The University of Célgary

AN EDITOR FOR TREES

by

Radford M. Neal

A thesis submitted to the Faculty
of Graduate Studies in partial fulfillment
of the requirements for the degree of

Master of Science

Department of Computer Science
Calgary, Alberta

September, 1980

(© 1980, Radford M. Neal

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and

recommend to the Faculty of Graduate Studies for accept-

ance, a thesis entitled, "An Editor for Trees" submitted

by Radford M. Neal in partial fulfillment of the require-

ments for the degree of Master of Science.

1980~10-01

T
Supervisor

Prof. D, R, Hill
Department of Computer Science

Al e A

Dr. 8. P. Soule
Shell Canada Resources

QM RuSesT

Dr. G. M. Birtwistle
Department of Computer Science

PR e

Dr. R. E. Dewar
Department of Psychology

ABSTRACT

An editor is described which allows the user to manipulate
information represented in the form of trees rather than as
text. Applied to the editing of programs, this approach

aids the programmer in the creation or modification of his
program by eliminating the possibility of syntax errors,
providing automatic formatting of the program, and reducing
the number of keystrokes required to enter a program. The
significance of regarding programs as trees in the development
of an advanced program development system is discussed, and a
powerful macro language exploiting the tree representation is

described.

ACKNOWLEDGEMENTS

I wish to thank Steve Soule for his supervision during most
of this project, and my present supervisor, David Hill, for
his greatly appreciated assistance during a time when he has
had many other obligations. I also thank James Gosling and

others with whom I have had helpful discussions.

Table of Contents

INTRODUCTION. & o « o o o « o o &«

* = = & & & »

THE USERS'S VIEW OF THE TREE EDITOR

Forms of Trees « v v ¢ & s o &

The Basics of Language Descriptions.

Basic Operation of the Editor.
Entering and Modifying Trees .

Further Aspects of Language Desarlptlons ..
Automatic Actions of the Editor.

Window Manipulation.
El iSiOn. L] - [L] - - L - - - -
The Macro Languade . « « « « =

THE PRESENT IMPLEMENTATION, . . .
Representation of Trees. . . .
Operations on Trees. . , . . .
Producing the Display.
Cancellation of Commands . . .

RATIONALE FOR DESIGN DECISIONS. .
Requirements of the Design . .
Basic Choices in the Design of

*« v+ = s

an Editor . .

The Language-description Language.

The Editing Commands
The Keyboard Layout.,
The Display. . « o« « « « « o »
Implementation Choices

L] L R T] .« =

*® & &+ s =& = @

DISCUSSION OF THE TREE EDITING CONCEPT.

Alternatives to Tree Editing .

. = s s &

Advantages and Disadvantages of Tree Editing

Applications of Tree Editing .

e & * & e & &

Further Development of the Tree Editor . . .
Handling Context-sensitive Syntax.
Possible Human-factors Improvements.
Implications for Language Design
Significance of the Macro Expansion Language

CmaSION . - - - - ”» - L] L] - - -

REFERENCES. & o« o o + ¢ ¢ s o «

DESCRIPTION OF THE LANGUAGE-DESCRIPTION LANGUAGE

DESCRIPTION OF THE DOCUMENT LANGUAGE

APPENDIX A -

APPENDIX B — DESCRIPTION OF PASCAL. . . .
APPENDIX C -

APPENDIX D — SUMMARY OF EDITING COMMANDS. . . .

92
94
99

100

Figure

10
11
12
13
14
15
16
17
18
19
20
21

22

List of Figures

An example 6f 3 Eree. + 2 o o o 0 v e e s e s s
A tree representing an if-statement
A tree representing a sentence. . « + « « + .+ .
A partial language description for documents. .
A description of an example language. . . « . .

A tree of the example language. . . « + « « «

The display representation of the tree of figure 6.

Illustration of the cursor movement commands. .
Illustration of the entry of a subtree.
Illustration of tree modification
An improved description of the example lanjuage
T1lustration of the use of windows.
The effect of cursor position on elision. . . .
An extension to the example language. . « « .« =
Implementation of the extension . . . + « + « .
A program using the extension« + + « .
Expansion of the program of figure 16
Structure of blocks . . & v ¢ ¢ v & ¢ 0 o e w .
Creation of a modified tree . + & & o ¢ o « « &
Layout of commands on the keyboard.

Description of strings and string functions . .

Definition of string functions in the macro language.

Page

11
11
12
12
16
18
20
22
27
29
30
30
31
31
37
39
60
86

86

INTRODUCTION

Information may be represented in many ways. Selecting a proper
method of representing information is a central problem of computing
science. This project concerns the representation of information that

is to be manipulated directly by people via an editor.

