boundaries

and surfaces from fragmented data [10], [26]. Image seg-

mentation, on the other hand, has explored the problem of

deciding which parts of the image have a consistent appear-

ance. While it is often considered a separate field within

computer vision, one could think of image segmentation as

a special case of perceptual grouping, namely, that of group-

ing pixels or image patches according to their similarity of

appearance.

The performance of state-of-the-art methods in both

fields has improved over the years. Existing algorithms use

complex appearance descriptors and powerful optimization

and inference procedures (see [22], [7], and [19] to name

just a few). However, current algorithms are still limited in

their ability to deal with typical natural images depicting

heterogeneous or textured objects against complex back-

grounds. These limitations explain why, outside of med-

ical imaging problems, grouping and segmentation meth-

ods have found few direct applications. It is arguably the

case that the increasing complexity of object recognition

and tracking algorithms arises in part because of the limi-

tations of existing low-level vision methods.

Instead of focusing on the segmentation problem of ex-

tracting accurate object boundaries, we look at the grouping

of a much smaller set of features: The keypoints detected

on a given image. This has two principal advantages, first,

it makes the clustering task simpler and less computation-

ally demanding. Secondly, the clustering does not have to

be exceedingly accurate in order to be useful. As long as the

clustering method manages to reject most background clut-

ter for a given object, standard robust matching techniques

such as RANSAC will recover a useful match.

The framework we propose here is related to spectral

clustering algorithms, such as normalized cuts [22] and

its many extensions; to existing methods that take advan-

tage of the steady-state properties of random walks [9];

and to previous work on cue combination [15] together

with recent work in texture similarity measures [23]. We

also find related work in the clustering method proposed

in [8] for feature grouping and boundary extraction, and

in recent patch-based frameworks for image representa-

tion [11], [12]. While this is not an exhaustive list, thorough

reviews of image segmentation and perceptual grouping are

available from [2]. Finally, we note that while the grouping

of keypoints by appearance has not been properly studied

before, the reverse problem (namely, the use of keypoint

based object detection to improve segmentation results) is

the topic of recent research efforts [27].

3. Representing Local Appearance

A critical component of any clustering method is the

similarity measure that will govern the behaviour of the al-

gorithm and the quality of the clusters. Even a good clus-

tering algorithm working on weak similarity information

can be expected to produce poor results. This section de-

scribes the colour and texture representation for local image

patches, the similarity measure that provides suitable infor-

mation for the clustering algorithm, and an evaluation of

the proposed measure on test images from the BSD. An im-

portant observation derived from the evaluation is that the

problem of grouping keypoint patches is in general harder

than that of grouping pixels or uniformly distributed image

patches.

For the rest of the paper we use the following notation:

I is an input colour image, P is the set of local image

patches extracted from I , ~pi is the ith patch in P associ-

ated with image coordinates (xi, yi). The patch contains the

pixel values for a square region of a specified width cen-

tered at (xi, yi) on image I . We assume that the patches

have been detected through the use of a standard keypoint

detector such as SIFT [13], but we note that the algorithm

does not depend on a specific detector. In fact, it does not

require square patches either. Arbitrarily shaped and sam-

pled patches derived, for example, from superpixels could

be used as well without modifications to the algorithm de-

scribed below. For an extensive review and evaluation of

keypoint detectors please see [18].

3.1. Colour and Texture Representation

The appearance representation we describe here was

chosen for its simplicity and compactness. It does not re-

quire convolution of the image with large filter banks, nor

the additional step of computing a suitable number of texton

channels. Despite its simple form, we will show at the end

of this section that it provides results that are competitive

with regard to current (significantly more complex) state-

of-the-art approaches.

We use standard colour histograms to represent the

colour appearance of a local image patch. Histograms have

the advantage of being easy to generate and having well

studied similarity measures [21]. For simplicity, we use the

RGB colourspace, but we note that the same procedure can

be used in any suitable colourspace and can be easily ex-



tended to the analysis of multi-spectral imagery. We denote

the colour histogram for a patch ~pi as ~Hi. This histogram

is formed by computing 1-dimensional histograms for each

available colour channel in patch ~pi, and then concatenat-

ing the individual histograms for each colour channel into a

single vector. The size of the patch and the number of bins

in the histogram are parameters of the algorithm.

