
CSC321 Tutorial 5 part B:
Assignment 2:

neural networks for classifying handwritten digits
(part 1 & 2)

and Bayesian neural net (part 3)

Yue Li
Email: yueli@cs.toronto.edu

Wed 11-12 Feb 12
Fri 10-11 Feb 14

• In this assignment you will be using neural networks for
classifying handwritten digits.

• First copy and unzip the archive below into your directory.

http://www.cs.toronto.edu/~bonner/courses/2014s/

csc321/assignments/hw2_matlab.zip

• An easy way to do this is as follows:

$ wget http://www.cs.toronto.edu/~bonner/courses/

2014s/csc321/assignments/hw2_matlab.zip

$ unzip hw2 matlab.zip

$ cd hw2 matlab

$ matlab (or matlab -nojvm)

http://www.cs.toronto.edu/~bonner/courses/2014s/csc321/assignments/hw2_matlab.zip
http://www.cs.toronto.edu/~bonner/courses/2014s/csc321/assignments/hw2_matlab.zip
http://www.cs.toronto.edu/~bonner/courses/2014s/csc321/assignments/hw2_matlab.zip
http://www.cs.toronto.edu/~bonner/courses/2014s/csc321/assignments/hw2_matlab.zip

>> load assign2data2012.mat;

• This will load the training and test data into your workspace.

• The training data consists of 150 images of handwritten digits
(15 of each class). Each image is of size 16 × 16 pixels and
each pixel is represented by a real number between 0 (black)
and 1 (white).

• The test data contains 3000 images (300 of each class).

In order to get a feel for what we are dealing with you can see the
training data by typing:

>> showimages(data);

• The network we use consists of a single hidden layer with
sigmoidal activation units and a 10-way softmax output unit.

• The network tries to minimize cross-entropy error (the error
on a case is the negative log probability that the network gives
to the correct answer).

• It uses momentum to speed the learning and weightcost to
keep the weights small.

…
x1 x2 x256

……
y1 y2 y100

xi

yj

fully connected
between input and
hidden units

16 X 16 = 256
input units

256 X 100 input-to-
hidden wij

wij inhid

data

Variable in
classbp2.m

Neural Network
information

100 hidden units

h1 h2 h100 hj
……

wjk

100 hidden
activities

hidsum

hidacts

……
z1 z10

100 X 10 hidden-to-
output wjk

hidout

10 output units outsum

a1
…… a10

softmax output output

Neural Network
Schematics

fully connected
between hidden and
output units

zk

ak

Forward Pass

Math Matlab

yj =
∑256

i=1 wijxi + bj hidsum = data*inhid +

repmat(hidbiases, numcases, 1);

hj = 1

1+e
−yj

hidacts = 1./(1+exp(-hidsum));

zk =
∑60

j=1 wjkhj + bk outsum = hidacts*hidout +

repmat(outbiases, numcases, 1);

ak = ezk∑10
k=1 e

zk
unnormalisedoutputs=exp(outsum);

rowsums=sum(unnormalisedoutputs,2);

outputs=unnormalisedoutputs

./repmat(rowsums,1,numout);

Cross-entropy and misclassification error

Math Matlab

E = −
∑N∗

n=1

∑10
k=1 tk log ak E = - sum(sum(targets .*

log(tiny+outputs)));

t̂ = arg maxk ak testguesses =

(toutputs - repmat(

(max(toutputs’))’, 1,

numout)) >= 0;

Emisclass =
∑N∗

n=1(tn − t̂n) terrors =

sum(sum(testtargets))

- sum(sum(testtargets .*

testguesses));

∗N = 150 for training cases; N = 3000 for testing cases.

Backward Pass

Math Matlab

∂E
∂hj

=
∑10

k=1
∂E
∂ak

∂ak
∂zk

∂zk
∂hj

=

(ak − tk)wjk

dEbydhidacts =

dEbydoutsum*(hidout’);

∂E
∂yj

= ∂E
∂hj

∂hj
∂yj

= ∂E
∂hj

hj(1− hj) dEbydhidsum =

dEbydhidacts .*

hidacts.*(1-hidacts);

∂E
∂bk

=
∑N

n=1
∂E
∂ak

dEbydoutbiases =

sum(dEbydoutsum);

Backward Pass cont’d

Math Matlab

∂E
∂wjk

= ∂E
∂ak

∂ak
∂zk

∂zk
∂wij

= (ak − tk)hj dEbydhidout =

hidacts’*dEbydoutsum;

∂E
∂bj

=
∑N∗

n=1
∂E
∂yk

dEbydhidbiases =

sum(dEbydhidsum);