Traditionally, people have communicated information to computer
systems as text — a string of characters, sometimes grouped into
lines. This text is then parsed by the machine to reveal its
underlying structure. In most cases this structure is that of a tree -
a hierarchy in which each component is composed of separable
sub-components whose relationships can be diagrammed in a way that
resembles the branching of a tree. This hierarchy is illustrated by
this document, which is composed of sections, which are in turn
composed of sub-sections, which have a further structure in terms of

paragraphs, sentences, words, and finally letters.

The tree editor described in this document allows its user to

bypass the stage of representing information as text and instead enter
and manipulate it in its underlying tree form. The user may then refer
to the information in terms that reflect its true structure; he need

not decide how to represent his information as text; and the

possibility of a syntax error - an inability of the machine to parse a

text - is no longer present.

The use of the tree editor to edit computer programs written in
high-level languages is of particular interest. These programs
typically exhibit a well-developed tree structure and their entry and
modification occupy a significant fraction of a programmer's time. In
addition to eliminating syntax errors, it is hoped that performing
modifications with the tree editor will be faster and easier than with

a text editor.

Furthermore, representing programs as trees rather than text should
make it easier to create an environment in which the computer can
intelligently aid in the development of a program. [Winograd, 19791,
[Sandewall, 19781, and-[Teitelman, 1979] discuss existing or proposed
systems of this kind. A fundamental question with any such system is
"How do the programmer and the machine communicate about the program?"
I feel that trees are a more effective medium of communication than
text for this purpose. For example, consider a program to compare two
versions of a program and inform the user of the differences. If one
difference is the replacement of the statement "S" by "if B then S fi",
a textual comparison would reveal two apparently unrelated differences;
a comparison of the tree structure would reveal that there is only one
change and this difference could be communicated to the programmer in

intelligible terms.

The succeeding sections of this document describe the appearance of
the editor from the user's point of view, the implementation of the

editor, the rationale for the design and implementation decisions

taken, and a discussion of the tree editing concept and its possible

development.

THE USER'S VIEW OF THE TREE EDITOR

This section describes the tree editing system from the user's
point of view, but it is not meant to be a complete user manual.
Discussion of the implementation and of the justification for design

and implementation decisions is postponed to later sections.

The tree editing system consists of a number of programs. First,
there is the language-description compiler. The language for which the
tree editor is being used determines the allowable forms of trees, the
way in which these trees are displayed, and the way in which they are
entered. The language—description compiler takes a specification of a
language and produces an encoded version of this description whiéh is

used in producing a set of programs for editing trees of that language.

The most important of these programs is the editor itself. The
editor for a language allows files containing trees of that language to

be created and modified by the user.

Also important is the listing program. This program takes a file
containing a tree of the language and produces a textual representation

of the tree suitable for printing or for passing on to a compiler which

cannot operate on the tree directly.

A macro expansion program allows the user to extend the language

with new constructs and expand them into equivalent combinations of old

constructs vwhen necessary.

Finally, there are slightly specialized versions of the editor and
listing program for use in producing documents. These programs were

used to produce this document itself.

Forms of Trees.

A tree may be recursively defined as consisting of a production and
a series of zero or more trees. The trees which are immediate
components of a tree are known as the children of the tree (by analogy
with family trees). The parent of a tree is the tree which contains it
as a child. Two trees which are children of the same parent are called
siblings. The concept of a subtree may be defined by saying that a
tree is a subtree of itself and the subtrees of a tree are also
subtrees of the parent of the tree. A tree is a root if it has no

parent and a leaf if it has no children.

This terminology is illustrated by the tree in figure 1. The
productions of the trees are represented by letters; arrows point from
a tree to its children. The tree with production A is the parent of B
and also of C. Hence B and C are siblings and are children of A. WNote
that the trees with productions E, ¥, G, H, and I have no children.

All the trees shown are subtrees of A; B, D, H, and I are subtrees of

B. A is a root.

In general, it is possible for several trees to have the same

T
N
VAN

Figure 1. An example of a tree.

if-statement

7\
VAN

Figure 2. A tree representing an if-statement.

N

Figure 3. A tree representing a sentence.

prod;ction {unlike the example just given); the trees are distinguished
by having different children (see figure 3 for an example). The
production of a tree also determines the number of children the tree
must have. For instance, any tree with production C might be required
to have three children. These children have a definite ordering. More

generally, the children of a tree belong to child groups, with the

children within a group having a definite ordering and the groups
themselves also being ordered. The production of a tree determines
exactly how many groups of children the tree will possess and the kinds
of groups these will be. Groups are of four kinds - solitary groups
containing exactly one child, optional groups containing either zero or
one child, series groups containing one or more children, and optional

series groups containing zero or more children.

This structure may be used to represasnt many kinds of information.
For example, the Pascal statement "if a<btc then sl else s2" may be
represented by the tree in figure 2 (some detail at lower levels has
been omitted). A tree with the if-statement production must have three
child groups - a solitary group containing the condition of the if
statement, another solitary group containing the statement to be
performed if the condition is true, and an optional group containing
the statement to be performed if the condition is false or containing
nothing if that statement is absent. The < and + productions require

two solitary child groups.