To represent image texture, we use a recently proposed

texture descriptor based on covariance matrices of image

derivatives at a specific scale [23]. This formulation com-

pares favourably to current state-of-the-art filter bank ap-

proaches, such as [24]; more importantly, it has been shown

to provide good performance for object categorization. The

texture descriptor Ci corresponds to the covariance matrix

Ci =
1

(N − 1)

∑

j∈~pi

(~vj − ~̄v)T (~vj − ~̄v), (1)

where

~vj =

[

∂I

∂x

∂I

∂y

∂2I

∂x2

∂2I

∂y2

∂2I

∂xy

]

(2)

is the vector of first and second image derivatives for some

pixel j ∈ ~pi computed using standard finite difference ap-

proximations, ~̄v is the mean vector over the patch, and N is

the number of pixels in ~pi. While this measure has been

used for full-image object matching and for texture dis-

crimination before, it has, to our knowledge, not been in-

corporated into existing multi-cue visual classification al-

gorithms.

3.2. Similarity Computation

Given the appearance descriptors detailed above, we can

compute the similarity in terms of colour and texture be-

tween any two patches. The problem here is to determine

an appropriate way to combine the two image cues of colour

and texture. The chosen form of the similarity measure

is common for image segmentation tasks, the novelty here

is in replacing large filter-banks by the covariance-based

texture measure described above, which achieves almost

equal performance at a lower computational cost. Addi-

tionally, while common similarity measures typical of im-

age segmentation research employ some form of edge en-

ergy [15], [5], we do not incorporate any edge-based com-

ponent in our own similarity measure. This is due to the

fact that keypoints typically occur on or near image bound-

aries and so the probability that the patch that contains the

keypoint straddles an image edge is high.

We use a simple exponential combination of the avail-

able cues, and show that this simple measure yields good

results on standard precision/recall discrimination tests over

images from the BSD. The first step is to define proper

similarity values for the colour and texture components of

our appearance model. Colour similarity is straightforward.

Based on the analysis and evaluation results for histogram

similarity measures presented in [21] within the context of

content based image retrieval, we use the χ2 histogram dis-

tance given by

χ2
ij = χ2( ~Hi, ~Hj) =

∑

k

( ~Hi(k) −
~̂
H(k))2

~̂
H(k)

, (3)

where
~̂
H(k) = ( ~Hi(k) + ~Hj(k))/2, k = 1 . . . n is the

average histogram of ~Hi and ~Hj .

Texture similarity is measured as described in [23].

The idea behind this similarity measure is that the covari-

ance matrix Ci describes a hyper-ellipsoidal distribution of

points in a an m-dimensional space. The shape and ori-

entation of this hyper-ellipsoid is described by the eigen-

vectors and eigenvalues of Ci. Texture similarity can be

estimated by comparing the shape and orientation of the

hyper-ellipsoids corresponding to two covariance matrices

Ci and Cj . More specifically, similarity between Ci and Cj

is estimated by solving the generalized eigenvalue problem

λkCi~uk −Cj~uk = 0 where λk, k = 1 . . . 5 are the general-

ized eigenvalues and ~uk 6= ~0 are the generalized eigenvec-

tors of Ci and Cj . Texture similarity is then defined as

ρij = ρ(Ci, Cj) =

√

√

√

√

5
∑

k=1

ln2λk (4)

which satisfies ρij ≥ 0, ρij = 0 only if Ci = Cj , and also

satisfies the triangle inequality.

Finally, we include an additional term in our similarity

function that depends on the Euclidean distance between

the centers of two patches. The final similarity function fol-

lows a common formulation from image segmentation re-

search [15]. We write

aij = e−(
ρ2

ij

σ2 +
(χ2

ij
)2

σ2 +
d2

ij

σ2 ), (5)

where dij is the Euclidean distance between patches ~pi and

~pj . There is one free parameter, namely σ used to weight

the cues. While we have elected to use a single σ in our

affinity measure, particular tasks or problem domains may

benefit from individually weighting each cue with a differ-

ent σ. The values for these parameters should be learned

from training data as discussed below.

To set the value of our parameters (σ, number of his-

togram bins, and patch size) and to evaluate the perfor-

mance of the similarity measure, we follow the framework

proposed in [5]. We choose σ = .3, patches of size

11 × 11, and 15 histogram bins as the values that max-

imize the F-measure over a set of 50 randomly selected

training images from the BSD. The F-measure is given by

F (p, r) = (pr/(.5 ∗ p + .5 ∗ r) where p is the precision



defined as the probability that two features declared to be in

the same group are indeed in the same group, and r is the

recall defined as the probability that a same-group pair is

detected.

