
MCMC Methods for Non-linear State Space Models

by

Alexander Y. Shestopaloff

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

Graduate Department of Statistical Sciences
University of Toronto

c© Copyright 2016 by Alexander Y. Shestopaloff

Abstract

MCMC Methods for Non-linear State Space Models

Alexander Y. Shestopaloff

Doctor of Philosophy

Graduate Department of Statistical Sciences

University of Toronto

2016

This thesis is concerned with developing efficient MCMC (Markov Chain Monte Carlo)

techniques for non-linear, non-Gaussian state space models. These models are widely

applicable in many fields, such as population ecology and economics. However, Bayesian

inference in such models remains challenging, since sampling the latent variables and

parameters in them can be difficult.

We begin by showing how an efficient MCMC method can be developed for a queueing

model, inference for which has previously been done with ABC (Approximate Bayesian

Computation). This example is an illustration of how we can do inference with MCMC

in a model in which inference is considered difficult and for which ABC was used. We do

this by expanding the state to include variables involved in the process used to generate

the observed data.

We then proceed to the main contributions of the thesis, which are developing general

MCMC methods for non-linear, non-Gaussian state space models based on the ensemble

MCMC and embedded HMM MCMC frameworks. The embedded HMM and ensemble

MCMC methods we introduce provide a unified framework that is sufficiently flexible to

often address difficult issues in MCMC sampling for non-linear, non-Gaussian state space

models, without having to resort to specialized methods for different cases.

We start with the basic embedded HMM method of Neal (2003), and Neal, Beal

and Roweis (2004), designed for sampling latent state sequences given known parameter

values, and develop an efficient ensemble MCMC method for sampling parameters when

the parameters and the latent sequence are strongly dependent. This method is tested

ii

on a non-linear model of population dynamics. We then show how ensembles can be used

to make parameter sampling more efficient in a stochastic volatility model by making use

of a caching technique (Neal (2006)). Finally, we develop an ensemble MCMC method

for sampling sequences in non-linear, non-Gaussian state space models when the state

space is high-dimensional and test it on two sample models with high-dimensional state

spaces, one of which is multimodal, and compare the performance of this method to a

particle MCMC method.

iii

Acknowledgements

My advisor Radford Neal, for teaching me a critical and inquisitive approach towards

statistical methods, his infectious optimism and enthusiasm, his devotion to elegant and

thorough research. And for never expressing any doubt that I would eventually be able

to produce a good thesis, and supporting this research through all of its ups and downs.

Radu Craiu and Geoffrey Hinton, my thesis committee members, for their help and

advice throughout the years. Jeff Rosenthal and Michael Evans for reading the thesis.

Arnaud Doucet for being my external examiner and suggesting to clarify the proof in the

last chapter.

My undergraduate statistics professors for laying a solid foundation for my future

studies, most notably Philip McDunnough, Andrey Feurverger, Balint Virag and Jeremy

Quastel.

The excellent staff of the Department who made it warm and welcoming and always

ready to help with any sorts of issues: Andrea, Angela, Annette, Christine, Laura and

Dermot.

My fellow students whom I’ve had a chance to meet: Muz, Becky (Wei), Shivon,

Zeynep, Ramya, Avideh, Chunyi, Cody, Elif, Li Li and many others.

Finally, my dear parents Yuri and Valentina and my brother Konstantin for always

being encouraging in innumerable ways throughout my school years.

The research in this thesis was funded by scholarships from Government of Ontario

(OGSST and OGS), Government of Canada (NSERC PGS-D), Department of Statistics

at the University of Toronto and the NSERC grants of Radford Neal.

iv

Contents

1 Introduction 1

1.1 Problem . 1

1.2 Previous approaches . 2

1.3 Outline of thesis . 4

2 Queueing Model 6

2.1 The model . 6

2.2 MCMC sampling . 7

2.2.1 Gibbs updates for arrival times 8

2.2.2 Simple Metropolis updates for parameters 9

2.2.3 Shift and scale updates . 10

2.3 An empirical study . 13

2.3.1 Simulated data from three scenarios 13

2.3.2 Experimental setup . 14

2.3.3 Results . 17

2.4 Conclusion . 20

3 Ensemble MCMC for State Space Models 25

3.1 Introduction . 26

3.2 Ensemble MCMC . 27

3.3 Embedded HMM MCMC as an

ensemble MCMC method . 29

3.4 The single-sequence embedded HMM MCMC method 31

3.5 An ensemble extension of the embedded HMM method 32

3.6 Staged ensemble MCMC sampling . 34

3.7 Constructing pools of states . 36

3.8 Performance comparisons on a

population dynamics model . 37

v

3.9 Conclusion . 45

4 Stochastic Volatility 46

4.1 Bayesian inference for the stochastic volatility model 47

4.1.1 A linear Gaussian approximation for sampling latent sequences . . 47

4.1.2 ASIS updates . 49

4.2 Ensemble MCMC methods for

stochastic volatility models . 51

4.2.1 Choosing the pool distribution . 55

4.3 Comparisons . 56

4.3.1 Data . 56

4.3.2 Sampling schemes and tuning . 57

4.3.3 Results . 59

4.4 Conclusion . 60

5 Embedded HMMs for High Dimensions 65

5.1 Introduction . 65

5.2 Embedded HMM MCMC . 68

5.3 Particle Gibbs with Backward Sampling MCMC 69

5.4 An embedded HMM sampler for high dimensions 71

5.4.1 Pool state distributions . 71

5.4.2 Sampling pool states . 72

5.4.3 Autoregressive updates . 73

5.4.4 Shift updates . 74

5.4.5 Flip updates . 75

5.4.6 Relation to PGBS . 76

5.5 Proof of correctness . 76

5.6 Experiments . 79

5.6.1 Test models . 79

5.6.2 Single-state Metropolis Sampler 80

5.6.3 Particle Gibbs with Backward Sampling with Metropolis 82

5.6.4 Tuning the Baseline Samplers . 83

5.6.5 Embedded HMM sampling . 84

5.6.6 Comparisons . 85

5.7 Conclusion . 89

6 Conclusion 91

vi

7 References 93

vii

Chapter 1

Introduction

1.1 Problem

This thesis is motivated by the problem of developing efficient MCMC methods for

Bayesian inference in non-linear, non-Gaussian state space models of time series. This

is a class of statistical models that is used in economics, population ecology, engineering

and other fields. For instance, the popular stochastic volatility model in economics is

an example of a state space model where the observations depend non-linearly on the

state variables. This model is used to study how the volatility of log-returns for some

asset changes over time. Many efforts have been devoted to efficient Bayesian inference

for this model; a recent example is the work of Kastner and Fruhwirth-Schnatter (2014).

Another example is the Ricker model of population dynamics (see, for example, Wood

(2010)). Both of these models are used as examples of non-linear, non-Gaussian state

space models later in the thesis.

The general non-linear, non-Gaussian state space model describes the distribution

of some observed sequence y = (y1, . . . , yn) via an unobserved Markov process x =

(x1, . . . , xn). This Markov process has initial density p(x1|θ) and transition densities

p(xi|xi−1, θ). The observed data at time i is assumed to be drawn from some observation

density p(yi|xi, θ). We are interested in inferring x and θ, or both of these. In a Bayesian

approach to this problem, we could use MCMC (Markov Chain Monte Carlo) to draw a

sample from the posterior of x and θ and perform inferences based on this sample.

There are two cases of state space models where exact and efficient sampling for the

latent variables and parameters can be performed. These are hidden Markov models

with a finite state space, for which we can use the forward-backward algorithm, and

linear Gaussian models, for which we can use the Kalman filter. If the model is non-

linear, or has non-Gaussian innovations or observations, or both, these straightforward

1

Chapter 1. Introduction 2

approaches no longer apply, and approximate methods such as Monte Carlo or Laplace

approximations are needed.

When using MCMC, sampling can be challenging, since the dimensionality of the

posterior distribution over the latent variables and the parameters is usually high, and

complex dependencies amongst the different variables are usually present. In particular,

sampling the latent variables xi can be difficult if there are strong dependencies amongst

the xi, with the marginal distribution of each xi much more diffuse than the distribution

of xi conditional on the other variables. Simple methods that update one variable at a

time can work poorly in these cases. However, even if the latent states can be sampled

efficiently given a fixed value of θ, sampling can still be inefficient if we are updating

the parameters and latent variables by alternately sampling a value for θ and a value for

x. This is because the distribution of θ given a specific value of x can be much more

constrained than the marginal distribution of θ. In this case, the whole sampler can be

inefficient due to slow exploration of the possible values of θ. MCMC sampling can also

be slowed down if the amount of information that the observations contain varies. In this

case, a sampler that uses a fixed proposal for all variables can end up sampling a subset

of the variables inefficiently.

Additional complications arise if the state, x, is high-dimensional. When the dimen-

sionality of the state is greater than one, sampling can be made difficult by dependencies

amongst the latent variables at a single time, as well as different times. Designing good

samplers, and in particular good proposal distributions for such samplers, can be consid-

erably more challenging than in the one-dimensional case. In higher dimensions, handling

multiple modes in the posterior distribution for x also becomes more difficult. In low

dimensions, it is sometimes possible to construct global proposals for x, covering the

entire space. In this case, we might then reasonably expect to efficiently cover all the

different modes of the posterior distribution and have an efficient sampler. However, in

high dimensions such a strategy is no longer feasible, and the sampler must take this into

account, by, for example, using proposals that are both localized within a mode and able

to switch between the different modes of the distribution.

1.2 Previous approaches

Numerous approaches to Bayesian inference in non-linear, non-Gaussian state space mod-

els via MCMC and other methods exist. Well-known sampling methods such as Metropo-

lis or Hamiltonian Monte Carlo can be applied to state space models, often with good

results. In addition to these well-known methods, specialized sampling methods for mod-

Chapter 1. Introduction 3

els with a state space structure have been developed. Some of these methods aim to solve

the problem of sampling latent state sequences given the parameters, while other methods

are designed to jointly sample the parameters and the latent variables.

The embedded HMM method of (Neal (2003), Neal, Beal and Roweis (2004)) is one

such method, developed to specifically address the problem of sampling state sequences

x in cases where there are strong dependencies amongst the consecutive states. This

method was initially proposed and tested on one-dimensional models with known pa-

rameters, and was shown to be effective in improving the efficiency of sampling state

sequences. The embedded HMM idea is an important building block of the methods we

propose and develop in this thesis. Introduced as a general method, many open questions

remained unanswered how to best tune this method, scale it to higher dimensions and

reduce its computational cost.

Two other methods for state sampling in non-linear, non-Gaussian state space models

are Particle Gibbs and Particle Gibbs with Backward Sampling (Andrieu, Doucet and

Holenstein (2010), Lindsten and Schon (2012)). These are MCMC methods for sampling

latent sequences in non-linear, non-Gaussian state space models based on Sequential

Monte Carlo. They work well for models with low-dimensional state spaces, but do not

scale well due to their reliance on importance sampling. The Particle Gibbs method

can be applied even if the transition density of the model cannot be evaluated explicitly

(but can be sampled from). The backward sampling modification (which does require

transition density evaluation) can substantially improve the Particle Gibbs method. We

show later how this method is related to the embedded HMM method.

Specific MCMC methods and updates exist for models that have a particular struc-

ture. For example, for the stochastic volatility model, efficient sampling methods have

been developed which rely on being able to closely approximate the observation density

by a mixture of Gaussians (Kastner and Fruhwirth-Schnatter (2014)). “Interweaving”

updates (Yu and Meng (2001)) that are designed with the dependencies between different

variables in mind — for example a mean parameter and the latent state x — have also

been successfully applied to improve sampling efficiency in cases where there are strong

dependencies between certain parameters and latent variables. However, such methods

and updates are not universal, and do not apply with equal success to different non-linear,

non-Gaussian state space models.

Another, non-MCMC approach to Bayesian inference in state space models is Ap-

proximate Bayesian Computation (ABC). This is a very general approach. ABC makes

inference possible in models where densities for model parameters, given observed data,

cannot be written down explicitly, but we can simulate data from the model. For state

Chapter 1. Introduction 4

space models, the density for model parameters is a marginal over latent states, and this

density typically cannot be computed. However, simulating data from state space models

is usually not hard. The basic procedure for ABC methods is as follows. First, a value

for the model parameter, θ, is sampled from the prior. Then, data is simulated from the

model with parameters set to θ. For state space models, simulating data is done by first

simulating a sequence of latent states, and then observations given these latent states.

Finally, the simulated observations are compared to the observed data, and a parameter

θ is added to the sample if the simulated data is sufficiently close to the observed data.

See, for example, Fearnhead and Prangle (2012) for a description of ABC and how it can

be applied to a variety of models.

The advantage of the ABC method is its wide applicability. Its main disadvantage

is that it is hard to make efficient, since specialized knowledge in designing summary

statistics for a model is often required. Also, the performance of this method is hard to

evaluate due to its approximate nature. This is in contrast to MCMC methods, which,

at least in theory, should all produce the same answer in the end. The literature on ABC

is extensive and growing, but it is not always clear if ABC is better than a well-designed

MCMC method. The contributions in this thesis are relevant to this issue.

1.3 Outline of thesis

In Chapter 2, we start with a motivating example of a model that can be viewed in

state space form, a model for a queue. We show how an efficient MCMC method can

be designed for this model, in which inference is considered to be difficult, and for which

other methods such as Approximate Bayesian Computation have previously been used.

This chapter serves as an illustration of how an MCMC sampler can be designed for a

model with strong dependencies between the parameters and the latent variables. The

main idea is to design MCMC updates with proposals that take these dependencies into

account. We show that using such updates can make sampling much more efficient

compared to a basic Gibbs sampler.

We then move on to the main contributions. Throughout this thesis, another key

method that we rely on is ensemble MCMC (Neal (2010)). An ensemble MCMC method

simultaneously looks at an “ensemble” of multiple points when performing an update,

with the ensemble chosen in a way that makes it possible to compute the density at

all points of the ensemble in less time it would take to compute the density at all K

points of the ensemble separately (else, it would likely be more efficient to perform K

updates separately). The embedded HMM method is an example of an ensemble MCMC

Chapter 1. Introduction 5

method, where the ensemble is that of latent sequences. One of the overall goals we

pursue is to show that the ensemble framework is sufficiently flexible to address many of

the difficulties of sampling in state space models.

In particular, Chapter 3 focuses on developing an ensemble MCMC method for sam-

pling parameters in non-linear, non-Gaussian state space models by considering an en-

semble of latent sequences at once. We show that ensemble methods are particularly

effective when there is a strong dependence between the current value of the latent se-

quence and the parameters. The key idea leading to improved performance is that a

parameter proposal given a collection of sequences is at least as likely to be accepted as

when given a single sequence. We also show how ensemble methods can be sped up by

the introduction of a delayed acceptance step, in which a proposed set of parameters is

accepted or rejected using a computationally cheap approximation to the likelihood.

Chapter 4 develops ensemble MCMC methods further, this time using a stochastic

volatility model as an example. In this chapter we consider ensembles not only over latent

sequences but also over parameters. We show that using an ensemble over parameter

values, made possible by the use of a caching technique, can lead to improved sampling

performance. The ensemble method is shown to perform better than a state of the art

MCMC method specially designed for the stochastic volatility model, but without using

the same restrictive assumptions that this comparison method does.

Finally, Chapter 5 shows how the embedded HMM method can be made to work in

models with high-dimensional state spaces, by introducing a new way of selecting latent

sequences that is related to how the Particle Gibbs method operates. This new method of

selecting the ensemble also allows us to reduce the computational cost of the method. In

this chapter we also consider an example when the posterior has multiple modes and show

how sampling can be made efficient by using special updates to construct an ensemble

of suitable latent sequences.

Chapter 2

Queueing Model

This chapter proposes a new approach to computation for Bayesian inference for the

M/G/1 queue (Markovian arrival process/General service time distribution/1 server).

Inference for this model using ABC (Approximate Bayesian Computation) was previously

considered by Bonassi (2013), Fearnhead and Prangle (2012), and Blum and Francois

(2010). ABC, in general, does not yield samples from the exact posterior distribution.

We use the strategy of considering certain unobserved quantities as latent variables,

allowing us to use Markov Chain Monte Carlo (MCMC), which converges to the exact

posterior distribution.1

2.1 The model

In the M/G/1 queueing model, customers arrive at a single server with independent in-

terarrival times, Wi, distributed according to the Exp(θ3) distribution. Here, θ3 is the

arrival rate; hence Wi has density function f(wi) = θ3 exp(−θ3wi) for wi ≥ 0 and 0 oth-

erwise. They are served with independent service times Ui, which have a Uniform (θ1, θ2)

distribution. (Our MCMC approach can be generalized to other service time distribu-

tions.) We do not observe the interarrival times, only the interdeparture times, Yi. The

goal is to infer the unknown parameters of the queueing model, θ = (θ1, θ2, θ3), using

observed interdeparture times, y = (y1, . . . , yn). We assume that the queue is empty

before the first arrival.

The process of interdeparture times can be written as

Yi = Ui + max

(
0,

i∑
j=1

Wj −
i−1∑
j=1

Yj

)
= Ui + max(0, Vi −Xi−1) (2.1)

1Material in this chapter was first presented in Shestopaloff and Neal (2013b).

6

Chapter 2. Queueing Model 7

where Wj is the time from the arrival of customer j − 1 (or from 0 when j = 1) to

the arrival of customer j, Vi =
∑i

j=1Wj is the arrival time of the i-th customer, and

Xi =
∑i

j=1 Yj is the departure time of the i-th customer, with X0 defined to be 0.

We take the arrival times, Vi, to be latent variables. The Vi evolve in time as a Markov

process. Viewed this way, the queueing model can be summarized as follows:

V1 ∼ Exp(θ3) (2.2)

Vi|Vi−1 ∼ Vi−1 + Exp(θ3) (2.3)

Yi|Xi−1, Vi ∼ Uniform(θ1 + max(0, Vi −Xi−1), θ2 + max(0, Vi −Xi−1)) (2.4)

where i = 1, . . . , n. For convenience, set v = (v1, . . . , vn). The joint density of the Vi and

the Yi can be factorized as follows

P (v, y|θ) = P (v1|θ)
n∏
i=2

P (vi|vi−1, θ)
n∏
i=1

P (yi|vi, xi−1, θ) (2.5)

Let π(θ) be a prior for θ. The posterior distribution π(θ|y) of θ is then

π(θ|y) ∝ π(θ)

∫
· · ·
∫
P (v1|θ)

n∏
i=2

P (vi|vi−1, θ)
n∏
i=1

P (yi|vi, xi−1, θ)dv1 · · · dvn (2.6)

The integral (2.6) cannot be computed analytically. Hence to sample from π(θ|y) we need

to include the Vi in the MCMC state and sample from the joint posterior distribution of

the Vi and θ given the data, which is

π(v, θ|y) ∝ π(θ)P (v1|θ)
n∏
i=2

P (vi|vi−1, θ)
n∏
i=1

P (yi|vi, xi−1, θ) (2.7)

Taking the values of θ from each draw from (2.7) and ignoring the Vi will yield a sample

from the posterior distribution of θ.

2.2 MCMC sampling

Our MCMC procedure will be based on combining five different updates. The first is a

Gibbs update that draws new values for each Vi, given values of the other Vi, θ, and the

data. The second is a simple Metropolis update for θ, given values of the Vi and the data.

The last three updates are novel — one Metropolis “shift” update and two Metropolis-

Hastings-Green “scale” updates that propose to simultaneously change components of θ

Chapter 2. Queueing Model 8

and all of the Vi. These updates are related to those proposed by Liu and Sabatti (2000).

2.2.1 Gibbs updates for arrival times

We first work out how to apply standard Gibbs sampling updates for the Vi, for which we

need to derive the full conditional density for each Vi given the other Vi and θ. We denote

all of the Vj except Vi as V−i. We consider three cases, when i = 1, when 2 ≤ i ≤ n− 1

and when i = n.

For the case i = 1, we have

P (v1|v−1, y, θ) ∝ P (v1)P (y1|v1, θ)P (v2|v1, θ)

∝ θ3e
−θ3v1I(0 ≤ v1)

I(y1 ∈ [θ1 + v1, θ2 + v1])

θ2 − θ1
× θ3e

−θ3(v2−v1)I(v1 ≤ v2)

∝ I(v1 ∈ [max(0, x1 − θ2),min(v2, x1 − θ1)]) (2.8)

So, conditional on the parameters and the observed data, the distribution of V1 is

Uniform(max(0, x1 − θ2),min(v2, x1 − θ1)).
When 2 ≤ i ≤ n− 1, we have

P (vi|v−i, y, θ) ∝ P (vi|vi−1, θ)P (yi|xi−1, vi, θ)P (vi+1|vi, θ)

∝ θ3e
−θ3(vi−vi−1)I(vi−1 ≤ vi)

× I(yi ∈ [θ1 + max(0, vi − xi−1), θ2 + max(0, vi − xi−1)])
θ2 − θ1

(2.9)

× θ3e
−θ3(vi+1−vi)I(vi ≤ vi+1)

∝ I(vi ∈ [vi−1, vi+1])I(yi ∈ [θ1 + max(0, vi − xi−1), θ2 + max(0, vi − xi−1)])

To simplify this expression, note that xi = yi + xi−1, and first consider the case yi > θ2.

When this is so, we must have vi > xi−1, hence, in this case Vi will have a Uniform

distribution on [xi − θ2,min(vi+1, xi − θ1)]. Now consider the case yi ≤ θ2. We rewrite

expression (2.10) as

I(vi ∈ [vi−1, vi+1])I(yi ∈ [θ1 + max(0, vi − xi−1), θ2 + max(0, vi − xi−1)])I(vi ≤ xi−1)

+ I(vi ∈ [vi−1, vi+1])I(yi ∈ [θ1 + max(0, vi − xi−1), θ2 + max(0, vi − xi−1)])I(vi > xi−1)

= I(vi ∈ [vi−1, xi+1]) + I(vi ∈ (xi−1,min(vi+1, xi − θ1)])

= I(vi ∈ [vi−1,min(vi+1, xi − θ1)]) (2.10)

Chapter 2. Queueing Model 9

We see that for yi ≤ θ2, Vi will have a Uniform distribution on [vi−1,min(vi+1, xi − θ1)].
Finally, for the case i = n, we have

P (vn|v−n, y, θ) ∝ P (vn|vn−1)P (yn|vn)

∝ e−θ3(vn−vn−1)I(vn−1 ≤ vn) (2.11)

× I(yn ∈ [θ1 + max(0, vn − xn−1), θ2 + max(0, vn − xn−1)])

From this it follows that Vn will have an Exponential distribution, truncated to [xn −
θ2, xn − θ1] when yn > θ2 and to [vn−1, xn − θ1] when yn ≤ θ2.

All of the above distributions can be easily sampled from by using the inverse CDF

method. The case i = n deserves a small note. If we suppose the truncation interval of

Vn is [L,U], then the CDF and inverse CDF will be

FVn(vn) =
e−θ3L − e−θ3vn
e−θ3L − e−θ3U

, F−1Vn
(y) = log((1− y)e−θ3L + ye−θ3U) (2.12)

So we can sample Vn as F−1Vn
(R) where R is Uniform(0, 1).

2.2.2 Simple Metropolis updates for parameters

We use simple Metropolis updates (Metropolis, et al (1953)) to sample from the condi-

tional posterior distribution of θ given values of the Vi and the data, π(θ|v, y) ∝ π(v, θ|y).

When doing simple Metropolis updates of θ given the arrival times and the data, we

used the 1-to-1 reparametrization η = (η1, η2, η3) = (θ1, θ2 − θ1, log(θ3)).

A simple Metropolis update for η that leaves π(η|v, y) invariant proceeds as follows.

We choose a symmetric proposal density q(·|η), for which q(η∗|η) = q(η|η∗). Given

the current value η, we generate a proposal η∗ ∼ q(η∗|η). We compute the acceptance

probability

a = min

(
1,
π(η∗|v, y)

π(η|v, y)

)
(2.13)

and let the new state, η′, be η∗ with probability a and otherwise reject the proposal,

letting η′ = η.

We use a normal proposal with independent coordinates centered at the current value

of η, updating all components of η at once. If the proposed value for η1 or η2 is outside

its range, the proposal can be immediately rejected.

To prevent overflow or underflow, all MCMC computations use the logarithm of the

Chapter 2. Queueing Model 10

posterior (2.7), which (up to an additive constant) simplifies to

log π(v, θ|y) = log(π(θ)) + n log(θ3)− θ3vn − n log(θ2 − θ1) (2.14)

whenever the following constraints are satisfied

θ2 − θ1 > 0 (2.15)

θ1 ≤ y1 − v1 (2.16)

θ2 ≥ y1 − v1 (2.17)

θ1 ≤ min(yi −max(0, vi − xi−1)) for all i ≥ 2 (2.18)

θ2 ≥ max(yi −max(0, vi − xi−1)) for all i ≥ 2 (2.19)

Otherwise, log(π(v, θ)|y)) = −∞.

