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Assignment 3 PART 1 (5 points)

• Run moginit to create training and validation datasets from
4 random Gaussians.

• Then use the function mogem to fit various numbers of
Gaussians to the training data.

• Using performance on the validation data, determine the
optimal number of Gaussians to fit to the training data.

• Present your results as a graph that plots both the validation
density and the training density as a function of the number
of Gaussians.

• Include a brief statement of what you think the graph shows.

• Also include a brief statement about the effects of changing
the initial standard deviation used in mogem.

• Please do not change the random seeds in mogem (this will
produce different data).



3 points: a graph that plots both the validation density and the
training density as a function of the number of Gaussians.
Fixed other parameters: nIter = 100; initsd = 0.04;
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1 point:

• Since the data were sampled from 4 random Gaussians (30
cases per Gaussian), the optimal number of K should be
around 4. Indeed, at initsd = 0.04 (NB: different initsd is also
accepted) and nIter = 100, the K = 4 corresponds to the
highest test logp = 101.8960.

• A sign of overfitting is also observed when K becomes greater
than 4 because the difference between train and validation log
p starts to increase (green line).



1 point: Fixing K = 4, changing the initsd has little effect on the
results when initsd > 0.1, indicating that the EM algorithm is
fairly robust to different initial initsd.
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Assignment 3 PART 2 (2 points)

• Change moginit.m to use only 12 cases per Gaussian, and 12
axis-aligned gaussians to generate the data and repeat the
experiment above (without changing the random seeds).

• Present your results as a graph and include a brief statement
of what you think the graph shows and why it differs from the
graph in PART 1.



1 point: With only 12 cases per Gaussian and initsd = 0.04 (NB:
different initsd is also accepted), overfitting occurs after K = 10 as
shown by the decreasing trend of validation log p despite ever-increasing
training log p. The overfitting can be seen more clearly from the
increasing trend of the difference b/w training log p and validation log p.

0 5 10 15 20
−50

0

50

100

150

200

lo
g

(p
)

log−likelihood vs number of Gaussians

K

 

 

0 5 10 15 20
−50

0

50

100

150

200

lo
g

p
(t

ra
in

) 
−

 l
o

g
p

(v
a

lid
)

0 5 10 15 20
−50

0

50

100

150

200
Train log(p)
Valid log(p)
Train log(p) − Valid log(p)



Fixing K = 12, EM becomes less robust to different initsd for more
complex model (optional).
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Comment: comparing to the maximum likelihood approach used
here, Bayesian estimation can provide a more robust estimate (i.e.
less dependent on the data size and initial parameters; recall A2
part 3). An approximation schemes such as sampling or variational
inference (in particular, variational Bayesian EM) must be used to
estimate the expectation over the entire model space. Interested
readers can refer to Chapter 10.1, 10.2 from Bishop textbook.



Assignment 3 PART 3 (3 points) - some programming

• Change mogem.m so that in addition to fitting the means and
axis-aligned variances, it also fits the mixing proportions.

• Currently, mogem does not mention mixing proportions so it is
currently assuming that they are all equal (which makes them
all cancel out when computing the posterior probability of
each Gaussian for each datapoint.).

• So the first thing to do is to include mixing proportions when
computing the posterior, but keep them fixed (and not all
equal).



Review of MoG: a generative model
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Pattern recognition and machine learning, Chapter 9 p433, (Bishop, 2006)



• Objective function:

ln p(X) =
N∑

n=1

ln
K∑

k=1

πkN (xn|µk ,Σk)

• Maximum likelihood (ML) solutions for µk , Σk , πk :

∂ ln p(X)

∂µk

= 0 =⇒ µk =
1

Nk

N∑
n=1

γ(zk)xn

∂ ln p(X)

∂Σk
= 0 =⇒ Σk =

1

Nk

N∑
n=1

γ(zk)(x− µk)(x− µk)T

∂ ln p(X)

∂πk
= 0 =⇒ πk =

Nk

N

where
• Nk =

∑N
n=1 γ(zk)

• γ(zk) = p(zk = 1|xn) = πkN (xn|µk ,Σk )∑K
j=1 πjN (xn|µj ,Σj )



EM algorithm for MoG :

1. Initialize µk , Σk , πk = 1
K or by K -means.

2. E-step. Evaluate the responsibilities γ(zk) using µk , Σk , πk :

γ(zk) =
πkN (xn|µk ,Σk)∑K
j=1 πjN (xn|µj ,Σj)

(1)

3. M-step. Re-estimate µk , Σk , πk based on the ML solutions:

µnew
k =

1

Nk

N∑
n=1

γ(zk)xn (2)

Σnew
k =

1

Nk

N∑
n=1

γ(zk)(x− µnew
k )(x− µnew

k )T (3)

πnew
k =

Nk

N
(4)

where Nk =
∑N

n=1 γ(zk).

4. Evaluate the log likelihood:

ln p(X) =
N∑

n=1

ln
K∑

k=1

πkN (xn|µk ,Σk) (5)



• 1 point: add fixed mixprop and change log p computation:
• mixprop = ones(1,numgaussians)/numgaussians;

%Initialize to uniform mixprop

• valid densities(:,g) = mixprop(g) *

(1/(2*pi*sqrt(xv*yv)))*exp(-xd.*xd/(2*xv) -

yd.*yd/(2*yv)); %Numerator of the posterior, i.e., Eq 1

• train densities(:,g)= mixprop(g) *

(1/(2*pi*sqrt(xv*yv)))*exp(-xd.*xd/(2*xv) -

yd.*yd/(2*yv)); %Numerator of the posterior, i.e., Eq 1

• trainLogp = sum(log( sum(train densities, 2) ));

%Training likelihood Eq 5

• validLogp = sum(log( sum(valid densities, 2) ));

%Validation likelihood Eq 5

Note: no division by numgaussians (i.e., assuming 1/4 for all
mixprop) in the above likelihoods once the mixprop is fixed

• 1 point learn mixprop:
• mixprop(g) = sum(r) / numcases;%Eq 4



1 point: print out the final mixprops for 4 Gaussians (and initsd =
0.04) with initial mixprop set to [0.25, 0.25, 0.25, 0.25], [0.3, 0.2,
0.2, 0.3], [0.1, 0.2, 0.3, 0.4] and [0.9, 0.025, 0.025, 0.05]. Despite
different initial mixprop, the final mixprop should be approximately
evenly distributed reflecting the true mixprops (i.e., 0.25 for all 4
Gaussians)
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NOTE: full mark of 3 points are granted if your mixprops are
correct; otherwise the above marks were counted



optional: compare log p before and after adding mixprop for 4
Gaussians for the same setting over multiple runs.
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Class average: 8.25; median: 9 (well done!)


