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Abstract

Perceptual grouping of the complete boundaries of ob-
jects in natural images remains an unsolved problem in
computer vision. The computational complexity of the prob-
lem and difficulties capturing global constraints limit the
performance of current algorithms. In this paper we de-
velop a coarse-to-fine Bayesian algorithm which addresses
these constraints. Candidate contours are extracted at a
coarse scale and then used to generate spatial priors on the
location of possible contours at finer scales. In this way,
a rough estimate of the shape of an object is progressively
refined. The coarse estimate provides robustness to texture
and clutter while the refinement process allows for the ex-
traction of detailed object contours. The grouping algo-
rithm is probabilistic and uses multiple grouping cues de-
rived from natural scene statistics. We present a quanti-
tative evaluation of grouping performance on the Berkeley
Segmentation Database, and show that the multi-scale ap-
proach outperforms several single-scale contour extraction
algorithms.

1. Introduction

We address the problem of computing complete bound-
ing contours of salient objects in a natural image. This prob-
lem is of central importance to computer vision, and yet re-
mains largely unsolved. Most current boundary detection
algorithms work on data at a single scale (usually the scale
that provides the highest amount of detail). These single-
scale algorithms can yield useful results on reasonably sim-
ple scenes, but natural images with their wealth of detail,
texture, clutter, and other artifacts continue to be extremely
challenging.

There are many factors that make the problem hard. Here
we focus on two:

• Complexity. Finding complete bounding contours
amounts to finding a specific sequence of n local edge

primitives from a much large clutter of N edges. The
general problem is of exponential complexity. Algo-
rithms must therefore make strong assumptions that
may limit performance, or must limit search to a small
portion of the total hypothesis space.

• Global Constraints. Many algorithms use Markov as-
sumptions that do not capture global structure. Captur-
ing global constraints can generally be computation-
ally expensive

One reason current algorithms are not more successful
is that their single-scale nature is too constraining given the
complexity of the grouping task. The abundance of detail on
medium- and high-resolution images can cause single-scale
grouping algorithms to “miss the forest for the trees”. Pre-
vious research [6] has demonstrated that prior information
about the contents of the image can be used to successfully
deal with image complexity. However, such information is
generally not available.

In this paper we demonstrate that a multi-scale approach
can be used to reduce the complexity of the grouping task
in the absence of prior scene knowledge. Our method is
based on the observation that coarse object boundaries can
be recovered from low-resolution images in which grouping
complexity is significantly reduced. Such coarse boundaries
can be used to inform and guide the grouping process at
finer scales of resolution, culminating in detailed contours
at the finest scale. The general procedure is applicable to
most existing grouping algorithms provided that a suitable
way can be devised to propagate information across scales.
Here, we build on the probabilistic grouping framework of
Elder et al. [6]. Their algorithm is based on natural scene
statistics, and provides us with a sound base upon which to
study the multi-scale grouping problem.

We evaluate the algorithm on images from the Berke-
ley Segmentation Database (BSD), and provide a quantita-
tive comparison between our multi-scale method, the Ratio
Contour algorithm of Wang et al. [24], the grouping algo-
rithm of Estrada and Jepson [10], and the single-scale ver-



sion of our framework, which is roughly equivalent to the
grouping algorithm of Elder et al. [6].

2. Previous Work

There has been interesting work in applying multi-scale
methods to shape modeling. Dudek and Tsotsos [3] intro-
duced a method for 2D and 3D shape representation and
recognition based on multi-scale curvature. Dubinskiy and
Zhu [4] proposed a coarse-to-fine method for shape encod-
ing and synthesis. In their work, contours are formed with
linear combinations of simple shapes; starting with an el-
lipse, and adding basis shapes progressively to achieve re-
fined reconstructions. More recently, Wang et al. [27] pre-
sented a multi-scale image representation based on a sketch
pyramid, and show that it is potentially useful for applica-
tions such as tracking and super-resolution. The progress
made on multi-scale shape representation is encouraging,
but it does not address the question of how we get the shapes
to be represented out of the image in the first place. That is
the main concern of this paper.

