
CSC321 Tutorial 3:
Assignment 1 - Exploring a simple neural

language model

Yue Li
Email: yueli@cs.toronto.edu

Wed 11-12 Jan 29
Fri 10-11 Jan 31



In this assignment, you will run code that trains a simple neural
language model on a dataset of sentences that were culled from a
large corpus of newspaper articles so that the culled sentences
would have a highly restricted vocabulary of only 250 words.
(word source: rawSentences.txt)



Download matlab files from here:
http://www.cs.toronto.edu/~bonner/courses/2014s/

csc321/assignments/hw1_matlab.zip

1. 4grams.mat: training, validation, test data and vocabulary;

2. loadData.m: load “4grams.mat”, make minibatch of size
mbsz cases, keep the first batchesToKeep training cases
(mbsz=100; batchesToKeep=1000);

3. prepMinibatch.m: split off the inputs and targets and do a
1-of-K softmax encoding for the targets;

4. fprop.m: forward propagation to compute the output activity
as the probability of next possible word given the input words;

5. bprop.m: backward propagation to compute derivatives of
network connection weights in order to update the weights;

6. computeCrossEntropy.m: given the learned weights, compute
cross-entropy per case of a whole dataset such as a test
dataset that has NOT been used to train the network;

7. train.m: the “main” file that does the following:

http://www.cs.toronto.edu/~bonner/courses/2014s/csc321/assignments/hw1_matlab.zip
http://www.cs.toronto.edu/~bonner/courses/2014s/csc321/assignments/hw1_matlab.zip


7.1 train the networks on the training data (4grams.mat) with
user-defined embedding dimension (d) and number of hidden
units (numHid) using the Matlab scripts in the order listed
above,

7.2 validate the network at the end of each training
iteration/epoch using the validation data,

7.3 stop the network training when the validation error starts to
increase and saves the results,

7.4 test the final trained network using the test data (used once
and only once!);

8. wordDistance.m: compute the Euclidean distance (aka: L2
norm) between two words based on the hidden representation
of the words (more details in a moment);

9. zeroOneLoss.m: compare the predicted word with the highest
probability with the true answer and output the number of
incorrect predictions.

Please go through each script by yourselves.



• Before you can run the code, you will need to load the data it
expects to find in the workspace. To do that, execute the
following command:

[trainbatches, validbatches, testbatches, vocab] =

loadData(100, 1000);

• The line above creates the training, validation, and test data
variables as well as a variable holding the 250 words in the
vocabulary. It will load a training set with 1000 minibatches
of 100 cases each.

• Let’s take a look at the data and a few 4-gram instances ...



• The model you will train on these data produces a (1-of-K
softmax) distribution over the next word given the previous
three words as input.

• Since the neural network will be trained on 4-grams extracted
from isolated sentences, this means that it will never be asked
to predict any of the first three words in a sentence.

• The neural network learns a d-dimensional embedding for the
(input) words in the vocabulary and has a hidden layer with
numHid hidden units fully connected to the single output
softmax unit.

• If we are so inclined, we can view the embedding as another
(earlier) hidden layer with weights shared across the three
words.



w
(1)
ij

� �

� �

h
(1)
j

w
(2)
jk

y
(2)
k =

�

j

w
(2)
jk h

(1)
j

E(h(2))

h
(2)
k

∂E

∂h
(2)
k

Fo
rw

ar
d	
  
Pa

ss
	
  

∂h
(2)
k

∂y
(2)
k

∂y
(2)
k

∂w
(2)
jk

∂E

∂w
(2)
jk

∂E

∂w
(1)
ij

∂h
(1)
j

∂y
(1)
j

∂y
(1)
j

∂w
(1)
ij

Backw
ard	
  Pass	
  

∂E

∂xi

xi

y
(1)
j =

�

i

w
(1)
ij xi



• After you have loaded the data, you can set d and numHid
like so:

d = 10; numHid = 50;

• and then run the main training script,

train;

• which will train the neural network using the embedding
dimensionality and number of hidden units specified.



