
BCB410 – Course Notes
Title: Sequence Alignment (Needleman-Wunsch, Smith-Waterman)
These notes are based on lecture notes taken by Gabe Musso for CSC 2427

Topics:

1. Needleman-Wunsch (Global Alignment)
2. Maximum Contiguous Subsequence Sum
3. Smith-Waterman (Local Alignment)

Background: Importance of Sequence Alignment
Comparative analysis is the backbone of evolutionary biology. It was phenotypic
variation which allowed Darwin to compose his theory of natural selection. That theory
rests on the fact that transfer of the genetic code from parent to progeny does not exist
without change. It is these changes in genetic sequence which allow for divergence of
species, and thus provide a backdrop for natural selection. Just as comparative analysis
was key for evolutionary biology, sequence alignment is the cornerstone of modern
bioinformatics. Rapid and automated sequence analysis facilitates everything from
functional classification & structural determination of proteins, to studies of genetic
expression and evolution.

1. Needleman-Wunsch (Global Alignment)
Dynamic programming algorithms find the best solution by breaking the original problem
into smaller sub-problems and then solving. The Needleman-Wunsch algorithm is a
dynamic programming algorithm for optimal sequence alignment (Needleman and
Wunsch, 1970). Basically, the concept behind the Needleman-Wunsch algorithm stems
from the observation that any partial sub-path that tends at a point along the true optimal
path must itself be the optimal path leading up to that point. Therefore the optimal path
can be determined by incremental extension of the optimal sub-paths. In a Needleman-
Wunsch alignment, the optimal path must stretch from beginning to end in both
sequences (hence the term ‘global alignment’).

In order to perform a Needleman-Wunsch alignment, a matrix is created which allows us
to compare the two sequences. The score M(i,j) for every cell depends on the three
cells corresponding to either or both sequence having 1 less letter (i.e. cells M(i-1.j),
M(i,j-1) and M(i-1,j-1). It is calculated as follows:

M(i,j) = MAX(Mi-1,j-1 + S(Ai, Bj)
Mi-1, j + gap
Mi,j-1 + gap)

where gap is the gap penalty and the function S returns the score/penalty for matching the
two corresponding letters. Once we have computed this score for every cell, we must do a
“traceback”, that is to determine the actual set of operations that lead to the score.

Because when computing the score of a cell we took a max over three numbers, on the
traceback we go to the location of the highest – going sideways or up corresponds to
gaps, and going along the diagonal corresponds to a match. This algorithm performs
alignments with a time complexity of O(mn) and a space complexity of O(mn).

Example:

Find the best alignment of these two sequences:

ACTGATTCA
ACGCATCA

Using -2 as a gap penalty, -3 as a mismatch penalty, and 2 as the score for a
match.

Solution:

Step 1: Draw the matrix
For 2 sequences (length m and length n) what size scoring matrix is
needed for their alignment? Grid dimensions must be (m+1) × (n+1).
Think of each increment as a division of the sequence members:

 Step 2: Assign scores

 Step 3: Trace back

The optimal path is traced beginning from the lower right-hand corner

∑
k=1

j

Ak

Result:

This analysis yielded the following alignment:

ACTG-ATTCA
|| || ||
AC-GCAT-CA

The alignment score is equal to the value in the lower right-hand corner of
the matrix (8).

2. From Global to Local Similarity: Maximum Contiguous Subsequence Sum
When aligning two very large sequences, it is often useful to determine the locations of
high similarity regions, even if there is no additional similarity inbetween the sequences.
Now that we know how to calculate the global alignments, how can we find all local
high-scoring hits, or local alignments above a given threshold for two large sequences?
The answer is related to a programming “pearl”, the ‘Maximum Contiguous Subsequence
Sum’ (MSS).

Problem:

Given integers A1, A2, ..., AN find (and identify the sequence corresponding to)
the maximum value of:

Solution:

Can be solved in time complexity of ‘n’.

mss(A) {
 max = 0;
 sum = 0;
 for (i=1; i ≤ n; i+1) {
 sum = sum + A[i];
 if (sum > max)
 max = sum;
 if (sum < 0)
 sum = 0;

 }
 return max;
}

Analysis:

When a subsequence occurs which has a negative sum, the subsequence which
will be examined next can begin after the first subsequence (the one that produced
the negative sum). Basically, the entire first subsequence is regarded as not
having a starting point which will generate a positive sum. For example, consider
this set of numbers:

4, 6, -2, 2, -14, 9

Some sums are positive (4, 4+6, 4+6+(-2), 4+6+(-2)+2) but the sum of the first 5
terms (4+6+(-2)+2-14) is negative. Therefore it follows logically that any
sequence starting between the 4 and -14 and ending with the -14 will have a
negative sum.

The maximum contiguous subsequence sum searches exactly for the highest scoring local
area. We now generalize this approach for sequence alignment; the only change is we do
the abovealgorithm in two dimensions!

3. Smith-Waterman (Local Alignment)
Over a decade after the initial publication of the Needleman-Wunsch algorithm, a
modification was made to allow for local alignments (Smith and Waterman, 1981). In
this adaptation, the alignment path does not need to reach the edges of the search graph,
but may begin and end internally. In order to accomplish this, 0 was added as a term in
the score calculation described by Needleman and Wunsch.

Recall that for global alignments the value at any point is:

M(i,j) = MAX(Mi-1,j-1 + S(Ai, Bj)
Mi-1,j + gap
Mi,j-1 + gap)

However for local alignments:

M(I,j) = MAX(Mi-1,j-1 + S(Ai, Bj)
Mi-1,j + gap
Mi,j-1 + gap

0)
The implication of this is that there are no values below zero in a local alignment scoring
matrix, and the reason for the zero is exactly the same as in the MSS problem above.

Example:
 Find the best local alignment between these two sequences:

ATGCATCCCATGAC
TCTATATCCGT

Using -2 as a gap penalty, -3 as a mismatch penalty, and 2 as the score for a
match.

Solution:
 Traceback begins at the highest value (which is also the alignment score).

 Which yields the alignment:

ATCC
||||
ATCC

 With an alignment score of 8.

Local alignments are performed everywhere possible along two sequences.

When trying to find the best local alignments corresponding to a global alignment, a sub-
matrix is created with the highest positive score for all alignments above a given
threshold. Therefore, the same thing that the MSS was doing on a linear matrix, the
Smith-Waterman alignment does on a rectangular matrix.