We then evaluate the performance of the similarity mea-

sure on the remaining 250 BSD images. We obtain F =
.5728 for pixel classification with our formulation. In com-

parison, the optimized similarity measure proposed in [5],

which is based on a large set of filters and a carefully se-

lected group of texton channels achieves F = .602 using

patch information only (we note that the latter value was

computed over a significantly larger set of images than what

the public distribution of the BSD contains, and that cues

were computed using the CIE-Lab colourspace). We con-

clude that with regard to patch-based features our simpler

similarity measure performs almost as well as the state-of-

the-art measure proposed in [5]

Testing over the BSD also reveals that the task of group-

ing keypoint patches is significantly harder than that of clus-

tering pixels. We processed the 250 BSD images not used

during training with the SIFT keypoint detector [14], and re-

computed the F-measure using only keypoint patches. The

result yields F = .5247. This decrease can be explained by

noting that keypoints are by definition located close to, or

directly on top of object boundaries and areas of large im-

age gradient. Patches obtained from these locations often

contain data from more than one visually distinct region,

making classification harder. In conclusion: keypoint clus-

ters have soft boundaries (a fact that motivates the need for a

good clustering method), and the reduced F-measure scores

reflect this fact.

We end this section with two important observations re-

garding the evaluation above. First, in [5] a significantly

better F = .652 is obtained by using an intervening contour

cue based on boundary energy. Such a contour-based cue is

appropriate for pixel segmentation, but not so for keypoint

clustering since many keypoints are expected to span ob-

ject boundaries. The second observation pertains the use of

spatial distance as a cue for grouping. Results in [5] and our

own tests show no meaningful improvement from the use of

spatial information for pixel-wise classification. However,

the distance term makes a significant difference for keypoint

grouping. Without the distance term the F-measure for key-

points decreases from .5247 to only F = .5054.

4. Clustering Algorithm

We propose a two-stage clustering method that takes ad-

vantage of the good performance of our similarity measure.

The first step in our method is based on the spectral em-

bedding algorithm [4], which works on the principle that

similarity between elements that belong in the same cluster

can be strengthened through a random walk process, and

that this process can be carried out efficiently in a low-

−0.01

−0.005

0

0.005

0.01 −0.015

−0.01

−0.005

0

0.005

0.01

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

Figure 2. Left: Original image and first 3 dimensions of the em-

bedding. Second and third columns: similarity of sampled image

patches (blue dots) with regard to a selected patch shown in red,

brightness is proportional to similarity. Proximity in the embed-

ding space is equivalent to image-space similarity.

dimensional subspace computed from the matrix of pair-

wise similarities between data points.

This property of enhancing the similarity of elements

that belong in the same cluster is what differentiates this al-

gorithm from standard spectral clustering methods such as

Ncuts, and other dimensionality reduction techniques like

PCA. The spectral embedding technique has been shown to

yield better segmentations in a benchmark study of image

segmentation algorithms [3], and our results here confirm

its ability to produce better clusters than related techniques

such as Ncuts.

The mathematical formulation and details of the spectral

embedding process are given in the Appendix. The result of

the embedding is a 5D representation of our input patches

as a set of feature vectors. This representation is such that

patches in the image that belong to the same object or ap-

pearance class form tight clusters. Figure 2 shows an input

image, and the first 3 dimensions of the 5D embedding com-

puted for uniformly sampled patches over this image. There

are two things to note in the plots of the embedding: first,

one can see a few dense regions with many feature vectors

separated by sparsely populated areas. Each dense region

corresponds to one of the appearance classes of the image

(e.g. tiger, grass, water). Secondly, similarity of appearance

is encoded in the embedding as spatial proximity. These two

properties are typical of spectral embedding and contribute

to making the clustering of feature vectors much easier.

Once we have a set of low-dimensional feature vectors

from the embedding, we find clusters and assign a label

to each patch. In the original embedding formulation, this

was accomplished by proposing a set of seed regions cor-

responding to small sets of highly similar feature vectors,

followed by a series of min-cut computations to determine

the optimal cluster boundaries. This approach has two lim-

itations: the amount of computation required by the many

min-cut operations, and the fact that clusters could be arbi-

trarily split if more than one seed region was generated for



a single image object.

