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Why probabilities?

I One of the hardest problems when building complex intelligent
systems is brittleness.

I How can we keep tiny irregularities from causing everything to
break?



Keeping all options open

I
Probabilities are a great formalism for avoiding brittleness,
because they allow us to be explicit about uncertainties:

I Instead of representing values: Define distributions over

alternatives!

I Example: Instead of setting values strictly (’x = 4’), define all
of: p(x = 1), p(x = 2), p(x = 3), p(x = 4), p(x = 5)

I Great success story. Most powerful machine learning models
consider probabilities in some way.

I (Note that we could still express things like ’x = 4’. (How?))



”Not random, not a variable.”

I For p we need:
P

x

p(x) = 1 and p(x) � 0

I Formally, the ’object taking on random values’ is called
random variable and p(·) is its distribution.

I Capital letters (’X ’) often used for random variables, small
letters (’x ’) for values it takes on.

I Sometimes we see p(X = x), but usually just p(x).

I In general, the symbol p is often heavily overloaded and the
argument decides.

I These are notational quirks that require a little time to get
used to, but make life easier later on.



Continuous random variables

I For continuous x we can replace
P

by
R

, but ...

I Things work somewhat di↵erently for continuous x . For
example, we have p(X = value) = 0 for any value.

I Only things like p(X 2 [�0.5, 0.7]) are reasonable.

I The reason is the integral...

I (Note, again, that p is overloaded.)



Summarizing properties

I The interesting properties of RVs are usually just properties
of their distributions (not surprisingly).

I Mean:
µ =

X

x

p(x)x

I Variance:
�2 =

X

x

p(x)(x � µ)2

I (Standard deviation: � =
p

�2)
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Yue
Maximum likelihood estimate (MLE) of Gaussian (later slides)



Some standard distributions

Discrete

I Multinomial.....

I Bernoulli... p

x(1� p)1�x (x is zero or one)

I Binomial..... ’Sum of Bernoullis’ (unfortunate naming
confusion). Actually, also the multinomial is often defined as a
distribution over the sum of outcomes of our ’multinomial’
defined above.

I Poisson, uniform, geometric, ...

Continuous

I Uniform.....

I Gaussian... p(x) = 1p
2⇡�

exp(� 1
2�2 (x � µ)2)

I Etc...

Yue
distribution in more detailed ...
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Joints, conditionals, marginals

I Things get much more interesting if we allow for multiple

variables.

I Leads to several new concepts:

I The joint distribution p(x , y) is just a distribution defined on
vectors (here 2-d as example)...

I For discrete RVs, we can imagine a table.

I Everything else stays essentially the same. So in particular we
need X

x ,y

p(x , y) = 1, p(x , y) � 0

Yue
conditional table example on board



Joints, conditionals, marginals

I All we need to know about a random vector can be derived
from the joint distribution. For example:

I
Marginal distributions:

p(x) =
X

y

p(x , y) and p(y) =
X

x

p(x , y)

I Intuition: Collapse dimensions.

I
Conditional distributions are defined as:

p(y |x) =
p(x , y)

p(x)
and p(x |y) =

p(x , y)

p(y)

I Intuition: New frame of reference.

Yue
example from the same table on board
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Important formula

I Remember this:

p(y |x)p(x) = p(x , y) = p(x |y)p(y)

I Allows us, among other things, to compute p(x |y) from
p(y |x) (’Bayes rule’).

I Can be generalized to more variables. (’Chain-rule of
probability’).

Yue
also p(x) can be defined as some known distribution such as Gaussian
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Independence and conditional independence

I Two RVs are called independent, if

p(x , y) = p(x)p(y)

I Captures the intuition of ’independence’:

I Note, for example, that it implies p(x) = p(x |y).

I Related concept: x , y are called conditionally independent,
given z if

p(x , y |z) = p(x |z)p(y |z)

Yue
what is p(x,y) when x and y are not independent? (prev. slide)

Yue
see figure in next slide



Independence is useful

I Say, we have some variables x1, x2, . . . , x
K

.

