CSC321 Tutorial 4：

Probabilities for machine learning
（Most slides made by Roland Memisevic and Sam Roweis）

Yue Li
Email：yueli＠cs．toronto．edu

Wed 11－12 Feb 5
Fri 10－11 Feb 7

Why probabilities?

- One of the hardest problems when building complex intelligent systems is brittleness.
- How can we keep tiny irregularities from causing everything to break?

Keeping all options open

- Probabilities are a great formalism for avoiding brittleness, because they allow us to be explicit about uncertainties:
- Instead of representing values: Define distributions over alternatives!
- Example: Instead of setting values strictly (' $x=4$ '), define all of: $p(x=1), p(x=2), p(x=3), p(x=4), p(x=5)$
- Great success story. Most powerful machine learning models consider probabilities in some way.
- (Note that we could still express things like ' $x=4$ '. (How?))

"Not random, not a variable."

- For p we need: $\sum_{x} p(x)=1$ and $p(x) \geq 0$
- Formally, the 'object taking on random values' is called random variable and $p(\cdot)$ is its distribution.
- Capital letters (' X ') often used for random variables, small letters (' x ') for values it takes on.
- Sometimes we see $p(X=x)$, but usually just $p(x)$.
- In general, the symbol p is often heavily overloaded and the argument decides.
- These are notational quirks that require a little time to get used to, but make life easier later on.

Continuous random variables

- For continuous x we can replace \sum by \int, but \ldots
- Things work somewhat differently for continuous x. For example, we have $p(X=$ value $)=0$ for any value.
- Only things like $p(X \in[-0.5,0.7])$ are reasonable.
- The reason is the integral...
- (Note, again, that p is overloaded.)

Summarizing properties

- The interesting properties of RVs are usually just properties of their distributions (not surprisingly).
- Mean:

$$
\mu=
$$

Summarizing properties

- The interesting properties of RVs are usually just properties of their distributions (not surprisingly).
- Mean:

$$
\mu=\sum_{x} p(x) x
$$

Summarizing properties

- The interesting properties of RVs are usually just properties of their distributions (not surprisingly).
- Mean:

$$
\mu=\sum_{x} p(x) x
$$

- Variance:

$$
\sigma^{2}=
$$

Summarizing properties

- The interesting properties of RVs are usually just properties of their distributions (not surprisingly).
- Mean:

$$
\mu=\sum_{x} p(x) x
$$

- Variance:

$$
\sigma^{2}=\sum_{x} p(x)(x-\mu)^{2}
$$

Summarizing properties

- The interesting properties of RVs are usually just properties of their distributions (not surprisingly).
- Mean:

$$
\mu=\sum_{x} p(x) x
$$

- Variance:

$$
\sigma^{2}=\sum_{x} p(x)(x-\mu)^{2}
$$

- (Standard deviation: $\sigma=\sqrt{\sigma^{2}}$)

Maximum likelihood estimate (MLE) of
Gaussian (later slides)

Some standard distributions

Discrete

- Multinomial..... П П
- Bernoulli... $p^{x}(1-p)^{1-x}(x$ is zero or one)
- Binomial..... 'Sum of Bernoullis' (unfortunate naming confusion). Actually, also the multinomial is often defined as a distribution over the sum of outcomes of our 'multinomial' defined above.
- Poisson, uniform, geometric, ...

Continuous

- Uniform.....
- Gaussian... $p(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right)$ distribution in
- Etc...
- For (continuous or discrete) random variable \mathbf{x}

$$
\begin{aligned}
p(\mathbf{x} \mid \eta) & =h(\mathbf{x}) \exp \left\{\eta^{\top} T(\mathbf{x})-A(\eta)\right\} \\
& =\frac{1}{Z(\eta)} h(\mathbf{x}) \exp \left\{\eta^{\top} T(\mathbf{x})\right\}
\end{aligned}
$$

is an exponential family distribution with natural parameter η.

- Function $T(\mathbf{x})$ is a sufficient statistic.
- Function $A(\eta)=\log Z(\eta)$ is the log normalizer.
- Key idea: all you need to know about the data is captured in the summarizing function $T(\mathbf{x})$.