Another example is shown in figure 3. This tree represents the

senténce "Did Spot run?". The sentence production specifies that the
root of this tree should have a single series child group. The
children of this group are the words and punctuation of the sentence.
The word production specifies the same structure, but the children in
this case will be letters. The question-mark production requires that
there be no child groups. There is a separate production for each

letter, all of which have no child groups.

This completes the description of the trees which are manipulated .
by the tree editor. Note that although much of the information in the
trees is represented by which productions are present, the tree

structure itself also gives part of the information.

The Basics of Language Descriptions.

A language is a class of trees together with means of displaying

and entering these trees. A language description is a description of

these three components of a language.

Describing the class of trees comprising a language consists of
listing the possible productions of trees and describing the child

groups of these productions. A production class is a set of

productions; each child group of a production has associated with it a
production class which limits the possible children in that group to
those with productions in the associated class. There is also a
production class associated with the root of the tree. Names of

production classes are written in angle brackets.

Figure 4 lists the production classes and productions describing
the tree structure of a simple document language. The production
classes are listed with the productions belonging to them listed
underneath. The child groups for each production are shown, with a
class name alone indicating a solitary child group in which the child
must have a production in the indicated class, while a class name
enclosed in square, round, or curly brackets indicates an optional,
series, or optional series child group respectively. By convention,
the root of the tree is associated with the first production class

listed.

Figure 4 may be paraphrased as saying that a document consists of a
series of zero or more paragraphs; a paragraph consists of one or more
sentences; a sentence consists of one or more parts; a sentence part
may be one of several punction marks or it may be a word; a punctuation
mark has no subcomponents; a word consists of one or more letters; and

a letter may be a, b, ¢, etc.

Describing the manner in which trees are entered by the user
consists mainly of specifying names for the various productions. These
names are used to select which production is desired for a subtree.
Production names may be any series of characters, but are typlcally a
single character for ease of typing; they are written at the beginning
of the description of a production and need be unique only within a

production class.

Describing how trees should be displayed can be complex; only the

10

simﬁle aspects will be described here. Productions are divided into
two types for display purposes — those which should be displayed on
separate lines indented from the surrounding text, and those which may
be displayed as part of a line. The types are distinguished by writing
| or — between the production name and the rest of the description of
the production. Characters may be interspersed among the descriptions
of the child groups of the production; the display of a tree with that
production consists of the display of the children with these
characters added in the indicated positions. Characters may also be
placed before the class name within the description of an optional
child group; these are displayed only if the group actually contains
children. Charactefs after the class name within the description of a
series child group are used to separate the displays of the children of

that group.

Figures 5, 6, and 7 contain a description of a simple programming
language, an example tree belonging to the language, and the way that
tree would be displayed by the editor. The "include" construct in the
description language allows one to include in a production class all or
some of the productions of another production class. The productions
of the predefined class <character> represent the various characters of
the character set. This example will be used in the following sections

to illustrate the editing commands.

11

<document>
production for a document: {<paragraph>}

<{paragraph>
production for a paragraph: (<sentence>)

<sentence>
production for a sentence: (<part>)

<part>
production for a word: (<letter>)
production for comma: no child groups
etc,

<{letter>
production for the letter a: no child groups
etc.

Figure 4. A partial language description for documents.

<{statement>

| #

| if <expression> then(<statement>){else<statement>}fi
| while <expression> do(<statement>)od

| <identifier> := <expression>

| print <expression>

| read <identifier>

| begin(<statement>}end

WUyl E =S

<identifier>
- (<letter>)

<expression>

include <identifier>
- (<digit>)
- <expression>+<expression>
~ [<expression>]-<expression>
- <expression>*<expression>
<expression)/<expression>
- <expression> < <expression>
- <expression> > <expression>
- <expression> = <expression>

i vAN 21 + 2
|

{letter>
include <character> a, b, ¢, d, e, £, g, h, i, 3, k, 1, m,
N, o, Py 4, ¥y Sy t, U, v, W, X, ¥, Z

<digit>
include <character> O, 1, 2, 3, 4, 5, 6, 7, 8, 9

Figure 5. A description of an example language.

12

AN
oANNAAN
RALAALAN LA

len wid temp len len wid wid temp len wid

ol
5
,\,

Figure 6. A tree of the example language.

begin
read len
read wid
if len < wid then
temp := len
len := wid
wid = t
fi
print len®*wid
end

Figure 7. The display representation of the tree of figure 6.

13
Basic Operation of the Editor.

When the user starts the editor, tailored for a particular
language, he gives it a file containing a representation of a tree of
that language (not a file containing the textual representation of the
tree). The editor displays the textual representation of that tree (or
as much of it as it can) on the screen before the user. The user then
types commands that modify the tree, eventually typing the Quit
command, at which time the editor writes the modified tree back out to

the file.