Many recent methods for boundary detection treat
grouping as a clustering problem. Mahamud et al. [14] de-
fine an affinity matrix based on the probabilities of random
walks biased by smooth continuation and proximity, and use
the spectral properties of this matrix to estimate edge and
link saliencies from which closed contours can be extracted.
Sarkar and Soundararajan [22] use graph-partitioning tech-
niques to identify subsets of features that are weakly con-
nected to the remaining features in a graph that encodes
perceptual grouping principles. Wang et al. [24] present
an algorithm for finding contours as maximum-likelihood
cycles in a graph. Gdalyahu et al. [11] present a grouping
method that finds clusters of features (which for perceptual
grouping are short line segments) that often appear together
in stochastically generated graph cuts.

Elder and Zucker [7], extract contours as shortest-path
cycles in a graph encoding perceptual grouping principles.
They introduce a Bayesian grouping framework that ac-
counts for different causes of contour fragmentation. This
work was extended by Elder et al. [6] to allow the incorpo-
ration of object knowledge. The algorithm is based on natu-
ral scene statistics, and incorporates prior knowledge about
the objects of interest in the form of the expected photomet-
ric appearance of the image around individual object edges.
Estrada and Jepson [10] propose a search-based algorithm
based on local affinity normalization. The resulting nor-
malized affinities provide robustness to varying degrees of
clutter, and result in significantly reduced search complex-
ity.

All of these algorithms work at a single-scale. There
are a couple of methods that, although not multi-scale,
use multiple levels of inference to extract features. Mo-
han and Nevatia [17] use a constraint satisfaction network

to generate progressively more complex structures. Their
method proceeds hierarchically from single edgels to con-
tours, ribbons, and finally surface patches. Sarkar and
Boyer [21] propose a Bayesian network model of group-
ing. In their scheme, progressively more complicated fea-
tures are formed by the network using voting methods and
graph operations supported by perceptual grouping princi-
ples. Raman et al. [18] propose a method similar in spirit
to the work we describe here. Starting from coarse-scale
closed contours of important structures in MRI images, they
track and refine the shape and position of each contour
through scale-space. Their method is able to generate ac-
curate edge maps while being resistent to noise and clutter.

Saund [20] introduced a fine-to-coarse edge grouping al-
gorithm for extracting larger scale shape primitives from bi-
nary (silhouette) images. Liang et al. [13] use a two-scale
image-space method to refine the position estimates of arte-
rial walls. Ren and Malik [19] study a multi-scale, Bayesian
method for contour completion. The goal of their algorithm
is to refine the edge map based upon contour continuity over
multiple scales. The algorithm is not designed to extract
complete object boundaries, but some improvement in the
localization of salient edges is demonstrated.

Several of the boundary detection algorithms mentioned
above have been shown to successfully detect simple object
boundaries on images from constrained domains. However,
on complex natural images current grouping algorithms are
easily misled, and ultimately fail. Reliable boundary ex-
traction on complex images remains an unsolved problem.
It is also interesting to notice that in the context of object-
boundary detection the problem of scale has received rel-
atively little attention. In the remainder of the paper we
will show that the use of multi-scale information leads to
improved boundary extraction on natural images from the
Berkeley Segmentation Database (BSD). We begin by de-
scribing the specific objective of our algorithm

3. Training and Testing Image Data

The BSD provides a useful record of how human ob-
servers segment natural images into a small number of dis-
joint regions. However, the objective of our work (and most
contour grouping efforts) is not to compute a full segmenta-
tion of the image, but to extract complete contours bound-
ing the most salient objects in the scene. In addition to
this, many BSD images are mostly composed of irregularly
shaped texture regions that do not correspond to individual
objects.

In order to be able to use images and ground-truth seg-
mentations from the BSD to train and evaluate our method,
we will use only those images from the BSD that contain
at least one salient, unoccluded object that is fully con-
tained within image bounds. Two human observers (inde-
pendently, and including one of the authors) viewed all 200



images from the BSD training set and selected those that
satisfied the above criteria. In total, there were 37 training
images that both observers agreed satisfy these conditions.

Each image in the BSD has between 4 and 7 associated
human segmentations. For each selected image, the ob-
servers cooperatively hand-labeled the regions from the cor-
responding ground-truth segmentations that corresponded
to individual objects (which is necessary because a seg-
mentation may split individual objects into several regions).
This resulted in 37 sets of ground-truth object boundaries
for training. The same process applied to the 100 BSD test
images resulted in 20 test images, and 20 sets of ground-
truth boundaries for testing.

