Topological Sort
(an application of DFS)

CSC263 Tutorial 9
Topological sort

- We have a **set of tasks** and a **set of dependencies (precedence constraints)** of form "task A must be done before task B"
- **Topological sort**: An ordering of the tasks that conforms with the given dependencies
- **Goal**: Find a topological sort of the tasks or decide that there is no such ordering
Examples

• **Scheduling**: When scheduling *task graphs* in distributed systems, usually we first need to **sort the tasks topologically**
 ...and then assign them to resources (the most efficient scheduling is an NP-complete problem)

• Or during compilation to order modules/libraries
Examples

• **Resolving dependencies**: *apt-get* uses topological sorting to obtain the admissible sequence in which a set of Debian packages can be installed/removed
Topological sort more formally

• Suppose that in a **directed** graph $G = (V, E)$ vertices V represent tasks, and each edge $(u, v) \in E$ means that task u must be done before task v

• What is an ordering of vertices $1, ..., |V|$ such that for every edge (u, v), u appears before v in the ordering?

• Such an ordering is called a **topological sort of** G
• Note: there can be multiple topological sorts of G
Topological sort more formally

• Is it possible to execute all the tasks in G in an order that respects all the precedence requirements given by the graph edges?

• The answer is "yes" if and only if the directed graph G has no cycle! (otherwise we have a deadlock)

• Such a G is called a Directed Acyclic Graph, or just a DAG
Algorithm for TS

• **TOPOLOGICAL-SORT(G):**
 1) call DFS(G) to compute *finishing* times \(f[v] \) for each vertex \(v \)
 2) as each vertex is finished, insert it onto the *front* of a linked list
 3) return the linked list of vertices

• Note that the result is just a list of vertices in order of *decreasing* finish times \(f[] \)
Edge classification by DFS

Edge \((u,v)\) of \(G\) is classified as a:

(1) Tree edge iff \(u\) discovers \(v\) during the DFS: \(P[v] = u\)

If \((u,v)\) is NOT a tree edge then it is a:

(2) Forward edge iff \(u\) is an ancestor of \(v\) in the DFS tree
(3) Back edge iff \(u\) is a descendant of \(v\) in the DFS tree
(4) Cross edge iff \(u\) is neither an ancestor nor a descendant of \(v\)
Edge classification by DFS

Tree edges
Forward edges
Back edges
Cross edges

The edge classification depends on the particular DFS tree!
Edge classification by DFS

- Tree edges
- Forward edges
- Back edges
- Cross edges

The edge classification depends on the particular DFS tree!
DAGs and back edges

• Can there be a back edge in a DFS on a DAG?
• NO! Back edges close a cycle!
• A graph G is a DAG \iff there is no back edge classified by $\text{DFS}(G)$
Back to topological sort

• TOPOLOGICAL-SORT(G):
 1) call DFS(G) to compute \textit{finishing} times \(f[v] \) for each vertex \(v \)
 2) as each vertex is finished, insert it onto the \textit{front} of a linked list
 3) return the linked list of vertices
Let’s say we start the DFS from the vertex c.

Next we discover the vertex d.

1) Call DFS(G) to compute the finishing times $f[v]$.
Topological sort

1) Call DFS(G) to compute the finishing times f[v]

Let’s say we start the DFS from the vertex c

Next we discover the vertex d

Time = 2

Time = 3

Let’s say we start the DFS from the vertex c

Next we discover the vertex d
Topological sort

1) Call DFS(G) to compute the finishing times f[v]

2) as each vertex is finished, insert it onto the front of a linked list

Next we discover the vertex f

f is done, move back to d
Let's say we start the DFS from the vertex c.

Next we discover the vertex d.

Next we discover the vertex f.

f is done, move back to d.

d is done, move back to c.

1) Call DFS(G) to compute the finishing times f[v].

Topological sort:
Topological sort

Let’s say we start the DFS from the vertex c

Next we discover the vertex d

Next we discover the vertex f

f is done, move back to d

d is done, move back to c

Next we discover the vertex e

1) Call DFS(G) to compute the finishing times \(f[v] \)
Topological sort

1) Call DFS(G) to compute the finishing times f[v]

Let’s say we start the DFS from the vertex c

Next we discover the vertex d

Next we discover the vertex e

Both edges from e are cross edges

d is done, move back to c

Next we discover the vertex e

e is done, move back to c
Let's say we start the DFS from the vertex \(c \). Just a note: If there was \((c, f) \) edge in the graph, it would be classified as a **forward edge** (in this particular DFS run).