Algorithm 1 Pseudocode for Training, Validation, and Testing

for ep=1 to Epochs do
for m=1 to numBatches do

Train on mth batch of trainbatches
end for
Validate using validbatches

if validation error increases then
Stop training (or the outer loop)

end if
end for
Test using testbatches



• The training script monitors the cross-entropy error (CE) on
the validation data:

CE = −
N∑

n=1

K∑

k=1

tnk ln ynk

and uses that information to decide when to stop training.

• Training stops as soon as the validation error increases and
the final weights are set to be the weights from immediately
before this increase.

• This procedure is a form of “early stopping” and is a common
method for avoiding overfitting in neural network training.

• Recommandation: Modify the script to record training and
validation error at each epoch and plot them on the same plot
for comparison. Clearly describe where and what you have
modified in your report.



0 5 10 15 20 25 30 35 40 45
2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

Learning Epoch

C
E

 p
e

r 
c
a

s
e

Cross−Entropy per case

 

 

Training CE

Validation CE

Test CE



Here is a list of the variables of interest saved in the workspace:

• wordRepsFinal - the learned word embedding;

• repToHidFinal - the learned embedding-to-hidden unit
weights;

• hidToOutFinal - the learned hidden-to-output unit weights;

• hidBiasFinal - the learned hidden biases;

• outBiasFinal - the learned output biases;

• epochsBeforeVErrUptick - the number of epochs of training
before validation error increased. In other words, the number
of training epochs used to produce the final weights above;

• finalTrainCEPerCase - The per case cross entropy error on the
training set of the weights with the best validation error;

• finalValidCEPerCase - The per case cross entropy error on the
validation set of the final weights (this will always be the best
validation error the training script has seen);

• finalTestCEPerCase - The per case cross entropy error on the
test set of the final weights.



You must train the model four times, trying all possible
combinations of d=10, d=40 and numHid=50,numHid=200:

1. d=10, numHid=50;

2. d=10, numHid=200;

3. d=40, numHid=50;

4. d=40, numHid=200.

For each of these runs, you must record:

1. finalTrainCEPerCase - the final cross entropy error on the
training;

2. finalValidCEPerCase - the final cross entropy error on the
validation;

3. finalTestCEPerCase - the final cross entropy error on the
test sets;

4. epochsBeforeVErrUptick - the number of epochs before a
validation error increase.



• Select the best configuration that you ran.

• The function wordDistance has been provided for you so
that you can compute the distance between the learned
representations of two words.

• The wordDistance function takes two strings, the wordReps

matrix that you learned (use wordRepsFinal unless you have
a good reason not to) and the vocabulary.

• For example, if you wanted to compute the distance between
the words “and” and “but” you would do the following (after
training the model of course):

wordDistance(‘and’, ‘but’, wordRepsFinal, vocab)



Formally, the wordDistance function simply takes the feature
vector corresponding to each word and computes the L2 norm of
the difference vector:

d = 10

wi = (hi ,1, hi ,2, hi ,3, . . . , hi ,10)

wj = (hj ,1, hj ,2, hj ,3, . . . , hj ,10)

d(wi,wj) =
√

(hi ,1 − hj ,1)2 + (hi ,2 − hj ,2)2 + . . .+ (hi ,10 − hj ,10)2



• You can only meaningfully compare the relative distances
between two pairs of words and discover things like “the word
‘and’ is closer to the word ‘but’ than it is to the word ‘or’ in
the learned embedding.”

• If you are especially enterprising, you can compare the
distance between two words to the average distance to each of
those words.

• Remember that if you want to enter a string that contains the
single quote character in matlab you must escape it with
another single quote. So the string apostrophe s, which is in
the vocabulary, would have to be entered in matlab as: ’’’s’



• Compute the distances between a few words and look for
patterns.