The dominant operation when computing the log likelihood for a data set of length

n is checking the constraints (2.15) to (2.19), which requires time proportional to n.

Storing the constraints on θ1 and θ2 given by (2.16) to (2.19) during evaluation of the log

likelihood at (θ, vi) allows us to evaluate the log likelihood for another θ∗ and the same

vi in constant time. This allows us to do K additional Metropolis updates for less than

K times the computational cost it takes to do a single update, which is likely to make

sampling more efficient. A similar improvement in sampling should be possible for models

with other service time distributions that have low-dimensional sufficient statistics. As

well, doing additional simple Metropolis updates makes an imperfect choice of proposal

distribution have less of an effect on sampling efficiency.

2.2.3 Shift and scale updates

The Gibbs and simple Metropolis updates are sufficient to give an ergodic MCMC scheme.

However, as we will see, these updates are sometimes very inefficient when used on their

own. In this section, we introduce our novel shift and scale updates, which can make

MCMC sampling much more efficient.

Shift updates and scale updates are used to sample from the joint posterior distribu-

tion of the parameters and the latent variables, π(v, θ|y). The shift update takes the form

of a standard Metropolis update, while the scale updates are Metropolis-Hastings-Green

(MHG) updates.

In general, an MHG update proceeds as follows. We introduce an extra variable z ∈
{−1,+1}. Given a current value (v, θ) and a density q(·|v, θ) we generate z ∼ q(z|v, θ).

Chapter 2. Queueing Model 11

We then propose (v∗, θ∗, z∗) = g(v, θ, z). The function g is the inverse of itself, with a

Jacobian | det(∇(v,θ)g(v, θ, z))| which is nowhere zero or infinite. Here, ∇(v,θ)g(v, θ, z) is

a matrix of derivatives with respect to v and θ. We compute the acceptance probability

a = min

(
1,
π(θ∗, v∗|y)q(z∗|v∗, θ∗)
π(θ, v|y)q(z|v, θ)

| det(∇(v,θ)g(v, θ, z))|
)

(2.20)

and let the new state, (v′, θ′) be (v∗, θ∗) with probability a and let (v′, θ′) = (v, θ) other-

wise. For more on the MHG algorithm, see Geyer (2003).

The motivation for the shift updates and scale updates is that conditioning on given

values of the arrival times constrains the range of parameter values for which the posterior

density is non-zero, preventing us from changing the parameters by a significant amount.

This can lead to inefficient sampling when θ is updated given the Vi. In contrast, our new

shift and scale updates change the latent variables and the parameters simultaneously,

in accordance with their dependence structure, thus allowing for much greater changes

to the parameters.

Hard constraints on θ given v aren’t necessary for these updates to be beneficial. If

the service time density were non-zero for all positive values, the distribution of θ given

v might still be much more concentrated than the marginal posterior for θ.

Shift updates

We first consider updates that shift both the minimum service time, θ1, and all the arrival

times, Vi, keeping the range of service times, θ2 − θ1, fixed. Note that for i = 1 and for

all i when Xi−1 < Vi, we have θ1 < Xi − Vi. Hence the values of one or more of the Vi

will constrain how much we can propose to change θ1 — any proposal to change θ1 that

violates these constraints must be rejected.

A shift update addresses the presence of these constraints as follows. We first draw

a shift s from any distribution symmetric around 0. Then, we propose new values V ∗i =

Vi − s for all i and θ∗1 = θ1 + s. So, a proposal to increase the minimum service time is

coupled with a simultaneous proposal to decrease all of the arrival times in a way that

keeps the constraints between the arrival times and the minimum service time satisfied.

A shift proposal will be rejected if it proposes a value for V1 or θ1 that is less than 0.

Otherwise, the acceptance probability for a shift update is

a = min

(
1,
π(θ∗, v∗|y)

π(θ, v|y)

)
(2.21)

Chapter 2. Queueing Model 12

Range scale updates

Next, we consider range scale updates that propose to simultaneously change the latent

variables and the range of service times θ2 − θ1, which is also constrained by the latent

variables — specifically, for V1 and for all i > 2 where Vi > Xi−1, we have θ2 − θ1 >

Xi − θ1 − Vi. These updates propose to scale the “gaps” Xi − θ1 − Vi (gaps between

the current arrival time and the latest possible arrival time), while at the same time

proposing to scale θ2 − θ1 by the same amount, keeping θ1 fixed.

In particular, we first fix (or draw from some distribution) a scale factor crange > 0.

We then draw z ∼ Uniform{−1, 1}. The function g(v, θ, z) proposes to change Vi to

V ∗i = (X1− θ1)− czrange(Xi− θ1− Vi) and θ2− θ1 to czrange(θ2− θ1). We set z∗ = −z. The

Jacobian | det(∇(v,θ)g(v, θ, z))| = c
z(n+1)
range .

A range scale proposal will be rejected if it proposes a set of Vi for which some

Vi < Vi−1 or for which V1 < 0. Otherwise, the MHG acceptance probability for a range

scale update is

a = min

(
1,
π(θ∗, v∗|y)

π(θ, v|y)
cz(n+1)
range

)
(2.22)

Rate scale updates

Finally, we consider rate scale updates that propose to simultaneously change both the

interarrival times Wi = Vi − Vi−1, and the arrival rate θ3. We motivate these updates as

follows. We expect the distribution of θ3 given the interarrival times Wi to be concen-

trated around 1/W . Consequently, we would expect the joint posterior of θ3 and the Wi

to have a high density along a ridge with values cWi and θ3/c for some c, as long as cWi

and θ3/c do not lie in a region with low probability. So, proposing to change Wi to cWi

and θ3 to θ3/c for some c potentially keeps us in a region of high density.

We perform these updates in terms of η3 = log(θ3). In detail, this update proceeds

as follows. We first fix (or draw from some distribution) a scale crate > 0. We then draw

z ∼ Uniform{−1, 1}. The function g(v, η, z) proposes to change all Wi to czrateWi and η3

to η3 − log(czrate). We set z∗ = −z. The Jacobian | det(∇(v,η)g(v, η, z))| = cznrate.

We reject the proposal immediately if it violates the following constraints: for i where

yi > θ2 the proposed arrival time V ∗i =
∑n

i=1 c
z
rateWi must be in [xi − θ2, xi − θ1], and for

i where yi ≤ θ2, we must have V ∗i ≤ xi−θ1. Otherwise, the MHG acceptance probability

for a rate scale update is

a = min

(
1,
π(η∗, v∗|y)

π(η, v|y)
cznrate

)
(2.23)

Chapter 2. Queueing Model 13

Ergodicity

Although a scheme consisting of the shift, range scale, and rate scale updates changes all

of the latent variables and parameters, it is not ergodic. To see this, consider updating

the arrival times Vi, or equivalently, interarrival times Wi = Vi − Vi−1. Shift updates do

not change the interarrival times. Range scale updates with scale factor crange change

each interarrival time as W ∗
i = yi(1− czrange) + czrangeWi, and rate scale updates with scale

factor crate change each interarrival time as W ∗
i = czrateWi. If we are in a situation where

Wi = Wj and yi = yj for one or more j 6= i, then all subsequent updates will keep

Wi = Wj. Note that this is true even if crange and crate are randomly selected at each

update.

Hence, our novel updates must still be combined with simple Gibbs sampling updates

of the Vi’s to get an ergodic sampling scheme. We also still do simple Metropolis updates

for θ. Although this is not essential for ergodicity, it makes sampling a lot more efficient.

2.3 An empirical study

The goal of our empirical study is to determine when using the novel updates improves

sampling efficiency. We generate three simulated data sets that are representative of a

range of possible scenarios, sample from the posterior distributions of θ for each of these

data sets using various sampling schemes, and compute autocorrelation times to compare

sampling efficiency.

2.3.1 Simulated data from three scenarios

The sort of data arising from the observation of a queueing system can be roughly clas-

sified into one of three scenarios.

The first scenario is when the interarrival times are, on average, smaller than the

service times, that is, arrivals are relatively frequent. In this case the queue is generally

full, and empty only early on. Hence, most observed interdeparture times will tend to

come from the service time distribution, and only a small number of interdeparture times

will be relevant for inferring the arrival rate. Consequently, we expect there to be large

uncertainty in θ3, but less for θ1 and θ2.

The second scenario is when interarrival times are on average slightly larger than the

service times. The queue is then sometimes empty, and sometimes contains a number of

people. In this case, we expect the data to be informative about all parameters. This

Chapter 2. Queueing Model 14

0 50 100 150 200 250
0

5

10

15

20

25

Time

Q
u
e
u
e
 L

e
n
g
th

(a) θ = (8, 16, 0.15)

0 50 100 150 200 250
0

2

4

6

8

Time

Q
u
e
u
e
 L

e
n
g
th

(b) θ = (4, 7, 0.15)

0 1000 2000 3000 4000
0

1

Time

Q
u
e
u
e
 L

e
n
g
th

(c) θ = (1, 2, 0.01)

Figure 2.1: The three data sets.

is also the case of most practical interest, as it corresponds to how we may expect a

queueing system to behave in the real world.

The third scenario is when arrivals happen rarely, while the service time is relatively

small. In this case, the queue will usually be empty. Interarrival times are then infor-

mative for inferring θ3, as most of them will come from the Exp(θ3) distribution with

a small amount of added Uniform(θ1, θ2) noise. However, inference of the service time

bounds θ1 and θ2 will now be based on how significantly the distribution of the interar-

rival times (for a given θ3) deviates from the Exponential distribution. This difference

may be rather small, and so we expect that the posterior for the service time bounds will

be rather diffuse.

The three data sets we generated each consisted of n = 50 interdeparture times,

corresponding to each of the three scenarios above. For the first scenario we take θ =

(8, 16, 0.15), for the second, θ = (4, 7, 0.15), and for the third, θ = (1, 2, 0.01).

The plots in Figure 2.1 of the number of people in the queue up until the last arrival

against time for each of the three data sets demonstrate that the data sets have the

desired qualitative properties.

Numerical values of the simulated interdeparture times are presented in Table 2.1.

2.3.2 Experimental setup

We now compare the efficiency of five different MCMC schemes for performing Bayesian

inference for θ by drawing samples from the posterior. These are

1) The basic scheme: Gibbs sampling for Vi with simple Metropolis updates for θ.

2) Basic scheme plus shift updates.

3) Basic scheme plus range scale updates.

4) Basic scheme plus rate scale updates.

5) Basic scheme plus shift, rate scale, and range scale updates.

Chapter 2. Queueing Model 15

Frequent Intermediate Rare

11.57 6.19 21.77

13.44 6.04 10.30

13.24 9.52 206.34

9.30 4.49 8.57

8.95 4.36 45.79

11.99 9.86 233.13

15.68 9.91 128.30

10.72 5.02 59.73

12.68 5.76 4.59

9.79 4.67 3.21

14.01 6.25 185.29

10.04 4.77 2.49

12.05 5.52 4.63

13.59 6.10 72.48

15.13 6.67 22.47

15.67 6.88 195.34

12.38 5.64 85.92

9.11 4.42 8.39

9.19 4.45 23.30

10.06 4.77 4.24

14.73 6.52 42.78

10.03 4.76 332.64

14.51 6.44 16.91

9.95 4.73 6.26

15.43 6.79 39.44

10.80 5.05 27.16

9.57 4.59 29.53

10.01 4.75 93.65

12.93 5.85 42.60

11.79 5.42 176.36

10.81 5.05 34.69

14.65 6.49 345.20

12.68 5.76 128.16

12.40 8.67 307.50

15.34 16.65 233.54

10.29 4.86 18.79

14.06 6.27 36.88

14.03 6.26 114.85

11.04 5.14 4.73

12.54 10.60 337.02

8.61 4.23 81.89

8.43 6.15 96.33

12.25 5.59 27.20

14.23 6.34 23.16

15.47 6.80 167.89

9.04 4.39 70.58

12.55 5.71 81.28

11.76 5.41 43.55

8.10 4.04 33.88

10.70 5.01 28.47

Table 2.1: Simulated interdeparture times yi

Chapter 2. Queueing Model 16

We put Uniform(0, 10) priors on θ1 and on θ2− θ1, and a Uniform(0, 1/3) prior on θ3.

These are the priors that were used by Fearnhead and Prangle (2012). The prior π(θ)

for θ is then

π(θ) ∝ I(θ1 ∈ [0, 10])I(θ2 − θ1 ∈ [0, 10])I(θ3 ∈ [0, 1/3]) (2.24)

In the η parametrization, the priors on η1 and η2 remain Uniform(0, 10), while the prior

for η3, due to the log transformation, is now proportional to exp(η3) on (−∞, log(1/3))

and 0 otherwise.

In order to compare MCMC methods fairly, we need to reasonably tune their param-

eters (such as the standard deviations of Metropolis proposals). In practice, tuning is

usually done by guesswork and trial and error. But for these experiments, in order to

avoid the influence of arbitrary choices, we use trial runs to ensure a reasonable choice

of tuning parameters, even though in practice the time for such trial runs might exceed

the gain compared to just making an educated guess.

We chose the standard deviations for the normal proposal in the simple Metropolis

updates for η by performing a number of pilot runs (using the basic scheme plus shift,

rate scale, and range scale updates), finding estimates of the marginal posterior stan-

dard deviations of each component of η, and taking scalings of these estimated standard

deviations as the corresponding proposal standard deviations.

The rationale for this choice of proposal standard deviations is as follows. One extreme

case is when knowing the latent variables will give little additional information beyond the

data for inferring the parameters, so the standard deviations of the marginal posterior will

correspond closely to the standard deviations of the posterior given the latent variables

and the data. The other extreme case is when the posterior given the latent variables and

the data is a lot more concentrated than the marginal posterior, perhaps for a subset of

the parameters. In most cases, however, the situation will be between these two extremes,

so the marginal posterior standard deviations will provide a reasonable guide to setting

proposal standard deviations. The case of rare arrivals is closer to the second extreme,

when knowing the latent variables will tend to strongly constrain η1 and η2, so we take

a much smaller scaling for them than for η3.

For each simulated data set, we chose the number of simple Metropolis updates to

perform in each iteration of a scheme by looking at the performance of the basic scheme

with 1, 2, 4, 8, 16, 32 Metropolis updates.

For each shift update, we drew a shift s from a N(0, σ2
shift) distribution. For both scale

updates we set fixed scales crange and crate. The chosen settings of tuning parameters for

Chapter 2. Queueing Model 17

Scenario Est. stdev. of (η1, η2, η3) Scaling Met. prop. stdev. Met. updates σ2
shift crange crate

Frequent (0.1701, 0.2399, 0.3051) 0.7 (0.1191, 0.1679, 0.2136) 1 0.3 1.008 1.7

Intermediate (0.0764, 0.1093, 0.1441) 1 (0.0764, 0.1093, 0.1441) 16 0.2 1.03 1.004

Rare (0.6554, 2.0711, 0.1403) (0.1, 0.1, 1) (0.0655, 0.2071, 0.1403) 16 2 1.4 1.00005

Table 2.2: Tuning settings for the different samplers.

Scenario Basic Basic + Shift Basic + Range Basic + Rate Basic + All

Frequent 20 10.8 10.8 9.6 5.1

Intermediate 5.2 4.2 4.2 4 2.9

Rare 5.2 4.2 4.2 4 2.9

Table 2.3: Run lengths for different scenarios and samplers, in millions of iterations.

the different scenarios are presented in Table 2.2.

We initialized η1 to min(yi), η2 and η3 to their prior means, and the latent variables

Vi to xi −min(yi), both for the pilot runs used to determine tuning settings and for the

main runs used to compare the relative efficiency of different MCMC schemes.

2.3.3 Results

We compared the peformance of our different MCMC schemes with the tuning settings

in Table 2.2 on the three data scenarios. Run lengths were chosen to take about the

same amount of time for each MCMC scheme, a total of about 43 minutes per run using

MATLAB on a Linux system with an Intel Xeon X5680 3.33 GHz CPU. Table 2.3 presents

the run lengths. The acceptance rates of the various updates, across different data sets,

were all in the range 17% to 34%.

We first verified that the different sampling schemes give answers which agree by

estimating the posterior means of the ηh, as well as the standard errors of the posterior

mean estimates. For each combination of method and data set, we estimated the posterior

means by taking a grand mean over the five MCMC runs, after discarding 10% of each run

as burn-in. (In all cases, visual inspection of trace plots showed that the chain appears

to have reached equilibrium after the first 10% of iterations.) For each ηh, the standard

errors of the posterior mean estimates were estimated by computing five posterior mean

estimates using each of the five samples separately (discarding 10% of each run as burn-

in), computing the standard deviation of these posterior mean estimates, and dividing

this standard deviation by
√

5. The approximate confidence intervals were obtained

by taking the posterior mean estimate and adding or subtracting twice the estimated

standard error of the posterior mean estimate. The results are shown in Table 2.4. There

is no significant disagreement for posterior mean estimates across different methods.

Having established that the different methods we want to compare give answers which

Chapter 2. Queueing Model 18

Parameter η1 η2 η3

Estimates Mean CI std. err. Mean CI std. err. Mean CI std. err.

Basic 7.9292 (7.9286, 7.9298) 0.00031 7.9101 (7.9092, 7.9110) 0.00045 -1.4817 (-1.4853, -1.4781) 0.00179

Basic + Shift 7.9291 (7.9287, 7.9296) 0.00022 7.9102 (7.9094, 7.9109) 0.00038 -1.4774 (-1.4816, -1.4733) 0.00207

Basic + Range 7.9292 (7.9288, 7.9296) 0.00019 7.9102 (7.9098, 7.9107) 0.00024 -1.4778 (-1.4796, -1.4760) 0.00090

Basic + Rate 7.9292 (7.9287, 7.9296) 0.00024 7.9102 (7.9094, 7.9110) 0.00041 -1.4835 (-1.4837, -1.4833) 0.00012

Basic + All 7.9293 (7.9286, 7.9301) 0.00037 7.9100 (7.9087, 7.9112) 0.00063 -1.4834 (-1.4836, -1.4832) 0.00011

(a) Frequent arrivals.

Parameter η1 η2 η3

Estimates Mean CI std. err. Mean CI std. err. Mean CI std. err.

Basic 3.9612 (3.9611, 3.9613) 0.00004 2.9866 (2.9865, 2.9867) 0.00006 -1.7317 (-1.7318, -1.7317) 0.00002

Basic + Shift 3.9611 (3.9610, 3.9612) 0.00004 2.9866 (2.9865, 2.9868) 0.00007 -1.7317 (-1.7318, -1.7316) 0.00006

Basic + Range 3.9612 (3.9611, 3.9613) 0.00004 2.9865 (2.9864, 2.9866) 0.00005 -1.7318 (-1.7318, -1.7317) 0.00004

Basic + Rate 3.9611 (3.9610, 3.9613) 0.00007 2.9866 (2.9864, 2.9868) 0.00010 -1.7317 (-1.7318, -1.7316) 0.00004

Basic + All 3.9612 (3.9611, 3.9612) 0.00003 2.9865 (2.9864, 2.9866) 0.00006 -1.7316 (-1.7317, -1.7316) 0.00003

(b) Intermediate case.

Parameter η1 η2 η3

Estimates Mean CI std. err. Mean CI std. err. Mean CI std. err.

Basic 1.6986 (1.6878, 1.7094) 0.00538 4.2875 (4.2330, 4.3420) 0.02725 -4.4549 (-4.4551, -4.4546) 0.00013

Basic + Shift 1.7012 (1.6984, 1.7039) 0.00138 4.3098 (4.2667, 4.3529) 0.02154 -4.4549 (-4.4550, -4.4548) 0.00005

Basic + Range 1.7038 (1.7002, 1.7074) 0.00181 4.2737 (4.2632, 4.2841) 0.00520 -4.4549 (-4.4551, -4.4547) 0.00010

Basic + Rate 1.7018 (1.6953, 1.7083) 0.00325 4.3077 (4.2631, 4.3523) 0.02230 -4.4549 (-4.4550, -4.4548) 0.00006

Basic + All 1.7003 (1.6996, 1.7010) 0.00036 4.2846 (4.2751, 4.2942) 0.00477 -4.4549 (-4.4552, -4.4546) 0.00013

(c) Rare arrivals.

Table 2.4: Posterior mean estimates with approximate CI’s and standard errors

agree, we next compare their efficiency by looking at the autocorrelation times, τh, of

the Markov chains used to sample ηh. The autocorrelation time is a common MCMC

performance metric that can be roughly interpreted as the number of draws one needs

to make with the MCMC sampler to get the equivalent of one independent point (Neal

(1993)) and is defined as

τh = 1 + 2
∞∑
k=1

ρh,k (2.25)

where ρh,k is the autocorrelation at lag k of the chain used to sample ηh.

For each combination of method and data set, for each ηh, we estimate τh by

τ̂h = 1 + 2

Kh∑
k=1

ρ̂h,k (2.26)

where the truncation pointKh is such that for k > Kh, the estimate ρ̂h,k is not appreciably

different from 0.

Chapter 2. Queueing Model 19

Scenario Frequent Intermediate Rare Time (ms) Frequent Intermediate Rare

Parameter η1 η2 η3 η1 η2 η3 η1 η2 η3 Freq./Inter./Rare η1 η2 η3 η1 η2 η3 η1 η2 η3

Basic 99 98 7800 5.4 6.1 3.2 1400 4400 5.6 0.13/0.50/0.50 13 13 1000 2.7 3 1.6 700 2200 2.8

Basic + Shift 46 75 7400 4.4 5.8 3.2 130 2100 4.1 0.24/0.61/0.61 11 18 1800 2.7 3.5 2.0 79 1300 2.5

Basic + Range 95 86 5200 5.2 5.3 3.2 380 73 4.6 0.24/0.62/0.62 23 21 1200 3.2 3.3 2.0 240 45 2.9

Basic + Rate 95 94 13 5.4 6.0 3.2 1100 2800 4.5 0.27/0.65/0.65 26 25 3.5 3.5 3.9 2.1 720 1800 2.9

Basic + All 36 55 11 4.2 5.0 3.2 13 40 4.2 0.51/0.89/0.89 18 28 5.6 3.7 4.5 2.8 12 36 3.7

Table 2.5: Estimates of autocorrelation times for different methods. Unadjusted auto-
correlation times are on the left, autocorrelation times multiplied by the average time
per iteration are on the right.

To estimate ρh,k, we use estimates of the lag k autocovariances γh,k for k = 0, . . . , Kh.

These are obtained as follows. For each of the five samples, indexed by s = 1, . . . , 5 and

drawn using some method, we first compute an autocovariance estimate

γ̂sh,k =
1

M

M−k∑
m=1

(η
[m,s]
h − ηh)(η[m+k,s]

h − ηh) (2.27)

Here M the length of the sample (after discarding 10% of the run as burn-in) and η
[m,s]
h

the m-th value of ηh in the s-th sample. We take ηh to be the grand mean of ηh over all

five samples (each of these samples has length M). We do this because it allows us to

detect if the Markov chain explores different regions of the parameter and latent variable

space for different random number generator seeds. (When the mean from one or more

of the five samples differs substantially from the grand mean, autocovariance estimates

will be much higher.)

We then estimate γh,k by averaging autocovariance estimates from the five samples

γ̂h,k =
1

5

5∑
s=1

γ̂sh,k (2.28)

and we estimate ρh,k for k = 1, . . . , Kh with γ̂h,k/γ̂h,0. (In practice, for long runs, it is much

more efficient to use the fast Fourier transform (FFT) to compute the autocovariance

estimates.) Table 2.5 shows the estimated autocorrelation times for different sampling

schemes. To compare the methods fairly, we multiply each autocorrelation time by the

average time per iteration.

From Table 2.5, we see that using just the shift, or just a scale update (either a range

or a rate scale update) improves performance for sampling parameters that are changed

by one of these updates. For a scheme which uses all updates, the greatest improvement

in performance for sampling η3 is in the case of frequent arrivals (efficiency gain of 179

times), while perfomance improvement when sampling η1 and η2 is greatest in the case

Chapter 2. Queueing Model 20

of rare arrivals (efficiency gains of 58 and 61 times). In other cases, performance neither

increases nor decreases significantly. These results are in approximate agreement with

the estimates of the standard errors of the posterior mean estimates in Table 2.4.

In an additional run (not used to compute the autocorrelation times shown here) of

the basic plus rate scheme, for the rare arrivals scenario, we found that the sampler got

stuck for a while in a region of the parameter space. The basic and basic + shift methods

(when initialized to a state from this “stuck” region) also stayed in this “stuck” region

for a while before visting other regions. The basic plus range and basic plus all methods,

when initialized with the stuck state, quickly returned to sampling other regions. So,

autocorrelation time estimates for the rare arrivals scenario, for methods other than

basic plus all and basic plus rate, probably underestimate actual autocorrelation times.