In our case, given that we have a good similarity mea-

sure, clusters are often very tightly packed. We can thus

detect them more easily and at a lower computational ex-

pense by using the standard mean-shift algorithm [6], [1].

Mean-shift receives as input a set of feature vectors and the

radius of the local window used to compute the mean-shift

updates. This radius is directly related to the size of clusters

output by the algorithm. The issue of determining an ap-

propriate radius is in general unsolved for mean-shift. How-

ever, we note that given the relatively small number of input

features, (usually less than a couple of thousand, compared

to typically millions of pixels) performing the mean-shift

process is not too expensive in terms of computation. Thus

we can perform mean-shift with iteratively larger radius un-

til the resulting clustering has a specified number of groups.

For all our tests we fixed the number of output clusters to 7,

and allowed the clustering method to determine the proper

mean-shift radius.

The complete clustering process is as follows: Detect

keypoints on an input image using a suitable interest point

detector, generate colour and texture features for each patch,

compute the matrix of pairwise similarities and perform

spectral embedding, and finally, use mean-shift to detect

groups of keypoints in the resulting embedding. Clustering

results for several BSD test images are shown in Fig. 3. The

figure shows that the method yields good clusters that corre-

spond to individual objects or visually distinct background

components.

To quantify the performance of the algorithm and to pro-

vide a baseline for comparison, we conducted a systematic

evaluation of clustering performance over the 250 images

of the BSD that we previously used to evaluate the perfor-

mance of our similarity measure. We compared our results

against the well know normalized cuts (Ncuts) [22] algo-

rithm. This algorithm was chosen because it is representa-

tive of current graph-based clustering methods, and because

it is closely related to spectral embedding, providing the

closest alternative to the framework described above. To

ensure that we evaluate only the clustering component of

both algorithms, we use exactly the same similarity func-

tion, the same affinity matrix, and the same eigenvectors for

both methods.

The criteria for clustering quality is simple. For each im-

age we generate clusters using our method as well as Ncuts

(note that Ncuts is used to cluster the keypoints directly, the

clusters are not generated from an Ncuts segmentation of

the image). Both algorithms were set to produce 7 clusters

per image or as close to this as possible given the eigenvec-

tors. We then compute the percentage of keypoints for each

image that have been correctly clustered with regard to the

human ground-truth from the BSD.

To evaluate correct classification, we generate ground

Figure 3. Clustering results on several images from the BSD. Each

cluster is indicated by a different colour. The clustering algorithm

is able to detect clusters that correspond to the object of interest

despite the large amount of background features.

truth labels for keypoints from the human segmentation in

the BSD that has the closest number of regions to our ex-

pected 7. For each ground-truth cluster we find the key-

point cluster in the automatic grouping results that has the

largest intersection (i.e. the automatic cluster in best agree-

ment with this ground-truth cluster). We then mark key-

points common to both as correctly classified. We repeat

this process with each ground-truth cluster, and compute

at the end the percentage of correctly classified keypoints.

This simple measure of correct classification will be low if

clusters have been merge too much, or split too much. It

provides a good indicator of clustering performance.

The mean correct-classification rate for our algorithm

over the 250 BSD images used for testing is RSE = .6613.

The correct classification rate for Ncuts is only RNCuts =
.5279. Fig. 4 shows the correct classification results for the

250 BSD images used for testing. The results above, both

visual and quantitative, indicate that our clustering frame-

work and affinity function are sound and lead to good clus-

tering results. We now show that the keypoint clusters pro-

duced by our algorithm provide constraints for typical in-

terest point matching algorithms that result in significantly

improved matching under difficult conditions.

5. Experimental Results and Applications

We first demonstrate the use of keypoint clustering for

tracking. Fig. 5 shows several consecutive frames of a se-

quence with a van. This is a very difficult problem for key-

point based approaches because the van is lightly textured,

and because it is imaged against a heavily cluttered back-



0 50 100 150 200 250
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Correct classification rate sorted by performance differential
C

or
re

ct
 c

la
ss

. r
at

e

Number of images

 

 

Our method

NCuts

Difference = Our method − NCuts

Figure 4. Correct classification rate on 250 BSD images for our

method and NCuts. Results are sorted by the difference in perfor-

mance to make the plot easier to understand. We observe that our

method outperforms NCuts on more than 200 out of the 250 test

images.

ground. The number of keypoints detected on the van is

only a very small fraction of the total set of keypoints de-

tected on any given frame of the sequence. Typical SIFT

matching fails to detect and track the object. Our algorithm,

on the other hand, is able to separate the keypoints com-

ing from the van from those originating in the background.