• See if you can discover a few interesting things about the
learned word embedding by looking at the distances between
various pairs of words.

• What words would you expect to be close together? Are they?

• Think about what factors contribute to words being given
nearby feature vectors.

• Recommandation: Write a nested loop to compute distances
between every pair of words (including a pair of the same
words). The result will be a square and symmetrical distance
matrix with diagonal entries all equal to zero (why?).



Sorted dist of “and”, “where”, “his”, “is”, “do” from other words
(NB: Your results may differ slightly):

and

but

:

;

if

−−

most

just

only

−

when

then

each

because

since

so

also

even

under

or

as

any

officials

not

know

members

general

still

days

think

dr.

where

where

when

who

until

;

million

if

than

such

think

under

into

among

these

percent

dr.

state

american

market

how

university

against

.

other

world

because

see

show

make

$

much

his

his
my
our

your
their

its
her

another
ms.

other
federal

no
political

some
national

mr.
united
former
those

only
big

each
such
any

officials
white
every

new
still

several
police

first
second

under
good

called
dr.
by

two
last

american
one
me

school
him
she

public
center

including
group

long
john

$
just

.
percent

never
west

off
people

members
city

university
is

is
was

were
are

’s
be

been
being

play
office
back
since

not
by

also
.

use
former

set
including

$
between

dr.
only

show
percent

business
best
such

an
game
much

federal
big
still
end

money
program

case
)

until
university

just
made

little
ms.

country
house

mr.
company

own
see

season
had

west
music
down

nt
national

family
life

street
first

do
did

does
than

while
market

play
world
office

between
case
says

director
show

through
state
times
court

see
$
?
.

money
including

week
house

into
dr.

among
day

government
about

around
city

department
team

company
end

women
percent

them
)

us
season

like
game
found

president
set

country
business

street
still

children
him
just

against
war
way

program
say

also
before



01234567
including$.dr.percentcitygovernmentcountry)companycasedirectorstatepresidentcourtmarketworldweekdaymoneyworkwarnightgameteambusinesslifeprogramfamilymusichereseasonyorkschoolstreetcenterstatesoffhousewestbothcompaniesgeneralofficialsmembersgrouponelawchildren?timesthemushimmepeoplewomenmilliondepartmentgoodbignationalpublicamericanwhiteotheroldyearsdaysyearnowmanyesterdaytodaythenwelljohnpolicebyuniversityfederalms.formeritsherpoliticalbestlongthatshowofficeplayendbeforeagowhileplacetimerightsameownhomejustonlystillalsoevennotntneverbeingsincesosuchmr.untilnewlastnextfirstanothersecondfourseveraltwothreefivefewmanythosetheselessmorelittlemuchsomeanynothoughallhighoverthroughleftaroundbetweenfoundbackcalledduringinofonunderseethanagainstamongintolikeaboutforwithwithoutafterfromgocomedownupthereitthistheyweyousheheiunitedwhoknowsayssaidsaythinkbecauseifwhenwaymostpart;−−−:butandoreacharewerewasis’sbebeenansetmademakeuseusedgetputtakehadhavehasgoingwanteveryyourmytheirourhistheaswhichshouldwouldmightwillmaycouldcandodiddoestoouttooat,veryawherehowwhat

0.511.52

when
way
most
part
;
−−
−
:
but
and
or
each
are
were
was
is
’s
be
been
an
set
made
make
use
used
get
put
take
had
have
has
going
want
every
your
my
their
our
his
the
as
which
should
would
might
will
may
could
can
do
did
does
to
out
too
at
,
very
a
where
how
what

NB: Your results may differ slightly



What to hand in:

• You should hand in, along with the results you were instructed
to record above, some clear, well-written, and concise prose
providing a brief commentary on the results.

• At most two pages will be graded (excluding figures), so
anything beyond two pages will be ignored during marking.

• Figures (such as the illustrations above) are highly
recommended to support your conclusion.