We illustrate the performance of the samplers with trace plots in Figures 2.2, 2.3, and

2.4. To produce these figures, we ran the samplers for an equal amount of computation

time and thinned each run to 4, 000 points. The black line on each plot is the true

parameter value.

In the case of frequent arrivals, the marginal posterior of η3 is diffuse but concentrated

given all vi and the data, so simultaneously updating all vi and η3 makes sampling more

efficient. In the case of rare arrivals, the marginal posteriors of both η1 and η2 are diffuse,

while they are concentrated given all vi and the data. Simultaneously updating all vi

and either η1 or η2 then leads to a noticeable gain in efficiency. In the other cases, the

data is more informative about the parameters, so additional knowledge of the latent

variables does not change the concentration of the posterior by as much. As a result,

sampling efficiency is not affected as significantly by changing the latent variables and

the parameters simultaneously.

2.4 Conclusion

In this chapter, we have shown how Bayesian inference with MCMC can be performed

for the M/G/1 queueing model. As mentioned earlier, Fearnhead and Prangle (2010)

used ABC for inference in the M/G/1 queueing model. Fearnhead and Prangle (2010)

also used ABC for inference in the Ricker model of population dynamics, in which we

assume that a population process is observed with Poisson noise.

The basis of all ABC methods is the ability to simulate observations from a given

stochastic model. The simulation process for a set of observations is always driven by a

latent process of sampling and transforming certain random variables. The distributions

of these random variables then determine the distribution of the final observed quantities.

Chapter 2. Queueing Model 21

0 195,000 390,000 585,000 780,000
6

6.5

7

7.5

8

8.5

9

Iteration

(a) η1, Basic scheme.

0 50,000 100,000 150,000 200,000
6

6.5

7

7.5

8

8.5

9

Iteration

(b) η1, Basic + all.

0 195,000 390,000 585,000 780,000
7

7.5

8

8.5

9

9.5

10

Iteration

(c) η2, Basic scheme.

0 50,000 100,000 150,000 200,000
7

7.5

8

8.5

9

9.5

10

Iteration

(d) η2, Basic + all.

0 195,000 390,000 585,000 780,000
−2.5

−2

−1.5

−1

Iteration

(e) η3, Basic scheme.

0 50,000 100,000 150,000 200,000
−2.5

−2

−1.5

−1

Iteration

(f) η3, Basic + all.

Figure 2.2: Comparison of performance for frequent arrivals.

Chapter 2. Queueing Model 22

0 45,000 90,000 135,000 180,000
3

3.5

4

4.5

Iteration

(a) η1, Basic scheme.

0 25,000 50,000 75,000 100,000
3

3.5

4

4.5

Iteration

(b) η1, Basic + all.

0 45,000 90,000 135,000 180,000
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

Iteration

(c) η2, Basic scheme.

0 25,000 50,000 75,000 100,000
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

Iteration

(d) η2, Basic + all.

0 45,000 90,000 135,000 180,000
−2.5

−2

−1.5

−1

Iteration

(e) η3, Basic scheme.

0 25,000 50,000 75,000 100,000
−2.5

−2

−1.5

−1

Iteration

(f) η3, Basic + all.

Figure 2.3: Comparison of performance for intermediate case.

Chapter 2. Queueing Model 23

0 45,000 90,000 135,000 180,000
−1

−0.5

0

0.5

1

1.5

2

2.5

3

Iteration

(a) η1, Basic scheme.

0 25,000 50,000 75,000 100,000
−1

−0.5

0

0.5

1

1.5

2

2.5

3

Iteration

(b) η1, Basic + all.

0 45,000 90,000 135,000 180,000
−2

0

2

4

6

8

10

12

Iteration

(c) η2, Basic scheme.

0 25,000 50,000 75,000 100,000
−2

0

2

4

6

8

10

12

Iteration

(d) η2, Basic + all.

0 45,000 90,000 135,000 180,000
−5

−4.9

−4.8

−4.7

−4.6

−4.5

−4.4

−4.3

−4.2

−4.1

−4

Iteration

(e) η3, Basic scheme.

0 25,000 50,000 75,000 100,000
−5

−4.9

−4.8

−4.7

−4.6

−4.5

−4.4

−4.3

−4.2

−4.1

−4

Iteration

(f) η3, Basic + all.

Figure 2.4: Comparison of performance for rare arrivals.

Chapter 2. Queueing Model 24

If we consider the latent variables which drive the simulation process jointly with the

observations, then we can think of the observations as coming from a model with some

latent structrure. These latent variables and the observed data will sometimes have a

tractable joint density, which makes doing Bayesian inference with MCMC possible, at

least in principle.

In the next chapter, we use the same approach as in this chapter to do Bayesian

inference for the Ricker model, i.e. including additional latent variables in the MCMC

state and sampling for them as well as model parameters. We compared a basic MCMC

scheme with several “ensemble MCMC” schemes for Bayesian inference in the Ricker

model, and showed that using the ensemble schemes leads to a significant improvement

in efficiency when compared to the basic MCMC scheme. Like for the M/G/1 queueing

model, we have shown that Bayesian inference with MCMC is possible for the Ricker

model, but requires more sophisticated MCMC methods for sampling to be efficient.

It would be interesting to apply alternative inference methods for models with a time

series structure to the M/G/1 queue, for example Particle Filters and Particle Markov

Chain Monte Carlo (PMCMC) (Andrieu, Doucet, and Holenstein (2010)).

As mentioned earlier, it should be possible to extend the MCMC method in this chap-

ter to service time distributions other than the Uniform one used in this chapter. The

most direct extension would be to consider location-scale service time distributions. Be-

sides the simple Metropolis updates, we can then do additional updates for the location

parameter (or some 1-to-1 function of it) using a shift update and additional updates for

the scale parameter (or some 1-to-1 function of it) using a range scale update. Computa-

tion would not be impacted so long as (2.14) can be written in terms of low-dimensional

sufficient statistics.

Chapter 3

Ensemble MCMC for State Space

Models

Non-linear state space models are a widely-used class of models for biological, economic,

and physical processes. Fitting these models to observed data is a difficult inference

problem that has no straightforward solution. We take a Bayesian approach to the

inference of unknown parameters of a non-linear state space model. One way of perform-

ing Bayesian computations for such models is via Markov Chain Monte Carlo (MCMC)

sampling methods for the latent (hidden) variables and model parameters. Using the

ensemble technique of Neal (2010) and the embedded HMM technique of Neal (2003),

we introduce a new Markov Chain Monte Carlo method for non-linear state space mod-

els. The key idea is to perform parameter updates conditional on an enormously large

ensemble of latent sequences, as opposed to a single sequence, as with existing methods.

We look at the performance of this ensemble method when doing Bayesian inference in

the Ricker model of population dynamics. We show that for this problem, the ensemble

method is vastly more efficient than a simple Metropolis method, as well as 1.9 to 12.0

times more efficient than a single-sequence embedded HMM method, when all methods

are tuned appropriately. We also introduce a way of speeding up the ensemble method by

performing partial backward passes to discard poor proposals at low computational cost,

resulting in a final efficiency gain of 3.4 to 20.4 times over the single-sequence method.1

1Material in this chapter was first presented in Shestopaloff and Neal (2013a).

25

Chapter 3. Ensemble MCMC for State Space Models 26

3.1 Introduction

Consider an observed sequence z1, . . . , zN . In a state space model for Z1, . . . , ZN , the dis-

tribution of the Zi’s is defined using a latent (hidden) Markov process X1, . . . , XN . We

can describe such a model in terms of a distribution for the first hidden state, p(x1), tran-

sition probabilities between hidden states, p(xi|xi−1), and emission probabilities, p(zi|xi),
with these distributions dependent on some unknown parameters θ.

While the state space model framework is very general, only two state space mod-

els, Hidden Markov Models (HMM’s) and linear Gaussian models have efficient, exact

inference algorithms. The forward-backward algorithm for HMM’s and the Kalman filter

for linear Gaussian models allow us to perform efficient inference of the latent process,

which in turn allows us to perform efficient parameter inference, using an algorithm such

as Expectation-Maximizaton for maximum likelihood inference, or various MCMC meth-

ods for Bayesian inference. No such exact and efficient algorithms exist for models with

a continuous state space with non-linear state dynamics, non-Gaussian transition distri-

butions, or non-Gaussian emission distributions, such as the Ricker model we consider

later in this chapter.

In cases where we can write down a likelihood function for the model parameters

conditional on latent and observed variables, it is possible to perform Bayesian inference

for the parameters and the latent variables by making use of sampling methods such

as MCMC. For example, one can perform inference for the latent variables and the

parameters by alternately updating them according to their joint posterior.

Sampling of the latent state sequence x = (x1, . . . , xN) is difficult for state space

models when the state space process has strong dependencies — for example, when the

transitions between states are nearly deterministic. To see why, suppose we sample from

π(x1, . . . , xN |z1, . . . , zN) using Gibbs sampling, which samples the latent variables one

at a time, conditional on values of other latent variables, the observed data, and the

model parameters. In the presence of strong dependencies within the state sequence, the

conditional distribution of a latent variable will be highly concentrated, and we will only

be able to change it slightly at each variable update, even when the marginal distribution

of this latent variable, given z1, . . . , zN , is relatively diffuse. Consequently, exploration of

the space of latent sequences will be slow.

The embedded HMM method of (Neal (2003), Neal, et al. (2004)) addresses this

problem by updating the entire latent sequence at once. The idea is to temporarily

reduce the state space of the model, which may be countably infinite or continuous,

to a finite collection of randomly generated “pool” states at each time point. If the

Chapter 3. Ensemble MCMC for State Space Models 27

transitions between states are Markov, this reduced model is an HMM, for which we

can use the forward-backward algorithm to efficiently sample a sequence with values in

the pools at each time point. Pool states are chosen from a distribution that assigns

positive probability to all possible state values, allowing us to explore the entire space

of latent sequences in accordance with their exact distribution. Neal (2003) showed

that when there are strong dependencies in the state sequence, the embedded HMM

method performs better than conventional Metropolis methods at sampling latent state

sequences.

In this chapter, we first look at an MCMC method which combines embedded HMM

updates of the hidden state sequence with random-walk Metropolis updates of the pa-

rameters. We call this method the ‘single-sequence’ method. We next reformulate the

embedded HMM method as an ensemble MCMC method. Ensemble MCMC allows mul-

tiple candidate points to be considered simultaneously when a proposal is made. This

allows us to consider an extension of the embedded HMM method for inference of the

model parameters when they are unknown. We refer to this extension as the ensemble

embedded HMM method. We then introduce and describe a “staged” method, which

makes ensemble MCMC more efficient by rejecting poor proposals at low computational

cost after looking at a part of the observed sequence. We use the single-sequence, en-

semble, and ensemble with staging methods to perform Bayesian inference in the Ricker

model of population dynamics, comparing the performance of these new methods to each

other, and to a simple Metropolis sampler.

3.2 Ensemble MCMC

We first describe Ensemble MCMC, introduced by Neal (2010) as a general MCMC

method, before describing its application to inference in state space models. Ensemble

MCMC has some relationships with the multiple-try Metropolis sampler of Liu, Liang

and Wong (2000) and the multiset sampler of Leman, Chen and Lavine (2009). For a

detailed discussion, see Neal (2010).

Ensemble MCMC is based on the framework of MCMC using a temporary mapping.

Suppose we want to sample from a distribution π on X . This can be done using a Markov

chain with transition probablity from x to x′ given by T (x′|x), for which π is an invariant

distribution — that is, T must satisfy
∫
π(x)T (x′|x)dx = π(x′). The temporary mapping

strategy defines T as a composition of three stochastic mappings. The current state x

is stochastically mapped to a state y ∈ Y using the mapping T̂ (y|x). Here, the space

Y need not be the same as the space X . The state y is then updated to y′ using the

Chapter 3. Ensemble MCMC for State Space Models 28

mapping T̄ (y′|y), and finally a state x′ is obtained using the mapping Ť (x′|y′). In this

approach, we may choose whatever mappings we want, so long as the overall transition

T leaves π invariant. In particular, if ρ is a density for y, T will leave π invariant if the

following conditions hold. ∫
π(x)T̂ (y|x)dx = ρ(y) (3.1)∫
ρ(y)T̄ (y′|y)dy = ρ(y′) (3.2)∫
ρ(y′)Ť (x′|y′)dy′ = π(x′) (3.3)

In the ensemble method, we take Y = XK , with y = (x(1), . . . , x(K)) referred to as

an “ensemble”, with K being the number of ensemble elements. The three mappings

are then constructed as follows. Consider an “ensemble base measure” over ensembles

(x(1), . . . , x(K)) with density ζ(x(1), . . . , x(K)), and with marginal densities ζk(x
(k)) for

each of the k = 1, . . . , K ensemble elements. We define T̂ as

T̂ (x(1), . . . , x(K)|x) =
1

K

K∑
k=1

ζ−k|k(x
(−k)|x)δx(x

(k)) (3.4)

Here, δx is a distribution that places a point mass at x, x(−k) is all of x(1), . . . , x(K)

except x(k), and ζ−k|k(x
(−k)|x(k)) = ζ(x(1), . . . , x(K))/ζk(x

(k)) is the conditional density of

all ensemble elements except the k-th, given the value x(k) for the k-th.

This mapping can be interpreted as follows. First, we select an integer k, from a

uniform distribution on {1, . . . , K}. Then, we set the ensemble element x(k) to x, the

current state. Finally, we generate the remaining elements of the ensemble using the

conditional density ζ−k|k.

The ensemble density ρ is determined by π and T̂ , and is given explicitly as

ρ(x(1), . . . , x(K)) =

∫
π(x)T̂ (x(1), . . . , x(K)|x)dx

= ζ(x(1), . . . , x(K))
1

K

K∑
k=1

π(x(k))

ζk(x(k))
(3.5)

T̄ can be any update (or sequence of updates) that leaves ρ invariant. For example,

T̄ could be a Metropolis update for y, with a proposal drawn from some symmetrical

proposal density. Finally, Ť maps from y′ to x′ by randomly setting x′ to x(k) with k

chosen from {1, . . . , K} with probabilities proportional to π(x(k))/ζk(x
(k)).

Chapter 3. Ensemble MCMC for State Space Models 29

The mappings described above satisfy the necessary properties to make them a valid

update, in the sense of preserving the stationary distribution π. The proof can be found

in Neal (2010).

3.3 Embedded HMM MCMC as an

ensemble MCMC method

The embedded HMM method briefly described in the introduction was not initially in-

troduced as an ensemble MCMC method, but it can be reformulated as one. We assume

here that we are interested in sampling from the posterior distribution of the state se-

quences, π(x1, . . . , xN |z1, . . . , zN), when the parameters of the model are known. Suppose

the current state sequence is x = (x1, . . . , xN). We want to update this state sequence in

a way that leaves π invariant.

The first step of the embedded HMM method is to temporarily reduce the state space

to a finite number of possible states at each time, turning our model into an HMM. This

is done by, for each time i, generating a set of L “pool” states, Pi = {x[1]i , . . . , x
[L]
i }, as

follows. We first set the pool state x
[1]
i to xi, the value of the current state sequence at time

i. The remaining L−1 pool states x
[l]
i , for l > 1 are generated by sampling independently

from some pool distribution with density κi. The collections of pool states at different

times are selected independently of each other. The total number of sequences we can

then construct using these pool states, by choosing one state from the pool at each time,

is K = LN .

The second step of the embedded HMM method is to choose a state sequence com-

posed of pool states, with the probability of such a state sequence, x, being proportional

to

q(x|z1, . . . , zN) ∝ p(x1)
N∏
i=2

p(xi|xi−1)
N∏
i=1

[
p(zi|xi)
κi(xi)

]
(3.6)

We can define γ(zi|xi) = p(zi|xi)/κi(xi), and rewrite (3.6) as

q(x|z1, . . . , zN) ∝ p(x1)
N∏
i=2

p(xi|xi−1)
N∏
i=1

γ(zi|xi) (3.7)

We now note that the distribution (3.7) takes the same form as the distribution over

hidden state sequences for an HMM in which each xi ∈ Pi — the initial state distribution

is proportional to p(x1), the transition probabilities are proportional to p(xi|xi−1), and

the γ(zi|xi) have the same role as emission probabilities. This allows us to use the well-

Chapter 3. Ensemble MCMC for State Space Models 30

���
���
���
���

���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

Time

State

Figure 3.1: An illustration of the ensemble of latent sequences for N = 4 and L = 3.

known forward-backward algorithms for HMM’s (reviewed by Scott (2002)) to efficiently

sample hidden state sequences composed of pool states. To sample a sequence with the

embedded HMM method, we first compute the “forward” probabilities. Then, using a

stochastic “backwards” pass, we select a state sequence composed of pool states. (We can

alternately compute backward probabilities and then do a stochastic forward pass). We

emphasize that having an efficient algorithm to sample state sequences is crucial for the

embedded HMM method. The number of possible sequences we can compose from the

pool states, LN , can be very large, and so naive sampling methods would be impractical.

An illustration of the ensemble of state sequences passing through the chosen pool states

is shown in Figure 3.1, with the current sequence denoted by the solid line.

In detail, for xi ∈ Pi, the forward probabilities αi(xi) are computed using a recur-

sion that goes forward in time, starting from i = 1. We start by computing α1(x1) =

p(x1)γ(z1|x1). Then, for 1 < i ≤ N , the forward probabilities αi(xi) are given by the

recursion

αi(xi) = γ(zi|xi)
L∑
l=1

p(xi|x[l]i−1)αi−1(x
[l]
i−1), for x ∈ Pi (3.8)

The stochastic backwards recursion samples a state sequence, one state at a time, begin-

ning with the state at time N . First, we sample xN from the pool PN with probabilities

proportional to αN(xN). Then, going backwards in time for i from N−1 to 1, we sample

xi from the pool Pi with probabilities proportional to p(xi+1|xi)αi(xi), where xi+1 is the

variable just sampled at time i+ 1. Both of these recursions are commonly implemented

using logarithms of probabilities to avoid numerical underflow.

The idea that the embedded HMM method is an example of an ensemble MCMC

Chapter 3. Ensemble MCMC for State Space Models 31

method was first mentioned in (Neal (2010)). In detail, the relationship is as follows.

The step of choosing the pool states can be thought of as performing a mapping T̂ which

takes a single hidden state sequence x and maps it to an ensemble of K state sequences

y = (x(1), . . . , x(K)), with x = x(k) for some k chosen uniformly from {1, . . . , K}. (How-

ever, we note that in this context, the order in the ensemble does not matter.)

Since the randomly chosen pool states are independent under κi at each time, and

across time as well, the density of an ensemble of hidden state sequences in the ensemble

base measure, ζ, is defined through a product of κi(x
[l]
i)’s over the pool states and over

time, and is non-zero for ensembles consisting of all sequences composed from the chosen

set of pool states. The corresponding marginal density of a hidden state sequence x(k) in

the ensemble base measure is

ζk(x
(k)) =

N∏
i=1

κi(x
(k)
i) (3.9)

Together, ζ and ζk define the conditional distribution ζ−k|k, which is used to define T̂ .

The mapping T̄ is taken to be a null mapping that keeps the ensemble fixed at its

current value, and the mapping Ť to a single state sequence is performed by selecting a

sequence x(k) from the ensemble with probabilities given by (3.7), in the same way as in

the embedded HMM method.

3.4 The single-sequence embedded HMM MCMC

method

Let us assume that the parameters θ of our model are unknown, and that we want to

sample from the joint posterior distribution of state sequences x = (x1, . . . , xN) and

parameters θ = (θ1, . . . , θP), with density π(x, θ|z1, . . . , zN). One way of doing this is by

alternating embedded HMM updates of the state sequence with Metropolis updates of

the parameters. Doing updates in this manner makes use of an ensemble to sample state

sequences more efficiently in the presence of strong dependencies. However, this method

only takes into account a single hidden state sequence when updating the parameters.

The update for the sequence is identical to that in the embedded HMM method, with

initial, transition and emission densities dependent on the current value of θ. In our

case, we only consider simple random-walk Metropolis updates for θ, updating all of the

variables simultaneously.

Chapter 3. Ensemble MCMC for State Space Models 32

Evaluating the likelihood conditional on x and z, as needed for Metropolis parameter

updates, is computationally inexpensive relative to updates of the state sequence, which

take time proportional to L2. It may be beneficial to perform several Metropolis parame-

ter updates for every update of the state sequence, since this will not greatly increase the

overall computational cost, and allows us to obtain samples with lower autocorrelation

time.

3.5 An ensemble extension of the embedded HMM

method

When performing parameter updates, we can look at all possible state sequences com-

posed of pool states by using an ensemble ((x(1), θ), . . . , (x(K), θ)) that includes a param-

eter value θ, the same for each element of the ensemble. The update T̄ could change

both θ and x(k), but in the method we will consider here, we only change θ.

To see why updating θ with an ensemble of sequences might be more efficient than

updating θ given a single sequence, consider a Metropolis proposal in ensemble space,

which proposes to change θ for all of the ensemble elements, from θ to θ∗. Such an update

can be accepted whenever there are some elements (x(k), θ∗) in the proposed ensemble

that make the ensemble density ρ((x(1), θ∗), . . . , (x(K), θ∗)) relatively large. That is, it

is possible to accept a move in ensemble space with a high probability as long as some

elements of the proposed ensemble, with the new θ∗, lie in a region of high posterior

density. This is at least as likely to happen as having a proposed θ∗ together with a

single state sequence x lie in a region of high posterior density.

Using ensembles makes sense when the ensemble density ρ can be computed in an

efficient manner, in less than K times as long as it takes to compute p(x, θ|z1, . . . , zN) for

a single hidden state sequence x. Otherwise, one could make K independent proposals

to change x, which would have approximately the same computational cost as a single

ensemble update, and likely be a more efficient way to sample x. In the application here,

K = LN is enormous for typical values of N when L ≥ 2, while computation of ρ takes

time proportional only to NL2.

In detail, to compute the ensemble density, we need to sum q(x(k), θ|z1, . . . , zN) over

all ensemble elements (x(k), θ), that is, over all hidden sequences which are composed of

the pool states at each time. The forward algorithm described above makes it possible

to compute the ensemble density efficiently by summing the probabilities at the end of

Chapter 3. Ensemble MCMC for State Space Models 33

the forward recursion αN(xN) over all xN ∈ PN . That is

ρ((x(1), θ), . . . , (x(K), θ)) ∝ π(θ)
K∑
k=1

q(x(k), θ|z1, . . . , zN) = π(θ)
L∑
l=1

αN(x
[l]
N) (3.10)

where π(θ) is the prior density of θ.

The ensemble extension of the embedded HMM method can be thought of as using

an approximation to the marginal posterior of θ when updating θ, since summing the

posterior density over a large collection of hidden sequences approximates integrating over

all such sequences. Larger updates of θ may be possible with an ensemble because the

marginal posterior of θ, given the data, is more diffuse than the conditional distribution

of θ given a fixed state sequence and the data. Note that since the ensemble of sequences

is periodically changed, when new pool states are chosen, the ensemble method is a

proper MCMC method that converges to the exact joint posterior, even though the set

of sequences using pool states is restricted at each MCMC iteration.

The ensemble method is more computationally expensive than the single-sequence

method — it requires two forward passes to evaluate the ensemble density for two values

of θ and one backward pass to sample a hidden state sequence, whereas the single-

sequence method requires only a single forward pass to compute the probabilities for

every sequence in our ensemble, and a single backward pass to select a sequence.

Some of this additional computational cost can be offset by reusing the same pool

states to do multiple updates of θ. Once we have chosen a collection of pool states, and

performed a forward pass to compute the ensemble density at the current value of θ, we

can remember it. Proposing an update of θ to θ∗ requires us to compute the ensemble

density at θ∗ using a forward pass. Now, if this proposal is rejected, we can reuse the

stored value of the ensemble density at θ when we make another proposal using the same

collection of pool states. If this proposal is accepted, we can remember the ensemble

density at the accepted value. Keeping the pool fixed, and saving the current value of

the ensemble density therefore allows us to perform M ensemble updates with M + 1

forward passes, as opposed to 2M if we used a new pool for each update.

With a large number of pool states, reusing the pool states for two or more updates

has only a small impact on performance, since with any large collection of pool states

we essentially integrate over the state space. However, pool states must still be updated

occasionally, to ensure that the method samples from the exact joint posterior.

Chapter 3. Ensemble MCMC for State Space Models 34

3.6 Staged ensemble MCMC sampling

Having to compute the ensemble density given the entire observed sequence for every

proposal, even those that are obviously poor, is a source of inefficiency in the ensemble

method. If poor proposals can be eliminated at a low computational cost, the ensemble

method could be made more efficient. We could then afford to make our proposals

larger, accepting occasional large proposals while rejecting others at little cost. This is

an example of a “delayed acceptance” technique (Christen and Fox (2005)).

