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Why probabilities?

» One of the hardest problems when building complex intelligent
systems is brittleness.

» How can we keep tiny irregularities from causing everything to
break?



Keeping all options open

v

Probabilities are a great formalism for avoiding brittleness,
because they allow us to be explicit about uncertainties:

Instead of representing values: Define distributions over
alternatives!

Example: Instead of setting values strictly ('x = 4'), define all
of: p(x =1), p(x = 2), p(x = 3), p(x = 4), p(x = 5)

Great success story. Most powerful machine learning models
consider probabilities in some way.

(Note that we could still express things like 'x = 4". (How?))



"Not random, not a variable.”

> For p we need: > p(x)=1and p(x) >0

» Formally, the 'object taking on random values’ is called
random variable and p(-) is its distribution.

» Capital letters ('X") often used for random variables, small
letters ('x") for values it takes on.

» Sometimes we see p(X = x), but usually just p(x).
» In general, the symbol p is often heavily overloaded and the
argument decides.

» These are notational quirks that require a little time to get
used to, but make life easier later on.



Continuous random variables

v

For continuous x we can replace Y by [, but ...

v

Things work somewhat differently for continuous x. For
example, we have p(X = value) = 0 for any value.

Only things like p(X € [-0.5,0.7]) are reasonable.

The reason is the integral...

v

v

v

(Note, again, that p is overloaded.)



Summarizing properties

» The interesting properties of RVs are usually just properties
of their distributions (not surprisingly).

» Mean:
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Summarizing properties

» The interesting properties of RVs are usually just properties
of their distributions (not surprisingly).

p=">_ p(x)x

» Mean:

» Variance:

0? = 3 pl)(x — )’

» (Standard deviation: o = Vo?)

Maximum likelihood estimate (MLE) of
Gaussian (later slides)
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Some standard distributions

Discrete
Multinomial..... l]...l.l
» Bernoulli... pX(1 — p)1= (x is zero or one)
» Binomial..... 'Sum of Bernoullis' (unfortunate naming

confusion). Actually, also the multinomial is often defined as a
distribution over the sum of outcomes of our 'multinomial’
defined above.

» Poisson, uniform, geometric, ...

Continuous

» Uniform..... _ I

> Gaussian... p(x) = = exp(—5,2(x = 1)°) Gistribution in

» Etc... more detailed



Yue
distribution in more detailed ...


EXPONENTIAL FAMILY

e For (continuous or discrete) random variable x
p(x[n) = h(x) exp{n" T(x) — A(n)}

1 T
_ mh(x) exp{n T'(x)}

is an exponential family distribution with
natural parameter 7).

e Function T'(x) is a sufficient statistic.
e Function A(n) = log Z(n) is the log normalizer.

e Key idea: all you need to know about the data is captured in the
summarizing function 7'(x).



BERNOULLI

e For a binary random variable with p(heads)=nx:

plafm) = 7*(1 = m)' ="

= exp {log (&) 2+ log(1 — w)}

e Exponential family with:

n=log —
T(x)=x
A(n) = —log(1 — ) = log(1 + €")
h(z)=1

e The logistic function relates the natural parameter and the chance

of heads
1

14+e7

m =



PoissoN

e For an integer count variable with rate A:
AT~ A
x!

pzA) =
@
= Eexp{xlog A=A}

e Exponential family with:

n =log A
T(z)==x
Aln)y=X=¢"

1

e e.g. number of photons x that arrive at a pixel during a fixed
interval given mean intensity A

e Other count densities: binomial, exponential.



MULTINOMIAL

e For a set of integer counts on £ trials

k!

L1,.L2 Ty _ '
ol a1 2 T h(x)exp QY w;logm;

i

p(x|m) =

e But the parameters are constrained: » , m; = 1.

So we define the last one 1, =1 — Y " 11 ;.

p(x|m) = h(x)exp {ZZ log < ) z; + klog ﬂ'n}
e Exponential family with:
n; = logm; — logmy,
T(z;) = z;
Aln) = —klogm, = k;log Y€l
h(x) = kl/xlzo!- - ap!



GAUSSIAN (NORMAL)

e For a continuous univariate random variable:
1 1
2 2
|y, o%) = expl —=(z —
p(z|p, o) Nz p{ 553~ 1) }
1 ux z2 ,u2 |
eXpy —5 — =5 — —5 — logo

2o P o2 202 202 &

e Exponential family with: /\

n=lplo*; —1/207
T(z) =[x 2]
A(n) =logo + /207
h(z) =1/V2x
e Note: a univariate Gaussian is a two-parameter distribution with a
two-component vector of sufficient statistis.