The commands the user types are single keystrokes, i. e. they are
typed by hitting a single key, possibly while holding down a shift key
of some sort. A list of the commands, and the keystrokes used to
invoke them, is given in appendix D. In this exposition, the commands
will be referred to by their names, e. g. Quit, Cancel, InsertB. These
names are not actually typed; they are used here to make the exposition
clearer. Generally, after each command is typed, the display on the
screen will be immediately changed to reflect the effect of the

command .

1f the editor is unable to perform the action requested by a
command because the context is such that the command does not make
sense, it rings the terminal's bell and ignores the erroneous command,
If the user decides that a command he typed (and the editor acted upon)
was a mistake, he may type the special command, Cancel, which undoes

the effect of the previous command. Cancel may be typed several times

14

to undo several commands (erroneous commands that the editor ignored do
not count here). The effect of Cancel may be thought of as going "back

in time" to the point before the cancelled command was typed.

In addition to the textual representation of the tree, the editor
also displays a cursor. The cursor designates a particular su?tree of
the tree being edited and is uséd as a reference point for the
operation of the editing commands. It is drawn as two brackets at the
corners of the textual representation of the subtree at which it is
positioned., If the cursor is positioned at a subtree whose production
has a display type that indicates it should be displayed on a line (or
lines) by itself, the two brackets are drawn at the upper and lower
left corners of the display of that subtree. If the display type is
such that the object the cursor is at does not deserve a line to

itself, the two brackets are at the upper left and lower right corners.

The cursgor also indicates by its shape whether it is positioned at
a last and/or first child. If it is at a first child, one of the sides
of the first bracket will be lengtﬂened; if it is at a last child, one
of the sides of the second bracket will be lengthened; if it is at an
only child, both brackets will have lengthened sides. (These subtle

distinctions may not always be apparent in the figures.)

The cursor may be moved about in the tree by the Up command which
moves the cursor to the parent of the subtree it was at previously, the
DownLeft command which moves to the first child, the DownRight command

which moves to the last child, the Right command which moves to the

15

next sibling, and the Left command which moves to the preceding
sibling. Errors, resulting in the bell ringing, occur if one types Up
when at the root of the tree, Downleft or DownRight when at a leaf, or

Right or Left when there is no sibling in that directien.

Figure 8 shows the an example of the use of these commands. This
and other such figures show a series of "snapshots" of the screen as it
would appear after each keystroke. The sequence is shown by the
arrows, which have beside them the names of the commands which were

typed betwzen the two screens.

Entering and Modifying Trees.

The basic means of changing a tree with the editor is to replace
existing subtrees with newly created subtrees. The user positions the
cursor at a subtree he wishes to change and then types a production
name. The subtree at the cursor is replaced by a subtree with the
specified production and with holes for all its children. A hole is a
subtree whose production name is "#" and vhose children are all holes
themselves. If the language description does not define a production
with name "#" for a particular production class, the editor will assume
one without any child groups and which is displayed as "#". Generally,
if a production class contains only one'production, it will be made a
hole production so that the user will not have to select it

explicitly. This was done with <identifier> in figure 5.

This is illustrated in figure 9. 1In the first screen shown, the

Tbegin
read len
read wid
if len < wid then
temp := len

16

DownRight

len := wid
wid := temp
fi

Left

L 4

begin
read len
read wid
if len <

wid then

temp := len
len := wid

wid :=
fi

temp

Print len*wid

end

/

print len*wid
begin
read len

end
read wid

Gf len ¢ wid then
temp := len

Dounle 't

A 4

len := wid
wid := temp
fi
print len*wid

DownLe ft

begin

read len

read wid

if Nen < wid, then
temp := len
len := wid
wid := temp

fi

print len*wid

end

/

end
begin /
read len
read wid
if Men < wid then
temp := len

DownRight _

len := wid
wid := temp
fi

Up

begin
read len
read wid
if 1leny <

wid then

temp := len

len :=
wid :=
fi

wid
temp

print len*wid

end

/

print len*wid
begin
read len

end
read wid

if flen, < wid then
temp := len

Right

len := wid
wid := temp
fi
print len*wid

end

Figure 8.

Illustration of the

begin
read len
read wid

if 1len <fwids then
temp := len

len :=
wid :=
fi

wid
temp

print len*wid

end

cursor movement commands.

17

user'has positioned himself at-the "while" statement. When he types
"I" the subtree representing the "while" statement is replaced by a
subtree representing an "if" statement in which all the components are
holes. Note that the editor also moves the cursor to the first of
these holes; this is done automatically so that the user will be in a

position to £ill in the details of the "if" statement.