We propose to do this by performing “staged” updates. First, we choose a part of

the observed sequence that we believe is representative of the whole sequence. Then, we

propose to update θ to a θ∗ found using an ensemble update that only uses the part of the

sequence we have chosen. If the proposal found by this “first stage” update is accepted,

we perform a “second stage” ensemble update given the entire sequence, with θ∗ as the

proposal. If the proposal at the first stage is rejected, we do not perform a second stage

update, and add the current value of θ to our sequence of sampled values. This can be

viewed as a second stage update where the proposal is the current state — to do such an

update, no computations need be performed.

Suppose that ρ1 is the ensemble density given the chosen part of the observed se-

quence, and q(θ∗|θ) is the proposal density for constructing the first stage update. Then

the acceptance probability for the first stage update is given by

min

(
1,
ρ1((x

(1), θ∗), . . . , (x(K), θ∗))q(θ|θ∗)
ρ1((x(1), θ), . . . , (x(K), θ))q(θ∗|θ)

)
(3.11)

If ρ is the ensemble density given the entire sequence, the acceptance probability for the

second stage update is given by

min

(
1,

ρ((x(1), θ∗), . . . , (x(K), θ∗)) min

(
1, ρ1((x(1),θ),...,(x(K),θ))q(θ∗|θ)

ρ1((x(1),θ∗),...,(x(K),θ∗))q(θ|θ∗)

)
ρ((x(1), θ), . . . , (x(K), θ)) min

(
1, ρ1((x

(1),θ∗),...,(x(K),θ∗))q(θ|θ∗)
ρ1((x(1),θ),...,(x(K),θ))q(θ∗|θ)

))
(3.12)

Regardless of whether ρ1((x
(1), θ∗), . . . , (x(K), θ∗))q(θ|θ∗) < ρ1((x

(1), θ), . . . , (x(K), θ))q(θ∗|θ)
or vice versa, the above ratio simplifies to

min

(
1,
ρ((x(1), θ∗), . . . , (x(K), θ∗))ρ1((x

(1), θ), . . . , (x(K), θ))q(θ|θ∗)
ρ((x(1), θ), . . . , (x(K), θ))ρ1((x(1), θ∗), . . . , (x(K), θ∗))q(θ∗|θ)

)
(3.13)

Choosing a part of the observed sequence for the first stage update can be aided by looking

Chapter 3. Ensemble MCMC for State Space Models 35

at the acceptance rates at the first and second stages. We need the moves accepted at the

first stage to also be accepted at a sufficiently high rate at the second stage, but we want

the acceptance rate at the first stage to be low so the method will have an advantage over

the ensemble method in terms of computational efficiency. We can also look at the ‘false

negatives’ for diagnostic purposes, that is, how many proposals rejected at the first step

would have been accepted had we looked at the entire sequence when deciding whether

to accept.

We are free to select any portion of the observed sequence to use for the first stage.

We will look here at using a partial sequence for the first stage consisting of observations

starting at n1 and going until the end, at time N . This is appropriate for our example

later in the paper, where we only have observations past a certain point in time.

For this scenario, to perform a first stage update, we need to perform a backward

pass. As we perform a backward pass to do the first stage proposal, we save the vector

of “backward” probabilities. Then, if the first stage update is accepted, we start the

recursion for the full sequence using these saved backward probabilities, and compute

the ensemble density given the entire sequence, avoiding recomputation of backward

probabilities for the portion of the sequence used for the first stage.

To compute the backward probabilities βi(xi), we perform a backward recursion,

starting at time N . We first set βN(xN) to 1 for all xN ∈ PN . We then compute, for

n1 ≤ i < N

βi(xi) =
L∑
l=1

p(x
[l]
i+1|xi)βi+1(x

[l]
i+1)γ(zi+1|x[l]i+1) (3.14)

We compute the first stage ensemble density ρ1 as follows

ρ1((x
(1), θ), . . . , (x(K), θ)) = π(θ)

L∑
l=1

p(x[l]n1
)p(yn1|x[l]n1

)βn1(x
[l]
n1

) (3.15)

We do not know p(xn1), but we can choose a substitute for it (which affects only perfor-

mance, not correctness). One possibility is a uniform distrubution over the pool states

at n1, which is what we will use in our example below.

The ensemble density for the full sequence can be obtained by performing the back-

ward recursion up to the beginning of the sequence, and then computing

ρ((x(1), θ), . . . , (x(K), θ)) = π(θ)
L∑
l=1

p(x
[l]
1)p(y1|x[l]1)β1(x

[l]
1) (3.16)

To see how much computation time is saved with staged updates, we measure com-

Chapter 3. Ensemble MCMC for State Space Models 36

putation time in terms of the time it takes to do a backward (or equivalently, forward)

pass — generally, the most computationally expensive operation in ensemble MCMC —

counting a backward pass to time n1 as a partial backward pass.

Let us suppose that the acceptance rate for stage 1 updates is a1. An ensemble update

that uses the full sequence requires us to perform two backwards passes if we update the

pool at every iteration, whereas a staged ensemble update will require us to perform

1 +
N − n1

N − 1
+ a1

n1 − 1

N − 1
(3.17)

backward passes on average (counting a pass back only to n1 as (N−n1)/(N−1) passes).

The first term in the above formula represents the full backward pass for the initial value

of θ that is always needed — either for a second stage update, or for mapping to a new set

of pool states. The second term represents the partial backward pass we need to perform

to complete the first stage proposal. The third term accounts for having to compute the

remainder of a backwards pass if we accept the first stage proposal — hence it is weighted

by the first stage acceptance rate.

We can again save computation time by updating the pool less frequently. Suppose

we decide to update the pool every M iterations. Without staging, the ensemble method

would require a total of M + 1 forward (or equivalently, backward) passes. With staged

updates, the expected number of backward passes we would need to perform is

1 +M
N − n1

N − 1
+Ma1

n1 − 1

N − 1
(3.18)

as can be seen by generalizing the expression above to M > 1.

3.7 Constructing pools of states

An important aspect of these embedded HMM methods is the selection of pool states

at each time, which determines the mapping T̂ from a single state sequence to an en-

semble. In this chapter, we will only consider sampling pool states independently from

some distribution with density κi (though dependent pool states are considered in (Neal,

2003)).

One choice of κi is the conditional density of xi given zi, based on some pseudo-prior

distribution η for xi — that is, κi(xi) ∝ η(xi)p(zi|xi). This distribution approximates,

to some extent, the marginal posterior of xi given all observations. We hope that such

a pool distribution will produce sequences in our ensemble which have a high posterior

Chapter 3. Ensemble MCMC for State Space Models 37

density, and as a result make sampling more efficient.

To motivate how we might go about choosing η, consider the following. Suppose we

sample values of θ from the model prior, and then sample hidden state sequences, given

the sampled values of θ. We can then think of η as a distribution that is consistent with

this distribution of hidden state sequences, which is in turn consistent with the model

prior. In this chapter, we choose η heuristically, setting it to what we believe to be

reasonable, and not in violation of the model prior.

Note that the choice of η affects only sampling efficiency, not correctness (as long as

it is non-zero for all possible xi). However, when we choose pool states in the ensemble

method, we cannot use current values of θ, since this would make an ensemble update

non-reversible. This restriction does not apply to the single-sequence method since in

this case T̄ is null.

3.8 Performance comparisons on a

population dynamics model

We test the performance of the proposed methods on the Ricker population dynamics

model, described by Wood (2003). This model assumes that a population of size Ni

(modeled as a real number) evolves as Ni+1 = rNi exp(−Ni + ei), with ei independent

with a Normal(0, σ2) distribution, with N0 = 1. We don’t observe this process directly,

but rather we observe Yi’s whose distribution is Poisson(φNi). The goal is to infer

θ = (r, σ, φ). This is considered to be a fairly complex inference scenario, as evidenced by

the application of recently developed inference methods such as Approximate Bayesian

Computation (ABC) to this model. (See Fearnhead, Prangle (2012) for more on the ABC

approach.) This model can be viewed as a non-linear state space model, with Ni as our

state variable.

MCMC inference in this model can be inefficient for two reasons. First, when the value

of σ2 in the current MCMC iteration is small, consecutive Ni’s are highly dependent, so

the distribution of each Ni, conditional on the remaining Ni’s and the data, is highly

concentrated, making it hard to efficiently sample state sequences one state at a time.

An MCMC method based on embedding an HMM into the state space, either the single-

sequence method or the ensemble method, can potentially make state sequence sampling

more efficient, by sampling whole sequences at once. The second reason is that the

distribution of θ, given a single sequence of Ni’s and the data, can be concentrated

as well, so we may not be able to efficiently explore the posterior distribution of θ by

Chapter 3. Ensemble MCMC for State Space Models 38

alternately sampling θ and the Ni’s. By considering an ensemble of sequences, we may be

able to propose and accept larger changes to θ. This is because the posterior distribution

of θ summed over an ensemble of state sequences is less concentrated than it is given a

single sequence.

To test our MCMC methods, we consider a scenario similar to those considered by

Wood (2010) and Fearnhead and Prangle (2012). The parameters of the Ricker model we

use are r = exp(3.8), σ = 0.15, φ = 2. We generated 100 points from the Ricker model,

with yi only observed from time 51 on, mimicking a situation where we do not observe a

population right from its inception.

We put a Uniform(0, 10) prior on log(r), a Uniform(0, 100) prior on φ, and we put a

Uniform[log(0.1), 0] prior on log(σ). Instead of Ni, we use Mi = log(φNi) as our state

variables, since we found that doing this makes MCMC sampling more efficient. With

these state variables, our model can be written as

M1 ∼ N(log(r) + log(φ)− 1, σ2) (3.19)

Mi|Mi−1 ∼ N(log(r) +Mi−1 − exp(Mi−1)/φ, σ
2), i = 2, . . . , 100 (3.20)

Yi|Mi ∼ Poisson(exp(Mi)), i = 51, . . . , 100 (3.21)

Furthermore, the MCMC state uses the logarithms of the parameters, (log(r), log(σ), log(φ)).

For parameter updates in the MCMC methods compared below, we used independent

normal proposals for each parameter, centered at the current parameter values, proposing

updates to all parameters at once. To choose appropriate proposal standard deviations,

we did a number of runs of the single sequence and the ensemble methods, and used

these trial runs to estimate the marginal standard deviations of the logarithm of each

parameter. We got standard deviation estimates of 0.14 for log(r), 0.36 for log(σ), and

0.065 for log(φ). We then scaled each estimated marginal standard deviation by the

same factor, and used the scaled estimates as the proposal standard deviations for the

corresponding parameters. The maximum scaling we used was 2, since beyond this our

proposals would often lie outside the high probability region of the marginal posterior

density.

We first tried a simple Metropolis sampler on this problem. This sampler updates the

latent states one at a time, using Metropolis updates to sample from the full conditional

Chapter 3. Ensemble MCMC for State Space Models 39

density of each state Mi, given by

p(m1|y51, . . . , y100,m−1) ∝ p(m1)p(m2|m1) (3.22)

p(mi|y51, . . . , y100,m−i) ∝ p(mi|mi−1)p(mi+1|mi), 2 ≤ i ≤ 50 (3.23)

p(mi|y51, . . . , y100,m−i) ∝ p(mi|mi−1)p(yi|mi)p(mi+1|mi), 51 ≤ i ≤ 99 (3.24)

p(m100|y51, . . . , y100,m−100) ∝ p(m100|m99)p(y100|m100) (3.25)

We started the Metropolis sampler with parameters set to prior means, and the hidden

states to randomly chosen values from the pool distributions we used for the embedded

HMM methods below. After we perform a pass over the latent variables, and update

each one in turn, we perform a Metropolis update of the parameters, using a scaling of

0.25 for the proposal density.

The latent states are updated sequentially, starting from 1 and going up to 100. When

updating each latent variable Mi, we use a Normal proposal distribution centered at the

current value of the latent variable, with the following proposal standard deviations.

When we do not observe yi, or yi = 0, we use the current value of σ from the state times

0.5. When we observe yi > 0, we use a proposal standard deviation of 1/
√

1/σ2 + yi (with

σ from the state). This choice can be motivated as follows. An estimate of precision for

Mi given Mi−1 is 1/σ2. Furthermore, Yi is Poisson(φNi), so that Var(φNi) ≈ yi and

Var(log(φNi)) = Var(Mi) ≈ 1/yi. So an estimate for the precision of Mi given yi is yi.

We combine these estimates of precisions to get a proposal standard deviation for the

latent variables in the case when yi > 0.

We ran the Metropolis sampler for 6, 000, 000 iterations from five different starting

points. The acceptance rate for parameter updates was between about 10% and 20%,

depending on the initial starting value. The acceptance rate for latent variable updates

was between 11% and 84%, depending on the run and the particular latent variable being

sampled.

We found that the simple Metropolis sampler does not perform well on this problem.

This is most evident for sampling σ. The Metropolis sampler appears to explore different

regions of the posterior for σ when it is started from different initial hidden state se-

quences. That is, the Metropolis sampler can get stuck in various regions of the posterior

for extended periods of time. An example of the behaviour of the Metropolis sampler be

seen on Figure 3.2. The autocorrelations for the parameters are so high that accurately

estimating them would require a much longer run.

This suggests that more sophisticated MCMC methods are necessary for this problem.

We next looked at the single-sequence method, the ensemble method, and the staged

Chapter 3. Ensemble MCMC for State Space Models 40

0 3,000,000 6,000,000
10

−1

10
0

10
1

10
2

10
3

iteration

r
sigma
phi

Figure 3.2: An example run of the simple Metropolis method.

0 50,000 100,000
10

−1

10
0

10
1

10
2

10
3

iteration

r
sigma
phi

Figure 3.3: An example ensemble method run, with 120 pool states and proposal scaling
1.4.

Chapter 3. Ensemble MCMC for State Space Models 41

ensemble method.

All embedded MCMC-based samplers require us to choose pool states for each time

i. For the i’s where no yi’s are observed, we choose our pool states by sampling values of

exp(Mi) from a pseudo-prior η for the Poisson mean exp(Mi) — a Gamma(k, θ) distribu-

tion with k = 0.15 and θ = 50 — and then taking logarithms of the sampled values. For

the i’s where we observe yi’s we choose our pool states by sampling values of exp(Mi)

from the conditional density of exp(Mi)|yi with η as the pseudo-prior. Since Yi|Mi is

Poisson(exp(Mi)), the conditional density of exp(Mi)|yi has a Gamma(k + yi, θ/(1 + θ))

distribution.

It should be noted that since we choose our pool states by sampling exp(Mi)’s, but

our model is written in terms of Mi, the pool density κi must take this into account. In

particular, when yi is unobserved, we have

κi(mi) =
1

Γ(k)θk
exp(kmi − exp(mi)/θ), −∞ < mi <∞ (3.26)

and when yi is observed we replace k with k+ yi and θ with θ/(1 + θ). We use the same

way of choosing the pool states for all three methods we consider.

The staged ensemble MCMC method also requires us to choose a portion of the

sequence to use for the first stage update. On the basis of several trial runs, we chose to

use the last 20 points, i.e. n1 = 81.

As we mentioned earlier, when likelihood evaluations are computationally inexpensive

relative to sequence updates, we can do multiple parameter updates for each update of

the hidden state sequence, without incurring a large increase in computation time. For

the single-sequence method, we do ten Metropolis updates of the parameters for each

update of the hidden state sequence. For the ensemble method, we do five updates of

the parameters for each update of the ensemble. For staged ensemble MCMC, we do

ten parameter updates for each update of the ensemble. These choices were based on

numerous trial runs.

We thin each of the single-sequence runs by a factor of ten when computing autocor-

relation times — hence the time per iteration for the single-sequence method is the time

it takes to do a single update of the hidden sequence and ten Metropolis updates. We

do not thin the ensemble and staged ensemble runs.

To compare the performance of the embedded HMM methods, and to tune each

method, we looked at the autocorrelation time, τ , of the sequence of parameter samples,

for each parameter. The autocorrelation time can be thought of as the number of samples

we need to draw using our Markov chain to get the equivalent of one independent point

Chapter 3. Ensemble MCMC for State Space Models 42

(Neal (1993)). It is defined as

τ = 1 + 2
∞∑
k=1

ρk (3.27)

where ρk is the autocorrelation at lag k for a function of state that is of interest. Here,

ρ̂k = γ̂k/γ̂0, where γ̂k is the estimated autocovariance at lag k. We estimate each γ̂k by

estimating autocovariances using each of the five runs, using the overall mean from the

five runs, and then averaging the resulting autocovariance estimates. We then estimate

τ by

τ̂ = 1 + 2
K∑
k=1

ρ̂k (3.28)

Here, the truncation point K is where the remaining ρ̂k’s are nearly zero.

For our comparisons to have practical validity, we need to multiply each estimate of

autocorrelation time estimate by the time it takes to perform a single iteration. A method

that produces samples with a lower autocorrelation time is often more computationally

expensive than a method that produces samples with a higher autocorrelation time, and

if the difference in computation time is sufficiently large, the computationally cheaper

method might be more efficient. Computation times per iteration were obtained with a

program written in MATLAB on a Linux system with an Intel Xeon X5680 3.33 GHz

CPU.

For each number of pool states considered, we started the samplers from five different

initial states. Like with the Metropolis method, the parameters were initialized to prior

means, and the hidden sequence was initialized to states randomly chosen from the pool

distribution at each time. When estimating autocorrelations, we discarded the first 10%

of samples of each run as burn-in.

An example ensemble run is shown in Figure 3.3. Comparing with Figure 3.2, one

can see that the ensemble run has an enormously lower autocorrelation time. Auto-

correlation time estimates for the various ensemble methods, along with computation

times, proposal scaling, and acceptance rates, are presented in Table 3.1. For the staged

ensemble method, the acceptance rates are shown for the first stage and second stage.

We also estimated the parameters of the model by averaging estimates of the posterior

means from each of the five runs for the single-sequence method with 40 pool states, the

ensemble method with 120 pool states, and the staged ensemble method with 120 pool

states. The results are presented in Table 3.2. The estimates using the three different

methods do not differ significantly.

From these results, one can see that for our Ricker model example, the single-sequence

method is less efficient than the ensemble method, when both methods are well-tuned and

Chapter 3. Ensemble MCMC for State Space Models 43

Pool Acc. Iter- Time / ACT ACT × time

Method states Scaling Rate ations iteration r σ φ r σ φ

10 400,000 0.09 4345 2362 7272 391 213 654

20 400,000 0.17 779 1875 1849 132 319 314

Single- 40 0.25 12% 200,000 0.31 427 187 1317 132 58 408

sequence 60 200,000 0.47 329 155 879 155 73 413

80 200,000 0.61 294 134 869 179 82 530
40 0.6 13% 100,000 0.23 496 335 897 114 77 206

60 1 11% 100,000 0.34 187 115 167 64 39 57

Ensemble 80 1 16% 100,000 0.47 107 55 90 50 26 42

120 1.4 14% 100,000 0.76 52 41 45 40 31 34

180 1.8 12% 100,000 1.26 35 27 29 44 34 37
40 1 30, 15% 100,000 0.10 692 689 1201 69 69 120

60 1.4 27, 18% 100,000 0.14 291 373 303 41 52 42

Staged 80 1.4 30, 25% 100,000 0.21 187 104 195 39 22 41

Ensemble 120 1.8 25, 29% 100,000 0.29 75 59 70 22 17 20

180 2 23, 32% 100,000 0.45 48 44 52 22 20 23

Table 3.1: Comparison of autocorrelation times.

computation time is taken into account. We also found that the staged ensemble method

allows us to further improve performance of the ensemble method. In detail, depending

on the parameter one looks at, the best tuned ensemble method without staging (with

120 pool states) is between 1.9 and 12.0 times better than the best tuned single-sequence

method (with 40 pool states). The best tuned ensemble method with staging (120 pool

states) is between 3.4 and 20.4 times better than the best single-sequence method.

The large drop in autocorrelation time for σ for the single-sequence method between

20 and 40 pool states is due to poor mixing in one of the five runs. To confirm whether

this is systematic, we did five more runs of the single sequence method, from another

set of starting values, and found that the same problem is again present in one of the

five runs. This is indicative of a risk of poor mixing when using the single-sequence

sampler with a small number of pool states. We did not observe similar problems for

larger numbers of pool states.

The results in Table 3.1 show that performance improvement is greatest for the pa-

rameter φ. One reason for this may be that the posterior distribution of φ given a

sequence is significantly more concentrated than the marginal posterior distribution of

φ. Since for a sufficiently large number of pool states, the posterior distribution given an

ensemble approximates the marginal posterior distribution, the posterior distribution of

Method r σ φ

Single-Sequence 44.46 (± 0.09) 0.2074 (± 0.0012) 1.9921 (± 0.0032)
Ensemble 44.65 (± 0.09) 0.2089 (± 0.0009) 1.9853 (± 0.0013)

Staged Ensemble 44.57 (± 0.04) 0.2089 (± 0.0010) 1.9878 (± 0.0015)

Table 3.2: Estimates of posterior means, with standard errors of posterior means shown
in brackets.

Chapter 3. Ensemble MCMC for State Space Models 44

φ given an ensemble will become relatively more diffuse than the posterior distributions

of r and σ. This leads to a larger relative performance improvement when sampling

values of φ.

Evidence of this can be seen on Figure 3.4. To produce it, we took the hidden state

sequence and parameter values from the end of one of our ensemble runs, and performed

Metropolis updates for the parameters, while keeping the hidden state sequence fixed.

We also took the same hidden state sequence and parameter values, mapped the hidden

sequence to an ensemble of sequences by generating a collection of pool states (we used

120) and peformed Metropolis updates of the parameter part of the ensemble, keeping

the pool states fixed. We drew 50, 000 samples given a single fixed sequence and 2, 000

samples given an ensemble.

Visually, we can see that the posterior of θ given a single sequence is significantly

more concentrated than the marginal posterior, and the posterior given a fixed ensemble

of sequences. Comparing the standard deviations of the posterior of θ given a fixed

sequence, and the marginal posterior of θ, we find that the marginal posterior of φ has a

standard deviation about 21 times larger than the posterior of φ given a single sequence.

The marginal posteriors for r and σ have a posterior standard deviation larger by a

factor of 5.2 and 6.0. The standard deviation of the posterior given our fixed ensemble

of sequences is greater for φ by a factor of 11, and by factors of 4.3 and 3.2 for r and σ.

This is consisent with our explanation above.

We note that the actual timings of the runs are different from what one may expect.

In theory, the computation time should scale as nL2, where L is the number of pool states

and n is the number of observations. However, the implementation we use, in MATLAB,

implements the forward pass as a nested loop over n and over L, with another inner loop

over L vectorized. MATLAB is an interpreted language with slow loops, and vectorizing

20 30 40 50 60 70 80 90
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

r

si
gm

a

20 30 40 50 60 70 80 90
1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

r

ph
i

marginal
fixed ensemble
fixed sequence

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

sigma

ph
i

Figure 3.4: An illustration to aid explanation of relative performance. Note that the
fixed sequence dots are smaller, to better illustrate the difference in the spread between
the fixed sequence and two other distributions.

Chapter 3. Ensemble MCMC for State Space Models 45

loops generally leads to vast performance improvements. For the numbers of pool states

we use, the computational cost of the vector operation corresponding to the inner loop

over L is very low compared to that of the outer loop over L. As a result, the total

computational cost scales approximately linearly with L, in the range of values of L we

considered. An implementation in a different language might lead to different optimal

pool state settings.

The original examples of Wood (2010) and Fearnhead and Prangle (2012) used φ = 10

instead of φ = 2. We found that for φ = 10, the ensemble method still performs better

than the single sequence method, when computation time is taken into account, though

the difference in performance is not as large. When φ is larger, the observations yi are

larger on average as well. As a result, the data is more informative about the values of

the hidden state variables, and the marginal posteriors of the model parameters are more

concentrated. As a result of this, though we would still expect the ensemble method

to improve performance, we would not expect the improvement to be as large as when

φ = 2.

Finally, we would like to note that if the single-sequence method is implemented

already, implementing the ensemble method is very simple, since all that is needed is an

additional call of the forward pass function and summing of the final forward probabilities.

So, the performance gains from using an ensemble for parameter updates can be obtained

with little additional programming effort.

3.9 Conclusion

We found that both the embedded HMM MCMC method and its ensemble extension

perform significantly better than the ordinary Metropolis method for doing Bayesian

inference in the Ricker model. This suggests that it would be promising to investigate

other state space models with non-linear state dynamics, and see if it is possible to use

the embedded HMM methods we described to perform inference in these models.

Our results also show that using staged proposals further improves the performance

of the ensemble method. It would be worthwhile to look at other scenarios where this

technique might be applied.

