
CSC321 Tutorial 10:
Review of Restricted Boltzman Machines and
multiple layers of features (stacked RBMs).

and
Explanation of Assignment 4.

(Background slides based on Lecture 17-21)

Yue Li
Email: yueli@cs.toronto.edu

Wed 11-12 March 26
Fri 10-11 March 28

Oversimplified conceptual comparison b/w FFN and RBM

Feedforward Neural Network -
supervised learning machine:

inputv2

h2h1 h3

v1

hidden

a2a1 softmax output

Restricted Boltzmann Machine
- unsupervised learning
machine:

inputv2

h3h2h1

v1

hidden

Restricted Boltzmann Machine (RBM)

• A simple unsupervised learning module (with no softmax
output);

• Only one layer of hidden units and one layer of input units;

• No connection between hidden units (i.e. a special case of
Boltzmann Machine);

• Edges are undirected or bi-directional

e.g., an RBM with 2 visible and 3 hidden units:

inputv2

h3h2h1

v1

hidden

DEMO:
RBM learning unlabelled hand-written digits

Objective function of RBM - maximum likelihood:

E (v,h|θ) =
∑
ij

wijvihj +
∑
i

bivi +
∑
j

bjhj

p(v|θ) =
N∏

n=1

∑
h

p(v,h|θ) =
N∏

n=1

∑
h exp(−E (v,h|θ))∑
v,h exp(−E (v,h|θ))

log p(v|θ) =
N∑

n=1

log
∑
h

exp(−E (v,h|θ))− log
∑
v,h

exp(−E (v,h|θ))


∂ log p(v|θ)

∂wij
=

N∑
n=1

vi ∑
h

hjp(h|v)−
∑
v,h

vihjp(v,h)


= Edata[vihj]− Emodel[v̂i ĥj] ≡< vihj >data − < v̂i ĥj >model

But < v̂i ĥj >model is still too large to estimate, we apply Markov
Chain Monte Carlo (MCMC) (i.e., Gibbs sampling) to estimate it.

How Gibbs sampling works

<vihj>
0 <vihj>

1

i

j

i

j

t = 0 t = 1
reconstruction data

1. Start with a training vector
on the visible units

2. Update all the hidden units
in parallel

3. Update all the visible units
in parallel to get a
“reconstruction”

4. Update the hidden units
again

∆wij = ε(< v0
i h

0
j > − < v1

i h
1
j >) (1)

Approximate maximum likelihood learning

∂ log p(v)

∂wij
≈ 1

N

N∑
n=1

[
v

(n)
i h

(n)
j − v̂

(n)
i ĥ

(n)
j

]
(2)

where

• v
(n)
i is the value of i th visible (input) unit for nth training case;

• h
(n)
j is the value of j th hidden unit;

• v̂
(n)
i is the sampled value for the i th visible unit or the

negative data generated based on h
(n)
j and wij ;

• ĥ
(n)
i is the sampled value for the j th hidden unit or the

negative hidden activities generated based on v̂
(n)
i and wij ;

Still how exactly the negative data and negative hidden
activities are generated?

wake-sleep algorithm (Lec18 p5)

1. Positive (“wake”) phase (clamp the visible units with data):

• Use input data to generate hidden activities:

hj =
1

1 + exp(−
∑

i viwij − bj)

Sample hidden state from Bernoulli distribution:

hj ←

{
1, if hj > rand(0,1)

0, otherwise

2. Negative (“sleep”) phase (unclamp the visible units from data):

• Use hj to generate negative data:

v̂i =
1

1 + exp(−
∑

j wijhj − bi)

• Use negative data v̂i to generate negative hidden activities:

ĥj =
1

1 + exp(−
∑

i v̂iwij − bj)

wake-sleep algorithm (con’td) - Learning

∆w
(t)
ij = η∆w

(t−1)
ij + εw (

∂ log p(v |θ)

∂wij
− λw (t−1)

ij)

∆b
(t)
i = η∆b

(t−1)
i + εvb

∂ log p(v |θ)

∂bi

∆b
(t)
j = η∆b

(t−1)
j + εhb

∂ log p(v |θ)

∂bj

where

∂ log p(v |θ)

∂wij
≈ 1

N

N∑
n=1

[
v

(n)
i h

(n)
j − v̂

(n)
i ĥ

(n)
j

]
∂ log p(v |θ)

∂bi
≈ 1

N

N∑
n=1

[
v

(n)
i − v̂

(n)
i

]
∂ log p(v |θ)

∂bj
≈ 1

N

N∑
n=1

[
h

(n)
j − ĥ

(n)
j

]
Match with the matlab code in rbmfun.m in A4 handout.