The remainder of figure 9 shows how the user can continue filling
in holes until the entire "if" statement has been entered. When the
"a" was typed when the cursor was at a hole for an identifier, the
editor assumed that the "a" was intended as the first letter of the
identifier, since "a" was not a valid production name for an identifier
but was a valid production name for a letter. Notice that the editor
then added a new hole after the "a". This was done because the
language description specifies that an identifier consists of a series
of letters, not necessarily just one. The new hole was added to allow
the user the option of typing another letter if he wished. 1In this
case, he did not want another letter in the identifier, so he typed the

Remove command to delete the unwanted hole.

A similar situation arose when the user finished with the "then"
part of the "if" statement. The language description specifies that
there is an optional "else" part of the "if" statement, so the editor

inserted a hole to allow the user to enter this part.

Although this example has shown the user persisting in entering the

statement until all parts have been filled, it is permissable to leave

18

begin begin begin
read a read a read a
fwhile a > 0 do if M then if By < # then
print a T # < #
a = a1l —F fi —> fi
1od print b print b
print b end end
end
‘ : /
begin begin begin
read a read a read a
if df < # then if a <% then if a < B then
#
£i Hemove 5 g —r 5 oy
print b print b print b
end end end
. Hemove //
begin " begin begin
read a read a read a
if a < b then P if a < b then if a < b then
%_ ——> print i b 5 print B
fi fi fi
print b print b print b
end end end
Remove ,//
begin e begin begin
read a read a read a
if a < b then if a < b then if a < b then
print b Remove print b P print b
% » else 3 else
£i % print
print b fi fi
end print b print b
end end
a /
begin « begin begin
read a read a read a
if a < b then if a < b then if a < b then
print b Remove print b Remove print b
else -» @lse Pp else
print &l print a print a
fi & fi
print b fi ‘orint b
end print b end
end

Pigure 9.

Illustration of the entry of a subtree.

19
a subtree with holes in it and move off to do something else.

The Remove command mentioned above can be used to remove any
optional subtree, not just holes. The reverse 6f a Remove command is
an insert command, of which the editor has two varieties - Insertd for
inserting a hole after the spot where the cursor is positioned and
InsertB for inserting before the cursor. The user would generally type

a production name to £ill in the hole after one of these commands.

When a subtree which is not a hole is replaced by a new subtree,
the editor saves the old subtree. The most recently used erased
subtree may be used to replace a subtree somewhere else in the tree by
typing the UnErase command. The children of the last erased subtree

may be successively inserted into the tree by typing UnErashxt.

The InsertB and UnErasNxt commands are illustrated in figure 10.

Further Aspects of Language Descriptions.

Appendices A through C contain real language descriptions for
Pascal, a class of documents, and the language-description language
itself. This section will describe the additional details of language

descriptions used there.

First, production classes need not be defined all in one place.
There may be several sections modifying a production class, with the
productions listed accumulating until the end of the description.

There is also a method of removing productions from production classes;

20

b%gln begin begin
while a > 0 do] read T
print a InsertB o while a > 0 do B . while a > O do
a := atl " print a print a
vod a 1= at+l a := arl
end od od
end end
a /
begin begin begin
read d4 read a read a
while a > O do k: TWhile a > 0 do
print a Remove , while a > 0 do Remove print a
a = atl i print a 7 a = atl
od a = atl wod
end od end
end
DownRight _J////
begin ‘(/,’//- begin begin
read a read a read a
while a > 0 do while a > 0 do while a » 0 do
print a DowmRight print a - - print a
a 1= atl a :="at+) > a =T
od od od
end end end
UnEraeNxt ;////
begin begin
read a read a
while a > 0 do while a > 0 do
print a UnErashzt print a
a 1= a-¥ a :="a-Y
od od
end end

Figure 10.

Tllustration of tree modification.

21

the fact that at some point in the language description a production
appeared to be a member of a production class is of no significance,
only the members at the end of the description count (however, the
"include" construct operates on the situation at the point in the

description where it is placed).

Secondly, optional and optional series child groups may be declared
“very optional"; this is indicated in the display of the language
description by a question-mark after the opening square or curly
bracket. Very optional children are sometimes automatically skipped by
the editor. The "assume" declaration directs the editor to assume a
particular production vhen certain characters are typed. Note that
these features are part of the description of how trees are entered,

not of the tree structure itself.

Lastly, there are several additional display features. The
language description can specify that a new line should be started in
the display of a subtree by placing a | in the desired position. A
particular column may be skipped to with an item in exclamation marks.
In addition to the two display types of productions already mentioned
(1 and -), a display type of * acts like — except that the editor will
never split the display of that subtree between lines, and the display
types O, 1, 2, and so on up to 9 indicate a production with a certain
precedence. If a subtree has a lower precedence than its parent, it
will be displayed in parentheses. The example language described

earlier needs this feature to eliminate ambiguities in expressions.