Most importantly, however, our results suggest that looking at multiple hidden state

sequences at once can make parameter sampling in state space models noticeably more

efficient, and so indicate a direction for further research in the development of MCMC

methods for non-linear, non-Gaussian state space models.

Chapter 4

Stochastic Volatility

In this chapter, we introduce efficient ensemble Markov Chain Monte Carlo (MCMC)

sampling methods for Bayesian computations in the univariate stochastic volatility model.

We compare the performance of our ensemble MCMC methods with an improved version

of a recent sampler of Kastner and Fruhwirth-Schnatter (2014). We show that ensemble

samplers are more efficient than this state of the art sampler by a factor of about 3.1,

on a data set simulated from the stochastic volatility model. This performance gain is

achieved without the ensemble MCMC sampler relying on the assumption that the latent

process is linear and Gaussian, unlike the sampler of Kastner and Fruhwirth-Schnatter.1

The stochastic volatility model is a widely-used example of a state space model with

non-linear or non-Gaussian transition or observation distributions. It models observed

log-returns y = (y1, . . . , yN) of a financial time series with time-varying volatility, as

follows:

Yi|xi ∼ N(0, exp(c+ σxi)), i = 1, . . . , N (4.1)

X1 ∼ N(0, 1/(1− φ2)) (4.2)

Xi|xi−1 ∼ N(φxi−1, 1) (4.3)

Here, the latent process xi determines the unobserved log-volatility of yi. Because the

relation of the observations to the latent state is not linear and Gaussian, this model

cannot be directly handled by efficient methods based on the Kalman filter.

In a Bayesian approach to this problem, we estimate the unknown parameters θ =

(c, φ, σ) by sampling from their marginal posterior distribution p(θ|y). This distribution

cannot be written down in closed form. We can, however, write down the joint posterior

of θ and the log-volatilities x = (x1, . . . , xN), p(θ, x|y), and draw samples of (θ, x) from

1Material in this chapter was first presented in Shestopaloff and Neal (2014).

46

Chapter 4. Stochastic Volatility 47

it. Discarding the x coordinates in each draw will give us a sample from the marginal

posterior distribution of θ.

To sample from the posterior distribution of the stochastic volatility model, we develop

two new MCMC samplers within the framework of ensemble MCMC, introduced by

Neal (2010). The key idea underlying ensemble MCMC is to simultaneously look at

a collection of points (an “ensemble”) in the space we are sampling from, with the K

ensemble elements chosen in such a way that the density of interest can be simultaneously

evaluated at all of the ensemble elements in less time than it would take to evaluate the

density at all K points separately.

In the previous chapter, we developed an ensemble MCMC sampler for non-linear,

non-Gaussian state space models, with ensembles over latent state sequences, using the

embedded HMM (Hidden Markov Model) technique of Neal (2003), Neal et al. (2004).

This ensemble MCMC sampler was used for Bayesian inference in a population dynamics

model and shown to be more efficient than methods which only look at a single sequence

at a time. In this chapter we consider ensemble MCMC samplers that look not only

at ensembles over latent state sequences as in Chapter 3 but also over a subset of the

parameters. We see how well both of these methods work for the widely-used stochastic

volatility model.

4.1 Bayesian inference for the stochastic volatility

model

Bayesian inference for the stochastic volatility model has been extensively studied. In this

chapter, we focus on comparisons with the method of Kastner and Fruhwirth-Schnatter

(2014). This state-of-the-art method combines the method of Kim et al. (1998) with the

ASIS (Ancillary Sufficiency Interweaving Strategy) technique of Yu and Meng (2011).

Kastner and Fruhwirth-Schnatter’s method consists of two parts. The first is an update

of the latent variables x and the second is a joint update of θ and the latent variables x.

We improve this method here by saving and re-using sufficient statistics to do multiple

parameter updates at little additional computational cost.

4.1.1 A linear Gaussian approximation for sampling latent se-

quences

The non-linear relationship between the latent and the observation process prohibits the

direct use of Kalman filters for sampling the latent variables xi. Kim et al. (1998)

Chapter 4. Stochastic Volatility 48

introduced an approximation to the stochastic volatility model that allows using Kalman

filters to draw samples of xi which can be later reweighed to give samples from their exact

posterior distribution. This approximation proceeds as follows. First, the observation

process for the stochastic volatility model is written in the form

log(y2i) = c+ σxi + ζi (4.4)

where ζi has a log(χ2
1) distribution.

Next, the distribution of ζi is approximated by a ten-component mixture of Gaussians

with mixture weights πk, means mk and variances τ 2k , k = 1, . . . , 10. The values of these

mixture weights, means and variances can be found in Omori (2007). At each step of

the sampler, at each time i, a single component of the mixture is chosen to approximate

the distribution of ζi by drawing a mixture component indicator ri ∈ {1, . . . , 10} with

probabilities proportional to

P (ri = k|yi, xi, c, σ) ∝ πk
1

τk
exp((log(y2i)− c− σxi)2/τ 2k) (4.5)

Conditional on ri, the observation process is now linear and Gaussian, as is the latent

process:

log(Y 2
i)|xi, ri, c, σ ∼ N(mri + c+ σxi, τ

2
ri

), i = 1, . . . , N (4.6)

X1|φ ∼ N(0, 1/(1− φ2)) (4.7)

Xi|xi−1 ∼ N(φxi−1, 1) (4.8)

Kalman filtering followed by a backward sampling pass can now be used to sample a

latent sequence x. For a description of this sampling procedure, see Petris et al. (2009).

The mis-specification of the model due to the approximation can be corrected using

importance weights

w(l) =

∏N
i=1 f(yi|x(l)i , c(l), σ(l))∏N

i=1(
∑10

k=1 πkg(log(y2i)|x
(l)
i , c

(l), σ(l),mk, τk))
(4.9)

where f is the N(0, exp(c + σxi)) density, g is the N(mk + c + σxi, τk) density and the

index l refers to a draw. Posterior expectations of functions of θ can then be computed

as
∑
w(l)f(θ(l)), with θ(l) the draws.

We note that, when doing any other updates affecting x in combination with this

approximate scheme, we need to continue to use the same mixture of Gaussians approx-

Chapter 4. Stochastic Volatility 49

imation to the observation process. If an update drawing from an approximate distri-

bution is combined with an update drawing from an exact distribution, neither update

will draw samples from their target distribution, since neither update has a chance to

reach equilibrium before the other update disturbs things. We would then be unable to

compute the correct importance weights to estimate posterior expectations of functions

of θ.

4.1.2 ASIS updates

ASIS methods (Yu and Meng (2011)) are based on the idea of interweaving two parametriza-

tions. For the stochastic volatility model, these are the so-called non-centered (NC) and

centered (C) parametrizations. The NC parametrization is the one in which the stochastic

volatility model was originally presented above. The C parametrization for the stochastic

volatility model is

Yi|x̃i ∼ N(0, exp(x̃i)), i = 1, . . . , N (4.10)

X̃1 ∼ N(c, σ2/(1− φ2)) (4.11)

X̃i|x̃i−1 ∼ N(c+ φ(x̃i−1 − c), σ2) (4.12)

The mixture of Gaussians approximation for C is the same as for NC.

Kastner and Fruhwirth-Schnatter (2014) propose two new sampling schemes, GIS-C

and GIS-NC, in which they interweave these two parametrizations, using either the NC

or C parameterization as the baseline. The authors report a negiligible performance

difference between using NC or C as the baseline. For the purposes of our comparisons,

we use the method with NC as the baseline, GIS-NC, which proceeds as follows.

1. Draw x given θ, r, y using the linear Gaussian approximation update (NC)

2. Draw θ given x, r, y using a Metropolis update (NC)

3. Move to C by setting x̃ = c+ σx

4. Draw θ given x̃, r, y using a Metropolis update (C)

5. Move back to NC by setting x = x̃−c
σ

6. Redraw the mixture component indicators r given θ, x, y.

Theorem 4 of Yu and Meng (2011) establishes a link between ASIS and the PX-

DA (Parameter Expansion-Data Augmentation) method of Liu and Wu (1999). In the

Chapter 4. Stochastic Volatility 50

case of the stochastic volatility model, this means that we can view the ASIS scheme for

updating x and θ as a combination of two updates, both done in the NC parametrization.

The first of these draws new values for θ conditional on x. The second draws new values

for both x and θ, such that when we propose to update c to c∗ and σ to σ∗, we also

propose to update the sequence x to x∗ = ((c+σx)− c∗)/σ∗. For this second update, the

Metropolis acceptance probability needs to be multiplied by a Jacobian factor (σ/σ∗)N

to account for scaling σ. A joint translation update for c and x has been previously

considered by Liu and Sabatti (2000) and successfully applied to to stochastic volatility

model. Scale updates are considered by Liu and Sabatti (2000) as well, though they do

not apply them to the stochastic volatility model.

The view of ASIS updates as joint updates to θ and x makes it easier to see why

ASIS updates improve efficiency. At first glance, they look like they only update the

parameters, but they actually end up proposing to change both θ and x in a way that

preserves dependence between them. This means that moves proposed in ASIS updates

are more likely to end up in a region of high posterior density, and so be accepted.

Kastner and Fruhwirth-Schnatter (2014) do a single Metropolis update of the param-

eters for every update of the latent sequence. However, we note that given values for the

mixture indices r, y and x, low-dimensional sufficient statistics exist for all parameters

in the centered parametrization. In the non-centered parametrization, given r, y and x,

low-dimensional sufficient statistics exist for φ. We propose doing multiple Metropolis

updates given saved values of these sufficient statistics (for all parameters in the case

of C and for φ in the case of NC). This allows us to reach equilibrium given a fixed

latent sequence at little computational cost since additional updates have small cost, not

dependent on N . Also, this eliminates the need to construct complex proposal schemes,

since with these repeated samples the algorithm becomes less sensitive to the particular

choice of proposal density.

The sufficient statistics in the case of NC are

t1 =
N∑
i=1

x2i , t2 =
N∑
i=2

xi−1xi, t3 = x21 + x2N (4.13)

with the log-likelihood of φ as a function of the sufficient statistics being

log(L(φ|t)) = (1/2) log(1− φ2)− (1/2)(φ2(t1 − t3)− 2φt2 + t1)

Chapter 4. Stochastic Volatility 51

In the case of C the sufficient statistics are

t̃1 =
N∑
i=1

x̃2i , t̃2 =
N−1∑
i=2

x̃2i t̃3 =
N∑
i=2

x̃i−1x̃i t̃4 =
N−1∑
i=2

x̃i t̃5 = x̃1 + x̃N (4.14)

with the log-likelihood as a function of the sufficient statistics being

log(L(c, φ, σ2|t̃)) = −(N/2) log(σ2) + (1/2) log(1− φ2) (4.15)

−(1/2)(t̃1 + φ2t̃2 − 2φt̃3 − 2cφ2t̃4 − 2c(t̃4 + t̃5)

+4cφt̃4 + 2cφt̃5 + (N − 1)(c(φ− 1))2 + c2(1− φ2))/σ2

The details of the derivations are given in the Appendix.

4.2 Ensemble MCMC methods for

stochastic volatility models

The general framework underlying ensemble MCMC methods was introduced by Neal

(2010). An ensemble MCMC method using embedded HMMs for parameter inference in

non-linear, non-Gaussian state space models was introduced in Chapter 3. We briefly

review ensemble methods for non-linear, non-Gaussian state space models here.

Ensemble MCMC builds on the idea of MCMC using a temporary mapping. Suppose

we are interested in sampling from a distribution with density π(z) on Z. We can do this

by constructing a Markov chain with transition kernel T (z′|z) with invariant distribution

π. The temporary mapping strategy takes T to be a composition of three stochastic

mappings. The first mapping, T̂ , takes z to an element w of some other space W . The

second, T̄ , updates w to w′. The last, Ť , takes w′ back to some z′ ∈ Z. The idea behind

this strategy is that doing updates in an intermediate space W may allow us to make

larger changes to z, as opposed to doing updates directly in Z.

In the ensemble method, the space W is taken to be the K-fold Cartesian product of

Z. First, z mapped to an ensemble w = (z(1), . . . , z(K)), with the current value z assigned

to z(k), with k ∈ {1, . . . , K} chosen uniformly at random. The remaining elements z(j)

for j 6= k are chosen from their conditional distribution under an ensemble base measure

ζ, given that z(k) = z. The marginal density of an ensemble element z(k) in the ensemble

base measure ζ is denoted by ζk(z
(k)). Next, w is updated to w′ using any update that

Chapter 4. Stochastic Volatility 52

leaves invariant the ensemble density

ρ(w) = ρ((z(1), . . . , z(K))) = ζ((z(1), . . . , z(K)))
1

K

K∑
i=1

π(z(k))

ζk(z(k))
(4.16)

Finally, a new value z′ is chosen by selecting an element z(k) from the ensemble with prob-

abilities proportional to π(z(k))/ζk(z
(k)). The benefit of doing, say Metropolis, updates

in the space of ensembles is that a proposed move is more likely to be accepted, since

for the ensemble density to be large it is enough that the proposed ensemble contains at

least some elements with high density under π.

In Chapter 3, we consider an ensemble over latent state sequences x. Specifically, the

current state, (x, θ), consisting of the latent states x and the parameters θ is mapped to an

ensemble y = ((x(1), θ), . . . , (x(K), θ)) where the ensemble contains all distinct sequences

x(k) passing through a collection of pool states chosen at each time i. The ensemble is

then updated to y′ = ((x(1), θ′), . . . , (x(K), θ′)) using a Metropolis update that leaves ρ

invariant. At this step, only θ is changed. We then map back to a new x′ = (x′, θ′),

where x′ is now potentially different from the original x. We show that this method

considerably improves sampling efficiency in the Ricker model of population dynamics.

As in the original Neal (2010) paper, we emphasize here that applications of ensemble

methods are worth investigating when the density at each of the K elements of an ensem-

ble can be computed in less time than it takes to do K separate density evaluations. For

the stochastic volatility model, this is possible for ensembles over latent state sequences,

and over the parameters c and σ2. In this chapter, we will only consider joint ensembles

over x and over σ. Since we will use η = log(σ2) in the MCMC state, we will refer to

ensembles over η below.

We propose two ensemble MCMC sampling schemes for the stochastic volatility

model. The first, ENS1, updates the latent sequence, x, and η by mapping to an ensem-

ble composed of latent sequences x and values of η, then immediately mapping back to

new values of x and η. The second, ENS2, maps to an ensemble of latent state sequences

x and values of η, like ENS1, then updates φ using an ensemble density summing over x

and η, and finally maps back to new values of x and η.

For both ENS1 and ENS2, we first create a pool of η values with Lη elements, and at

each time, i, a pool of values for the latent state xi, with Lx elements. The current value

of η is assigned to the pool element η[1] and for each time i, the current xi is assigned

to the pool element x
[1]
i . (Since the pool states are drawn independently, we don’t need

to randomly assign an index to the current η and the current xi’s in their pools.) The

Chapter 4. Stochastic Volatility 53

remaining pool elements are drawn independently from some distribution having positive

probability for all possible values of xi and η, say κi for xi and λ for η.

The total number of ensemble elements that we can construct using the pools over

xi and over η is LηL
N
x . Naively evaluating the ensemble density presents an enormous

computational burden for Lx > 1, taking time on the order of LηL
N
x . By using the

forward algorithm, together with a “caching” technique, we can evaluate the ensemble

density much more efficiently, in time on the order of LηL
2
xN . The forward algorithm

is used to efficiently evaluate the densities for the ensemble over the xi. The caching

technique is used to efficiently evaluate the densities for the ensemble over η, which gives

us a substantial constant factor speed-up in terms of computation time.

In detail, we do the following. Let p(x1) be the initial state distribution, p(xi|xi−1)
the transition density for the latent process and p(yi|xi, η) the observation probabilities.

We begin by computing and storing the initial latent state probabilities — which do not

depend on η — for each pool state x
[k]
1 at time 1.

P1 = (p(x
[1]
1), . . . , p(x

[Lx]
1)) (4.17)

For each η[l] in the pool and each pool state x
[k]
1 we then compute and store the initial

forward probabilities

α
[l]
1 (x

[k]
1 |η[l]) = p(x

[k]
1)

p(y1|x[k]1 , η
[l])

κ1(x
[k]
1)

(4.18)

Then, for i > 1, we similarly compute and store the matrix of transition probabilities

Pi =


p(x

[1]
i |x

[1]
i−1) . . . p(x

[Lx]
i |x

[1]
i−1)

...
. . .

...

p(x
[1]
i |x

[Lx]
i−1) . . . p(x

[Lx]
i |x

[Lx]
i−1)


where

p(x
[k1]
i |x

[k2]
i−1) ∝ exp(−(x

[k1]
i − φx[k2]i−1)

2/2) (4.19)

are transition probabilities between pool states x
[k2]
i−1 and x

[k1]
i for k1, k2 ∈ {1, . . . , Lx}.

We then use the stored values of the transition probabilities Pi to efficiently compute the

Chapter 4. Stochastic Volatility 54

vector of forward probabilities for all values of η[l] in the pool

α
[l]
i (xi|η[l]) =

p(yi|xi, η[l])
κi(xi)

Lx∑
k=1

p(xi|x[k]i−1)α
[l]
i−1(x

[k]
i−1|η[l]), i = 1, . . . , N (4.20)

with xi ∈ {x[1]i , . . . , x
[Lx]
i }.

At each time i, we divide the forward probabilities α
[l]
i by c

[l]
i =

∑Lx
k=1 α

[l]
i (x

[k]
i |η[l]),

storing the c
[l]
i values and using the normalized α

[l]
i ’s in the next step of the recursion.

This is needed to prevent underflow and for ensemble density computations. In the case

of all the forward probabilities summing to 0, we set the forward probabilities at all

subsequent times to 0. Note that we won’t get underflows for all values of η[l], since we

are guaranteed to have a log-likelihood that is not −∞ for the current value of η in the

MCMC state.

For each η[l], the ensemble density can then be computed as

ρ[l] =
N∏
i=1

c
[l]
i (4.21)

To avoid overflow or underflow, we work with the logarithm of ρ[l].

Even with caching, computing the forward probabilities for each η[l] in the pool is

still an order L2
x operation since we multiply the vector of forward probabilities from

the previous step by the transition matrix. However, if we do not cache and re-use the

transition probabilities Pi when computing the forward probabilities for each value of η[l]

in the pool, the computation of the ensemble densities ρ[l], for all l = 1, . . . , Lη, would be

about 10 times slower. This is because computing forward probabilities for a value of η

given saved transition probabilities only involves multiplications and additions, and not

exponentiations, which are comparatively more expensive.

In ENS1, after mapping to the ensemble, we immediately sample new values of η and

x from the ensemble. We first sample a η[l] from the marginal ensemble distribution,

with probabilities proportional to ρ[l]. After we have sampled an η[l], we sample a latent

sequence x conditional on η[l], using a stochastic backwards recursion. The stochastic

backwards recursion first samples a state xN from the pool at time N with probabilities

proportional to α
[l]
N(xN |η[l]). Then, given the sampled value of xi, we sample xi−1 from

the pool at time i − 1 with probabilities proportional to p(xi|xi−1)α[l]
i−1(xi−1|η[l]), going

back to time 1.

In the terminology of Chapter 3, this is a “single sequence” update combined with

an ensemble update for η (which is a “fast” variable in the terminology of Neal (2010)

Chapter 4. Stochastic Volatility 55

since recomputation of the likelihood function after changes to this variable is fast given

the saved transition probabilities).

In ENS2, before mapping back to a new η and a new x as in ENS1, we perform a

Metropolis update for φ using the ensemble density summing over all η[l] and all latent

sequences in the ensemble,
∑Lη

l=1 ρ
[l]. This approximates updating φ using the posterior

density of θ with x and η integrated out, when the number of pool states is large. The

update nevertheless leaves the correct distribution exactly invariant, even if the number

of pool states is not large.

4.2.1 Choosing the pool distribution

A good choice for the pool distribution is crucial for the efficient performance of the

ensemble MCMC method.

For a pool distribution for xi, a good candidate is the stationary distribution of xi in

the AR(1) latent process, which is N(0, 1/
√

1− φ2). The question here is how to choose

φ. For ENS1, which does not change φ, we can simply use the current value of φ from

the MCMC state, call it φcur, and draw pool states from N ∼ (0, c/
√

1− φ2
cur) for some

scaling factor c. Typically, we would choose c > 1 in order to ensure that for different

values of φ, we produce pool states that cover the region where xi has high probability

density.

We cannot use this pool selection scheme for ENS2 because the reverse transition

after a change in φ would use different pool states, undermining the proof via reversibility

that the ensemble transitions leave the posterior distribution invariant. However, we can

choose pool states that depend on both the current and the proposed values of φ, say

φ and φ∗, in a symmetric fashion. For example, we can propose a value φ∗, and draw

the pool states from N ∼ (0, c/
√

1− φ2
avg) where φavg is the average of φ and φ∗. The

validity of this scheme can be seen by considering φ∗ to be an additional variable in the

model; proposing to update φ to φ∗ can then be viewed as proposing to swap φ and φ∗

within the MCMC state.

We choose pool states for η by sampling them from the model prior. Alternative

schemes are possible, but we do not consider them here. For example, it is possible to

draw local pool states for η which stay close to the current value of η by running a Markov

chain with some desired stationary distribution J steps forwards and Lη − J − 1 steps

backwards, starting at the current value of η. For details, see Neal (2003).

In Chapter 3, one recommendation we made was to consider pool states that depend

on the observed data yi at a given point, constructing a “pseudo-posterior” for xi using

Chapter 4. Stochastic Volatility 56

0 100 200 300 400 500 600 700 800 900 1000
−4

−3

−2

−1

0

1

2

3

4

5

6

(a) y

0 100 200 300 400 500 600 700 800 900 1000
−15

−10

−5

0

5

10

(b) x

Figure 4.1: Data set used for testing.

data observed at time i or in a small neighbourhood around i. For the ensemble updates

ENS1 and ENS2 presented here, we cannot use this approach, as we would then need to

make the pool states also depend on the current values of c and η, the latter of which is

affected by the update. We could switch to the centered parametrization to avoid this

problem, but that would prevent us from making η a fast variable.

4.3 Comparisons

The goal of our computational experiments is to determine how well the introduced

variants of the ensemble method compare to our improved version of the Kastner and

Fruhwirth-Schnatter (2014) method. We are also interested in understanding when using

a full ensemble update is helpful or not.

4.3.1 Data

We use a series simulated from the stochastic volatility model with parameters c =

0.5, φ = 0.98, σ2 = 0.0225 with N = 1000. A plot of the data is presented in Figure 4.1.

We use the following priors for the model parameters.

c ∼ N(0, 1) (4.22)

φ ∼ Unif[0, 1] (4.23)

σ2 ∼ Inverse-Gamma(2.5, 0.075) (4.24)

Chapter 4. Stochastic Volatility 57

We use the parametrization in which the Inverse-Gamma(α, β) has probability density

f(x) =
βα

Γ(α)
xα−1e−β/x, x > 0 (4.25)

For α = 2.5, β = 0.075 the 2.5% and 97.5% quantiles of this distribution are approxi-

mately (0.0117, 0.180).

In the MCMC state, we transform φ and σ2 to

η = log(σ2) (4.26)

γ = log((1 + φ)/(1− φ)) (4.27)

with the priors transformed correspondingly.

4.3.2 Sampling schemes and tuning

We compare three sampling schemes — the Kastner and Fruhwirth-Schnatter (KF)

method, and our two ensemble schemes, ENS1, in which we map to an ensemble of

η and x values and immediately map back, and ENS2, in which we additionally update

γ with an ensemble update before mapping back.

We combine the ensemble scheme with the computationally cheap ASIS Metropolis

updates. It is sensible to add cheap updates to a sampling scheme if they are available.

Note that the ASIS (or translation and scale) updates we use in this chapter are generally

applicable to location-scale models and are not restricted by the linear and Gaussian

assumption.

Pilot runs showed that 80 updates appears to be the point at which we start to get

diminishing returns from using more Metropolis updates (given the sufficient statistics)

in the KF scheme. This is the number of Metropolis updates we use with the ensemble

schemes as well.

The KF scheme updates the state as follows:

1. Update x, using the Kalman filter-based update, using the current mixture indica-

tors r.

2. Update the parameters using the mixture approximation to the observation density.

This step consists of 80 Metropolis updates to γ given the sufficient statistics for

NC, followed by one joint update of c and η.

3. Change to the C parametrization.

Chapter 4. Stochastic Volatility 58

4. Update all three parameters simultaneously using 80 Metropolis updates, given the

sufficient statistics for C. Note that this update does not depend on the observation

density and is therefore exact.

