CSC321 Tutorial 1 partial derivative examples

Yue Li

Wed 11-12 Jan 15
Fri 10-11, Jan 17

Tutorial page:
http://www.cs.utoronto.ca/~yueli/CSC321_UTM_2014.html

Example 1

- $f=x^{2}+b ; \quad \frac{\partial f}{\partial x}=2 x$
- $f=x^{k}+b ; \quad \frac{\partial f}{\partial x}=k x^{k-1}$
- $f=\log x ; \quad \frac{\partial f}{\partial x}=\frac{1}{x}$
- $f=e^{x} ; \quad \frac{\partial f}{\partial x}=e^{x}$

Example 2

Given response variable y and input variable x, we want to find w that minimizes E :
$y=w x$
$E=(y-w x)^{2}$ (what's the value of w to minimize E just by eye balling it?)

$$
\begin{aligned}
\frac{\partial E}{\partial w} & =\frac{\partial(y-w x)^{2}}{\partial(y-w x)} \frac{\partial(y-w x)}{\partial w} \\
& =2(y-w x)(-x)
\end{aligned}
$$

Let $\frac{\partial E}{\partial w}=0$ and solve for w gives: $w=\frac{y}{x}$.

Example 3

$$
\begin{aligned}
E & =\sum_{i}\left(y_{i}-w_{i} x_{i}\right)^{2} \\
\frac{\partial E}{\partial w_{i}} & =\frac{\partial E}{\partial w_{i}} \sum_{j \neq i}\left(y_{j}-w_{j} x_{j}\right)^{2}+\frac{\partial E}{\partial w_{i}}\left(y_{i}-w_{i} x_{i}\right)^{2} \\
\frac{\partial E}{\partial w_{i}} & =0+2\left(y_{i}-w_{i} x_{i}\right)\left(-x_{i}\right) \\
\frac{\partial E}{\partial w_{i}} & =2\left(y_{i}-w_{i} x_{i}\right)\left(-x_{i}\right)
\end{aligned}
$$

Setting $\frac{\partial E}{\partial w_{i}}=0$ and solve for w_{i} gives: $w_{i}=\frac{y_{i}}{x_{i}}$.
Notably, $\frac{\partial E}{\partial w_{i}}$ (the partial derivative of E with respect to w_{i}) makes other terms not involving w_{i} become zero.

Example 4: meal plan pricing example
Suppose we only know the total price of the meal y_{n} and the portions of each dish $1,2,3$ as $x_{i}, i \in\{1,2,3\}$. We want to find out the specific prices of each dish w_{i}. Here $n \in\{1 \ldots N\}$ denotes each meal from day 1 to day N.

$$
\begin{aligned}
\hat{y}_{n} & =w_{1} x_{1, n}+w_{2} x_{2, n}+w_{3} x_{3, n} \\
E & =\sum_{n=1}^{N}\left(y_{n}-w_{1} x_{1, n}-w_{2} x_{2, n}-w_{3} x_{3, n}\right)^{2} \\
\frac{\partial E}{\partial w_{i}} & =\sum_{n} 2\left(y_{n}-w_{1} x_{1, n}-w_{2} x_{2, n}-w_{3} x_{3, n}\right)\left(-x_{i, n}\right) \\
& =\sum_{n} 2\left(y_{n}-\hat{y}_{n}\right)\left(-x_{i, n}\right) \equiv \Delta w_{i}
\end{aligned}
$$

Update $w_{i}^{*}=w_{1}-\epsilon \Delta w_{i}$, where ϵ is the "learning rate" (e.g., $\left.\epsilon=10^{-5}\right)$. With new w_{i}^{*}, we then repeat the above calculation to further update w_{i}^{*} and so forth. The iteration terminates when $E^{t-1}-E^{t}<t o l$, tol is the threshold (e.g., tol $=10^{-3}$), in which case the algorithm converges.