22

<statement>

| #

| if <expression> then (<statement>) { el se<statement>}fi
| while <expression> do(<statement>)od

| <identifier> := <expression>

| print <expression>

| read <identifier>

| begin{<statement>)end

assume = before abcdefghijklmnopgrstuvwxyz

W -

<identifier>
— {Kletter>)

<{expression>

include <identifier>

N - (<digit>)
<expression>+<expression>
[Kexpression>]-<expression>
<expression>*<{expression>
<expression>/<expression>
<expression> < <expression>
<expression> > <expression>
<expression> = <expression>
assume N before 0123456789

v oAS *)
OCOQOC W

<letter>
include <character> a, b, ¢, d, e, £, g, h, i, 3, k, 1, m,
n, o, P, 94, ¥, S, £, 4, vV, W, X, ¥, Z

<digit>
include <character> 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Figure 11. 2An improved description of the example language.

23

-Figure 11 is a description of the example language using some of

these features.

Automatic Actions of the Editor.

When the editor receives a command which cannot be directly
executed, it attempts to produce a situation in which the command will
be valid by performing certain actions automatically. After the basic
action of a command has been performed, the editor may perform certain

additional actions designed to allow the smooth entry of trees.

The principle situation in which automatic actions before the basic
command action are needed is when the user types a printing character
and the character is not a valid production name for that point in the
tree., The editor will first try changing the subtree at that point to
the hole production, descending to the first hole child of the new
subtree and trying again to interpret the character as a valid
production name. This may continue several levels downward,
terminating when the editor finds a place where the character typed is
valid or when the hole production has no children. If trying the hole
production fails at any point in this process, the editor will try
assuming the production associated with the character typed by an
"assume" entry in the language description. 1In this way the editor
searches for a set of production names which when assumed produce a
situation in which the character actually typed is valid. If the above

process does not resolve the situation, the editor will try removing

24

the hole where the cursor is positioned, performing the automatic
actions which would be normal after a Remove command, and interpreting

the character typed as a production name at the new cursor position.

Te effect of all this is to eliminate the need for the user to
type a production name explicitly when the editor can deduce the
desired production from the requirement that the character actually
typed by the user become valid. One exception is the action taken vhen
a space is typed. If the space cannot be directly interpreted as a
production name, the editor does not follow the above procedure but
instead treats the space almost as if it had been a Remove command.

The slight difference is described below.

Automatic actions performed after the basic action of the command
are intended to create the situation necessary for the user to continue
entering subtrees smoothly. These follow-up actions may be done after
any command, but always result from indicators set as a result of
typing a production name. When a production name is typed, the basic
action is the setting of the subtree at that point to that production
with holes for children. The cursor is left at the same place by the
basic action. However, indicators are left at that point in the tree

which cause the cursor to be moved to the first child of the new

subtree as a follow-up. These indicators also cause the cursor to move
right when it is next positioned at the newly created subtree and cause
a new hole to be inserted after if permissible in that context.

Similarly, when an optional hole is removed, the editor will

25

autématically ingert a hole belonging to the next child group if there
was not one already and the indicators are appropriate. The editor
will not insert such a hole if the child group is very optional and the
removal was the result of typing space. This allows the user to avoid

having to be concerned with infrequently-used options.

Window Manipulation.

The editor provides a facility whereby the user can edit two trees
concurrently in two separate "windows" of the screen. This facility is
convenient when rearranging the order in which objects occur in a tree

and when merging or splitting programs or documents,

Wwhen the editor is started, the user may give the names of two
files containing trees rather than the name of just one file. The
screen will then be divided in half by a dashed line, with the first
tree displayed in the area above the line and the second tree displayed
below the line. 1If the Quit command is typed at a time when there are
two windows the two trees are saved in the two files mentioned at
start-up. The trees have their own cursors which may be moved
independently. Initially, the cursor of the top tree will be slightly
brighter than that of the bottom tree. This indicates that the user is
currently "in" the top window and that all cursor movement and tree
modification commands will apply to the tree in that window. The
Switch command allows the user to switch to the other window and

manipulate the other tree.

26

'Objects may be copied from one window to the other with the Copy
command. This command sets the subtree at the cursor of the window the
user is "in" to the subtree at the cursor of the window that the user
is not "in". The Automatic follow-up actions are such that the user
may copy several items of a series from one tree to the other by simply
typing Copy several times. It is also possible to move data from one

tree to the other by using the UnErase and UnErasNxt commands.

The user may discard the tree in the lower window (and get rid of
the window itself) by typing the Discard command. Conversely, 1f there
is only one window, the user may type the Dup command to create a
second window which will initially contain a copy of the tree in the
other window, This allows the second window to be used as a "scratch

pad" when editing a single tree.

Figure 12 shows an example of how these commands work.

Elision.