Assignment 4: Initialize backpropagation with RBM
1. First apply RBM to find a sensible set of weights using

unlabelled data.
Then add softmax units on the top to do backpropagagtion
using labelled data.

inputv2

h2h1 h3

v1

hidden

Assignment 4: Initialize backpropagation with RBM
1. First apply RBM to find a sensible set of weights using

unlabelled data.
2. Then use the pre-trained weight to perform backpropagation

to classify labelled data

inputv2

h2h1 h3

v1

hidden

a2a1 softmax output

Two plausible ways of cognitive learning (Lecture 21 p9)

Supervised learning (backprop)
without unsupervised
pre-training (RBM)

stuff

image label

Supervised learning (backprop)
with unsupervised pre-training
(RBM)

stuff

image label

high
bandwidth

low
bandwidth

ASSIGNMENT 4 DESCRIPTION

PRELIMINARIES

• First, from Assignment 2, copy the files assign2data2012.mat,
classbp2.m and show.m. Recall that the first file has 3000 test
and 150 training data points of digits. The second file
implements a feedforward neural network and uses the
backpropagation algorithm to learn the weights of the neural
network from training data.

• Second, copy and unzip the following archive:

http://www.cs.toronto.edu/~bonner/courses/2014s/

csc321/assignments/hw4_matlab.zip

• Run train nn.m in Matlab to train a neural network on the
150 training cases and test on the 3000 test cases. How many
errors do you see at the end of the run ?

http://www.cs.toronto.edu/~bonner/courses/2014s/csc321/assignments/hw4_matlab.zip
http://www.cs.toronto.edu/~bonner/courses/2014s/csc321/assignments/hw4_matlab.zip

Recall: in A2, using the 3000 test/validation and 150 training
cases, we found the best numhid, weightcost, epsilon, and
finalmomentum with the following setting that produced < 550
terror in 2000 epochs. Can we do better than that?

0 100 200 300 400
500

550

600

650

700

750

800

numhid=100; epsilon=0.00020;
 finalmomentum=0.70; weightcost=0

epochs times 5

terror

ASSIGNMENT 4

• You will use the other files in the archive to train an RBM,
which will be used to initialize (pretrain) the neural network
for predicting digits.

• The file unlabeled.mat contains unlabeled training data. You
can load the data by using the command “load unlabeled”
in Matlab. The file rbmfun.m contains code to train an rbm,
and the file showrbmweights.m allows you to visualize the
weights of the rbm.

• The point of the assignment is to figure out how to use the
2000 unlabeled cases and the function rbmfun to do better on
the test set (which should really be called a validation set
since you use it many times for deciding things like the
number of hidden units).

PART 1. (5 points)

• Using results from running rbmfun on the unlabeled data,
modify classbp2 in a way that allows you to get a best test
error of less than 500 in at least 5 runs out of 10, and
less than 490 in at least one of these runs. What are the
exact changes you made? Give a list of the variables and the
values you assigned to them that allowed you to get these
results.

• If you cannot achieve the desired error rate, give the exact
details of the best settings you could find.

• Also report the error that you get with the same settings for
classbp2 but without using rbmfun and the unlabeled data.