5. Update the mixture indicators r.

The ENS1 scheme proceeds as follows:

1. Map to an ensemble of η and x.

2. Map back to a new value of η and x.

3. Do steps 2) - 4) as for KF, but with the exact observation density.

The ENS2 scheme proceeds as follows:

1. Map to an ensemble of η and x.

2. Update γ using an ensemble Metropolis update.

3. Map back to a new value of η and x.

4. Do steps 2) - 4) as for KF, but with the exact observation density.

The Metropolis updates use a normal proposal density centered at the current pa-

rameter values. Proposal standard deviations for the Metropolis updates in NC were set

to estimated marginal posterior standard deviations, and to half of that in C. This is

because in C, we update all three parameters at once, whereas in NC we update c and

η jointly and γ separately. The marginal posterior standard deviations were estimated

using a pilot run of the ENS2 method. The tuning settings for the Metropolis updates

are presented in Table 4.1.

For ensemble updates of γ, we also use a normal proposal density centered at the

current value of γ, with a proposal standard deviation of 1, which is double the estimated

marginal posterior standard deviation of γ. The pool states over xi are selected from the

stationary distribution of the AR(1) latent process, with standard deviation 2/
√

1− φ2
cur

for the ENS1 scheme and 2/
√

1− φ2
avg for the ENS2 scheme. We used the prior density

of η to select pool states for η.

For each method, we started the samplers from 5 randomly chosen points. Parameters

were initalized to their prior means (which were 0 for c, 1.39 for γ and −3.29 for η), and

each xi, i = 1, . . . , N , was initialized independently to a value randomly drawn from the

stationary distribution of the AR(1) latent process, given γ set to the prior mean. For

Chapter 4. Stochastic Volatility 59

the KF updates, the mixture indicators r where all initialized to 5’s, this corresponds

to the mixture component whose median matches the median of the log(χ2
1) distribution

most closely. All methods were run for approximately the same amount of computational

time.

4.3.3 Results

Before comparing the performance of the methods, we verified that the methods give the

same answer up to expected variation by looking at the 95% confidence intervals each

produced for the posterior means of the parameters. These confidence intervals were

obtained from the standard error of the average posterior mean estimate over the five

runs. The KF estimates were adjusted using the importance weights that compensate

for the use of the approximate observation distribution. No significant disagreement

between the answers from the different methods was apparent. We then evaluated the

performance of each method using estimates of autocorrelation time, which measures

how many MCMC draws are needed to obtain the equivalent of one independent draw.

To estimate autocorrelation time, we first estimated autocovariances for each of the

five runs, discarding the first 10% of the run as burn-in, and plugging in the overall mean

of the five runs into the autocovariance estimates. (This allows us to detect if the different

runs for each method are exploring different regions of the parameter/latent variable

space). We then averaged the resulting autocovariance estimates and used this average

to get autocorrelation estimates ρ̂k. Finally, autocorrelation time was estimated as 1 +

2
∑K

k=1 ρ̂i, with K chosen to be the point beyond which the ρk become approximately 0.

All autocovariances were estimated using the Fast Fourier Transform for computational

efficiency.

The results are presented in Tables 4.2 and 4.3. The timings for each sampler represent

an average over 100 iteratons (each iteration consisting of the entire sequence of updates),

with the samplers started from a point taken after the sampler converged to equilibrium.

The program was written in MATLAB and run on a Linux system with an Intel Xeon

Method
Prop. Std. (NC) Acc. Rate Acc. Rate Prop. Std. (C) Acc. Rate

c γ η for γ (NC) for (c, η) (NC) c γ η for (c, γ, η)

KF

0.21 0.5 0.36 0.52

0.12

0.105 0.25 0.18 0.22ENS1
0.12

ENS2

Table 4.1: Metropolis proposal standard deviations with associated acceptance rates.

Chapter 4. Stochastic Volatility 60

X5680 3.33 GHz CPU. For a fair comparison, we multiply estimated autocorrelation

times by the time it takes to do one iteration and compare these estimates.

We ran the KF method for 140, 000 iterations, with estimated autocorrelation times

using the original (unweighed) sequence for (c, γ, η) of (2.1, 37, 73), which after adjusting

by computation time of 0.16 seconds per iteration are (0.34, 5.9, 12). It follows that the

ENS1 method with Lx set to 50 and Lη set to 10 is better than the KF method by

a factor of about 3.1 for the parameter η. For ENS2, the same settings Lx = 50 and

Lη = 10 appears to give the best results, with ENS2 worse by a factor of about 1.7 than

ENS1 for sampling η. We also see that the ENS1 and ENS2 methods aren’t too sensitive

to the particular tuning parameters, so long at there is a sufficient number of ensemble

elements both for xi and for η.

The results show that using a small ensemble (10 or so pool states) over η is particu-

larly helpful. One reason for this improvement is the ability to use the caching technique

to make these updates computationally cheap. A more basic reason is that updates of η

consider the entire collection of latent sequences, which allows us to make large changes

to η, compared to the Metropolis updates.

Even though the ENS2 method in this case is outperformed by the ENS1 method,

we have only applied it to one data set and there is much room for further tuning

and improvement of the methods. A possible explanation for the lack of substantial

performance gain with the ensemble method is that conditional on a single sequence, the

distribution of φ has standard deviation comparable to its marginal standard deviation,

which means that we can’t move too much further with an ensemble update than we do

with our Metropolis updates. An indication of this comes from the acceptance rate for

ensemble updates of γ in ENS2, which we can see isn’t improved by much as more pool

states are added.

Parameter estimates for the best performing KF, ENS1 and ENS2 settings are pre-

sented in Table 4.4. These estimates were obtained by averaging samples from all 5

runs with 10% of the sample discarded as burn-in. We see that the differences between

the standard errors are in approximate agreement with the differences in autocorrelation

times for the different methods.

4.4 Conclusion

We found that noticeable performance gains can be obtained by using ensemble MCMC

based sampling methods for the stochastic volatility model. It may be possible to obtain

even larger gains on different data sets, and with even better tuning. In particular, it

Chapter 4. Stochastic Volatility 61

Lx Lη Iterations Time/iter (s)
ACT ACT × time

c γ η c γ η

10

1 195000 0.11 2.6 99 160 0.29 11 18

10 180000 0.12 2.7 95 150 0.32 11 18

30 155000 0.14 2.6 81 130 0.36 11 18

50 140000 0.16 2.3 91 140 0.37 15 22

30

1 155000 0.14 2.4 35 71 0.34 4.9 9.9

10 135000 0.16 2.2 18 26 0.35 2.9 4.2

30 110000 0.20 2.3 19 26 0.46 3.8 5.2

50 65000 0.33 1.9 16 24 0.63 5.3 7.9

50

1 115000 0.19 1.9 34 68 0.36 6.5 13

10 95000 0.23 1.9 11 17 0.44 2.5 3.9

30 55000 0.38 2.2 8.9 12 0.84 3.4 4.6

50 55000 0.39 1.9 11 14 0.74 4.3 5.5

70

1 85000 0.25 2.2 33 67 0.55 8.3 17

10 60000 0.38 1.9 8.3 11 0.72 3.2 4.2

30 50000 0.42 1.8 8.4 11 0.76 3.5 4.6

50 45000 0.48 1.9 9.1 12 0.91 4.4 5.8

Table 4.2: Performance of method ENS1.

Lx Lη Acc. Rate for γ Iterations Time/iter (s)
ACT ACT × time

c γ η c γ η

10

1 0.32 110000 0.20 2.5 100 170 0.5 20 34

10 0.32 95000 0.23 2.4 91 140 0.55 21 32

30 0.32 80000 0.27 2.5 97 150 0.68 26 41

50 0.32 70000 0.30 2.7 90 140 0.81 27 42

30

1 0.33 80000 0.26 2.3 34 68 0.6 8.8 18

10 0.33 70000 0.31 2.3 18 26 0.71 5.6 8.1

30 0.33 55000 0.39 2 18 27 0.78 7 11

50 0.34 35000 0.61 2.4 12 19 1.5 7.3 12

50

1 0.34 60000 0.36 1.7 33 69 0.61 12 25

10 0.35 50000 0.44 2.1 10 15 0.92 4.4 6.6

30 0.34 30000 0.71 1.8 10 15 1.3 7.1 11

50 0.34 25000 0.81 1.8 12 17 1.5 9.7 14

70

1 0.34 45000 0.49 2.2 29 61 1.1 14 30

10 0.35 30000 0.72 1.6 7.3 11 1.2 5.3 7.9

30 0.36 25000 0.86 1.6 7.3 9.3 1.4 6.3 8

50 0.36 25000 0.96 1.8 5.9 7.8 1.7 5.7 7.5

Table 4.3: Performance of method ENS2.

Chapter 4. Stochastic Volatility 62

Method c γ η

KF 0.2300 (± 0.0004) 4.3265 (± 0.0053) -3.7015 (± 0.0054)

ENS1 0.2311 (± 0.0006) 4.3228 (± 0.0017) -3.6986 (± 0.0015)

ENS2 0.2306 (± 0.0008) 4.3303 (± 0.0025) -3.7034 (± 0.0021)

Table 4.4: Estimates of posterior means, with standard errors of posterior means shown
in brackets.

is possible that the method of updating φ with an ensemble, or some variation of it,

actually performs better than a single sequence method in some other instance.

The method of Kastner and Fruhwirth-Schnatter (2014) relies on the assumption that

the state process is linear and Gaussian, which enables efficient state sequence sampling

using Kalman filters. The method would not be applicable if this was not the case.

However, the ensemble method could still be applied to this case as well. It would be

of interest to investigate the performance of ensemble methods for stochastic volatility

models with different noise structures for the latent process. It would also be interesting

to compare the performance of the ensemble MCMC method with the PMCMC-based

methods of Andrieu et. al (2010) and also to see whether techniques used to improve

PMCMC methods can be used to improve ensemble methods and vice versa.

Multivariate versions of stochastic volatility models, for example those considered in

Scharth and Kohn (2013) are another class of models for which inference is difficult, and

that it would be interesting to apply the ensemble MCMC method to. We have done

preliminary experiments applying ensemble methods to multivariate stochastic volatility

models, with promising results. For these models, even though the latent process is linear

and Gaussian, due to a non-constant covariance matrix the observation process does not

have a simple and precise mixture of Gaussians approximation.

Appendix

Here, we derive the sufficient statistics for the stochastic volatility model in the two

parametrizations and the likelihoods in terms of sufficient statistics. For NC, we derive

Chapter 4. Stochastic Volatility 63

low-dimensional sufficient statistics for φ as follows

p(x|φ) ∝
√

1− φ2 exp
(
− (1− φ2)x21/2

)
exp(−

N∑
i=2

(xi − φxi−1)2/2
)

∝
√

1− φ2 exp
(
− (x21 − φ2x21 +

N∑
i=2

x2i − 2φ
N∑
i=2

xixi−1 + φ2

N∑
i=2

x2i−1)/2
)

∝
√

1− φ2 exp
(
− (φ2

N−1∑
i=2

x2i − 2φ
N∑
i=2

xixi−1 +
N∑
i=1

x2i)/2
)

Letting

t1 =
N∑
i=1

x2i , t2 =
N∑
i=2

xi−1xi, t3 = x21 + x2N

we can write

p(x|φ) ∝
√

1− φ2 exp(−(φ2(t1 − t3)− 2φt2 + t1)/2)

For C, the probability p(x|c, φ, σ2) is proportional to√
1− φ2

σn/2
exp

(
− (1− φ2)(x̃1 − c)2/2σ2

)
exp

(
−

N∑
i=2

((x̃i − (c+ φ(x̃i−1 − c))2/2σ2
)

∝
√

1− φ2

σn/2
exp

(
− (x̃21 − φ2x̃21 − 2x̃1c+ c2 + 2cφ2x̃1 − c2φ2 +

N∑
i=2

x̃2i

−2
N∑
i=2

x̃i(c+ φ(x̃i−1 − c)) +
N∑
i=2

(c+ φ(x̃i−1 − c))2)/2σ2
)

∝
√

1− φ2

σn/2
exp

(
− (

N∑
i=1

x̃2i − φ2x̃21 − 2x̃1c+ c2 + 2cφ2x̃1 − c2φ2 − 2c
N∑
i=2

x̃i

−2φ
N∑
i=2

x̃ix̃i−1 + 2cφ
N∑
i=2

x̃i + (N − 1)c2 + 2cφ
N∑
i=2

(x̃i−1 − c)

+φ2

N∑
i=2

(x̃i−1 − c)2)/2σ2
)

Chapter 4. Stochastic Volatility 64

∝
√

1− φ2

σn/2
exp

(
− (

N∑
i=1

x̃2i − φ2x̃21 − 2x̃1c+ c2 + 2cφ2x̃1 − c2φ2 − 2c
N∑
i=2

x̃i

−2φ
N∑
i=2

x̃ix̃i−1 + 2cφ
N∑
i=2

x̃i + (N − 1)c2 + 2cφ
N∑
i=2

x̃i−1 − 2(N − 1)c2φ)

+φ2

N∑
i=2

x̃2i−1 − 2cφ2

N∑
i=2

x̃i−1 + (N − 1)c2φ2)/2σ2
)

∝
√

1− φ2

σn/2
exp

(
− (

N∑
i=1

x̃2i + φ2

N−1∑
i=2

x̃2i − 2φ
N∑
i=2

x̃i−1x̃i + 2cφ2

N−1∑
i=2

x̃i − 2c
N∑
i=1

x̃i

+4cφ
N−1∑
i=2

x̃i + 2cφ(x̃1 + x̃N) + (N − 1)(c(φ− 1))2 + c2(1− φ2))/2σ2
)

Letting

t̃1 =
N∑
i=1

x̃2i , t̃2 =
N−1∑
i=2

x̃2i t̃3 =
N∑
i=2

x̃i−1x̃i t̃4 =
N−1∑
i=2

x̃i t̃5 = x̃1 + x̃N

we can write

p(x|c, φ, σ2) =

√
1− φ2

σn/2
exp

(
− (t̃1 + φ2t̃2 − 2φt̃3 − 2cφ2t̃4 − 2c(t̃4 + t̃5)

+4cφt̃4 + 2cφt̃5 + (N − 1)(c(φ− 1))2 + c2(1− φ2))/2σ2
)

Chapter 5

Embedded HMMs for High

Dimensions

We propose a new scheme for selecting pool states for the embedded Hidden Markov

Model (HMM) Markov Chain Monte Carlo (MCMC) method. This new scheme allows

the embedded HMM method to be used for efficient sampling in state space models

where the state can be high-dimensional. Previously, embedded HMM methods were

only applied to models with a one-dimensional state space. We demonstrate that us-

ing our proposed pool state selection scheme, an embedded HMM sampler can have

similar performance to a well-tuned sampler that uses a combination of Particle Gibbs

with Backward Sampling (PGBS) and Metropolis updates. The scaling to higher di-

mensions is made possible by selecting pool states locally near the current value of the

state sequence. The proposed pool state selection scheme also allows each iteration of

the embedded HMM sampler to take time linear in the number of the pool states, as

opposed to quadratic as in the original embedded HMM sampler. We also consider a

model with a multimodal posterior, and show how a technique we term “mirroring” can

be used to efficiently move between the modes. 1

5.1 Introduction

Consider a non-linear, non-Gaussian state space model for an observed sequence y =

(y1, . . . , yn). This model, with parameters θ, assumes that the Yi are drawn from an

observation density p(yi|xi, θ), where Xi is an unobserved Markov process with initial

density p(x1|θ) and transition density p(xi|xi−1, θ). Here, the xi might be either continu-

1Material in this chapter was first presented in Shestopaloff and Neal (2016).

65

Chapter 5. Embedded HMMs for High Dimensions 66

ous or discrete. We may be interested in inferring both the realized values of the Markov

process x = (x1, . . . , xn) and the model parameters θ. In a Bayesian approach to this

problem, this can be done by drawing a sample of values for x and θ using a Markov

chain that alternately samples from the conditional posterior distributions p(x|θ, y) and

p(θ|x, y). In this chapter, we will only consider inference for x by sampling from p(x|θ, y),

taking the parameters θ to be known. As a result, we will omit θ in model densities for

the rest of the paper. Except for linear Gaussian models and models with a finite state

space, this sampling problem has no exact solution and hence approximate methods such

as MCMC must be used.

One method for sampling state sequences in non-linear, non-Gaussian state space

models is the embedded HMM method (Neal, 2003; Neal, Beal and Roweis, 2004). An

embedded HMM update proceeds as follows. First, at each time i, a set of L “pool states”

in the latent space is constructed. In this set, L− 1 of the pool states are drawn from a

chosen pool state density and one is the current value of xi. This step can be thought of

as temporarily reducing the state space model to an HMM with a finite set of L states,

hence the name of the method. Then, using efficient forward-backward computations,

which take time proportional to L2n, a new sequence x′ is selected from the “ensemble” of

Ln sequences passing through the set of pool states, with the probability of choosing each

sequence proportional to its posterior density divided by the probability of the sequence

under the pool state density. At the next iteration of the sampler, a new set of pool

states is constructed, so that the chain can sample all possible xi, even when the set of

possible values is infinite.

Another method is the Particle Gibbs with Backward Sampling (PGBS) method.

The Particle Gibbs (PG) method was first introduced in Andrieu, Doucet and Holen-

stein (2010); Whiteley suggested the backward sampling modification in the discussion

following this paper. Lindsten and Schon (2012) implemented backward sampling and

showed that it improves the efficiency of PG. Starting with a current sequence x, PGBS

first uses conditional Sequential Monte Carlo (SMC) to construct a set of candidate

sequences and then uses backward sampling to select a new sequence from the set of

candidate ones. Here, conditional SMC works in the same way as ordinary SMC when

generating a set of particles, except that one of the particles at time i is always set to

the current xi, similar to what is done in the embedded HMM method, which allows the

sampler to remain at xi if xi lies in a high-density region. While this method works well

for problems with low-dimensional state spaces, the reliance of the SMC procedure on

choosing an appropriate importance density can make it challenging to make the method

work in high dimensions. An important advantage of Particle Gibbs, however, is that

Chapter 5. Embedded HMMs for High Dimensions 67

each iteration takes time that is only linear in the number of particles.

Both the PGBS and embedded HMM methods can facilitate sampling of a latent

state sequence, x, when there are strong temporal dependencies amongst the xi. In

this case, using a method that samples xi conditional on fixed values of xi−1 and xi+1

can be an inefficient way of producing a sample from p(x|y, θ), because the conditional

density of xi given xi−1 and xi+1 can be highly concentrated relative to the marginal

density of xi. In contrast, with the embedded HMM and PGBS methods it is possible to

make changes to blocks of xi’s at once. This allows larger changes to the state in each

iteration of the sampler, making updates more efficient. However, good performance of

the embedded HMM and PGBS methods relies on appropriately choosing the set of pool

states or particles at each time i.

In this chapter, our focus will be on techniques for choosing pool states for the embed-

ded HMM method. When the latent state space is one-dimensional, embedded HMMs

work well when choosing pool states in a variety of ways. For example, in Chapter 3,

we choose pool states at each time i by constructing a “pseudo-posterior” for each latent

variable by taking the product of a “pseudo-prior” and the observation density, the latter

treated as a “pseudo-likelihood” for the latent variable. In Chapter 4, we choose pool

states at each time i by sampling from the marginal prior density of the latent process.

Ways of choosing pool states that work well in one dimension begin to exhibit prob-

lems when applied to models with higher-dimensional state spaces. This is true even for

dimensions as small as three. Since these schemes are global, designed to produce sets of

pool states without reference to the current point, as the dimension of the latent space

grows, a higher proportion of the sequences in the ensemble ends up having low posterior

density. Ensuring that performance doesn’t degrade in higher dimensions thus requires

a significant increase in the number of pool states. As a result, computation time may

grow so large that any advantage that comes from using embedded HMMs is eliminated.

One advantage of the embedded HMM method over PGBS is that the embedded HMM

construction allows placing pool states locally near the current value of xi, potentially

allowing the method to scale better with the dimensionality of the state space. Switch-

ing to such a local scheme fixes the problem to some extent. However, local pool state

schemes come with their own problems, such as making it difficult to handle models with

multiple posterior modes that are well-separated — the pool states might end up being

placed near only some of the modes.

In this chapter, we propose an embedded HMM sampler suitable for models where

the state space is high dimensional. This sampler uses a sequential approximation to the

density p(xi|y1, . . . yi) or to the density p(xi|yi+1, . . . , yn) as the pool state density. We

Chapter 5. Embedded HMMs for High Dimensions 68

show that by using this pool state density, together with an efficient MCMC scheme for

sampling from it, we can reduce the cost per iteration of the embedded HMM sampler

to be proportional to nL, as with PGBS. At the same time, we retain the ability to

generate pool states locally, allowing better scaling for high-dimensional state spaces.

Our proposed scheme can thus be thought of as combining the best features of the PGBS

and the embedded HMM methods, while overcoming the deficiencies of both. We use two

sample state space models as examples. Both have Gaussian latent processes and Poisson

observations, with one model having a unimodal posterior and the second a multimodal

one. For the multimodal example, we introduce a “mirroring” technique that allows

efficient movement between the different posterior modes. For these models, we show

how our proposed embedded HMM method compares to a simple Metropolis sampler, a

PGBS sampler, as well as a sampler that combines PGBS and simple Metropolis updates.

5.2 Embedded HMM MCMC

We review the embedded HMM method (Neal, 2003; Neal, Beal and Roweis, 2004)

here. We take the model parameters, θ, to be fixed, so we do not write them explicitly.

Let p(x) be the density from which the state at time 1 is drawn, let p(xi|xi−1) be the

transition density between states at times i and i− 1, and let p(yi|xi) be the density of

the observation yi given xi.

Suppose our current sequence is x = (x1, . . . , xn). The embedded HMM sampler

updates x to x′ as follows.

First, at each time i = 1, . . . , n, we generate a set of L pool states, denoted by

Pi = {x[1]i , . . . , x
[L]
i }. The pool states are sampled independently across the different

times i. We choose li ∈ {1, . . . , L} uniformly at random and set x
[li]
i to xi. We sample

the remaining L− 1 pool states x
[1]
i , . . . , x

[li−1]
i , x

[li+1]
i , . . . , x

[L]
n using a Markov chain that

leaves a pool density κi invariant, as follows. Let Ri(x
′|x) be the transitions of this

Markov chain with R̃i(x|x′) the transitions for this Markov chain reversed (i.e. R̃i(x|x′) =

Ri(x
′|x)κi(x)/κi(x)), so that

κi(x)Ri(x
′|x) = κi(x

′)R̃i(x|x′) (5.1)

for all x and x′. Then, starting at j = li − 1, use reverse transitions R̃i(x
[j]
i |x

[j+1]
i) to

generate x
[li−1]
i , . . . , x

[1]
i and starting at j = li + 1 use forward transitions Ri(x

[j]
i |x

[j−1]
i)

to generate x
[li+1]
i , . . . , x

[L]
n .

At each i = 1, . . . , n, we then compute the forward probabilities αi(x), with x taking

Chapter 5. Embedded HMMs for High Dimensions 69

values in Pi. At time i = 1, we have

α1(x) =
p(x)p(y1|x)

κ1(x)
(5.2)

and at times i = 2, . . . , n, we have

αi(x) =
p(yi|x)

κi(x)

L∑
l=1

p(x|x[l]i−1)αi−1(x
[l]
i−1) (5.3)

Finally, we sample a new state sequence x′ using a stochastic backwards pass. This

is done by selecting x′n amongst the set, Pn, of pool states at time n, with probabilities

proportional to αn(x), and then going backwards, sampling x′i−1 from the set Pi−1, with

probabilities proportional to αi−1(x)p(x′i|x). Note that only the relative values of the

αi(x) will be required, so the αi may be computed up to some constant factor.

Alternatively, given a set of pool states, embedded HMM updates can be done by first

computing the backward probabilities. We will see later on that the backward probability

formulation of the embedded HMM method allows us to introduce a variation of our

proposed pool state selection scheme. Setting βn(x) = 1 for all x ∈ Pn, we compute for

i < n

βi(x) =
1

κi(x)

L∑
l=1

p(yi+1|x[l]i+1)p(x
[l]
i+1|x)βi+1(x

[l]
i+1) (5.4)

A new state sequence is then sampled using a stochastic forward pass, setting x′1

to one of the x in the pool P1 with probabilities proportional to β1(x)p(x)p(y1|x) and

then choosing subsequent states x′i from the pools Pi with probabilities proportional to

βi(x)p(x|x′i−1)p(yi|x).

Computing the αi or βi at each time i > 1 takes time proportional to L2, since for

each of the L pool states it takes time proportional to L to compute the sums in (5.3)

or (5.4). Hence each iteration of the embedded HMM sampler takes time proportional

to L2n.

5.3 Particle Gibbs with Backward Sampling MCMC

We review the Particle Gibbs with Backward Sampling (PGBS) sampler here. For full

details, see the articles by Andrieu, Doucet and Holenstein (2010) and Lindsten and

Schon (2012).