MULTIVARIATE GAUSSIAN DISTRIBUTION

e For a continuous vector random variable;

plalin2) = 2| P esp {3 = )" - 0

e Exponential family with:
n=[o"lu; —1/257
T(z) = [x; xx']
A(n) =log |S]/2+ p "= /2

h(z) = (2m) "/
o Sufficient statistics: mean vector and correlation matrix.

e Other densities: Student-t, Laplacian.

e For non-negative values use exponential, Gamma, log-normal.



Joints,

conditionals, marginals

Things get much more interesting if we allow for multiple
variables.

» Leads to several new concepts:

» The joint distribution p(x, y) is just a distribution defined on

» For discrete RVs, we can imagine a table.

vectors (here 2-d as example)... conditional table

example on board

» Everything else stays essentially the same. So in particular we

need
> p(xy)=1, p(x,y) =0
?y


Yue
conditional table example on board


Joints, conditionals, marginals

» All we need to know about a random vector can be derived
from the joint distribution. For example:

» Marginal distributions:

p(x)=> p(x,y) and p(y)=>_ p(x,y)
y X

» Intuition: Collapse dimensions.

» Conditional distributions are defined as:

_Py) oy = POGY)
p(}/|X)_ p(X) d P( |)/) p(y)

» Intuition: New frame of reference. example from the
same table on board


Yue
example from the same table on board


JOINT PROBABILITY

e Key concept: two or more random variables may interact.
Thus, the probability of one taking on a certain value depends on
which value(s) the others are taking.

o We call this a joint ensemble and write
p(z,y) = prob(X =z and Y =)

=

| <

A

p(x.y.2)




MARGINAL PROBABILITIES

e We can "sum out” part of a joint distribution to get the marginal
distribution of a subset of variables:

plz) = plx,y)
Y

o This is like adding slices of the table together.

‘V p(x.y)
Z

X

e Another equivalent definition: p(z) = 3, p(z|y)p(y).



CONDITIONAL PROBABILITY

o If we know that some event has occurred, it changes our belief
about the probability of other events.

o This is like taking a "slice” through the joint table.
plzly) = plz,y)/p(y)]

p(x.ylz)




Important formula

» Remember this:

p(y|x)p(x) = p(x,y) = p(x|y)p(y)

» Allows us, among other things, to compute p(x|y) from
p(y|x) ('Bayes rule").

» Can be generalized to more variables. ('Chain-rule of
probability’).
also p(x) can be defined as some known
distribution such as Gaussian


Yue
also p(x) can be defined as some known distribution such as Gaussian


BAYES’ RULE

e Manipulating the basic definition of conditional probability gives
one of the most important formulas in probability theory:

~ plylz)p(z)  plylz)p(z)
Pl = T Syl (@)

e This gives us a way of "reversing” conditional probabilities.

e Thus, all joint probabilities can be factored by selecting an ordering
for the random variables and using the "chain rule”:

.y, z,...) = plz)p(yle)p(zle, y)p(. . .|z, y, 2)|




Independence and conditional independence

» Two RVs are called independent, if what is p(x,y) when

x and y are not
independent? (prev.
slide)

p(x,y) = p(x)p(y)

» Captures the intuition of 'independence’:
» Note, for example, that it implies p(x) = p(x|y).

» Related concept: x,y are called conditionally independent,
given z if

p(x,ylz) = p(x|z)p(y|z)

see figure in
next slide


Yue
what is p(x,y) when x and y are not independent? (prev. slide)

Yue
see figure in next slide


Independence is useful

» Say, we have some variables x1, x2, ..., XK.

» Even just defining their joint (let alone doing computations
with it) is hopeless for large K. 0(C"K)

» But what if all x; independent? the other extreme

> Need to specify just K probabilities, since the joint is the
product! 0(K)

» A more sophisticated version of this idea is to use conditional
independence. Large and active area of 'Graphical Models'.

see figure and
example


Yue

Yue
see figure and example

Yue
O(C^K)

Yue
O(K)

Yue
the other extreme


Graphical model

Conditional independence

If z has not been observed, x and
y are in general not independent:

x My
p(xly) # p(x)
p(x,y) # p(x)p(y)