I Even just defining their joint (let alone doing computations
with it) is hopeless for large K .

I But what if all x

i

independent?

I Need to specify just K probabilities, since the joint is the
product!

I A more sophisticated version of this idea is to use conditional

independence. Large and active area of ’Graphical Models’.

Yue

Yue
see figure and example

Yue
O(C^K)

Yue
O(K)

Yue
the other extreme



Graphical model

z

x y

z

x y

Conditional independence

If z has not been observed, x and
y are in general not independent:

x 6?? y

p(x |y) 6= p(x)

p(x , y) 6= p(x)p(y)

Once z has been observed, x and
y become conditionally
independent:

x ?? y |z
p(x |y , z) = p(x |z)
p(x , y |z) = p(x |z)p(y |z)



• Example 1: Suppose X and Y are the outcomes (Heads or
Tails) of two separate tosses of the same coins. Clearly, X and
Y are independent: X ?? Y .

• Example 2: Now suppose there is a probability Z that the
coin is biased towards Heads. In this case, X and Y are not
independent: X 6?? Y .

• Because observing that Y is Heads causes us to increase our
belief in X being Heads:
p(X = Heads|Y = Heads) > p(X = Heads).

• However, once we know such probability Z , then any evidence
about Y cannot change our belief about X:
p(X |Z ) = p(X |Y ,Z )

• Thus, X and Y are conditionally independent given Z.



Maximum Likelihood

I Another useful thing about independence.

I Task: Given some data (x1, . . . , x
N

) build a model of the
data-generating process. Useful for classification, novelty
detection, ’image manipulation’, and countless other things.

I Possible solution: Fit a parameterized model p(x ;w) to the
data.

I How? Maximize the probability of ’seeing’ the data under
your model!

Yue



Maximum Likelihood

I This is easy, if the examples are independent, ie. if

p(x1, . . . , x
N

;w) =
Y

i

p(x
i

;w)

I Note that instead of maximizing probability, we might as well
maximize log probability. (Since the ’log’ is monotonous.)

I So we can maximize:

L(w) = log
Y

i

p(x
i

;w) =
X

i

log p(x
i

;w)

I Dealing with the sum of things is easy. (We wouldn’t have
gotten this, if we hadn’t assumed independence.)



Yue

Yue
show how to get this

Yue
subtract M in order to get sum of theta_k equal to 1 



Yue

Yue
show how to get this

Yue
subtract M in order to get sum of theta_k equal to 1 



Gaussian example

I What is the ML-estimate of the mean of a Gaussian?

I We need to maximize:

L(µ) =
X

i

log p(x
i

;µ) =
X

i

✓
� 1

2�2
(x

i

� µ)2
◆

+ const.

I The derivative is:

@L(µ)

@µ
=

1

�2

X

i

(x
i

� µ) =
1

�2
(
X

i

x

i

� Nµ)

I We set to zero and get:

µ =
1

N

X

i

x

i

Yue



When data from K Gaussians - Gaussian Mixture Model

Yue Li CSC2515 A3

Figure 6. Distribution of the original dataset 1 and the three Gaussian distributions modelled by
EM, SD, and CG.

Figure 7. Distribution of the original dataset 2 and the three Gaussian distributions modelled by
EM, SD, and CG
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In the M-step, the parameters involved in (1) are re-estimated by
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When data is not i .i .d . - Hidden Markov Model
hidden  
states: 

k=1 

k=2 

hidden 
variables: 

observed 
variables: 

a11 
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a12 
a21 

… z1 

x1 
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zn-1 

xn-1 x2 

z2 zn+1 
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zn 

xn 
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… zN 

xN 

p(X|Z,�) =
Q

N

n=1 p(xn|zn,�) (e.g., p(xn|zn,k ,�) = N (x
i

|µ
k

,�2
k

))

p(X,Z|✓) = p(x1, x2, . . . , x
N

, z1, z2, . . . , z
N

|✓)

= p(z1|⇡)
"
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Dynamic programming to obtain hidden sequence such that

max
Z


ln p(X,Z|✓)
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