4. Single-Scale Grouping Algorithm

Our grouping framework is based on the grouping al-
gorithm of Elder et al. [6]. Their method takes as input a
set of tangents (line segments) T = {t1, ..., tN} and pro-
duces contours that are guaranteed to be closed and simple
(without self-intersections). It is assumed that only a subset
T o ⊂ T of tangents in the image lie on the boundaries of
objects of interest. A contour hypothesis s = {tα1 , ..., tαm

}
is defined as an injective (non-repeating) sequence of tan-
gents. Only a small subset C of the possible sequences
will correspond to actual contours in the image, and only
a subset C0 of these will lie on the boundaries of objects of
interest.

Let Io
1 = {α1, ..., αm} represent the set of tan-

gent indices for the current hypothesis s, and let Ic
1 =

{{α1, α2}, ..., {αm−1, αm}} represent the set of index
pairs for directly successive tangents on the hypothesized
contour. Elder et al. approximate the posterior probability
of the hypothesis as

p(s ∈ C0|D) α F (s, D) =
∏

i∈Io
1

po
i

∏

{i,j}∈Ic
1

pc
ij , (1)

where po
i is the posterior probability that tangent ti lies on

an object of interest, and pc
ij is the posterior probability that

tangents ti and tj are directly successive tangents on a real
contour.

The observable cues D can be partitioned into unary ob-
ject cues Do, used to compute po

i , and binary grouping cues
Dc, used to compute pc

ij . The unary cues represent the ap-
pearance of the image near individual tangents. The binary
cues represent perceptual grouping relationships between
pairs of tangents. When the objects of interest are of a spe-
cific type (e.g., skin coloured regions), unary cues can pro-
vide strong evidence for particular sequences (e.g., hue). In
this paper we are interested in computing the boundaries of
a broad range of salient objects, so the unary cues are rela-
tively weak. Binary cues such as proximity and good con-
tinuation tend to be more stable over object type, although
domain specificity can be observed.

The algorithm for computing hypotheses based on these
cues is constructive: it generates progressively longer con-
tours by expanding the current set of hypotheses by one tan-
gent each iteration. The expansion is done so as to maxi-
mize the posterior probability that the resulting tangent se-
quence belongs to the set Co of true contour fragments lying
on the boundaries of objects of interest, given the observed
data D.

Elder et al. call F (s,D) the foreground term since it
depends only on the tangents that are part of the hypothesis
s. The posterior probabilities po

i and pc
ij are given by

po
i =

1

1 + (Lo
i P

o
i )−1

and pc
ij =

1

1 + (Lc
ijP

c
ij)

−1
,

where for a set of mo unary cues at each tangent (e.g.
colour, contrast), and a set mc of binary cues for each tan-
gent pair (e.g. proximity, smooth continuation),

Lo
i =

mo∏

k=1

p(dk
i |ti ∈ T o)

p(dk
i |ti /∈ T o)

Lc
ij =

mc∏

k=1

p(dk
ij |{ti, tj} ∈ C)

p(dk
ij |{ti, tj} /∈ C)

,

(2)
and

P o
i =

p(ti ∈ C)

p(ti /∈ C)
P c

ij =
p({ti, tj} ∈ C)

p({ti, tj} /∈ C)
.

Here dk
i is the observed value of the kth unary cue at tan-

gent ti and dk
ij is the observed value of the kth binary cue

for the pair of tangents {ti, tj}. The binary cues we use are
proximity, smooth continuation, and similarity of brightness
and contrast between a pair of tangents; with the associated
probability distributions (learned from natural scene statis-
tics) reported by Elder and Goldberg in [5].

In [6], unary cues are derived from prior knowledge
about the scene. Here we assume no such knowledge. In-
stead, we will use unary cues to measure the salience of
individual tangents and to incorporate the information pro-
vided by coarse-scale contours during multi-scale grouping.
We describe the use of information provided by coarse scale
contours in the next section.

To estimate the salience of individual tangents we use
the boundary detector of Martin et al. [16]. Their detector,
trained on natural scenes from the Berkeley Segmentation
Database [15], uses brightness, colour, and texture to com-
pute the boundary energy at each pixel. Martin et al. show
that this boundary energy tends to emphasize salient object
boundaries while disregarding many types of texture that
produce strong responses from typical edge detectors.