BERNOULLI

- For a binary random variable with $\mathrm{p}($ heads $)=\pi$:

$$
\begin{aligned}
p(x \mid \pi) & =\pi^{x}(1-\pi)^{1-x} \\
& =\exp \left\{\log \left(\frac{\pi}{1-\pi}\right) x+\log (1-\pi)\right\}
\end{aligned}
$$

- Exponential family with:

$$
\begin{aligned}
\eta & =\log \frac{\pi}{1-\pi} \\
T(x) & =x \\
A(\eta) & =-\log (1-\pi)=\log \left(1+e^{\eta}\right) \\
h(x) & =1
\end{aligned}
$$

- The logistic function relates the natural parameter and the chance of heads

$$
\pi=\frac{1}{1+e^{-\eta}}
$$

PoISSON

- For an integer count variable with rate λ :

$$
\begin{aligned}
p(x \mid \lambda) & =\frac{\lambda^{x} e^{-\lambda}}{x!} \\
& =\frac{1}{x!} \exp \{x \log \lambda-\lambda\}
\end{aligned}
$$

- Exponential family with:

$$
\begin{aligned}
\eta & =\log \lambda \\
T(x) & =x \\
A(\eta) & =\lambda=e^{\eta} \\
h(x) & =\frac{1}{x!}
\end{aligned}
$$

- e.g. number of photons x that arrive at a pixel during a fixed interval given mean intensity λ
- Other count densities: binomial, exponential.

Multinomial

- For a set of integer counts on k trials

$$
p(\mathbf{x} \mid \pi)=\frac{k!}{x_{1}!x_{2}!\cdots x_{n}!} \pi_{1}^{x_{1}} \pi_{2}^{x_{2}} \cdots \pi_{n}^{x_{n}}=h(\mathbf{x}) \exp \left\{\sum_{i} x_{i} \log \pi_{i}\right\}
$$

- But the parameters are constrained: $\sum_{i} \pi_{i}=1$. So we define the last one $\pi_{n}=1-\sum_{i=1}^{n-1} \pi_{i}$.

$$
p(\mathbf{x} \mid \pi)=h(\mathbf{x}) \exp \left\{\sum_{i=1}^{n-1} \log \left(\frac{\pi_{i}}{\pi_{n}}\right) x_{i}+k \log \pi_{n}\right\}
$$

- Exponential family with:

$$
\begin{aligned}
\eta_{i} & =\log \pi_{i}-\log \pi_{n} \\
T\left(x_{i}\right) & =x_{i} \\
A(\eta) & =-k \log \pi_{n}=k \log \sum_{i} e^{\eta_{i}} \\
h(\mathbf{x}) & =k!/ x_{1}!x_{2}!\cdots x_{n}!
\end{aligned}
$$

- For a continuous univariate random variable:

$$
\begin{aligned}
p\left(x \mid \mu, \sigma^{2}\right) & =\frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right\} \\
& =\frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{\frac{\mu x}{\sigma^{2}}-\frac{x^{2}}{2 \sigma^{2}}-\frac{\mu^{2}}{2 \sigma^{2}}-\log \sigma\right\}
\end{aligned}
$$

- Exponential family with:

$$
\eta=\left[\mu / \sigma^{2} ;-1 / 2 \sigma^{2}\right]
$$

$T(x)=\left[x ; x^{2}\right]$
$A(\eta)=\log \sigma+\mu / 2 \sigma^{2}$
$h(x)=1 / \sqrt{2 \pi}$

- Note: a univariate Gaussian is a two-parameter distribution with a two-component vector of sufficient statistis.

Multivariate Gaussian Distribution

- For a continuous vector random variable:

$$
p(x \mid \mu, \Sigma)=|2 \pi \Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\mathbf{x}-\mu)^{\top} \Sigma^{-1}(\mathbf{x}-\mu)\right\}
$$

- Exponential family with:

$$
\begin{aligned}
\eta & =\left[\Sigma^{-1} \mu ;-1 / 2 \Sigma^{-1}\right] \\
T(x) & =\left[\mathbf{x} ; \mathbf{x x}^{\top}\right] \\
A(\eta) & =\log |\Sigma| / 2+\mu^{\top} \Sigma^{-1} \mu / 2 \\
h(x) & =(2 \pi)^{-n / 2}
\end{aligned}
$$

- Sufficient statistics: mean vector and correlation matrix.
- Other densities: Student-t, Laplacian.
- For non-negative values use exponential, Gamma, log-normal.