Once z has been observed, x and
y become conditionally
independent:

x U yl|z
p(xly,z) = p(x|2)
p(x,y|z) = p(x|z)p(y|z)



e Example 1: Suppose X and Y are the outcomes (Heads or
Tails) of two separate tosses of the same coins. Clearly, X and
Y are independent: X L Y.

e Example 2: Now suppose there is a probability Z that the
coin is biased towards Heads. In this case, X and Y are not
independent: X /1. Y.

e Because observing that Y is Heads causes us to increase our
belief in X being Heads:
p(X = Heads|Y = Heads) > p(X = Heads).

e However, once we know such probability Z, then any evidence
about Y cannot change our belief about X:
p(X|Z) = p(X]Y, Z)

e Thus, X and Y are conditionally independent given Z.



Maximum Likelihood

» Another useful thing about independence.

» Task: Given some data (xi,...,xy) build a model of the
data-generating process. Useful for classification, novelty
detection, 'image manipulation’, and countless other things.

» Possible solution: Fit a parameterized model p(x; w) to the
data.

» How? Maximize the probability of 'seeing’ the data under
your model!


Yue


Maximum Likelihood

» This is easy, if the examples are independent, ie. if
p(x1, ... xn; w) = HP(Xi; w)
i

» Note that instead of maximizing probability, we might as well
maximize log probability. (Since the 'log’ is monotonous.)

» So we can maximize;

L(w) = log | [ P w) = > log p(xi; w)

» Dealing with the sum of things is easy. (We wouldn't have
gotten this, if we hadn't assumed independence.)



EXAMPLE: BERNOULLI TRIALS

e We observe M iid coin flips: D=H,H,T,H,...
e Model: p(H) =6 p(T)=(1-10)
e Likelihood:

£(0; D) = log p(DI0)

= logHHXm(l —g)l—x
logGZX + log(1 —6) Z (1—x"
m

= log 9NH + log(1 — 6)Np

e Take derivatives and set to zero:

ot _ Ny _ Nt
o 0 1—-46

N,

= 0L, A
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Yue
show how to get this

Yue
subtract M in order to get sum of theta_k equal to 1 


EXAMPLE: MULTINOMIAL

e We observe M iid die rolls (K-sided): D=3,1,K,2,...

e Model: p(k) = Gk Zk 91{: =1
e Likelihood (for binary indicators [x"" = k]):

(0; D) = log p(D|0)
— log [ 6xm = log [0 .02

m m
= Zlog@kZ[Xm = k‘] = ZNklong
k m k

e Take derivatives and set to zero (enforcing ;. 0 = 1):

90 _ Np
90, 0
N,

gr =k

= k i
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show how to get this

Yue
subtract M in order to get sum of theta_k equal to 1 


Gaussian example

» What is the ML-estimate of the mean of a Gaussian?

» We need to maximize:
L(p) = Z log p(xi; i) = Z <—%(X,‘ — u)z) + const.
» The derivative is:
T = g a0 = (o M

» We set to zero and get:


Yue


When data from K Gaussians - Gaussian Mixture Model

Original Dataset 1

K
x) = > N (x| s Tk)

k=1

Inp(x|p, Z, ) Zln { Zwk/\/ x|uk,Zk)}
n=1

In the E-step, the posterior probablllty (or ~v(zk) as the
responsibility of zj for x) is estimated as:

WkN(X|u°ld zold)
Sy TN (x| g, T 2)

Y(zx) = p(zk|x) =

(3)



In the M-step, the parameters involved in (1) are re-estimated by

1 N
K = M ;7(4)’%
1 N
T = g @) i) )T
n=1
new __ %
k N

where

N
N = 7(z)
n=1

The log-likelihood is then updated by

N
|np(X‘/,L, Z,Tl') = Z { ZW”EWN X‘/,l,new, new)
n=1

k=1

b



When data is not /.i.d. - Hidden Markov Model

hidden
[3\ 12311 G\awjm

states: k=1 — 1 a><
2 ay,
2 | @ I

hidden Zn-1 Zn N
variables:
observed Xn-t *n n
variables:

p(X|Z, @) = [IM_, p(xn| 20, @) (e, P(x0lZn ks ®) = N (x| 11k, 02))
p(X,Z|0) = p(x1,x2, ..., XN, 21, 22, - - -, ZN|O)

N N
= P(leﬂ') [ H p(z,,]z,,_l, A) H P(Xm|zma ¢)
n=2 m=1

Dynamic programming to obtain hidden sequence such that

maxz [m p(X, Z|0)]