To obtain the probability distributions on boundary en-
ergy required by our algorithm, we computed the boundary
energy for our training dataset. To allow for typical local-
ization errors in the boundary energy map, the boundary
energy output was smoothed with a Gaussian kernel and
normalized to [0, 1]. We then computed likelihood distri-
butions of normalized boundary energy for edges on and
off the ground-truth boundaries. The resulting distributions
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Figure 1. Probability distributions for boundary energy on ground-
truth contours (a), and for random edges not part of the ground-
truth contours (b).

p(BE | on) and p(BE | off) (shown in Fig. 1) then become
one component of the object cue likelihood ratio Lo

i ( 2).
The grouping algorithm starts with a set of individual

tangents. It keeps a table of the best M possible continu-
ations for each tangent, and iteratively expands its current
list of hypotheses as follows:

• For each of the K current hypotheses of length l, gen-
erate a set of M expanded contours of length l + 1
by adding to that hypothesis one of the M tangents in
its list of best continuations. This yields K · M new
hypotheses of length l + 1.

• Remove any self-intersecting or duplicate contours.

• Compute the term F (sk,D) for each of the remaining
hypotheses.

• Sort the new set of hypotheses, and keep only the K
contours with the highest F (sk,D).

• Detect and store any closed contours found among the
new hypotheses.

The process terminates when none of the current hy-
potheses can be expanded, either because there are no
suitable continuations, or because the possible expansions
lead to self-intersecting shapes. Once the expansion phase
has been completed, all closed contours are evaluated and
sorted in order of decreasing quality. We estimate the qual-
ity of a particular hypothesis with the geometric mean of
F (sk,D). The use of the geometric mean of probabilities
along a chain of edges was first proposed as a measure of
grouping quality by Mahamud et al. [14]. They noted that
the use of the geometric mean enables an algorithm to com-
pare contours of different lengths, removing the bias for
short boundaries that occurs when only the product of the
probabilities along the contour is considered. For a contour
of length γ, the geometric mean is defined as F (sk|D)1/γ .
In the log domain, this yields

log(F (sk|D)1/γ) =

∑
ti∈sk

log(po
i ) +

∑
{ti,tj}∈sk

log(pc
ij)

γ
.

The algorithm described above is capable of detecting
closed contours on natural images at a single scale. How-
ever, it can fail to detect complex contours on natural im-
ages. The algorithm explores only a small subset of the

hypothesis search-space which often does not contain the
boundaries of salient objects. In what follows we will
demonstrate that a multi-scale approach can be used to suc-
cessfully guide the algorithm toward better object bound-
aries.

5. Multi-scale Contour Grouping

We start from the observation that on low-resolution im-
ages it becomes possible for a grouping algorithm to explore
a much larger portion of the full hypothesis space (or even to
perform an exhaustive search). Thus it seems reasonable to
use a coarse-to-fine strategy to successively refine contours
found at lower resolutions. We expect that at coarse scales
the grouping algorithm will find a great variety of closed
shapes, at least some of which will correspond to salient
object boundaries. These contours can then be refined until
detailed boundaries are obtained at the finest scale.

We generate a Gaussian pyramid with W levels for the
input image. Separately for each image in the pyramid we
detect edges (see [8]), and use a greedy algorithm to fit
small line-segments to groups of consecutive edges with
similar orientation. This yields W sets of tangents (line seg-
ments) that are used as input for the multi-scale algorithm.

The multi-scale grouping proceeds as follows: The
single-scale algorithm described above is run on the image
at the coarsest level. The best P contours resulting from
this step are stored. We then run the grouping algorithm
P + 1 times at the next finer scale. This corresponds to
using each of the P spatial priors as an object (unary) cue,
plus one additional run without any spatial prior so as to
allow the algorithm to capture objects whose contour first
becomes discernible at the current scale. The contours out-
put by each of these runs are stored, and after all the runs at
the current resolution are complete, the overall best P are
selected again to form spatial priors for the next finer scale.
This procedure is repeated until contours at the highest res-
olution are obtained.

To accomplish the above, we need a way to transform
coarse-scale contours into a suitable spatial prior to be used
at a higher resolution. This problem has two parts. First, we
need an appropriate contour representation that can be eas-
ily transported across scales. Second, we need to study the
relationship between contours at coarse scales and their re-
fined versions at higher resolution, so that we can derive the
appropriate statistical distributions to use with our grouping
algorithm.

