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Assignment 3



• Setting:
• data: {x1, . . . , xN}
• goal: partition the data into K clusters
• objective function in K -means:

J =
N∑

n=1

K∑
k=1

rnk ||xn − µk ||2 (1)

• Algorithm:
1. initialize K cluster centers µ1, . . . ,µK

2. assign each point xn to the closest center k:

rnk =

1 if k = arg min
j
||xn − µj ||2

0 if otherwise

3. update cluster centers:

µk =

∑
n rnkxk∑
n rnk

4. repeat 2 & 3 until convergence (i.e. little change from (1))

Pattern recognition and machine learning (Bishop, 2006)
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Mixture of Gaussians (MoG)

• A soft K -means that incorporates uncertainty in the cluster
assignment to each data point (e.g., points on the boundary
in slide 1):

• rnk ∈ [0, 1] rather than rnk ∈ {0, 1}

• A model-based method that assumes data points are
independently sampled from K Gaussians N (µk ,Σk)

• Two important questions to address in MoG:
• What is the objective function of MoG?
• How to fit MoG to optimize such objective function?

• To further motivate MoG, let’s see the following example from
Bishop (2006) that model the same data from the previous
K -means example.
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A graphical model view of MoG

xn

zn

N

µ Σ

π

Pattern recognition and machine learning, Chapter 9 p433, (Bishop, 2006)



• Density function of one data point xn:

p(xn) =
K∑

k=1

p(zk)p(xn|θk)

=
K∑

k=1

πkN (xn|µk ,Σk)

where zk is the latent variable, πk is the probability of
choosing Gaussian k to represent xn (i.e., probability of zk
equal to 1). πk is called the mixing proportion.

• Objective function - log likelihood of all data points:

ln p(X) = ln
N∏

n=1

p(xn)

= ln
N∏

n=1

K∑
k=1

πkN (xn|µk ,Σk)

=
N∑

n=1

ln
K∑

k=1

πkN (xn|µk ,Σk)
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• Objective function:

ln p(X) =
N∑

n=1

ln
K∑

k=1

πkN (xn|µk ,Σk)

• Maximum likelihood (ML) solutions for µk , Σk , πk :

∂ ln p(X)

∂µk

= 0 =⇒ µk =
1

Nk

N∑
n=1

γ(zk)xn

∂ ln p(X)

∂Σk
= 0 =⇒ Σk =

1

Nk

N∑
n=1

γ(zk)(xn − µk)(xn − µk)T

∂ ln p(X)

∂πk
= 0 =⇒ πk =

Nk

N

where Nk =
∑N

n=1 γ(zk) and γ(zk) = p(zk = 1|xn)



In more details, γ(zk) is the posterior probability (aka
responsibility of zk to xn):

γ(zk) = p(zk = 1|xn)

=
p(zk = 1)p(xn|zk = 1)

p(xn)
(Bayes’ Rule)

=
p(zk = 1)p(xn|zk = 1)∑K
j=1 p(zj = 1)p(xn|zj = 1)

=
πkN (xn|µk ,Σk)∑K
j=1 πjN (xn|µj ,Σj)



p(zk = 1|xn)

xn

zn

N

µ Σ

π

Pattern recognition and machine learning, Chapter 9 p433, (Bishop, 2006)



• Back to the ML solutions for µk , Σk , πk :

∂ ln p(X)

∂µk

= 0 =⇒ µk =
1

Nk

N∑
n=1

γ(zk)xn

∂ ln p(X)

∂Σk
= 0 =⇒ Σk =

1

Nk

N∑
n=1

γ(zk)(xn − µk)(xn − µk)T

∂ ln p(X)

∂πk
= 0 =⇒ πk =

Nk

N

Nk =
∑N

n=1 γ(zk); γ(zk) = p(zk = 1|xn) = πkN (xn|µk ,Σk )∑K
j=1 πjN (xn|µj ,Σj )

• Because µk , Σk , πk , γ(zk) all depend on each other, there is
no analytical solution.