Once the user selects a cluster to be tracked on the initial

frame, that cluster is automatically detected on successive

frames. Constrained SIFT matching, where matches are

only allowed to occur between the reference cluster and the

automatically detected corresponding group in successive

frames, is able to recover enough useful matches to provide

a good estimate of pose for the duration of the sequence.

Our second example, illustrated in Fig. 6 concerns

matching for an object characterized by non-rigid deforma-

tion. The reference image is not part of the sequence and

in fact may depict a different animal than the one shown

in the sequence. There is perspective distortion, a signifi-

cant amount of background clutter, and the background is

moving. Under this conditions we find once more that stan-

dard SIFT matching fails. Our method is able to separate

keypoints corresponding to the cheetah from those on the

background, both for the reference image and the frames

in the sequence. After the user selects the reference ob-

ject to be tracked, the cheetah cluster is easily detected over

the entire sequence. Constrained matching is able to pro-

vide meaningful matches. Conversely, standard matching

is typically confounded by similarity between background

and foreground features.

A final example concerns matching under non-uniform

illumination changes and perspective distortion. Fig. 7

shows two image pairs depicting two objects of interest.

Due to non-uniform illumination changes, typical amounts

of clutter, and viewpoint changes, standard matching pro-

duces poor results. Constrained matching on the other hand

yields a much cleaner set of correspondences. The results

clearly show that our algorithm yields high-quality clus-

Figure 5. Tracking of a lightly textured object on a heavily clut-

tered background. Left Column: Unconstrained matching be-

tween image pairs. The red rectangles on the reference image

are hand drawn and those on the target image are transformed by

the homography computed using the matching keypoints. Because

of large amounts of background clutter and erroneous correspon-

dences the homography is bad. Right Column: Our approach to

matching. The correspondences are much better and background

is mostly eliminated. This is evidenced by the fact that the trans-

formed rectangles now match much more accurately the car’s loca-

tion. Bottom Row: Keypoint clusters produced by our algorithm

for the four target images. Keypoints assigned to the foreground

are shown in green and the rest in red.

Figure 6. Tracking a cheetah against a complex background. Left

column: Standard unconstrained matching between a video frame

and the reference image that appears in the top-left corner of Fig.

1. Middle column: Foreground/background clusters produced

by our method for the target video frame. Right column: Con-

strained matching results.



Figure 7. Additional examples of constrained SIFT matching. Top

row: conventional SIFT matching. Bottom row: constrained

matching using the clusters detected by our method.

ters even on difficult images, this leads to greatly improved

matching results. This is not a trivial accomplishment given

the degree or complexity of the objects and their back-

ground, as well as the fact that the results are produced

without the benefit of any shape model, dynamical model,

or predictive stage to help tracking the cluster across frames.

While pose can’t be properly estimated using a simple

homography for deformable objects, or in general for non-

planar objects, the clustering process nonetheless provides

strong constraints for algorithms that rely on feature match-

ing for 3D reconstruction, bags of features approaches to

object recognition, and automated model learning, which

currently requires flat backgrounds (see for example [20])

but which could be extended to use keypoint clusters in-

stead. These wider applications remain a matter for future

research.

6. Conclusion

We have presented a sound clustering framework that or-

ganizes a set of keypoint patches into groups with similar

appearance. We proposed a compact affinity measure for

colour and texture and showed that it achieves almost the

same performance as more complex, and computationally

expensive filterbank-based measures. We described a clus-

tering process based on spectral embedding and mean-shift,

and showed it produces significantly better clusters than an

alternate graph-based method on a large image database. Fi-

nally, we presented results that illustrate the usefulness of

keypoint clusters. The results show that our algorithm al-

lows for matching under conditions that are otherwise too

difficult to handle using unconstrained matching alone.

References

[1] D. Comaniciu and P. Meer. A robust approach toward feature

space analysis. PAMI, 24(5):603–619, 2002.

[2] F. Estrada. Advances in computational image segmentation

and perceptual grouping, 2005. Ph.D. Thesis, Dept. of Com-

puter Science, University of Toronto.