5.1. Fourier Contour Representation

We model contours using their Fourier descriptors. The
Fourier representation is attractive because it is relatively
inexpensive to compute (using the FFT), can be easily trans-
ferred across scales, and can be used directly for object



recognition tasks [25], [1], [12].
Given a list of coordinates (xk, yk) for k = 0, . . . , N −

1 along an extracted contour, we represent the contour as
a curve in the complex plane formed by the points bk =
xk + iyk. The discrete Fourier transform of the set of points
bk along the contour yields a set of complex coefficients
B(n) = 1/N

∑N−1
k=0 b(k)e−ik2πn/N for n = 0, . . . , N − 1.

These Fourier coefficients can be used to reconstruct the
contour to a specified level of detail. Here N is typically on
the order of hundreds of sampled points. A good, intuitive
description of how Fourier coefficients represent a shape is
given in [23].

To determine the appropriate number of coefficients to
use in the reconstruction, we studied the Fourier coeffi-
cients of the ground-truth boundaries in our training set.
We reconstructed the original contours using different num-
bers of Fourier coefficients, for each of the reconstructions,
we computed the distance error between the original curve
and the reconstructed one. Our results indicate that typi-
cal boundaries can be reconstructed to an average error of
less than 1 pixel using as few as 25 Fourier coefficients.
This is the number of Fourier coefficients we will use in our
grouping algorithm. An additional advantage of the Fourier
representation is that it smooths out noise and discretiza-
tion artifacts, providing a suitable model on which to build
a spatial prior. This is particularly useful at coarse scales
where discretization artifacts are more pronounced.

5.2. Building the Spatial Prior

For a particular coarse-scale contour, we generate a
Fourier model and project a reconstruction of the contour
scaled by a factor of 2 onto the image at the next finer scale.
We want our grouping algorithm to favour lines whose ori-
entation and spatial location are similar to the location and
orientation of the projected contour. To accomplish this, we
need to study the typical variations in position and orienta-
tion for object contours across scales.

We examined our ground-truth training contours at the
finest and next-to-finest scale. We generated Fourier de-
scriptors for the lower resolution contours, and projected
them (after appropriate scaling) onto the images at the finest
scale. We then measured the deviation in position and orien-
tation between the scaled Fourier contours and the ground-
truth contours at the fine scale. From these statistics, we
estimated four probability distributions: p(dist|on) which
characterizes the distance between ground-truth tangents
and the scaled contour; p(ang|on) which characterizes
the difference in orientation between ground-truth tangents
and the model; p(dist|off) which corresponds to the dis-
tance between tangents not on the object boundary and the
Fourier model; and p(ang|off) that models the difference
in orientation between tangents not on the object boundary
and the scaled contour. These distributions are shown in

0 2 4 6 8 10 12 14
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
p(dist | on)

Distance (pixels)

P
ro

ba
bi

lit
y

0 50 100 150 200 250
0

0.005

0.01

0.015

0.02

0.025

0.03
p(dist | off)

Distance (pixels)

P
ro

ba
bi

lit
y

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.01

0.02

0.03

0.04

0.05

0.06
p(ang | on)

Angle (radians)

P
ro

ba
bi

lit
y

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016
p(ang | off)

Angle (radians)

P
ro

ba
bi

lit
y

a) b) c) d)

Figure 2. Distributions for a) p(dist|on), b) p(dist|off), c)
p(ang|on), and d) p(and|off).

Fig. 2. The likelihood ratios p(dist|on)/p(dist|off), and
p(ang|on)/p(ang|off) become additional object cues in
the term Lo

i from Eq.(2). These distributions indicate that
contour tangents at fine scale show good agreement in po-
sition and orientation with regard to the scaled coarse con-
tours, whereas tangents not belonging to the fine-scale con-
tours show no orientation agreement, and are situated far-
ther away from the scaled coarse contours.

Together, the distance and angle cues form a spatial prior
on the expected location and orientation of contour tangents
given a particular coarse-scale hypothesis. The effect of this
spatial prior is that finer-scale contours favour boundaries
that correspond to refined versions of the coarse-scale hy-
pothesis. Since the coarse-scale images are unlikely to con-
tain much detail, coarse contours usually capture the rough
shape of large objects. This gives the multi-scale grouping
algorithm increased robustness against the typical problems
introduced by the abundance of clutter and texture at higher
resolutions.