If the full display of the tree is too large to fit on the screen
(or half the screen if there are two windows), the editor must elide
certain parts of the textual representation of the tree. These
portions are replaced with elipses (...). The user need not be
especially concerned with how the editor decides which parts of the
display to elide; the general principle is that areas near the current
position of the cursor are shown while areas far from the cursor are

elided. "Near" and "far" in this context refer to distance in the

bégin begin in
2 - a £ a R
e :=f e :=f g :=h
g :=h g := h end
end end
Dup ~ Remove 3
P
begin begin
'c =4 e :=d
e :=f e 3= f
g :=h g :=h
end end
W e
begin begin begin
whilel}, do vhile # do while # do
:% c = d
od od .
g :=h g :=h od
end end g :=h
Right Copy end
et
begin begin begin
Ic:=d © =d c :=d
e 1= f e = f e 1= f
g :=h g :=h g :=h
end end end
/ Copy yd
begin begin begin
while # do while # do while { do
¢ :=d c :2=d c :=d
e 1= f e 1= f e :=f
&' od od
od g :=h 'g:=h
g :=h R eﬁa D d end
end emove > iscard
begin begin
c :=4d ¢ :=d
e :=f e := £
g :=h g :=h
end end

Figure 12.

I1llustration of the use of windows.

28
tree, not distance in the textual representation of the tree.

Figure 13 shows the full display of a program in the example
language and how it would appear when forced into an twelve-line
section of the screen when the cursor is at the root and when the

cursor is at the "while" statement.

The Macro Language.

This section describes a method whereby the user may extend the
description of the language he is using by adding new productions and
new production classes, write programs in the extended language, and
have these programs converted to equivalent programs in the unextended

language for input to the compiler.

Figure 14 shows an extension to the example language used before to
provide a "for" statement similar to such statements in other
programming languages. The statement has a number of optional parts. .
If no "from" clause is present, the iteration starts with whatever
value the variable already had; if no "by" clause is present, a step of
1 is assumed; if there is no "to" clause, the iteration has no limit.
Figure 15 shows the macro definitions used to expand statements of this
type into combinations of other statements in the language. Figures 16
and 17 show a program in the extended language and the program which
results from expanding the "for" statements using the definitions in

figure 15.

29

begin
read n
if n < O then
factorial := O
else
factorial := 1
while n > O do
factorial := factorial*n

n :=n-1
od
fi
print factorial
end
rl':)eg in
read n

if n < O then
factorial := 0
else
factorial := 1
while n > 0 do
fi
print factorial
wend

begin
read n
else
factorial :=1
While n > 0 do
factorial := factorial*n

n :=n-1
od
fi
print factorial
end

Figure 13. The effect of cursor position on elision.

30

<{statement>
F | for <identifier>| from <expression>][to <expression>]
[by <expression>] do(<statement>)od

Figure 14. An extension to the example language.

find statement
for <identifier.a> from [expression.b] to [expression.c] do
{ statement .d}
od
reduce to
for <identifier.a> from [expression.b] to [expression.c] by 1 do
{statement.d}
od

find statement
for <identifier.a> from <expression.b> to [expression.c]
by [expression.dl do '
{statement.e}
od
reduce to
begin
<identifier.a> := <expression.b>
for <identifier.a> to [expression.c] by [expression.d] do
[statemant.e}
od
end

find statement
for <identifier.a> to <expression.b> by <expression.c> do.
{statement.d}
.od :
reduce to
while <expression.a> < <expression.b>+l do
{statement .d}
<identifier.a> := <expression.ad>+<expression.c>
od

find statement
for <identifier.a> by <expression.b> do
{statement.c}
od
reduce to
while O = 0 do
{statement.c}
<identifier.a> := <expression.a>+<expression.b>
od

Figure 15, Implementation of the extension.

31

begin
junk :=0
for 1 from j to k by 1 do
read x
print x
od
for a to b do
print junk
od
for lots do
print lots
od
end

Figure 16. A program using the extension.

Figure 17.

begin
junk := 0
begin
i:=3
while i < k+1 do
read x
print x
i = i+1
od
end
while a < b+l do
print junk
a := at+l
od
while O = 0 do
print lots
lots := lots+l
od
end

Expansion of the program of figure 16.

32

‘A macro definition such as is shown in figure 15 consists of a
number of reductions. A reduction is of the form "find

production-class pattern replace by template". The macro expander

searches the tree being expanded for subtrees which match a pattern
given in one of the reductions and replaces the subtree matching the
pattern by a new subtree constructed according to the template. The
pattern and the template look like {(and may indeed be) ordinary
subtrees of the production class specified at the beginning of the
reduction (<statement> in the case of the reductions in figure 15). A
pattern which is just an ordinary subtree matches only subtrees
identical to it; a template which is an ordinary subtree causes the
matched subtree to be replaced with just that subtree. However, most
patterns and templates will contain special items which allow a pattern
to match a wide class of subtrees and templates to cause replacements

that vary with the pattern matched.