1) Call DFS(\(G \)) to compute the finishing times \(f[v] \).

\[
\begin{align*}
&d = \infty \\
&f = \infty \\
&d = \infty \\
&f = \infty \\
&d = 2 \\
&f = 5 \\
&d = 3 \\
&f = 4 \\
&d = 1 \\
&f = \infty \\
&d = 6 \\
&f = 7
\end{align*}
\]

Next we discover the vertex \(d \). \(d \) is done, move back to \(c \).

Next we discover the vertex \(e \). \(e \) is done, move back to \(c \).

\(c \) is done as well.
Let’s now call DFS visit from the vertex a

Next we discover the vertex c, but c was already processed => (a,c) is a cross edge

Next we discover the vertex b

1) Call DFS(G) to compute the finishing times f[v]
Topological sort

1) Call DFS(G) to compute the finishing times \(f[v] \)

Let’s now call DFS visit from the vertex \(a \)

Next we discover the vertex \(c \), but \(c \) was already processed

\(=> (a,c) \) is a cross edge

Next we discover the vertex \(b \)

\(b \) is done as \((b,d) \) is a cross edge

\(=> \) now move back to \(c \)
Let’s now call DFS visit from the vertex a.

Next we discover the vertex c, but c was already processed => (a,c) is a cross edge.

Next we discover the vertex b. b is done as (b,d) is a cross edge => now move back to c.

a is done as well.
Let's now call DFS visit from the vertex a
d = 6
f = 7
Time = 11
e
d = 1
f = 8
d = 2
f = 5
d = 3
f = 4

1) Call DFS(G) to compute the finishing times f[v]

Next we discover the vertex c, but c was already processed => (a, c) is a cross edge

Time = 13

Next we discover the vertex b
b is done as (b, d) is a cross edge => now move back to c

b is done as well

WE HAVE THE RESULT!

3) return the linked list of vertices

=> (a, c) is a cross edge

a is done as well

Topological sort
Topological sort

The linked list is sorted in **decreasing** order of finishing times \(f[] \)

Try yourself with different vertex order for DFS visit

Note: If you redraw the graph so that all vertices are in a line ordered by a valid topological sort, then all edges point "from left to right"
Time complexity of TS(G)

- Running time of topological sort:
 \[\Theta(n + m) \]
 where \(n = |V| \) and \(m = |E| \)
- Why? Depth first search takes \(\Theta(n + m) \) time in the worst case, and inserting into the front of a linked list takes \(\Theta(1) \) time
Proof of correctness

• **Theorem**: TOPOLOGICAL-SORT(G) produces a topological sort of a DAG G

• The TOPOLOGICAL-SORT(G) algorithm does a DFS on the DAG G, and it lists the nodes of G in order of decreasing finish times f[]

• We must show that this list satisfies the topological sort property, namely, that for every edge (u,v) of G, u appears before v in the list

• **Claim**: For every edge (u,v) of G: f[v] < f[u] in DFS
Proof of correctness

“For every edge \((u,v)\) of \(G\), \(f[v] < f[u]\) in this DFS”

• The DFS classifies \((u,v)\) as a **tree edge**, a **forward edge** or a **cross-edge** (it cannot be a back-edge since \(G\) has no cycles):

 i. If \((u,v)\) is a **tree** or a **forward edge** \(\Rightarrow v\) is a descendant of \(u\) \(\Rightarrow f[v] < f[u]\)

 ii. If \((u,v)\) is a **cross-edge**
Proof of correctness

“For every edge \((u,v)\) of \(G\): \(f[v] < f[u]\) in this DFS”

ii. If \((u,v)\) is a cross-edge:
• as \((u,v)\) is a cross-edge, by definition, neither \(u\) is a descendant of \(v\) nor \(v\) is a descendant of \(u\):
 \[d[u] < f[u] < d[v] < f[v]\]
 or
 \[d[v] < f[v] < d[u] < f[u]\]
 since \((u,v)\) is an edge, \(v\) is surely discovered before \(u\)'s exploration completes

Q.E.D. of Claim
Proof of correctness

• TOPOLOGICAL-SORT(G) lists the nodes of G from highest to lowest finishing times

• By the **Claim**, for every edge \((u,v)\) of G:
 \[f[v] < f[u] \]

 \[\Rightarrow\] \(u\) will be before \(v\) in the algorithm's list

• Q.E.D of **Theorem**