Chapter 5. Embedded HMMs for High Dimensions 70

Let q1(x|y1) be the importance density from which we sample particles at time 1,

and let qi(x|yi, xi−1) be the importance density for sampling particles at times i > 1.

These may depend on the current value of the parameters, θ, which we suppressed in this

notation. Suppose we start with a current sequence x. We set the first particle x
[1]
1 to

the current state x1. We then sample L − 1 particles x
[2]
1 , . . . , x

[L]
1 from q1 and compute

and normalize the weights of the particles:

w
[l]
1 =

p(x
[l]
1)p(y1|x[l]1)

q1(x
[l]
1 |y1)

(5.5)

W
[l]
1 =

w
[l]
1∑L

m=1w
[m]
1

(5.6)

for l = 1, . . . , L.

For i > 1, we proceed sequentially. We first set x
[1]
i = xi. We then sample a set of L−1

ancestor indices for particles at time i, defined by A
[l]
i−1 ∈ {1, . . . , L}, for l = 2, . . . , L,

with probabilities proportional to W
[l]
i−1. The ancestor index for the first state, A

[1]
i−1, is

1. We then sample each of the L − 1 particles, x
[l]
i , at time i, for l = 2, . . . , L, from

qi(x|yi, x
[A

[l]
i−1]

i−1) and compute and normalize the weights at time i

w
[l]
i =

p(x
[l]
i |x

[A
[l]
i−1]

i−1)p(yi|x[l]i)

qi(x
[l]
i |yi, x

[A
[l]
i−1]

i−1)

(5.7)

W
[l]
i =

w
[l]
i∑L

m=1w
[m]
i

(5.8)

A new sequence taking values in the set of particles at each time is then selected using a

backwards sampling pass. This is done by first selecting x′n from the set of particles at

time n with probabilities W
[l]
n and then selecting the rest of the sequence going backward

in time to time 1, setting x′i to x
[l]
i with probability

w
[l]
i p(x

′
i+1|x

[l]
i)∑L

m=1w
[m]
i p(x′i+1|x

[m]
i)

(5.9)

A common choice for q is the model’s transition density, which is what is compared to

in this chapter.

Note that each iteration of the PGBS sampler takes time proportional to Ln, since it

takes time proportional to L to create the set of particles at each time i, and to do one

step of backward sampling.

Chapter 5. Embedded HMMs for High Dimensions 71

5.4 An embedded HMM sampler for high dimen-

sions

We propose two new ways, denoted f and b, of generating pool states for the embedded

HMM sampler. Unlike previously-used pool state selection schemes, where pool states

are selected independently at each time, our new schemes select pool states sequentially,

with pool states at time i selected conditional on pool states at time i−1, or alternatively

at time i+ 1.

5.4.1 Pool state distributions

The first way to generate pool states is to use a forward pool state selection scheme, with

a sequential approximation to p(xi|y1, . . . , yi) as the pool state density. In particular, at

time 1, we set the pool state distribution of our proposed embedded HMM sampler to

κf1(x) ∝ p(x)p(y1|x) (5.10)

As a result of equation (5.2), α1(x) is constant. At time i > 1, we set the pool state

distribution to

κfi (x|Pi−1) ∝ p(yi|x)
L∑
`=1

p(x|x[`]i−1) (5.11)

which makes αi(x) constant for i > 1 as well (see equation (5.3)).

We then draw a sequence composed of these pool states with the forward probability

implementation of the embedded HMM method, with the αi(x)’s all set to 1.

The second way is to instead use a backward pool state selection scheme, with a

sequential approximation of p(xi|yi+1, . . . , yn) as the pool state density. We begin by

creating the pool Pn, consisting of the current state xn and the remaining L − 1 pool

states sampled from pn(x), the marginal density at time n, which is the same as p(x) if

the latent process is stationary. The backward probabilities βn(x), for x in Pn, are then

set to 1. At time i < n we set the pool state densities to

κbi(x|Pi+1) ∝
L∑
`=1

p(yi+1|x[`]i+1)p(x
[`]
i+1|x) (5.12)

so that βi(x) is constant for all i = 1, . . . , n (see equation 5.4).

We then draw a sequence composed of these pool states as in the backward probability

Chapter 5. Embedded HMMs for High Dimensions 72

implementation of the embedded HMM method, with the βi(x)’s all set to 1.

If the latent process is Gaussian, and the latent state at time 1 is sampled from the

stationary distribution of the latent process, it is possible to update the latent variables

by applying the forward scheme to the reversed sequence (yn, . . . , y1) by making use of

time reversibility, since Xn is also sampled from the stationary distribution, and the

latent process evolves backward in time according to the same transition density as it

would going forward. We then use the forward pool state selection scheme along with a

stochastic backward pass to sample a sequence (xn, . . . , x1), starting with x1 and going

to xn.

It can sometimes be advantageous to alternate between using forward and backward

(or, alternatively, forward applied to the reversed sequence) embedded HMM updates,

since this can improve sampling of certain xi. The sequential pool state selection schemes

use only part of the observed sequence in generating the pool states. By alternating

update directions, the pool states can depend on different parts of the observed data,

potentially allowing us to better cover the region where xi has high posterior density.

For example, at time 1, the pool state density may disperse the pool states too widely,

leading to poor sampling for x1, but sampling x1 using a backwards scheme can be much

better, since we are now using all of the data in the sequence when sampling pool states

at time 1.

5.4.2 Sampling pool states

To sample from κfi or κbi , we can use any Markov transitions Ri that leave this distribution

invariant. The validity of the method does not depend on the Markov transitions for

sampling from κfi or κbi reaching equilibrium or even on them being ergodic.

Directly using these pool state densities in an MCMC routine leads to a computational

cost per iteration that is proportional to L2n, like in the original embedded HMM method,

since at times i > 1 we need at least L updates to produce L pool states, and the cost of

computing an acceptance probability is proportional to L.

However, it is possible to reduce the cost per iteration of the embedded HMM method

to be proportional to nL when we use κfi or κbi as the pool state densities. To do this,

we start by thinking of the pool state densities at each time i > 1 as marginal densities

summing over the variable ` = 1, . . . , L that indexes a pool state at the previous time.

Specifically, κfi can be viewed as a marginal of the density

λi(x, `) ∝ p(yi|x)p(x|x[`]i−1) (5.13)

Chapter 5. Embedded HMMs for High Dimensions 73

while κbi is a marginal of the density

γi(x, `) ∝ p(yi+1|x[`]i+1)p(x
[`]
i+1|x) (5.14)

Both of these densities are defined given a pool Pi−1 at time i − 1 or pool Pi+1 at time

i + 1. This technique is reminiscent of the auxiliary particle filter of Pitt and Shephard

(1999). We then use Markov transitions, Ri, to sample a set of values of x and `, with

probabilities proportional to λi for the forward scheme, or probabilities proportional to

γi for the backward scheme.

The chain is started at x set to the current xi, and the initial value of ` is cho-

sen randomly with probabilities proportional to p(xi|x[`]i−1) for the forward scheme or

p(yi+1|x[`]i+1)p(x
[`]
i+1|xi) for the backward scheme. This stochastic initialization of ` is

needed to make the algorithm valid when we use λi or γi to generate the pool states.

Sampling values of x and ` from λi or γi can be done by updating each of x and `

separately, alternately sampling values of x conditional on `, and values of ` conditional

on x, or by updating x and ` jointly, or by a combination of these.

Updating x given ` can be done with any appropriate sampler, such as Metropolis,

or for a Gaussian latent process we can use autoregressive updates, which we describe

below. To update ` given x, we can also use Metropolis updates, proposing `′ = ` + k,

with k drawn from some proposal distribution on {−K, . . . ,−1, 1, . . . , K}. Alternatively,

we can simply propose `′ uniformly at random from {1, . . . , L}.
To jointly update x and `, we propose two novel updates, a “shift” update and a “flip”

update. Since these are also Metropolis updates, using them together with Metropolis or

autoregressive updates, for each of x and ` separately, allows embedded HMM updates

to be performed in time proportional to nL.

5.4.3 Autoregressive updates

For sampling pool states in our embedded HMM MCMC schemes, as well as for com-

parison MCMC schemes, we will make use of Neal’s (1998) “autoregressive” Metropolis-

Hastings update, which we review here. This update is designed to draw samples from

a distribution of the form p(w)p(y|w) where p(w) is multivariate Gaussian with mean µ

and covariance Σ and p(y|w) is typically a density for some observed data.

This autoregressive update proceeds as follows. Let L be the lower triangular Cholesky

decomposition of Σ, so Σ = LLT , and n be a vector of i.i.d. normal random variables

with zero mean and identity covariance. Let ε ∈ [−1, 1] be a tuning parameter that

Chapter 5. Embedded HMMs for High Dimensions 74

determines the scale of the proposal. Starting at w, we propose

w′ = µ+
√

1− ε2(w − µ) + εLn (5.15)

Because these autoregressive proposals are reversible with respect to p(w), the proposal

density and p(w) cancel in the Metropolis-Hastings acceptance ratio. This update is

therefore accepted with probability

min

(
1,
p(y|w′)
p(y|w)

)
(5.16)

Note that for this update, the same value of ε is used for scaling along every dimension.

It would be of independent interest to develop a version of this update where ε can be

different for each dimension of w.

5.4.4 Shift updates

We can simultaneously update ` and x at time i > 1 by proposing to update (x, `) to

(x′, `′) where `′ is proposed in any valid way while x′ is chosen in a way such that x′

and x
[`′]
i−1 are linked in the same way as x and x

[`]
i−1. The shift update makes it easier

to generate a set of pool states at time i with different predecessor states at time i− 1,

helping to ensure that the pool states are well-dispersed. This update is accepted with

the usual Metropolis probability.

For a concrete example we use later, suppose that the latent process is an autoregres-

sive Gaussian process of order 1, with the model being that Xi|xi−1 ∼ N(Φxi−1,Σ). In

this case, given `′, we propose x′i = xi + Φ(x
[`′]
i−1 − x

[`]
i−1). This update is accepted with

probability

min

(
1,
p(yi|x′i)
p(yi|xi)

)
(5.17)

as a result of the transition densities in the acceptance ratio cancelling out, since

x′i − Φx
[`′]
i−1 = xi + Φ(x

[`′]
i−1 − x

[`]
i−1)− Φx

[`′]
i−1 (5.18)

= xi − Φx
[`]
i−1 (5.19)

To be useful, shift updates normally need to be combined with other updates for

generating pool states. When combining shift updates with other updates, tuning of

acceptance rates for both updates needs to be done carefully in order to ensure that the

Chapter 5. Embedded HMMs for High Dimensions 75

shift updates actually improve sampling performance. In particular, if the pool states at

time i− 1 are spread out too widely, then the shift updates may have a low acceptance

rate and not be very useful. Therefore, jointly optimizing proposals for x and for x and

` may lead to a relatively high acceptance rate on updates of x, in order to ensure that

the acceptance rate for the shift updates isn’t low.

5.4.5 Flip updates

Generating pool states locally can be helpful when applying embedded HMMs to models

with high-dimensional state spaces but it also makes sampling difficult if the posterior is

multimodal. Consider the case when the observation probability depends on |xi| instead

of xi, so that many modes with different signs for some xi exist. We propose to handle

this problem by adding an additional flip update that creates a “mirror” set of pool

states, in which −xi will be in the pool if xi is. By having a mirror set of pool states,

we are able to flip large segments of the sequence in a single update, allowing efficient

exploration of different posterior modes.

To generate a mirror set of pool states, we must correctly use the flip updates when

sampling the pool states. Since we want each pool state to have a negative counterpart,

we choose the number of pool states L to be even. The chain used to sample pool states

then alternates two types of updates, a usual update to generate a pool state and a flip

update to generate its negated version. The usual update can be a combination of any

updates, such as those we consider above. So that each state will have a flipped version,

we start with a flip transition between x[1] and x[2], a usual transition between x[2] and

x[3], and so on up to a flip transition between x[L−1] to x[L].

At time 1, we start with the current state x1 and randomly assign it to some index l1

in the chain used to generate pool states. Then, starting at x1 we generate pool states

by reversing the Markov chain transitions back to 1 and going forward up to L. Each

flip update is then a Metropolis update proposing to generate a pool state −x1 given

that the chain is at some pool state x1. Note that if the observation probability depends

on x1 only through |x1| and p(x) is symmetric around zero then this update is always

accepted.

At time i > 1, a flip update proposes to update a pool state (x, `) to (−x, `′) such

that x
[`′]
i−1 = −x[`]i−1. Here, since the pool states at each time are generated by alternating

flip and usual updates, starting with a flip update to x
[1]
i , the proposal to move from `

to `′ can be viewed as follows. Suppose that instead of labelling our pool states from 1

to L we instead label them 0 to L − 1. The pool states at times 0 and 1, then 2 and

Chapter 5. Embedded HMMs for High Dimensions 76

3, and so on will then be flipped pairs, and the proposal to change ` to `′ can be seen

as proposing to flip the lower order bit in a binary representation of `′. For example, a

proposal to move from ` = 3 to ` = 2 can be seen as proposing to change ` from 11 to

10 (in binary). Such a proposal will always be accepted assuming a transition density

for which p(xi|xi−1) = p(–xi|–xi−1) and an observation probability which depends on xi

only via |xi|.

5.4.6 Relation to PGBS

The forward pool state selection scheme can be used to construct a sampler with prop-

erties similar to PGBS. This is done by using independence Metropolis to sample values

of x and ` from λi.

At time 1, we propose our pool states from p(x). At times i > 2, we propose `′ by

selecting it uniformly at random from {1, . . . , L} and we propose x′ by sampling from

p(x|x[`
′]

i−1). The proposals at all times i are accepted with probability

min

(
1,
p(yi|x′i)
p(yi|xi)

)
(5.20)

This sampler has computational cost proportional to Ln per iteration, like PGBS. It is

analogous to a PGBS sampler with importance densities

q1(x|y1) = p(x) (5.21)

and

qi(x|xi−1, yi) = p(x|xi−1), i > 2 (5.22)

with the key difference between these two samplers being that PGBS uses importance

weights p(yi|xi) on each particle, instead of an independence Metropolis accept-reject

step.

5.5 Proof of correctness

We modify the original proof of Neal (2003), which assumes that the sets of pool states

P1, . . . ,Pn are selected independently at each time, to show the validity of our new

sequential pool state selection scheme. Another change in the proof is to account for

generating the pool states by sampling them from λi or γi instead of κfi or κbi .

Chapter 5. Embedded HMMs for High Dimensions 77

This proof shows that the probability of starting at x and moving to x′ with given

sets of pool states Pi (consisting of values of x at each time i), pool indices li of xi, and

pool indices l′i of x′i is the same as the probability of starting at x′ and moving to x with

the same set of pool states Pi, pool indices l′i of x′i, and pool indices li of xi. This in

turn implies, by summing/integrating over Pi and li, that the embedded HMM method

with the sequential pool state scheme satisfies detailed balance with respect to p(x|y),

and hence leaves p(x|y) invariant.

Suppose we use the sequential forward scheme. The probability of starting at x and

moving to x′ decomposes into the product of the probability of starting at x, which is

p(x|y), the probability of choosing a set of pool state indices li, which is 1
Ln

, the probability

of selecting the initial values of `i for the stochastic initialization step, the probability of

selecting the sets of pool states Pi, P (P1, . . . ,Pn), and finally the probability of choosing

x′.

The probability of selecting given initial values for the links to previous states `2, . . . , `n

is

n∏
i=2

p(xi|x[`i]i−1)∑L
m=1 p(xi|x

[m]
i−1)

(5.23)

The probability of choosing a given set of pool states is

P (P1, . . . ,Pn) = P (P1)
n∏
i=2

P (Pi|Pi−1) (5.24)

At time 1, we use a Markov chain with invariant density κ1 to select pool states in P1.

Therefore

P (P1) =
L∏

j=l1+1

R1(x
[j]
1 |x

[j−1]
1)

1∏
j=l1−1

R̃1(x
[j]
1 |x

[j+1]
1)

=
L∏

j=l1+1

R1(x
[j]
1 |x

[j−1]
1)

1∏
j=l1−1

R1(x
[j+1]
1 |x[j]1)

κ1(x
[j]
1)

κ1(x
[j+1]
1)

=
L−1∏
j=l1

R1(x
[j+1]
1 |x[j]1)

1∏
j=l1−1

R1(x
[j+1]
1 |x[j]1)

κ1(x
[j]
1)

κ1(x
[j+1]
1)

=
κ1(x

[1]
1)

κ1(x
[l1]
1)

L−1∏
j=1

R1(x
[j+1]
1 |x[j]1) (5.25)

For times i > 1 we use a Markov chain with invariant density λi to sample a set of pool

Chapter 5. Embedded HMMs for High Dimensions 78

states, given Pi−1. The chain is started at x
[li]
i = xi and `

[li]
i = `i. Therefore

P (Pi|Pi−1) =
L∏

j=l1+1

Ri(x
[j]
i , `

[j]
i |x

[j−1]
i , `

[j−1]
i)

1∏
j=li−1

R̃i(x
[j]
i , `

[j]
i |x

[j+1]
i , `

[j+1]
i)

=
L∏

j=li+1

Ri(x
[j]
i , `

[j]
i |x

[j−1]
i , `

[j−1]
i)

1∏
j=li−1

Ri(x
[j+1]
1 , `

[j+1]
i |x[j]i , `

[j]
i)

λi(x
[j]
i , `

[j]
i)

λi(x
[j+1]
1 , `

[j+1]
i)

=
L−1∏
j=li

Ri(x
[j+1]
i , `

[j+1]
i |x[j]i , `

[j]
i)

1∏
j=li−1

Ri(x
[j+1]
i , `

[j+1]
i |x[j]i , `

[j]
i)

λi(x
[j]
i , `

[j]
i)

λi(x
[j+1]
i , `

[j+1]
i)

=
λi(x

[1]
i , `

[1]
i)

λi(x
[li]
i , `

[li]
i)

L−1∏
j=1

Ri(x
[j+1]
i , `

[j+1]
i |x[j]i , `

[j]
i) (5.26)

Finally, we choose a new sequence x′ amongst the collection of sequences consisting

of the pool states with a backward pass. This is done by first choosing a pool state

x′n uniformly at random from Pn. We then select the remaining states x
[l′i]
i by selecting

l′1, . . . , l
′
n−1 with probability

n∏
i=2

p(x′i|x
[l′i−1]

i−1)∑L
m=1 p(x

′
i|x

[m]
i−1)

(5.27)

Thus, the probability of starting at x and going to x′, with given P1, . . . ,Pn, l1, . . . , ln

and l′1, . . . , l
′
n is

p(x|y)× 1

Ln
×

n∏
i=2

p(xi|x[`i]i−1)∑L
m=1 p(xi|x

[m]
i−1)
× κ1(x

[1]
1)

κ1(x
[l1]
1)

L−1∏
j=1

R1(x
[j+1]
1 |x[j]1) (5.28)

×
n∏
i=2

[
λi(x

[1]
i , `

[1]
i)

λi(x
[li]
i , `

[li]
i)

L−1∏
j=1

Ri(x
[j+1]
i , `

[j+1]
i |x[j]i , `

[j]
i)

]
× 1

L
×

n∏
i=2

p(x′i|x
[l′i−1]

i−1)∑L
m=1 p(x

′
i|x

[m]
i−1)

= κ1(x
[1]
1)

L−1∏
j=1

R1(x
[j+1]
1 |x[j]1)×

n∏
i=2

[
λi(x

[1]
i , `

[1]
i)

L−1∏
j=1

Ri(x
[j+1]
i , `

[j+1]
i |x[j]i , `

[j]
i)

]

× 1

Ln+1
× p(x|y)

κ1(x1)
∏n

i=2 λi(xi, `i)
×

n∏
i=2

p(xi|x[`i]i−1)∑L
m=1 p(xi|x

[m]
i−1)

n∏
i=2

p(x′i|x
[l′i−1]

i−1)∑L
m=1 p(x

′
i|x

[m]
i−1)

Here, we have x
[l′i−1]

i−1 = x′i−1. Also κ1(x1) = p(x1)p(y1|x1)/
∑

x1∈P1
p(x1)p(y1|x1) and

n∏
i=2

λi(xi, `i) =
n∏
i=2

p(yi|xi)p(xi|x[`i]i−1)∑
xi∈Pi

∑L
m=1 p(yi|xi)p(xi|x

[m]
i−1)

(5.29)

Chapter 5. Embedded HMMs for High Dimensions 79

and

p(x|y) =
p(x1)

∏n
i=2 p(xi|xi−1)

∏n
i=1 p(yi|xi)

p(y)
(5.30)

Therefore (5.28) can be simplified to

1

p(y)
κ1(x

[1]
1)

L−1∏
j=1

R1(x
[j+1]
1 |x[j]1)×

n∏
i=2

[
λi(x

[1]
i , `

[1]
i)

L−1∏
j=1

Ri(x
[j+1]
i , `

[j+1]
i |x[j]i , `

[j]
i)

]
× 1

Ln+1

×
n∏
i=2

p(xi|xi−1)×
n∏
i=2

p(x′i|x′i−1)×
n∏
i=2

1∑L
m=1 p(xi|x

[m]
i−1)
×

n∏
i=2

1∑L
m=1 p(x

′
i|x

[m]
i−1)

×
∑
x1∈P1

p(x1)p(y1|x1)
n∏
i=2

∑
xi∈Pi

L∑
m=1

p(yi|xi)p(xi|x[m]
i−1) (5.31)

The last factor in the product only depends on the selected set of pool states. By

exchanging x and x′ we see that the probability of starting at x′ and then going to x,

with given sets of pool states Pi, pool indices li of xi and pool indices l′i of x′i is the same.

5.6 Experiments

5.6.1 Test models

To demonstrate the performance of our new pool state scheme, we use two different state

space models. The latent process for both models is a vector autoregressive process, with

X1 ∼ N(0,Σinit) (5.32)

Xi|xi−1 ∼ N(Φxi−1,Σ), i = 2, . . . , n (5.33)

Chapter 5. Embedded HMMs for High Dimensions 80

where Xi = (Xi,1, . . . , Xi,P)′ and

Φ =


φ1 . . . 0
...

. . .
...

0 . . . φP

 (5.34)

Σ =


1 . . . ρ
...

. . .
...

ρ . . . 1

 (5.35)

Σinit =


1

1−φ21
. . . ρ√

1−φ21
√

1−φ2P
...

. . .
...

ρ√
1−φ2P
√

1−φ21
. . . 1

1−φ2P

 (5.36)

Note that Σinit is the covariance of the stationary distribution for this process.

For model 1, the observations are given by

Yi,j|xi,j ∼ Poisson(exp(cj + σjxi,j)), i = 1, . . . , n, j = 1, . . . , P (5.37)

For model 2, the observations are given by

Yi,j|xi,j ∼ Poisson(σj|xi,j|), i = 1, . . . , n, j = 1, . . . , P (5.38)

For model 1, we use a 10-dimensional latent state and a sequence length of n = 250,

setting parameter values to ρ = 0.7, and cj = −0.4, φj = 0.9, σj = 0.6 for j = 1, . . . , P ,

with P = 10.

For model 2, we increase the dimensionality of the latent space to 15 and the sequence

length to 500. We set ρ = 0.7 and φj = 0.9, σj = 0.8 for j = 1, . . . , P , with P = 15.

We generated one random sequence from each model to test our samplers on. These

observations from model 1 and model 2 are shown in Figure 5.1. Note that we are testing

only sampling of the latent variables, with the parameters set to their true values.

5.6.2 Single-state Metropolis Sampler

A simple scheme for sampling the latent state sequence is to use Metropolis-Hastings

updates that sample each xi in sequence, conditional on x−i = (x1, . . . , xi−1, xi+1, . . . , xi)

and the data, starting at time 1 and going to time n. We sample all dimensions of xi at

once using autoregressive updates (see section 5.4.3).

Chapter 5. Embedded HMMs for High Dimensions 81

0 50 100 150 200 250
0

5

10

15

20

25

30

35

40

(a) Model 1

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6

7

8

9

(b) Model 2

Figure 5.1: Observations from Model 1 and Model 2 along dimension j = 1.