[3] F. Estrada and A. Jepson. Quantitative evaluation of a novel

image segmentation algorithm. In CVPR, pages 1132–1139,

2005.

[4] F. Estrada, A. Jepson, and C. Chennubhotla. Spectral embed-

ding and min-cut for image segmentation. In BMVC, pages

317–326, 2004.

[5] C. Fowlkes, D. Martin, and J. Malik. Learning affinity func-

tions for image segmentation: Combining patch-based and

gradient-based approaches. In CVPR, volume 2, pages 54–

61, 2003.

[6] K. Fukunaga and L. Hostetler. The estimation of the gradient

of a density function with applications in pattern recognition.

In IEEE Trans. in Information Theory, volume IT-21, pages

32–40, 1975.

[7] M. Galun, E. Sharon, R. Basri, and A. Brandt. Texture seg-

mentation by multiscale aggregation of filter responses and

shape elements. In ICCV, pages 716–723, 2003.

[8] Y. Gdalyahu, D. Weinshall, and M. Werman. Self-

organization in vision: Stochastic clustering for image seg-

mentation, perceptual grouping, and image database organi-

zation. PAMI, 23(10):1053–1074, 2001.

[9] L. Grady. Random walks for image segmentation. PAMI,

28(11):1768–1783, 2006.

[10] G. Guy and G. Medioni. Inferring global perceptual contours

from local features. IJCV, 13(9):920–935, 1996.

[11] N. Jojic, B. J. Frey, and A. Kannan. Epitomic analysis of

appearance and shape. In ICCV, pages 34–41, 2003.

[12] A. Kannan, J. Winn, and C. Rother. Clustering appearance

and shape by learning jigsaws. In NIPS, pages 657–664,

2006.

[13] D. Lowe. Distinctive image festures from scale-invariant

keypoints. IJCV, 60(2):91–110, 2004.

[14] D. Lowe. Demo software: Sift keypoint detector, 2005.

http://www.cs.ubc.ca/˜lowe/keypoints/.

[15] J. Malik, S. Belongie, J. Shi, and T. K. Leung. Textons, con-

tours and regions: Cue integration in image segmentation. In

ICCV, volume 2, pages 918–925, 1999.

[16] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database

of human segmented natural images and its application to

evaluating segmentation algorithms and measuring ecologi-

cal statistics. In ICCV, pages 416–423, 2001.

[17] M. Meila and J. Shi. Learning segmentation by random

walks. In NIPS, pages 873–879, 2000.

[18] K. Mikolajczyk and C. Schmid. A performance evaluation

of local descriptors. PAMI, 27(10):1615–1630, 2005.

[19] B. Mičušı́k and T. Pajdla. Multi-label image segmentation

via max-sum solver. In CVPR, pages 1–6, 2007.

[20] M. Ozuysal, V. Lepetit, F. Fleuret, and P. Fua. Feature tar-

geting for tracking by detection. In ECCV, pages 592–605,

2006.

[21] Y. Rubner, J. Puzicha, C. Tomasi, and J. M. Buhman. Empiri-

cal evaluation of dissimilarity measures for color and texture.

CVIU, 84(1):25–43, 2001.

[22] J. Shi and J. Malik. Normalized cuts and image segmenta-

tion. PAMI, 22(8):888–905, 2000.

[23] O. Tuzel, F. Porikli, and P. Meer. Region covariance: a fast

descriptor for detection and classification. In ECCV, vol-

ume 2, pages 589–600, 2006.



[24] M. Varma and A. Zisserman. A statistical approach to tex-

ture classification from single images. IJCV, 62(1-2):61–81,

2005.

[25] M. Wertheimer. A Sourcebook of Gestalt Psychology. Rout-

ledge and Kegan Paul, 1938.

[26] L. R. Williams and D. W. Jacobs. Stochastic completion

fields: A neural model of illusory contour shape and salience.

Neural Computation, 9(4):837–858, 1997.

[27] L. Yang, P. Meer, and D. J. Foran. Multiple class segmenta-

tion using a unified framework over mean-shift patches. In

CVPR, pages 1–8, 2007.

Appendix

We follow the formulation of the spectral embedding

presented in [4] in the context of image segmentation. First,

we represent the set P of image patches as a graph G(V,E)
where V is a set of nodes, with one node per patch, and

E is a set of undirected edges connecting nodes to one an-

other. The weight of the edge E(i, j) is simply the similar-

ity aij (see Eq. 5) between the two corresponding patches.