• We resort to a powerful optimization algorithm - Expectation
Maximization (EM).



EM algorithm for MoG :

1. Initialize µk , Σk , πk .

2. E-step. Evaluate the responsibilities γ(zk) using µk , Σk , πk :

γ(zk) =
πkN (xn|µk ,Σk)∑K
j=1 πjN (xn|µj ,Σj)

(2)

3. M-step. Re-estimate µk , Σk , πk based on the ML solutions:

µnew
k =

1

Nk

N∑
n=1

γ(zk)xn (3)

Σnew
k =

1

Nk

N∑
n=1

γ(zk)(x− µnew
k )(x− µnew

k )T (4)

πnew
k =

Nk

N
(5)

where Nk =
∑N

n=1 γ(zk).

4. Evaluate the log likelihood:

ln p(X) =
N∑

n=1

ln
K∑

k=1

πkN (xn|µk ,Σk) (6)
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Assignment 3

• This assignment is about fitting mixtures of axis-aligned
Gaussians to two-dimensional data. First copy and unzip the
archive below into your directory.

• http://www.cs.toronto.edu/~bonner/courses/2014s/

csc321/assignments/hw3_matlab.zip

http://www.cs.toronto.edu/~bonner/courses/2014s/csc321/assignments/hw3_matlab.zip
http://www.cs.toronto.edu/~bonner/courses/2014s/csc321/assignments/hw3_matlab.zip


Assignment 3 PART 1 (5 points)

• Run moginit to create training and validation datasets from
4 random Gaussians.

• Then use the function mogem to fit various numbers of
Gaussians to the training data.

• Using performance on the validation data, determine the
optimal number of Gaussians to fit to the training data.

• Present your results as a graph that plots both the validation
density and the training density as a function of the number
of Gaussians.

• Include a brief statement of what you think the graph shows.

• Also include a brief statement about the effects of changing
the initial standard deviation used in mogem.

• Please do not change the random seeds in mogem (this will
produce different data).



DEMO: Fitting 4 Gaussians
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Training/validation generated from 4 Gaussians each with 30 cases
(i.e., 120 cases in total)



Assignment 3 PART 2 (2 points)

• Change moginit.m to use only 12 cases per Gaussian, and 12
axis-aligned gaussians to generate the data and repeat the
experiment above (without changing the random seeds).

• Present your results as a graph and include a brief statement
of what you think the graph shows and why it differs from the
graph in PART 1.
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Assignment 3 PART 3 (3 points) - some programming

• Change mogem.m so that in addition to fitting the means and
axis-aligned variances, it also fits the mixing proportions
(Hint: Eq 5).

• Currently, mogem does not mention mixing proportions so it is
currently assuming that they are all equal (which makes them
all cancel out when computing the posterior probability of
each Gaussian for each datapoint.).

• So the first thing to do is to include mixing proportions when
computing the posterior, but keep them fixed (and not all
equal).



Assignment 3 PART 3 (3 points) - some programming

• Associate the code mogem.m with the EM
algorithm in slide 27 or Lecture 14 (p9 - 12).

• Add/modify the code at the three commented
places in mogem.m.



Improvement after adding mixing proportion

−50

0

50

100

Train−Mixprop Train+Mixprop Test−Mixprop Test+Mixprop

lo
g
p



Initial and final mixing proportions
Once you have debugged this, try learning the mixing proportions. Make
mogem print out the final mixing proportions and hand in several different
examples of the final mixing proportions that you get when fitting 4
Gaussians to the data, when you start with mixing proportions [0.25,
0.25, 0.25,0.25], [0.3, 0.2, 0.2, 0.3], [0.1, 0.2, 0.3, 0.4] and [0.9, 0.025,
0.025, 0.05]. Do not change the data. NB: You may got different results
if your nIter, sdinit are different from the those used below. Please
report nIter, sdinit when reporting the final mixprop in your report.
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Other initial parameters.: k=4; nIter = 20; sdinit = 0.15;

Use barh in Matlab to generate this plot.



ASSIGNMENT 3: due on March 18 at 3pm
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