The conditional densities of the Xi are

p(x1|x−1, y) ∝ p(x1|x2)p(y1|x1) ∝ p(x1)p(x2|x1)p(y1|x1)

p(xi|x−i, y) ∝ p(xi|xi−1, xi+1)p(yi|xi) ∝ p(xi|xi−1)p(xi+1|xi)p(yi|xi), 2 ≤ i ≤ n− 1

p(xn|x−n, y) ∝ p(xn|xn−1)p(yn|xn)

The densities p(x1|x2), p(xi|xi−1, xi+1), and p(xn|xn−1) are all Gaussian. The means

and covariances for these densities can be derived by viewing p(x1) or p(xi|xi−1) as a

Gaussian prior for xi and p(xi+1|xi) as a Gaussian likelihood for xi. In particular, we

have

X1|x2 ∼ N(µ1,Σ1)

Xi|xi, xi+1 ∼ N(µi,Σi)

Xn|xn−1 ∼ N(µn,Σn)

Chapter 5. Embedded HMMs for High Dimensions 82

where

µ1 = [(Φ−1ΣΦ−1)−1 + Σ−1init]
−1[(Φ−1ΣΦ−1)−1Φ−1x2]

= [(Φ−1ΣΦ−1)−1 + Σ−1init]
−1[Σ−1(Φx2)]

= [Φ2 + Σ−1initΣ]−1Φx2

Σ1 = [(Φ−1ΣΦ−1)−1 + Σ−1init]
−1

= [Φ(Σ−1Φ) + Σ−1init]
−1

µi = [(Φ−1ΣΦ−1)−1 + Σ−1]−1[Σ−1Φxi−1 + (Φ−1ΣΦ−1)−1Φ−1xi+1]

= (Φ−1ΣΦ−1)−1 + Σ−1]−1[Σ−1(Φ(xi−1 + xi+1))]

= [Φ2 + I]−1Φ(xi−1 + xi+1)

Σi = [(Φ−1ΣΦ−1)−1 + Σ−1]−1

= [Φ(Σ−1Φ) + Σ−1]−1

µn = Φxn−1

Σn = Σ

To speed up the Metropolis updates, we precompute and store the matrices [Φ2 +

Σ−1initΣ]−1Φ, [Φ2 + I]−1Φ as well as the Cholesky decompositions of the posterior co-

variances.

In both of our test models, the posterior standard deviation of the latent variables

xi,j varies depending on the value of the observed yi,j. To address this, we alternately use

a larger or a smaller proposal scaling, ε, in the autoregressive update when performing

an iteration of the Metropolis sampler.

5.6.3 Particle Gibbs with Backward Sampling with Metropolis

We implement the PGBS method as described in Section 5.3, using the initial density p(x)

and the transition densities p(xi|xi−1) as importance densities to generate particles. We

combine PGBS updates with single-state Metropolis updates from Section 5.6.2. This

way, we combine the strengths of the two samplers in targeting different parts of the

posterior distribution. In particular, we expect the Metropolis updates to do better for

the xi with highly informative yi, and the PGBS updates to do better for the xi where

yi is not as informative.

Chapter 5. Embedded HMMs for High Dimensions 83

5.6.4 Tuning the Baseline Samplers

For model 1, we compared the embedded HMM sampler to the simple single-state

Metropolis sampler, to the PGBS sampler, and to the combination of PGBS with Metropo-

lis. For model 2, we compared the embedded HMM sampler to the PGBS with Metropolis

sampler. For both models and all samplers, we ran the sampler five times using five dif-

ferent random number generator seeds. We implemented the samplers in MATLAB on

a Linux system with a 2.60 GHz Intel i7-3720QM CPU.

Model 1

For the single-state Metropolis sampler, we initialized all xi,j to 0. Every iteration alter-

nately used a scaling factor, ε, of either 0.2 or 0.8, which resulted in an average acceptance

rate of between 30% and 90% for the different xi over the sampler run. We ran the sam-

pler for 1000000 iterations, and prior to analysis, the resulting sample was thinned by

a factor of 10, to 100000. The thinning was done due to the difficulty of working with

all samples at once, and after thinning the samples still possessed autocorrelation times

significantly greater than 1. Each of the 100000 samples took about 0.17 seconds to draw.

For the PGBS sampler and the sampler combining PGBS and Metropolis updates,

we also initialized all xi,j to 0. We used 250 particles for the PGBS updates. For the

Metropolis updates, we alternated between scaling factors of 0.2 and 0.8, which also

gave acceptance rates between 30% and 90%. For the standalone PGBS sampler, we

performed a total of 70000 iterations. Each iteration produced two samples for a total

of 140000 samples and consisted of a PGBS update using the forward sequence and a

PGBS update using the reversed sequence. Each sample took about 0.12 seconds to

draw. For the PGBS with Metropolis sampler, we performed a total of 30000 iterations

of the sampler. Each iteration was used to produce four samples, for a total of 120000

samples, and consisted of a PGBS update using the forward sequence, ten Metropolis

updates (of which only the value after the tenth update was retained), a PGBS update

using the reversed sequence, and another ten Metropolis updates, again only keeping the

value after the tenth update. The average time to draw each of the 120000 samples was

about 0.14 seconds.

Model 2

For model 2, we were unable to make the single-state Metropolis sampler converge to

anything resembling the actual posterior in a reasonable amount of time. In particular,

we found that for xi,j sufficiently far from 0, the Metropolis sampler tended to be stuck

Chapter 5. Embedded HMMs for High Dimensions 84

in a single mode, never visiting values with the opposite sign.

For the PGBS with Metropolis sampler, we set the initial values of xi,j to 1. We set

the number of particles for PGBS to 80000, which was nearly the maximum possible for

the memory capacity of the computer we used. For the Metropolis sampler, we alternated

between scaling factors of 0.3 and 1, which resulted in acceptance rates ranging between

29% and 72%. We performed a total of 250 iterations of the sampler. As for model

1, each iteration produced four samples, for a total of 1000 samples, and consisted of a

PGBS update with the forward sequence, fifty Metropolis updates (of which we only keep

the value after the last one), a PGBS update using the reversed sequence, and another

fifty Metropolis updates (again only keeping the last value). It took about 26 seconds to

draw each sample.

5.6.5 Embedded HMM sampling

For both model 1 and model 2, we implemented the proposed embedded HMM method

using the forward pool state selection scheme, alternating between updates that use the

original and the reversed sequence. As for the baseline samplers, we ran the embedded

HMM samplers five times for both models, using five different random number generator

seeds.

We generate pool states at time 1 using autoregressive updates to sample from κf1 .

At times i ≥ 2, we sample each pool state from λi(x, l) by combining an autoregressive

and shift update. The autoregressive update proposes to only change x, keeping the

current l fixed. The shift update samples both x and l, with a new l proposed from a

Uniform{1, . . . , L} distribution. For model 2, we also add a flip update to generate a

negated version of each pool state.

Note that the chain used to produce the pool states now uses a sequence of updates.

Therefore, if our forward transition first does an autoregressive update and then a shift

update, the reverse transitions must first do a shift update and then an autoregressive

update.

As for the single-state Metropolis updates, it is beneficial to use a different proposal

scaling, ε, when generating each pool state at each time i. This allows generation of sets

of pool states which are more concentrated when yi is informative and more dispersed

when yi holds little information.

Chapter 5. Embedded HMMs for High Dimensions 85

Model 1

For model 1, we initialized all xi,j to 0. We used 50 pool states for the embedded HMM

updates. For each Metropolis update to sample a pool state, we used a different scaling

ε, chosen at random from a Uniform(0.1, 0.4) distribution. The acceptance rates ranged

between 55% and 95% for the Metropolis updates and between 20% and 70% for the

shift updates. We performed a total of 9000 iterations of the sampler, with each iteration

consisting of an embedded HMM update using the forward sequence and an embedded

HMM update using the reversed sequence, for a total of 18000 samples. Each sample

took about 0.81 seconds to draw.

Model 2

For model 2, we initialized the xi,j to 1. We used a total of 80 pool states for the

embedded HMM sampler (i.e. 40 positive-negative pairs due to flip updates). Each

Metropolis update used to sample a pool state used a scaling, ε, randomly drawn from

the Uniform(0.05, 0.2) distribution. The acceptance rates ranged between 75% and 90%

for the Metropolis updates and between 20% and 40% for the shift updates. We performed

a total of 9000 iterations of the sampler, producing two samples per iteration with an

embedded HMM update using the forward sequence and an embedded HMM update

using the reversed sequence. Each of the 18000 samples took about 1.4 seconds to draw.

5.6.6 Comparisons

As a way of comparing the performance of the two methods, we use an estimate of

autocorrelation time2 for each of the latent variables xi,j. Autocorrelation time is a

measure of how many draws need to be made using the sampling chain to produce

the equivalent of one independent sample. The autocorrelation time is defined as τ =

2Technically, when we alternate updates with the forward and reversed sequence or mix PGBS and
single-state Metropolis updates, we cannot use autocorrelation times to measure how well the chain
explores the space. While the sampling scheme leaves the correct target distribution invariant, the
flipping of the sequence makes the sampling chain for a given variable non-homogeneous. However,
suppose that instead of deterministically flipping the sequence at every step, we add an auxiliary indicator
variable that determines (given the current state) whether the forward or the reversed sequence is used,
and that the probability of flipping this indicator variable is nearly one. With this auxiliary variable
the sampling chain becomes homogeneous, with its behaviour nearly identical to that of our proposed
scheme. Using autocorrelation time estimates to evaluate the performance of our sampler is therefore
valid, for all practical purposes.

Chapter 5. Embedded HMMs for High Dimensions 86

1 + 2
∑∞

i=1 ρk, where ρk is the autocorrelation at lag k. It is commonly estimated as

τ̂ = 1 + 2
K∑
i=1

ρ̂k (5.39)

where ρ̂k are estimates of lag-k autocorrelations and the cutoff point K is chosen so that

ρ̂k is negligibly different from 0 for k > K. Here

ρ̂k =
γ̂k
γ̂0

(5.40)

where γ̂k is an estimate of the lag-k autocovariance

γ̂k =
1

n

n−k∑
l=1

(xl − x̄)(xk+l − x̄) (5.41)

When estimating autocorrelation time, we remove the first 10% of the sample as burn-in.

Then, to estimate γ̂k, we first estimate autocovariances for each of the five runs, taking

x̄ to be the overall mean over the five runs. We then average these five autocovariance

estimates to produce γ̂k. To speed up autocovariance computations, we use the Fast

Fourier Transform. The autocorrelation estimates are then adjusted for computation

time, by multiplying the estimated autocorrelation time by the time it takes to draw a

sample, to ensure that the samplers are compared fairly.

The computation time-adjusted autocorrelation estimates for Model 1, for all the

latent variables, plotted over time, are presented in Figure 5.2. We found that the

combination of single-state Metropolis and PGBS works best for the unimodal model.

The other samplers work reasonably well too. We note that the spike in autocorrelation

time for the PGBS and to a lesser extent for the PGBS with Metropolis sampler occurs

at the point where the data is very informative. This in turn makes the use of the diffuse

transition distribution the particles are drawn from inefficient and much of the sampling

in that region is due to the Metropolis updates. Here, we also note that the computation

time adjustment is sensitive to the particularities of the implementation, in this case

done in MATLAB, where performance depends a lot on how well vectorization can be

exploited. Implementing the samplers in a different language might change the relative

comparisons.

We now look at how the samplers perform on the more challenging Model 2. We

first did a preliminary check of whether the samplers do indeed explore the different

modes of the distribution by looking at variables far apart in the sequence, where we

Chapter 5. Embedded HMMs for High Dimensions 87

0 50 100 150 200 250
0

2

4

6

8

10

12

14

16

18

(a) Metropolis (0.17 seconds/sample)

0 50 100 150 200 250
0

2

4

6

8

10

12

14

16

18

(b) PGBS (0.12 seconds/sample)

0 50 100 150 200 250
0

2

4

6

8

10

12

14

16

18

(c) PGBS+Metropolis (0.14 sec-
onds/sample)

0 50 100 150 200 250
0

2

4

6

8

10

12

14

16

18

(d) Embedded HMM (0.81 sec-
onds/sample)

Figure 5.2: Estimated autocorrelation times for each latent variable for Model 1, adjusted
for computation time

expect to see four modes (with all possible combinations of signs). This is indeed the

case for both the PGBS with Metropolis and Embedded HMM samplers. Next, we look

at how efficiently the latent variables are sampled. Of particular interest are the latent

variables with well-separated modes, since sampling performance for such variables is

illustrative of how well the samplers explore the different posterior modes. Consider the

variable x1,300, which has true value −1.99. Figure 5.3 shows how the different samplers

explore the two modes for this variable, with equal computation times used to produced

the samples for the trace plots. We can see that the embedded HMM sampler with flip

updates performs significantly better for sampling a variable with well-separated modes.

Experiments showed that the performance of the embedded HMM sampler on model 2

without flip updates is much worse.

We can also look at the product of the two variables x3,208x4,208, with true value

−4.45. The trace plot is given in Figure 5.4. In this case, we can see that the PGBS

Chapter 5. Embedded HMMs for High Dimensions 88

0 100 200 300 400 500 600 700 800 900 1000
−6

−4

−2

0

2

4

6

(a) Embedded HMM

0 100 200 300 400 500 600 700 800 900 1000
−6

−4

−2

0

2

4

6

(b) Particle Gibbs with Metropolis

Figure 5.3: Comparison of Samplers for Model 2, x1,300

0 100 200 300 400 500 600 700 800 900 1000
−10

−5

0

5

10

15

(a) Embedded HMM

0 100 200 300 400 500 600 700 800 900 1000
−10

−5

0

5

10

15

(b) Particle Gibbs with Metropolis

Figure 5.4: Comparison of Samplers for Model 2, x3,208x4,208

with Metropolis sampler performs better. Since the flip updates change the signs of all

dimensions of xi at once, we do not expect them to be as useful for improving sampling

of this function of state. The vastly greater number of particles used by PGBS, 80000,

versus 80 for the embedded HMM method, works to the advantage of PGBS, and explains

the performance difference.

Looking at these results, we might expect that we can get a good sampler for both

x1,300 and x3,208x4,208 by alternating embedded HMM and PGBS with Metropolis updates.

This is indeed the case, which can be seen in Figure 5.5. For producing these plots, we

used an embedded HMM sampler with the same settings as in the experiment for Model

2 and a PGBS with Metropolis sampler with 10000 particles and Metropolis updates

using the same settings as in the experiment for Model 2.

This example of Model 2 demonstrates another advantage of the embedded HMM

Chapter 5. Embedded HMMs for High Dimensions 89

0 100 200 300 400 500 600 700 800 900 1000
−6

−4

−2

0

2

4

6

(a) Trace plot for x1,300

0 100 200 300 400 500 600 700 800 900 1000
−10

−5

0

5

10

15

(b) Trace plot for x3,208x4,208

Figure 5.5: Combination of embedded HMM and PGBS with Metropolis samplers

viewpoint, which is that it allows us to design updates for sampling pool states to handle

certain properties of the density. This is arguably easier than designing importance

densities in high dimensions.

5.7 Conclusion

We have demonstrated that it is possible to use embedded HMM’s to efficiently sample

state sequences in models with higher dimensional state spaces. We have also shown how

embedded HMMs can improve sampling efficiency in an example model with a multimodal

posterior, by introducing a new pool state selection scheme. There are several directions

in which this research can be further developed.

The most obvious extension is to treat the model parameters as unknown and add a

step to sample parameters given a value of the latent state sequence. In the unknown

parameter context, it would also be interesting to see how the proposed sequential pool

state selection schemes can be used together with ensemble MCMC updates of Chapter 3.

For example, one approach is to have the pool state distribution depend on the average

of the current and proposed parameter values in an ensemble Metropolis update, as in

Chapter 4.

One might also wonder whether it is possible to use the entire current state of x in

constructing the pool state density at a given time. It is not obvious how (or if it is

possible) to overcome this limitation. For example, for the forward scheme, using the

current value of the state sequence at some time k > i to construct pool states at time i

means that the pool states at time k will end up depending on the current value of xk,

which would lead to an invalid sampler.

Chapter 5. Embedded HMMs for High Dimensions 90

At each time i < n, the pool state generation procedure does not depend on the data

after time i, which may cause some difficulties in scaling this method further. On one

hand, this allows for greater dispersion in the pool states than if we were to impose a

constraint from the other direction as with the single-state Metropolis method, potentially

allowing us to make larger moves. On the other hand, the removal of this constraint also

means that the pool states can become too dispersed. In higher dimensions, one way in

which this can be controlled is by using a Markov chain that samples pool states close to

the current xi — that is, a Markov chain that is deliberately slowed down in order not

to overdisperse the pool states, which could lead to a collection of sequences with low

posterior density.

Chapter 6

Conclusion

This thesis has presented several MCMC methods that can be used to perform efficient

Bayesian inference in non-linear, non-Gaussian state space models.

The main contribution of the thesis was to show how ensemble MCMC methods

can be used to make sampling more efficient in non-linear, non-Gaussian state space

models, where properties of the posterior make sampling difficult. We have considered

cases where there is strong serial dependence amongst the latent variables, the parameter

values are strongly dependent on the current value of the sequence, the state space is

high-dimensional, and different observations are more or less informative about the value

of the latent state.

While we gave several proposals, the most challenging question for ensemble methods

remains finding a general method for selecting pool states that works in an even wider

range of scenarios. We have shown that a variety of methods work well when the state

space is one-dimensional. Chapter 5 is an attempt at finding a generic method which

works well for higher dimensional state spaces by combining ideas from embedded HMMs

and Particle Gibbs with Backwards Sampling methods. However, this method is still

hard to scale to very high dimensional state spaces, the primary reason being that the

proposed pool states at each time are not constrained by all of the data, which becomes

more crucial in high dimensions. Using less data in generating a proposal removes a

constraint on how the pool states can be placed, potentially allowing for larger moves,

but at the same time leading to the possibility that the resulting ensemble has many

sequences with low posterior density.

The other question which we didn’t explore in much detail is constructing ensembles

over parameter values. The basic technique we used is caching, where part of the com-

putation is saved and then used later to efficiently compute values of the posterior at

different parameter values. It would be of interest to explore other ways in which param-

91

Chapter 6. Conclusion 92

eter ensembles can be constructed. One idea worth exploring is constructing ensembles

that depend on parameter values, such as in the stochastic volatility example. If we use

a scheme where we alternate between sampling sequences and parameters, then using

the current values of the parameters can be helpful in generating a set of sequences with

high posterior density, especially in cases where there is potential for sequences to be too

widely dispersed. We have only looked at ensembles which depend on two parameter

values, a current and proposed one, whereas ensembles depending on many parameter

values at once can be considered instead.

We have also looked at how models doable with ABC can be done with MCMC. It

would be interesting to see how, in general, this can be done for other models, where it

is possible to come up with a latent variable representation of the entire data generating

process and use an MCMC method to sample from the posterior over all of the latent

variables. Since the data generation process can involve many highly-dependent variables,

having efficient MCMC methods for inference in such models would be necessary.

Other ways of using ensembles are also worth exploring. In this thesis, we used two

types of ensembles, one made possible by efficient forward-backward computations and

the other by a caching technique. Perhaps there are other models where ensembles can

be constructed and used to improve sampling efficiency.

Chapter 7

References

Andrieu, C., Doucet, A. and Holenstein, R. (2010) “Particle Markov chain Monte Carlo

methods”, Journal of the Royal Statistical Society B, vol. 72, pp. 269-342.

Blum, M.G.B. and Francois, O. (2010) “Non-linear regression models for Approximate

Bayesian Computation”, Statistics and Computing, vol. 20, pp. 63-73.

Bonassi, F.V. (2013) “Approximate Bayesian Computation for Complex Dynamic Sys-

tems”. Ph.D. Thesis, Department of Statistical Science, Duke University.

Christen, J. and Fox, C. (2005) “Markov Chain Monte Carlo methods using an approxi-

mation”, Journal of Computational and Graphical Statistics, vol. 14, pp. 795-810.

Fearnhead, P., Prangle, D. (2012) “Constructing summary statistics for approximate

Bayesian computation: semi-automatic approximate Bayesian computation”, Journal

of the Royal Statistical Society B, vol. 74, pp. 1-28.

Geyer, C. J. (2003) “The Metropolis-Hastings-Green Algorithm”,

http://www.stat.umn.edu/geyer/f05/8931/bmhg.pdf

Kastner, G. and Fruhwirth-Schnatter, S. (2014) “Ancillarity-sufficiency interweaving

strategy (ASIS) for boosting MCMC estimation of stochastic volatility models”, Com-

putational Statistics & Data Analysis, vol. 76, pp. 408-423.

Kim, S., Shephard, N. and Chib, S. (1998) “Stochastic volatility: likelihood inference and

comparison with ARCH models”, Review of Economic Studies. vol. 65, pp. 361-393.

Leman, S.C., Chen, Y., and Lavine, M. (2009) “The multiset sampler”, Journal of the

American Statistical Association, vol. 104, pp. 1029-1041.

93

Chapter 7. References 94

Lindsten, F.; Schon, T.B. (2012) “On the use of backward simulation in the particle

Gibbs sampler”, in Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE

International Conference on, pp. 3845-3848.

Lindsten, F. and Schon, T. B. (2013) “Backward simulation methods for Monte Carlo

statistical inference”, Foundations and Trends in Machine Learning. vol. 6(1), pp. 1-

143.

Liu, J.S., Liang, F., and Wong, W.H. (2000) “The multiple-try method and local op-

timization in Metropolis sampling”, Journal of the American Statistical Association,

vol. 95, pp. 121-134.

Liu, J.S. and Sabatti, C. (2000) “Generalized Gibbs sampler and multigrid Monte Carlo

for Bayesian computation”, Biometrika, vol. 87, pp. 353-369.

Liu, J.S. and Wu, Y.N. (1999) “Parameter expansion for data augmentation”, Journal

of the American Statistical Association vol. 94, pp. 1264-1274.

Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., and Teller, E. (1953)

“Equation of State Calculations by Fast Computing Machines”. Journal of Chemical

Physics, vol. 21, pp. 1087-1092.

Neal, R. M. (1993) “Probabilistic Inference Using Markov Chain Monte Carlo Methods”,

Technical Report CRG-TR-93-1, Dept. of Computer Science, University of Toronto.

Neal, R. M. (1998) “Regression and classification using Gaussian process priors”, in J.M.

Bernardo et al (editors) Bayesian Statistics 6, Oxford University Press, pp. 475-501.

Neal, R. M. (2003) “Markov Chain Sampling for Non-linear State Space Models us-

ing Embedded Hidden Markov Models”, Technical Report No. 0304, Department of

Statistics, University of Toronto, http://arxiv.org/abs/math/0305039.

Neal, R. M., Beal, M. J., and Roweis, S. T. (2004) “Inferring state sequences for non-

linear systems with embedded hidden Markov models”, in S. Thrun, et al (editors),

Advances in Neural Information Processing Systems 16, MIT Press.

Neal, R. M. (2006) “Constructing Efficient MCMC Methods Using Temporary Mapping

and Caching”, Talk at Columbia University.

Neal, R. M. (2010) “MCMC Using Ensembles of States for Problems with Fast and

Slow Variables such as Gaussian Process Regression”, Technical Report No. 1011,

Department of Statistics, University of Toronto, http://arxiv.org/abs/1101.0387.

Chapter 7. References 95

Omori, Y., Chib, S., Shephard, N. and Nakajima, J. (2007) ”Stochastic volatility model

with leverage: fast and efficient likelihood inference”, Journal of Econometrics, vol. 140-

2, pp. 425-449.

Petris, G., Petrone, S. and Campagnoli, P. (2009) Dynamic Linear Models with R,

Springer: New York.

Pitt, M. K. and Shephard, N. (1999) “Filtering via Simulation: Auxiliary Particle Fil-

ters”, Journal of the American Statistical Association, vol. 94, no. 446, pp. 590-599.

Scharth, M. and Kohn, R. (2013) “Particle Efficient Importance Sampling”, arXiv preprint

1309.6745v1.

Shestopaloff, A. Y. and Neal, R. M. (2013a) “MCMC for non-linear state space models us-

ing ensembles of latent sequences”, Technical Report, http://arxiv.org/abs/1305.0320.

Shestopaloff, A. Y. and Neal, R. M. (2013b) “On Bayesian inference for the M/G/1 queue

with efficient MCMC sampling”, Technical Report, http://arxiv.org/abs/1401.5548.

Shestopaloff, A. Y. and Neal, R. M. (2014) “Efficient Bayesian inference for stochastic

volatility models with ensemble MCMC methods”, Technical Report,

http://arxiv.org/abs/1412.3013.

Shestopaloff, A. Y. and Neal, R. M. (2016) “Sampling latent states for high-dimensional

non-linear state space models with the embedded HMM method”, Technical Report,

http://arxiv.org/abs/1602.06030.

Steven L. Scott (2002) “Bayesian Methods for Hidden Markov Models: Recursive Com-

puting in the 21st Century”, Journal of the American Statistical Association. vol. 97,

no. 457, pp. 337-351.

Wood, S. (2010) “Statistical inference for noisy nonlinear ecological dynamic systems”,

Nature. vol. 466, pp. 1102-1104.

Yu, Y. and Meng, X. (2011) “To Center or Not to Center, That is Not the Question: An

Ancillarity-Sufficiency Interweaving Strategy (ASIS) for Boosting MCMC Efficiency”,

Journal of Computational and Graphical Statistics, vol. 20 (2011), pp. 531-570.

