
CSC321 Tutorial 9:
Review of Boltzmann machines and simulated

annealing

(Slides based on Lecture 16-18 and selected readings)

Yue Li
Email: yueli@cs.toronto.edu

Wed 11-12 March 19
Fri 10-11 March 21

Outline

Boltzmann Machines

Simulated Annealing

Restricted Boltzmann Machines

Deep learning using stacked RBM

General Boltzmann Machines [1]

v1 v2

h1 h2

• Network is symmetrically connected

• Allow connection between visible and
hidden units

• Each binary unit makes stochastic
decision to be either on or off

• The configuration of the network dictates
its “energy”

• At the equilibrium state of the network,
the likelihood is defined as the
exponentiated negative energy known as
the Boltzmann distribution

Boltzmann Distribution

v1 v2

h1 h2

E (v,h) =
∑
i

sibi +
∑
i<j

si sjwij (1)

P(v) =

∑
h exp(−E (v,h))∑
v,h exp(−E (v,h))

(2)

where v and h are visible and hidden units,
wij ’s are connection weights b/w visible-visible,
hidden-hidden, and visible-hidden units,
E (v,h) is the energy function

Two problems:

1. Given wij , how to achieve thermal equilibrium of P(v,h) over
all possible network config. including visible & hidden units

2. Given v, learn wij to maximize P(v)

Thermal equilibrium

A

B

C

A

B

C

Transition probabilities*

at high temperature T:

A
A B C

B
0.01 0.02

C
0.1 0.02 0.1
0.1 0.2 0.01

0.1

Transition probabilities*

at low temperature T

A
A B C

B
1e-2 1e-4

C
1e-9 0.3 0
1e-8 1e-3 0.01

1e-3

*unnormalized probabilities (illustration only)

Thermal equilibrium is a difficult concept (Lec 16):

• It does not mean that the system has settled down into the
lowest energy configuration.

• The thing that settles down is the probability distribution over
configurations.

Simulated annealing [2]

Scale Boltzmann factor by T (“temperature”):

P(s) =
exp(−E (s)/T)∑
s exp(−E (s)/T)

∝ exp(−E (s)/T) (3)

where s = {v,h}.
At state t + 1, a proposed state s∗ is compared with current state
st :

P(s∗)

P(st)
= exp

(
−E (s∗)− E (st)

T

)
= exp

(
−∆E

T

)
(4)

st+1 ←

{
s∗, if ∆E < 0 or exp(−∆E/T) > rand(0,1)

st otherwise
(5)

NB: T controls the stochastic of the transition:
when ∆E > 0, T ↑⇒ exp(−∆E/T) ↑; T ↓⇒ exp(−∆E/T) ↓

A nice demo of simulated annealing from Wikipedia:

http://www.cs.utoronto.ca/~yueli/CSC321_UTM_2014_

files/Hill_Climbing_with_Simulated_Annealing.gif

Note: simulated annealing is not used in the Restricted Boltzmann
Machine algorithm discussed below. Instead, Gibbs sampling is
used. Nonetheless, it is still a nice concept and has been used in
many many other applications (the paper by Kirkpatrick et al.
(1983) [2] has been has been cited for over 30,000 times based on
Google Scholar!)

http://www.cs.utoronto.ca/~yueli/CSC321_UTM_2014_files/Hill_Climbing_with_Simulated_Annealing.gif
http://www.cs.utoronto.ca/~yueli/CSC321_UTM_2014_files/Hill_Climbing_with_Simulated_Annealing.gif

Learning weights from Boltzmann Machines is difficult

P(v) =
N∏

n=1

∑
h exp(−E (v,h))∑
v,h exp(−E (v,h))

=
∏
n

∑
h exp(−

∑
i sibi −

∑
i<j si sjwij)∑

v,h exp(−
∑

i sibi −
∑

i<j si sjwij)

logP(v) =
∑
n

(
log
∑
h

exp(−
∑
i

sibi −
∑
i<j

si sjwij)

− log
∑
v,h

exp(−
∑
i

sibi −
∑
i<j

si sjwij)
)

∂ logP(v,h)

∂wij
=
∑
n

(∑
si ,sj

si sjP(h|v)−
∑
si ,sj

si sjP(v,h)
)

=< si sj >data − < si sj >model

where < x > is the expected value of x . si , sj ∈ {v,h}. < si sj >model is

difficult or takes long time to compute.

Restricted Boltzmann Machine (RBM) [3]

• A simple unsupervised learning module;

• Only one layer of hidden units and one layer of visible units;

• No connection between hidden units nor between visible units
(i.e. a special case of Boltzmann Machine);

• Edges are still undirected or bi-directional

e.g., an RBM with 2 visible and 3 hidden units:

inputv2

h3h2h1

v1

hidden

Objective function of RBM - maximum likelihood:

E (v,h|θ) =
∑
ij

wijvihj +
∑
i

bivi +
∑
j

bjhj

p(v|θ) =
N∏

n=1

∑
h

p(v,h|θ) =
N∏

n=1

∑
h exp(−E (v,h|θ))∑
v,h exp(−E (v,h|θ))

log p(v|θ) =
N∑

n=1

log
∑
h

exp(−E (v,h|θ))− log
∑
v,h

exp(−E (v,h|θ))


∂ log p(v|θ)

∂wij
=

N∑
n=1

vi∑
h

hjp(h|v)−
∑
v,h

vihjp(v,h)


= Edata[vihj]− Emodel[v̂i ĥj] ≡< vihj >data − < v̂i ĥj >model

But < v̂i ĥj >model is still too large to estimate, we apply Markov
Chain Monte Carlo (MCMC) (i.e., Gibbs sampling) to estimate it.