Joints, conditionals, marginals

- Things get much more interesting if we allow for multiple variables.
- Leads to several new concepts:
- The joint distribution $p(x, y)$ is just a distribution defined on vectors (here $2-\mathrm{d}$ as example)...
- For discrete RVs, we can imagine a table.
conditional table example on board
- Everything else stays essentially the same. So in particular we need

$$
\sum_{x, y} p(x, y)=1, \quad p(x, y) \geq 0
$$

Joints, conditionals, marginals

- All we need to know about a random vector can be derived from the joint distribution. For example:
- Marginal distributions:

$$
p(x)=\sum_{y} p(x, y) \quad \text { and } \quad p(y)=\sum_{x} p(x, y)
$$

- Intuition: Collapse dimensions.
- Conditional distributions are defined as:

$$
p(y \mid x)=\frac{p(x, y)}{p(x)} \quad \text { and } \quad p(x \mid y)=\frac{p(x, y)}{p(y)}
$$

- Intuition: New frame of reference.

```
example from the
same table on board
```


Joint Probability

- Key concept: two or more random variables may interact. Thus, the probability of one taking on a certain value depends on which value(s) the others are taking.
- We call this a joint ensemble and write

$$
p(x, y)=\operatorname{prob}(X=x \text { and } Y=y)
$$

Marginal Probabilities

- We can "sum out" part of a joint distribution to get the marginal distribution of a subset of variables:

$$
p(x)=\sum_{y} p(x, y)
$$

- This is like adding slices of the table together.

- Another equivalent definition: $p(x)=\sum_{y} p(x \mid y) p(y)$.

Conditional Probability

- If we know that some event has occurred, it changes our belief about the probability of other events.
- This is like taking a "slice" through the joint table.

$$
p(x \mid y)=p(x, y) / p(y)
$$

Important formula

- Remember this:

$$
p(y \mid x) p(x)=p(x, y)=p(x \mid y) p(y)
$$

- Allows us, among other things, to compute $p(x \mid y)$ from $p(y \mid x)$ ('Bayes rule').
- Can be generalized to more variables. ('Chain-rule of probability').

```
also p(x) can be defined as some known
distribution such as Gaussian
```


Bayes' Rule

- Manipulating the basic definition of conditional probability gives one of the most important formulas in probability theory:

$$
p(x \mid y)=\frac{p(y \mid x) p(x)}{p(y)}=\frac{p(y \mid x) p(x)}{\sum_{x^{\prime}} p\left(y \mid x^{\prime}\right) p\left(x^{\prime}\right)}
$$

- This gives us a way of "reversing" conditional probabilities.
- Thus, all joint probabilities can be factored by selecting an ordering for the random variables and using the "chain rule":

$$
p(x, y, z, \ldots)=p(x) p(y \mid x) p(z \mid x, y) p(\ldots \mid x, y, z)
$$

Independence and conditional independence

- Two RVs are called independent, if

$$
p(x, y)=p(x) p(y)
$$

```
what is p(x,y) when
```

x and y are not
independent? (prev.

- Captures the intuition of 'independence':
- Note, for example, that it implies $p(x)=p(x \mid y)$.
- Related concept: x, y are called conditionally independent, given z if

$$
p(x, y \mid z)=p(x \mid z) p(y \mid z)
$$

```
see figure in
next slide
```


Independence is useful

- Say, we have some variables $x_{1}, x_{2}, \ldots, x_{K}$.
- Even just defining their joint (let alone doing computations with it) is hopeless for large K. $0\left(C^{\wedge} K\right)$
- But what if all x_{i} independent? the other extreme
- Need to specify just K probabilities, since the joint is the product! $0(\mathrm{~K})$
- A more sophisticated version of this idea is to use conditional independence. Large and active area of 'Graphical Models'.

$$
\begin{aligned}
& \text { see figure and } \\
& \text { example }
\end{aligned}
$$

Graphical model

Conditional independence

If z has not been observed, x and y are in general not independent:

$$
\begin{aligned}
& x \not \Perp y \\
& p(x \mid y) \neq p(x) \\
& p(x, y) \neq p(x) p(y)
\end{aligned}
$$

Once z has been observed, x and y become conditionally independent:

$$
\begin{aligned}
& x \Perp y \mid z \\
& p(x \mid y, z)=p(x \mid z) \\
& p(x, y \mid z)=p(x \mid z) p(y \mid z)
\end{aligned}
$$