∂E
∂wij

= ∂E
∂yj

∂yj
∂wij

= ∂E
∂yj

xi dEbydinhid = data’ *

dEbydhidsum;

Weight Update (related to part 1&2)

Math Matlab

∆w
(t)
ij = η∆w

(t−1)
ij − ε(∂E

∂wij
+

λw
(t−1)
ij)

inhidinc =

momentum*inhidinc -

epsilon*(dEbydinhid +

weightcost*inhid);

∆w
(t)
jk = η∆w

(t−1)
jk − ε(∂E

∂wjk
+

λw
(t−1)
jk)

hidoutinc =

momentum*hidoutinc -

epsilon*(dEbydhidout +

weightcost*hidout);

Weight Update cont’d

Math Matlab

∆b
(t)
j = η∆b

(t−1)
j − ε∂Ebj hidbiasesinc =

momentum*hidbiasesinc -

epsilon*dEbydhidbiases;

∆b
(t)
k = η∆b

(t−1)
k − ε∂Ebk outbiasesinc =

momentum*outbiasesinc -

epsilon*dEbydoutbiases;

Weight Update cont’d

Math Matlab

w
(t)
ij = w

(t−1)
ij + ∆w

(t)
ij inhid = inhid + inhidinc;

w
(t)
jk = w

(t−1)
jk + ∆w

(t)
jk hidout = hidout + hidoutinc;

b
(t)
j = b

(t−1)
j + ∆b

(t)
j hidbiases = hidbiases +

hidbiasesinc;

b
(t)
k = b

(t−1)
k + ∆b

(t)
k outbiases = outbiases +

outbiasesinc;

The main matlab file “classbp2.m” expects you to set several
global variables that control these behaviours by hand (see the
code file). This makes it easy to set up experiments in which you
try many different settings:

>> restart = 1;

>> maxepoch = 2000;

>> numhid = 100;

>> epsilon = .01;

>> finalmomentum = 0.8;

>> weightcost = 0;

>> classbp2;

• classbp2 trains the network.

• It prints out the cross-entropy (E) on the training set and on
the test set.

• It also prints out the number of errors (it chooses the
maximum output as the right answer).

• When it has finished it plots graphs of the number of test
errors and of the cross-entropy cost on the test set.

• You can set the variable errorprintfreq in classbp2 to
make it measure the error as frequently as you want.

• You must always reset the restart variable to 1 whenever you
want to redo the training from random initial weights. If you
don’t the network will start learning from where it left off.

• If you call showweights(inhid) you can see the
input-to-hidden weights as gray-level images.

PART 1 (3 points)
• Using numhid=100 and maxepoch=2000 and weightcost=0,

play around with epsilon and finalmomentum to find
settings that make tE low after 2000 epochs.

• Briefly report what you discover. Include the values of
epsilon and finalmomentum that work best and say what
values they produce for the test errors and the cross-entropy
error.

• If you were instead asked to find the epsilon that produced
the best minimum value (not the best final value) for test set
cross entropy, would you expect to find a larger or smaller
epsilon (assuming the minimum value occurs before the last
epoch)? In a sentence, justify your answer.

• Suggestion: experiment with epsilon and finalmomentum

within a reasonable range by fixing one and experimenting with
the other variable: try a large range first (e.g. ε = 10x , where
x ∈ [−8,−1]) in order to find a smaller range which achieves
the best tE. Then refine the search within that smaller range
to find the best epsilon and finalmomentum.

−8 −7 −6 −5 −4 −3 −2 −1
0

2000

4000

6000

8000

10000

c
ro

s
s
−

e
n

tr
o

y
 (

tE
)

Test Error vs Learning Rate

ε (log10)

−8 −7 −6 −5 −4 −3 −2 −1
500

1000

1500

2000

2500

3000

m
is

c
la

s
s
fi
c
a

ti
o

n
 (

te
rr

o
rs

)

tE

terrors

finalmomentum fixed to 0.8; (DEMO ONLY; try do better than it)

−8 −7 −6 −5 −4 −3 −2 −1
0

5000

10000

F
in

a
l
c
ro

s
s
−

e
n

tr
o

y

Final and Minimum Cross−entroy vs Learning Rate

ε (log10)

−8 −7 −6 −5 −4 −3 −2 −1
0

5000

10000

M
in

im
u

m
 c

ro
s
s
−

e
n

tr
o

y

final tE

min tE

finalmomentum fixed to 0.8; (DEMO ONLY; try do better than it)

−8 −7 −6 −5 −4 −3 −2 −1
500

1000

1500

2000

2500

3000

F
in

a
l
M

is
c
la

s
s
if
ic

a
ti
o

n

Final and Minimum Misclassification vs Learning Rate

ε (log10)

−8 −7 −6 −5 −4 −3 −2 −1
500

1000

1500

2000

2500

3000

M
in

im
u

m
 M

is
c
la

s
s
if
ic

a
ti
o

n

final terrors

min terrors

finalmomentum fixed to 0.8; (DEMO ONLY; try do better than it)

PART 2 (2 points)
• Using numhid=100 and maxepoch=2000 and
finalmomentum=0.7 set epsilon to a sensible value based on
your experiments in part 1 and then try various values for
weightcost to see how it affects the final value of tE.