<vihj>
0 <vihj>

1 <vihj>
∞

i

j

i

j

i

j

i

j

t = 0 t = 1 t = 2 t = infinity

<vihj>
0 <vihj>

1

i

j

i

j

t = 0 t = 1
reconstruction data

a fantasy

shortcut

∂log p(v0)

∂wij
=< h0j (v0

i − v1
i) > + < v1

i (h0j − h1j) > + < h1j (v1
i − v2

i) > + . . .

=< v0
i h

0
j > − < v∞

i h∞j >≈< v0
i h

0
j > − < v1

i h
1
j >

How Gibbs sampling works

<vihj>
0 <vihj>

1

i

j

i

j

t = 0 t = 1
reconstruction data

1. Start with a training vector
on the visible units

2. Update all the hidden units
in parallel

3. Update all the visible units
in parallel to get a
“reconstruction”

4. Update the hidden units
again

∆wij = ε(< v0i h
0
j > − < v1i h

1
j >) (6)

Approximate maximum likelihood learning

∂ log p(v)

∂wij
≈ 1

N

N∑
n=1

[
v
(n)
i h

(n)
j − v̂

(n)
i ĥ

(n)
j

]
(7)

where

• v
(n)
i is the value of i th visible (input) unit for nth training case;

• h
(n)
j is the value of j th hidden unit;

• v̂
(n)
i is the sampled value for the i th visible unit or the

negative data generated based on h
(n)
j and wij ;

• ĥ
(n)
i is the sampled value for the j th hidden unit or the

negative hidden activities generated based on v̂
(n)
i and wij ;

Still how exactly the negative data and negative hidden
activities are generated?

wake-sleep algorithm (Lec18 p5)

1. Positive (“wake”) phase (clamp the visible units with data):

• Use input data to generate hidden activities:

hj =
1

1 + exp(−
∑

i viwij − bj)

Sample hidden state from Bernoulli distribution:

hj ←

{
1, if hj > rand(0,1)

0, otherwise

2. Negative (“sleep”) phase (unclamp the visible units from data):

• Use hj to generate negative data:

v̂i =
1

1 + exp(−
∑

j wijhj − bi)

• Use negative data v̂i to generate negative hidden activities:

ĥj =
1

1 + exp(−
∑

i v̂iwij − bj)

RBM learning algorithm (con’td) - Learning

∆w
(t)
ij = η∆w

(t−1)
ij + εw (

∂ log p(v|θ)

∂wij
− λw (t−1)

ij)

∆b
(t)
i = η∆b

(t−1)
i + εvb

∂ log p(v|θ)

∂bi

∆b
(t)
j = η∆b

(t−1)
j + εhb

∂ log p(v|θ)

∂bj

where

∂ log p(v|θ)

∂wij
≈ 1

N

N∑
n=1

[
v
(n)
i h

(n)
j − v̂

(n)
i ĥ

(n)
j

]
∂ log p(v|θ)

∂bi
≈ 1

N

N∑
n=1

[
v
(n)
i − v̂

(n)
i

]
∂ log p(v|θ)

∂bj
≈ 1

N

N∑
n=1

[
h
(n)
j − ĥ

(n)
j

]

Deep learning using stacked RBM on images [3]

2000 top-level units

500 units

500 units

28 x 28

pixel

image

10 label units

This could be the

top level of

another sensory

pathway

• A greedy learning algorithm

• Bottom layer encode the
28× 28 handwritten image

• The upper adjacent layer of
500 hidden units are used
for distributed
representation of the images

• The next 500-units layer and
the top layer of 2000 units
called “associative memory”
layers, which have
undirected connections
between them

• The very top layer encodes
the class labels with softmax

• The network
trained on 60,000
training cases
achieved 1.25%
test error on
classifying 10,000
MNIST testing
cases

• On the right are
the incorrectly
classified images,
where the
predictions are on
the top left corner
(Figure 6, Hinton
et al., 2006)

Let model generate 28× 28 images for specific class label

Each row shows 10 samples from the generative model with a
particular label clamped on. The top-level associative memory is
run for 1000 iterations of alternating Gibbs sampling (Figure 8,
Hinton et al., 2006).

Look into the mind of the network

Each row shows 10 samples from the generative model with a particular label clamped

on. . . . Subsequent columns are produced by 20 iterations of alternating Gibbs

sampling in the associative memory (Figure 9, Hinton et al., 2006).

Deep learning using stacked RBM on handwritten images
(Hinton et al., 2006)

A real-time demo from Prof. Hinton’s webpage:
http://www.cs.toronto.edu/~hinton/digits.html

http://www.cs.toronto.edu/~hinton/digits.html

Further References

David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski.
A learning algorithm for boltzmann machines.
Cognitive science, 9(1):147–169, 1985.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi.
Optimization by simulated annealing.
Science, 220(4598):671–680, 1983.

G Hinton and S Osindero.
A fast learning algorithm for deep belief nets.
Neural computation, 2006.

	Boltzmann Machines
	Simulated Annealing
	Restricted Boltzmann Machines
	Deep learning using stacked RBM