- Example 1: Suppose X and Y are the outcomes (Heads or Tails) of two separate tosses of the same coins. Clearly, X and Y are independent: $X \Perp Y$.
- Example 2: Now suppose there is a probability Z that the coin is biased towards Heads. In this case, X and Y are not independent: $X \not \Perp Y$.
- Because observing that Y is Heads causes us to increase our belief in X being Heads:

$$
p(X=\text { Heads } \mid Y=\text { Heads })>p(X=\text { Heads }) .
$$

- However, once we know such probability Z, then any evidence about Y cannot change our belief about X :

$$
p(X \mid Z)=p(X \mid Y, Z)
$$

- Thus, X and Y are conditionally independent given Z .

Maximum Likelihood

- Another useful thing about independence.
- Task: Given some data $\left(x_{1}, \ldots, x_{N}\right)$ build a model of the data-generating process. Useful for classification, novelty detection, 'image manipulation', and countless other things.
- Possible solution: Fit a parameterized model $p(x ; w)$ to the data.
- How? Maximize the probability of 'seeing' the data under your model!

Maximum Likelihood

- This is easy, if the examples are independent, ie. if

$$
p\left(x_{1}, \ldots, x_{N} ; w\right)=\prod_{i} p\left(x_{i} ; w\right)
$$

- Note that instead of maximizing probability, we might as well maximize log probability. (Since the 'log' is monotonous.)
- So we can maximize:

$$
L(w)=\log \prod_{i} p\left(x_{i} ; w\right)=\sum_{i} \log p\left(x_{i} ; w\right)
$$

- Dealing with the sum of things is easy. (We wouldn't have gotten this, if we hadn't assumed independence.)

Example: Bernoulli Trials

- We observe M iid coin flips: $\mathcal{D}=\mathrm{H}, \mathrm{H}, \mathrm{T}, \mathrm{H}, \ldots$
- Model: $p(H)=\theta \quad p(T)=(1-\theta)$
- Likelihood:

$$
\begin{aligned}
\ell(\theta ; \mathcal{D}) & =\log p(\mathcal{D} \mid \theta) \\
& =\log \prod_{m} \theta^{\mathbf{x}^{m}}(1-\theta)^{1-\mathbf{x}^{m}} \\
& =\log \theta \sum_{m} \mathbf{x}^{m}+\log (1-\theta) \sum_{m}\left(1-\mathbf{x}^{m}\right) \\
& =\log \theta N_{\mathrm{H}}+\log (1-\theta) N_{\mathrm{T}}
\end{aligned}
$$

- Take derivatives and set to zero:

$$
\begin{aligned}
\frac{\partial \ell}{\partial \theta} & =\frac{N_{\mathrm{H}}}{\theta}-\frac{N_{\mathrm{T}}}{1-\theta} \\
\Rightarrow \theta_{\mathrm{ML}}^{*} & =\frac{N_{\mathrm{H}}}{N_{\mathrm{H}}+N_{\mathrm{T}}}
\end{aligned}
$$

Example: Multinomial

- We observe M iid die rolls (K-sided): $\mathcal{D}=3,1, \mathrm{~K}, 2, \ldots$
- Model: $p(k)=\theta_{k} \quad \sum_{k} \theta_{k}=1$
- Likelihood (for binary indicators $\left[\mathbf{x}^{m}=k\right]$):

$$
\begin{aligned}
\ell(\theta ; \mathcal{D}) & =\log p(\mathcal{D} \mid \theta) \\
& =\log \prod_{m} \theta_{\mathbf{x}^{m}}=\log \prod_{m} \theta_{1}^{\left[\mathbf{x}^{m}=1\right]} \ldots \theta_{k}^{\left[\mathbf{x}^{m}=k\right]} \\
& =\sum_{k} \log \theta_{k} \sum_{m}\left[\mathbf{x}^{m}=k\right]=\sum_{k} N_{k} \log \theta_{k}
\end{aligned}
$$

- Take derivatives and set to zero (enforcing $\sum_{k} \theta_{k}=1$):

$$
\begin{aligned}
\frac{\partial \ell}{\partial \theta_{k}} & =\frac{N_{k}}{\theta_{k}}-M \\
\Rightarrow \theta_{k}^{*} & =\frac{N_{k}}{M}
\end{aligned}
$$