• You may find the file experiment.m useful, but you will have
to edit it.

• Briefly report what you discovered and include a plot of the
final value of tE against the weightcost.

Your report on Parts 1 and 2 combined should be NOT MORE
THAN ONE PAGE long, but graphs and printouts of runs can be
attached.

0 0.1 0.2 0.3 0.4 0.5
1820

1840

1860

1880

1900

1920

1940

1960

1980

Final Cross−Entropy vs Weightcost

weightcost

tE

epsilon fixed to 10−4; finalmomentum fixed to 0.8. (DEMO
ONLY - try do better)

PART 3: (5 points)

• In this part we will try to
find a Bayesian solution to
a small toy problem. The
net is on the right.

• Each data point will consist
of 2 real valued numbers x1
and x2.

• h1 and h2 represent
sigmoidal units.

• We are interested in learning
W = (w1,w2,w3,w4).

target

x1

h1

w1

h2

w3

w4

x2

w2

PART 3: (5 points)

t̂ = h2

h2 =
1

1 + exp(−z2)

z2 = w3x1 + w4h1

h1 =
1

1 + exp(−z1)

z1 = w1x1 + w2x2

target

x1

h1

w1

h2

w3

w4

x2

w2

• Recall, that in a Bayesian setting, we have a prior probability
distribution over parameters W. Each setting of parameters
to values constitutes a hypothesis.

• We have some prior belief about what hypotheses are more
likely to be true. One such belief could be that the hypotheses
which have small values of w’s are more likely (also called a
Gaussian Prior; bottom left graph).

• Another belief could be that all hypotheses are equally likely
(a Uniform Prior; bottom right graph). In this assignment we
will be working with a uniform prior over W.

−1 −0.5 0 0.5 1
0.2

0.25

0.3

0.35

0.4

w
i

−1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

w
i

We then observe the data and modify our belief by weighting each
hypothesis by its likelihood. In other words, the modified belief
about hypothesis H is the prior about H multiplied by the
likelihood that the data could be explained by H:

p(W|D) =
p(W) · p(D|W)

p(D)
(Bayes Rule)

where

• the weight vector is W = (w1,w2,w3,w4);

• the input data matrix D contains N training cases of (x1, x2)
(i.e. an N × 2 matrix);

• p(W) is the prior (belief) for the weight W;

• p(D|W) = exp(−cost) is the likelihood under the weights W,
where cost = −

∑
i=1[ti log t̂i + (1− ti) log(1− t̂i)]

• p(D) =
∑

W p(W)p(D|W) probability of the data, considered
as a normalization factor;

• p(W|D) is the posterior probability of the weights.

• We then use the weighted average of the hypotheses to make
decisions. The model so obtained is called a Bayesian
estimate.

• Note that another way of making decisions could be to choose
the hypothesis with the highest modified belief (instead of
taking a weighted average of all of them). This is called the
Maximum a-posteriori (MAP) estimate.

• Still another way could be to choose the hypothesis with the
largest likelihood (and ignore our prior beliefs). This is called
the Maximum Likelihood (ML) estimate.

• In this assignment we will be comparing Bayesian and
ML/MAP estimators. Since we are using a uniform prior, ML
and MAP estimates are the same.

Prediction on test data Xj :
Bayesian estimate:

t̂
(Bayes)
j = p(tj |Xj) =

∑
W

p(W|D)p(t|Xj ,W)

MAP:

WMAP = arg max
W

p(W|D)

= arg max
W

p(W)p(D|W)

p(D)

= arg max
W

p(W)p(D|W)

t̂
(MAP)
j = p(tj |Xj) = p(tj |Xj ,WMAP)

ML:

WML = arg max
W

p(D|W)

t̂
(ML)
j = p(tj |Xj) = p(tj |Xj ,WML)

For p(W) ∼ Uniform(W)

WMAP = arg max
W

p(W)p(D|W)

= arg max
W

p(D|W)

= WML

Note: the above is true for part 3 despite changing the true W
distribution (i.e., teachernet) in the second part of part 3.