The graph is conveniently represented as a symmetric affin-

ity matrix A where A(i, j) = aij . From this matrix, it is

easy to generate a proper Markov matrix M by normalizing

each column of A so that the values in the column add up

to 1. We can define an arbitrary probability distribution ~d
as a column vector with one entry per patch, which satisfies
∑

i
~d(i) = 1. The value of each component in this vector

represents how much probability mass is currently stored at

the corresponding image patch.

The matrix M defines a random walk on the graph

G(V,E). Consider what happens to an initial probability

distribution ~d0 that has all its probability mass concentrated

at a single node of G. After t steps of the random walk,

the new probability distribution ~dt is given by ~dt = M t ~d0.

The effect of M upon ~d0 is that of diffusing the initial prob-

ability distribution, but this diffusion is not isotropic. Since

the probability of traveling between any two nodes is di-

rectly proportional to their similarity, the resulting diffusion

favours visiting nodes that are similar to the starting point.

In [4], the patterns of diffusion resulting from simulat-

ing the random walk at specific nodes are called blur ker-

nels since they can be used for performing anisotropic im-

age smoothing. Here we refer to them simply as diffusion

kernels. Formally, we define ~dj
t = M t ~dj

0 where ~dj
t is the

diffusion kernel obtained by simulating t steps of a random

walk with initial probability distribution ~dj
0, and ~dj

0 has all

its probability mass concentrated at the node corresponding

to patch pj .

The key property to be noted from the above process is

that the diffusion kernels for image patches belonging to the

same object are typically very similar even when the initial

distributions are localized at different points in the image.

In fact, this will be the case even if the initial similarity be-

tween the patches is small. The information provided by the

diffusion kernel goes beyond what is encoded in the pair-

wise patch similarities, it provides global similarity infor-

mation that relates two patches by taking into account the

configuration of the entire graph. As we should expect, dif-

fusion kernels for patches from different-looking regions of

the image yield entirely different distributions. The funda-

mental principle behind the clustering process is that clus-

tering using diffusion kernels should be much easier since

the diffusion process enhances the similarity of elements

that should be grouped together.

While we could compute the diffusion kernels for each

patch, and try to cluster them directly, this may be com-

plicated because of the high-dimensionality of the kernels

(equal to the number of patches in the image). Instead of

using the long vectors that encode each diffusion kernel, we

compute a low-dimensional approximation of each kernel

using the spectral properties of M . Formally speaking, we

compute a projection (embedding) of each diffusion kernel

onto the leading eigenvectors of M (i.e. the eigenvectors

with largest, real eigenvalues). The projected diffusion ker-

nels are given by

~wj
t = ∆t

nV T
n

~dj
0, (6)

where [U,∆, V ] is the SVD of M , ∆n is a diagonal matrix

containing the largest n eigenvalues of M , and Vn contains

the n columns of V with the corresponding eigenvectors.

From ~wj
t we can easily reconstruct an approximation of the

diffusion kernels ~dj
t ≈

~̂
dj

t = Un ~wj
t . Un contains the n

columns of U corresponding to the n largest eigenvalues.

We choose n = 5, and set the value of t as described in [4]

so that the contribution of the last eigenvector of the em-

bedding is small, and the resulting reconstruction of the full

diffusion kernels is reasonably free of artifacts. A sample

embedding is shown in Fig. 2.

It is worth pointing out the fundamental difference be-

tween the spectral embedding formulation described above

and standard spectral clustering techniques. Typical spec-

tral clustering techniques use individual eigenvectors of a

Laplacian matrix to determine partitions of the dataset di-

rectly. This provides good partitions only when the data

have strongly separated clusters, but has a tendency to leak

across weak cluster boundaries. Spectral embedding, on the

other hand, uses a subset of the eigenvectors of M only to

(efficiently) compute a low dimensional approximation of

the diffusion kernels. The random walk process together

with the embedding effectively map similar elements to

small neighborhoods in the low-dimensional space. The

partitions do not come from the eigenvectors, instead, the

projected diffusion kernels ~wj
t are clustered directly using a

suitable algorithm (mean shift in our case). A study of the

relationship between random walks and standard spectral

clustering techniques is presented in [17].