Gaussian example

- What is the ML-estimate of the mean of a Gaussian?
- We need to maximize:

$$
L(\mu)=\sum_{i} \log p\left(x_{i} ; \mu\right)=\sum_{i}\left(-\frac{1}{2 \sigma^{2}}\left(x_{i}-\mu\right)^{2}\right)+\text { const. }
$$

- The derivative is:

$$
\frac{\partial L(\mu)}{\partial \mu}=\frac{1}{\sigma^{2}} \sum_{i}\left(x_{i}-\mu\right)=\frac{1}{\sigma^{2}}\left(\sum_{i} x_{i}-N \mu\right)
$$

- We set to zero and get:

$$
\mu=\frac{1}{N} \sum_{i} x_{i}
$$

When data from K Gaussians - Gaussian Mixture Model Original Dataset 1

EM

$$
\begin{gather*}
p(\mathbf{x})=\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{k}, \Sigma_{k}\right) \tag{1}\\
\ln p(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi})=\sum_{n=1}^{N} \ln \left\{\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{k}, \Sigma_{k}\right)\right\} \tag{2}
\end{gather*}
$$

In the E-step, the posterior probability (or $\gamma\left(z_{k}\right)$ as the responsibility of z_{k} for \mathbf{x}) is estimated as:

$$
\begin{equation*}
\gamma\left(z_{k}\right)=p\left(z_{k} \mid \mathbf{x}\right)=\frac{\pi_{k} \mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{k}^{\text {old }}, \Sigma_{k}^{\text {old }}\right)}{\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{k}^{\text {old }}, \sum_{k}^{\text {old }}\right)} \tag{3}
\end{equation*}
$$

In the M－step，the parameters involved in（1）are re－estimated by

$$
\begin{align*}
& \boldsymbol{\mu}_{k}^{\text {new }}=\frac{1}{N_{k}} \sum_{n=1}^{N} \gamma\left(z_{k}\right) \mathbf{x}_{\mathbf{n}} \tag{4}\\
& \sum_{k}^{n e w}=\frac{1}{N_{k}} \sum_{n=1}^{N} \gamma\left(z_{k}\right)\left(\mathbf{x}-\boldsymbol{\mu}_{k}^{\text {new }}\right)\left(\mathbf{x}-\boldsymbol{\mu}_{k}^{\text {new }}\right)^{T} \tag{5}\\
& \pi_{k}^{\text {new }}=\frac{N_{k}}{N} \tag{6}
\end{align*}
$$

where

$$
\begin{equation*}
N_{k}=\sum_{n=1}^{N} \gamma\left(z_{k}\right) \tag{7}
\end{equation*}
$$

The log－likelihood is then updated by

$$
\begin{equation*}
\ln p(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi})=\sum_{n=1}^{N} \ln \left\{\sum_{k=1}^{K} \pi_{k}^{n e w} \mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{k}^{\text {new }}, \Sigma_{k}^{n e w}\right)\right\} . \tag{8}
\end{equation*}
$$

When data is not i.i.d. - Hidden Markov Model
hidden states:
hidden variables:
observed variables:

$p(\mathbf{X} \mid \mathbf{Z}, \phi)=\prod_{n=1}^{N} p\left(x_{n} \mid z_{n}, \phi\right)\left(\right.$ e.g., $\left.p\left(x_{n} \mid z_{n, k}, \phi\right)=\mathcal{N}\left(x_{i} \mid \mu_{k}, \sigma_{k}^{2}\right)\right)$

$$
\begin{aligned}
p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\theta}) & =p\left(x_{1}, x_{2}, \ldots, x_{N}, z_{1}, z_{2}, \ldots, z_{N} \mid \boldsymbol{\theta}\right) \\
& =p\left(z_{1} \mid \boldsymbol{\pi}\right)\left[\prod_{n=2}^{N} p\left(z_{n} \mid z_{n-1}, \mathbf{A}\right)\right] \prod_{m=1}^{N} p\left(x_{m} \mid z_{m}, \boldsymbol{\phi}\right)
\end{aligned}
$$

Dynamic programming to obtain hidden sequence such that $\max _{\mathbf{Z}}[\ln p(\mathbf{X}, \mathbf{Z} \mid \theta)]$