Figure 3 shows this coarse-to-fine process. For each
level of the Gaussian pyramid we show the spatial prior
at that scale derived from the contour extracted at the
previous scale, corresponding to the ratio (p(dist|on) ∗
p(ang|on))/(p(dist|off) ∗ p(ang|off)); the best contour
extracted by the multi-scale procedure; and the best contour
extracted by the single-scale grouping method (i.e. without
the spatial prior) at that scale. Whereas the multi-scale pro-
cedure successfully recovers the boundary of the object, the
single-scale procedure becomes confused by the complexity
of the line-set at higher resolutions.

6. Experimental Set-Up

There has been a significant lack of research with regard
to the proper evaluation of grouping algorithms. Many of
the current methods are demonstrated on a handful of im-
ages, with only visual comparison as a means of demon-
strating their capabilities. Exceptions include the work of
Borra and Sarkar [2] who carry out a performance eval-
uation of three grouping methods in the context of aerial
object recognition, and the work of Williams and Thorn-
ber [29] who present an evaluation of different affinity mea-
sures used in grouping. More recently, Wang et al. [26]
presented an interesting comparison of the grouping algo-
rithms in [7], [14], [24].
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Figure 3. A complete run of the multi-scale algorithm. From left to right, the columns show the original input image (coarsest scale at the
top, finest scale at the bottom); the spatial prior generated from the contour at the previous scale, where brightness is proportional to the
estimated probability that a given segment is on a the object’s boundary; the contour extracted by the multi-scale algorithm; and the contour
extracted by the single-scale algorithm (i.e. without using the spatial prior). The image at the highest resolution is 737×486 pixels in size.

Here, we evaluate the performance of our algorithm us-
ing the set of ground-truth boundaries generated from the
test images of the BSD. We provide a comparative analy-
sis of the quality of the contours extracted by our multi-
scale method (MS), the single-scale version of our algo-
rithm (SS), and two alternate grouping methods: The Ratio
Contour algorithm of Wang et al. [24] (RC), and the group-
ing method of Estrada and Jepson [10] (EJ)1.

We used half-scale BSD images 241×162 pixels in size.
This is because in our current implementation detected-
contour quality degrades significantly at higher resolutions
(see the discussion below). For the multi-scale algorithm
we build a 4-scale Gaussian pyramid, which results in im-
ages 31× 21 pixels in size at the coarsest scale. All images
were processed with the same edge detector [8], however;
the edge maps produced by this method are typically very
complex. Our algorithm deals with this by using the bound-
ary energy of Martin et al. [16]. To obtain a fair compari-
son, we pre-filtered the edges used as input to RC and EJ by
selecting only the edges for which a blurred version of the
boundary energy term is above some small threshold (deter-
mined experimentally on training images). The blurring of

1The authors would like to acknowledge the kindness of Dr. Song
Wang in providing us with his implementation of RC.

the boundary energy was the same used for estimating the
boundary energy distributions for our algorithm. On train-
ing images this filtering step greatly enhanced the results
obtained both with RC and with EJ.

From the edge data, RC generates its own input features
by fitting spline curves to small sequences of edges. EJ uses
the same line segments that were input to our algorithm.
Since each algorithm has a different measure of saliency for
extracted contours, we disregard the ranking of the shapes
produced by the algorithms during the comparison (other-
wise, it would be difficult to ascertain whether the observed
variations are due to differences search completeness, or to
the different ranking measures used by each method). In-
stead, we allowed each algorithm to generate 20 contours
for each of the test images using its own quality measure.
From these 20 boundaries, we selected for comparison the
one with the smallest error with regard to the ground-truth.

We use an error measure based on the pixel-by-pixel
agreement between the regions enclosed by the ground-
truth contours and the computed boundaries

Error =
AGT − AGT∩CT

AGT
+

ACT − AGT∩CT

ACT
(3)

where AGT is the area of the region enclosed by the
ground-truth boundary, ACT is the area enclosed by the
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Figure 4. Ground-truth boundaries and best contours extracted by
each algorithm on 20 of our test images.

computed contour, and AGT∩CT is the area of the inter-
section between the two. The first term of the error measure
penalizes a contour for not capturing the entire shape de-
fined by the ground truth. The second term penalizes the
contour for extending into the background. Error values are
in [0, 2] and will be zero when the contours are identical.