Evaluation (Contrastive Divergence):

ErrorSum =−
N′∑
i=1

[
tn log(t̂i) + (1− ti) log(1− t̂i)

]
+
∑
i

[t log(ti) + (1− ti) log(1− ti)]

ErrorPerBit =
ErrorSum

N ′ log(2)

where N ′ is the number of test cases (i.e., testnumcases).

Note: Use ErrorPerBit to evaluate Bayesian and MAP estimate
rather than ErrorSum.

• We will generate our training data randomly. Each dimension
of each data point will be a sample drawn from a normal
distribution with mean 0 and standard deviation
(’inputstandev’, currently set to ’4’):

data=inputstandev*randn(numcases,2);

• The weights w will be set to uniform random values in [-1, 1]
and we assert that this is the ’true’ net (also called the
teacher net):

prior=ones(9^4,1)/(9^4);

• The targets are binary valued and will be sampled from a
Bernoulli distribution defined by the predictions made by the
teacher net (i.e., given input x, the target will be 1 with
probability p, where p is the output of the teacher network on
input x):

targets = .001 + .998*(rand(1,numcases) <
applyweights(wteacher, data));

>> makeallvecs;
• This makes a matrix in which each row is a possible weight

vector. That is, we have all possible hypotheses with us in the
matrix allvecs. Each wi can take on 9 possible values (-1 to
1 in intervals of 0.25). The prior is uniform over these 9ˆ4
possible weight vectors.

>> maketeacher;
• This makes a teacher network by sampling the four weights

from a uniform distribution from [-1, 1]:
• wteacher = 2*rand(1,4) - 1;
• Suggestion: try different prior distributions such as a standard

normal N (0, 1) with the Matlab built-in function randn

>> numcases=10;

• numcases is the number of training cases that the model will
use. The number of testcases is fixed at 100.

• Suggestion: Try larger numcases for the number of training
cases and compare the results from Bayesian and MAP/ML
estimations. Try for the same number of training cases
multiple times and take the average to obtain more reliable
error estimate.

>> bayeswithbest;

• The code will print out the Bayesian estimate’s error on the
training and test sets as well as the error of the MAP/ML
estimate

• Figure 1 will show you how well the outputs of the teacher on
the training data can be predicted by bayes-averaging the
outputs of all possible nets.

• “Bayes-averaging” means weighting the prediction of each net
by the posterior probability of that net given the training data
and the prior (which is flat in this example).

• Each column corresponds to a data point. The first row gives
the output of the teacher net. The second row gives the
output of the Bayesian estimate. The third row gives the
output of the MAP/ML estimate. The size of the square is
proportional to the output value.

• Figure 2 will show the same on the test data.

• Figure 3 shows a histogram of the posterior probability
distribution across all 9ˆ4 weight vectors. Notice that the
posterior can be very spread out so that even the best net
gets a very small posterior probability.

Bayesian estimate (bayespredictions):

p(t|D) =
∑
∀W

p(W|D)p(t|D,W)

0 0.2 0.4 0.6 0.8 1

x 10
−3

0

500

1000

1500

2000

2500

3000

3500

histogram of posterior probabilities p(W|D)
 even the biggest values are small

MAP (bestpredictions):

WMAP = arg max
W

p(W|D)

p(t|D) ≡ p(t|D,WMAP)

0 0.2 0.4 0.6 0.8 1

x 10
−3

0

500

1000

1500

2000

2500

3000

3500

histogram of posterior probabilities p(W|D)
 even the biggest values are small

Bayesian vs MAP using small number training cases:

0 5 10 15 20

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5
Bayesian and MAP Test Error Per Bit vs Training Cases Number

numcases

e
rr

o
r

in
 b

it
s
 p

e
r

c
a

s
e

Bayesian

MAP

Bayesian vs MAP using large number training cases:

0 200 400 600 800 1000
0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78
Bayesian and MAP Test Error Per Bit vs Training Cases Number

numcases

e
rr

o
r

in
 b

it
s
 p

e
r

c
a

s
e

Bayesian

MAP

• Your report should be AT MOST HALF A PAGE and should
describe the effects of changing the number of training cases.

Suggestion: Try larger numcases for the number of training
cases and compare the results from Bayesian and MAP/ML
estimations. Try for the same number of training cases
multiple times and take the average to obtain more reliable
error estimate.

• You should also try modifying maketeacher to set different
kinds of teacher nets and see how the results depend on the
particular teacher net. (Changing maketeacher amounts to
changing the distribution that the teacher weights are chosen
from, e.g., by changing the parameters of the uniform
distribution or by using a different kind of distribution
altogether.)

Suggestion: What performance would you expect when using
a “wrong” prior; e.g., when the true weight is sampled from a
standard normal distribution while we are using uniform prior?
How do Bayesian and MAP/ML compare now?

• A2 Due on Feb 25 at 3pm