Suggestions for Part 1

1. classbp2FineTuneVISHID: in class2bp.m, under if
restart==1:

• change inhid = initialweightsize*randn(numin,

numhid); to inhid = vishid;
• comment out hidbiases = initialweightsize*randn(1,

numhid);

2. Experiment setting for rbmfun, e.g. (u wanna do better):

rbmMaxepoch = 500;

numhid = 200; % numhid in rbmfun == numhid in class2bp
rbmWeightcost = 0.0002;

3. Experiment setting for class2bp, e.g. (u wanna do better):

maxepoch = 2000;

epsilon = 10^-4;

finalmomentum = 0.9;

weightcost = 0;

4. [hidbiases, vishid] = rbmfun(unlabeleddata,

numhid, rbmWeightcost, rbmMaxepoch);

5. restart = 1; classbp2FineTuneVISHID;

• The above code first trains a RBM with 200 hidden units by
setting vishid and hidbiases for 500 epochs and uses the
pre-trained weights to initialize classbp2FineTuneVISHID and
do backpropagation for 2000 epochs.

• Run the above setting multiple times, each time record the
best terror for backpropagation with and without
pre-training.

• Experiment with different settings to find even better results
than the one in the next two slides.

• You may need to do better than the above setting to get the
best test error less than 500 in at least 5 runs out of 10,
and less than 490 in at least one of these runs.

0 100 200 300 400
0

500

1000

1500

2000

2500

3000

epochs times 5

min terror 486 from RBM−backprop

min terror 545 from backprop

RBM: rbmMaxepoch = 500; numhid = 200; rbmWeightcost = 0.0002;

FFN: maxepoch = 2000; epsilon = 10ˆ-4; finalmomentum = 0.9;

weightcost = 0;

Table : Best test errors over 10 runs (again, you may need to do better):

RBM+BP 496 512 510 524 503 488 515 511 517 502
BP 538 539 540 529 543 532 541 537 528 529

Boxplot using the above table

490

500

510

520

530

540

Backprop with

RBM−pretrain

Backprop without

RBM−pretrain

PART 2. (3 points)

• Say how you think the use of the unlabeled data influences
the number of hidden units that you should use. Report some
evidence for your opinion.

• Suggestion1: experiment with different numhid used in
rbmfun and compare the terror.

• Suggestion2: read Page 12 in A practical guide to training
restricted Boltzmann machines (Hinton, 2010) http:

//www.cs.toronto.edu/~hinton/absps/guideTR.pdf.

• Hint: the number of bits that it takes to specify a 16×16
image is much higher than the bits used to specify the
corresponding 1-of-10 label.

http://www.cs.toronto.edu/~hinton/absps/guideTR.pdf
http://www.cs.toronto.edu/~hinton/absps/guideTR.pdf

0 50 100 150 200
400

600

800

1000

1200

1400
terror vs numhid

numhid

te
rr

o
r

min terror 486 from RBM−backprop

min terror 518 from backprop

RBM: rbmMaxepoch = 100; numhid = 10:10:200; rbmWeightcost =

0.0002; FFN: maxepoch = 2000; epsilon = 10ˆ-4; finalmomentum = 0.9;

weightcost = 0.

PART 3. (2 points)

• Using the same parameters (other than maxepoch) as in the
file train nn.m, run your experiment by training the rbmfun
for 50 and 500 epochs and report the best test set error for
each case (averaged over five runs).

• On the basis of these numbers what can you say about the
effect of number of epochs of RBM training on the final test
error from the neural network?

Your report should not be more than three pages long (including
figures) and should not contain more than 2 pages of text. One
page of text is quite sufficient.

Avg best error: 50 rbmMaxepoch: 517.6; 500 rbmMaxepoch:
501.0

0 100 200 300 400 500 600

50

500

R
B

M
 m

a
x
e

p
c
o

h

Best terror averaged over 5 runs

Setting:
RBM: rbmMaxepoch = 50 or 500; numhid = 100; rbmWeightcost = 0;
FFN: maxepoch = 2000; epsilon = 0.01; finalmomentum = 0.8;
weightcost = 0.

NB: Longer training in RBM amounts to longer unsupervised learning

time of the underlying features of the images

RBM: maxepoch = 50; numhid = 100; rbmWeightcost = 0;

FFN: maxepoch = 2000; epsilon = 0.01; finalmomentum = 0.8; weightcost = 0.

RBM: maxepoch = 500; numhid = 100; rbmWeightcost = 0;

FFN: maxepoch = 2000; epsilon = 0.01; finalmomentum = 0.8; weightcost = 0.