7. Results and Quantitative Evaluation

Fig 4 shows several images from our test set, along with
the best contours extracted by each of the algorithms. The
multi-scale algorithm recovers boundaries that more accu-
rately describe the shape of the main object in each of the
images. Fig 5a shows the mean error for each of the algo-
rithms over the complete testing set. The results indicate
that the multi-scale method outperforms the competing al-
gorithms. The error values show high correlation between
the algorithms (e.g. the R2 correlation between the error
values for MS and RC is .37), so the absolute error may not
be very informative. To verify that the difference is mean-
ingful, we computed the relative errors of SS, RC, and EJ
taking the multi-scale error as a baseline (this is just the dif-
ference of the corresponding errors on each image). Fig. 5b
shows the mean relative errors of SS, RC, and EJ with re-
gard to the multi-scale algorithm. Here, positive scores in-
dicate that the corresponding algorithm has larger error on
average compared to the multi-scale method. A standard
t-test on the relative error measurements indicates that the
observed differences are statistically significant with 95%
confidence. It is clear from these results that the multi-scale
algorithm is significantly superior to the single-scale ver-
sion of the method, and that in general, it outperforms other
single-scale grouping algorithms. It is worth pointing out
that the test images constitute difficult perceptual organiza-
tion problems, so the enhanced robustness that results from
the use of multi-scale information is an important result. It
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Figure 5. Error data for the grouping algorithms on our test image
set. a) Mean absolute error for each algorithm. b) Mean relative
error of alternate algorithm with regard to multi-scale.

should be noted that the multi-scale method described here
must solve ((M − 1) × (P + 1)) + 1 individual grouping
problems for an M -level Gaussian pyramid. Run-time for
our current (Matlab) implementations is between 45 min.
and 1 hr. for the multi-scale method, and between 3 and
5 min. for the single-scale version. RC and EJ (both of
which are binary packages) take less than 1 min. to com-
plete.

8. Discussion

Even with the use of multi-scale information, our algo-
rithm can miss object boundaries in complex images. In
particular, we have noticed degraded performance at full
resolution, this may be due to a number of factors. The al-
gorithm has no prior model for shapes, it can be led into ex-
tracting complicated boundaries winding their way through
regions rich in structured texture (which, incidentally, are
usually associated with high boundary energy). In addition
to this, we have noticed that the geometric mean we use to
estimate the quality of a contour is probably not the optimal
measure on natural images. In general, the boundaries that
resulted in the smallest error with regard to the ground-truth
were ranked outside of the top 5 contours. Given that our
algorithm chooses the best contours at each scale to refine at
higher resolutions, the use of a more robust quality measure
should improve upon the results presented above. It seems
likely that such a measure would take into account not only
the shape of the boundary and the relationship between fea-
tures along the contour, but also the appearance of image
regions inside and outside the hypothesized contour. The
development of an appropriate measure of contour quality
that yields good results on natural images is one of our cur-
rent research topics.

Another interesting direction for future research is the
addition of a prior global shape model based on natural
scene statistics. Such a model could be used not only to
guide the formation of boundaries, but also to evaluate the
extracted contours. The main difficulty here is in devel-
oping a shape model that can be used to give both local
predictions for suitable grouping directions, and global es-
timates of the quality of an extracted shape. Finally, current



research by one of the authors [9] shows that the use of ap-
pearance information from regions near a growing contour
results in significantly better contour detection at a particu-
lar (single) scale.

9. Conclusion and Future Work

We have presented a Bayesian, coarse-to-fine framework
for boundary detection. Our algorithm exploits reduced
search complexity in low-resolution images to generate a set
of coarse contour hypotheses, these boundaries are later re-
fined until detailed object contours are obtained at the finest
scale. Since the coarse contours capture general shape in-
formation, the procedure is less likely to be misled by the
large amounts of texture and detail that exist at higher res-
olutions. We have shown that the proposed algorithm is
able to detect complex object boundaries in images where
a single-scale grouping algorithm would fail. We evaluated
our algorithm on images from the BSD, and out results indi-
cate that the multi-scale procedure yields, on average, bet-
ter boundaries than alternate grouping algorithms. This is
a promising result, and it is our hope that it will encourage
further research in multi-scale boundary detection.
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