Here are a few suggestions on what you should comment on, but
they are certainly not exhaustive or meant to limit your discussion.
You will be expected to offer some insights beyond what is
mentioned below. The questions below are merely to help guide
your thinking, please make your analysis go beyond them.

• You should give your reasoning about why the d and numHid

you found to be the best actually is the best and how you
defined “best”.

• Comment a bit on everything you were asked to record and
also what seemed to be happening during training.

• Explain all your observations.

• What did you discover about the learned word embedding?

• Why did these properties of the embedding arise?

• What things can cause two words to be placed near each
other?

• What can you say about overfitting and generalization in light
of your results?



A1 due on Tuesday Feb 4 at 3pm by

electronic submission



Derivation of backpropagation

(help you understand f/bprop.m)



w
(1)
ij

� �

� �

h
(1)
j

w
(2)
jk

y
(2)
k =

�

j

w
(2)
jk h

(1)
j

E(h(2))

h
(2)
k

∂E

∂h
(2)
k

Fo
rw

ar
d	
  
Pa

ss
	
  

∂h
(2)
k

∂y
(2)
k

∂y
(2)
k

∂w
(2)
jk

∂E

∂w
(2)
jk

∂E

∂w
(1)
ij

∂h
(1)
j

∂y
(1)
j

∂y
(1)
j

∂w
(1)
ij

Backw
ard	
  Pass	
  

∂E

∂xi

xi

y
(1)
j =

�

i

w
(1)
ij xi



Formally, the forward pass computes the following activities,
softmax, and cross-entropy (E):

y
(1)
j =

∑

i

w
(1)
ij xi (1)

h
(1)
j = σ(y

(1)
j ) =

1

1 + exp(−y
(1)
j )

(2)

y
(2)
k =

∑

j

w
(2)
jk h

(1)
j (3)

h
(2)
k = σ(y

(2)
k ) =

exp(y
(2)
k )

∑
k exp(y

(2)
k )

(4)

E = −
N∑

n=1

K∑

k=1

tnk ln h
(2)
nk (5)

Check fprop.m.



The backward pass computes the following partial derivatives:

∂E

∂w
(2)
jk

=
N∑

n=1

(tn,k − h
(2)
n,k)h

(1)
n,j

(
use (2) and (4)

)
(6)

The gradient ∂E

∂w
(2)
jk

in (6) is needed to adjust the connection

weights w
(2)
jk between the output and hidden layers.

In bprop.m, dhidToOut represents (6).



∂E

∂y
(2)
k

= tk − h
(2)
k (7)

∂y
(2)
k

∂h
(1)
j

= w
(2)
jk (8)

∂E

∂h
(1)
j

=
∑

k

∂E

∂y
(2)
k

∂y
(2)
k

∂h
(1)
j

(
use (7) and (8)

)
(9)

∂h
(1)
j

∂y (1)
= h

(1)
j (1 − h

(1)
j ) (10)

∂y
(1)
j

∂w
(1)
ij

= xi (11)

∂E

∂w
(1)
ij

=
∂E

∂h
(1)
j

∂h
(1)
j

∂y
(1)
j

∂y
(1)
j

∂w
(1)
ij

(
use (9), (10), (11)

)
(12)

The gradient ∂E

∂w
(1)
ij

in (12) is needed to adjust w
(1)
ij between the

input and hidden layers. In bprop.m, drepToHid represents (12).



∂E

∂y
(1)
j

=
∂E

∂h
(1)
j

∂h
(1)
j

∂y
(1)
j

(
use (9) and (10)

)
(13)

∂y
(1)
j

∂xi
= w

(1)
ij (14)

∂E

∂xi
=
∑

j

∂E

∂y
(1)
j

∂y
(1)
j

∂xi

(
use (13) and (14)

)
(15)

The gradient ∂E
∂xi

in (15) is needed to update the word
representation of the d-dimension embedding. In bprop.m,
dwordReps represents (15).