There are four types of special items, analagous to solitary,
optional, series, and optional series child groups. They are entered
by typing certain special production names and are displaved as angle,
square, round, or curly brackets surrounding the production class at
that point in the tree and an identifying character (the production
class is for orientation purposes only). A special item in angle
brackets matches any child which is actually there; a gpecial item in
square brackets matches any actually present child or the indicator
that that child is absent; a special item in round brackets matches any

series of children up to an end-of-series indicator; etc. The pattern

33

as a whole matches a subtree if the parts of the pattern other than the
special items match the tree exactly, the special items all match
individually, and all occurrences of special items with the same

identifying character match the same thing.

Once a match has been found, the template is used to construct a
replacement for the matched object by replacing all occurrences of
special items in the template by the subtrees (or absence indicators)

that those items matched in the pattern.

This may sound complicated, but in application it is quite simple.
You simply give a "picture"™ of the kind of subtree you wish to change
and a picture of what you want it changed to. In figure 15, the first
reduction inserts a clause specifying a step size of one in "for"
statements that lack a "by" clause; the second reduction handles the
presence of a "from" clause; and the last two reductions expand "for"
statements without a "from" clause but with a "by" clause in two
different ways depending on whether a "to" clause is present. The
first two reductions ensure that the conditions for applying one of the

last two will be met.

THE PRESENT IMPLEMENTATION

The tree editing system is implemented on a Unix [Thomson and
Ritchie, 1974] system running on a DEC PDP 11/60. Two types of
terminals may be used with the editor. The principal terminal for
which the editor was designed is a DEC VT1l vector graphics display
attached to a PDP 11/40 acting as a satellite processor to the PDP
11/60. The editor may also be used on Infoton 400 terminals attached

to the FDP 11/60, but with degraded display capability.

The editor and associated programs are written in the programming
language C [Kernighan & Ritchie, 1978} with a few PDP 11 assembly
language routines. They comprise approximately 5000 lines of code in
totality. This code is organized into about 60 modules which are
combined to form the various versions of the editor, the

language—description compiler, and other programs of the system.

The PDP 11 has an address space of 64K bytes. This limitation and
the requirement of instantaneous (one tenth of a second or less)
response to keystrokes are the principal constraints which the

implementation must meet.

Representation of Trees.

A representation of a tree must contain the production present at

that point in the tree, a list of child trees, and an indication of how

34

35

the children are divided into child groups. It may be convenient to
store other information in the representation also in order to speed up
certain operations. WNote that the amount of information required to

represent the tree varies with the number of children.

This variable amount of information is represented in this
implementation by a linked list of fixed size blocks. This simplifies
storage reuse compared to the option of using variable-sized blocks.
The "next" field of a block contains this link to the next block in the

list holding the data on one tree.

When a new block with specified contents is required, the editor
checks to see if a block with those contents already exists., If so,
the o0ld block is used for the new purpose as well instead of a new
block being allocated. A reference count is stored in the "ref" field
of a block to indicate how many places refer to that block. A hash
table is used to determine rapidly if a block with specified contents
already exists. Blocks with the same hash are linked into a ring via
the "chain" field of a block. When a new block is required, a block
with zero reference count is selected arbitrarily and its space used
for the new block. A block with a reference count of zero is not
necessarily destined to be reused however; its reference count may
later increase if a block with the same contents is required or if the

operation which reduced its reference count to zero is cancelled.

The "prod" field of a block contains a pointer to a structure

describing the production of a tree if the block is the first in the

36
list for that tree. Blocks after the first contain zero in this field.

The "misc" field of a block contains various kinds of information

depending on what phase of operation the editor is in at the time.

Each block holds a fixed number of "links", the number being
specifiable at compile time, and usually about six. A link may be a
pointer to the first block of a list of blocks describing a child tree,
or one to indicate that an optional child is not present, or zero to
indicate that the end of the child list has been reached. In this list
of links, a solitary child group is represented by a single link
pointing to the child, an optional child group is represented by a
single link which either points to the child or contains the absence
indicator, a series child group is represented by two or more links
containing pointers to the children in the group terminated by the
absence indicator, and a optional series child group is represented by

one or more links as for a series group.
This structure is illustrated in figure 18.

The editor represents trees on files by a form of Polish prefix

notation. Each production is assigned a production number. The

representation of a tree on a file consists of its production number
followed by the representation of its children, with special indicators
for end-of-series and absent optional children. Repeated subtrees are
represented only by a reference to the position in the file vhere they

first occurred. Files containing trees are generally about the same

37

Hash Table

ot

tn =™ H e

il

Figure 18. Structure of blocks.

38

size as the corresponding text files, ranging from about fifteen

percent larger for typical documents to a bit smaller for Pascal.

Operations on Trees.

Since the blocks used to represent trees may be shared, it is not
possible to perform alterations in a tree by changing the contents of
the blocks representing it. Instead, an entirely new tree must be
created which incorporates the change, and this tree used to réplace
the old. If this is not done, then when the user attempts, say, to
change the expression "atb*a" to "atb*c" the expression will instead
change to "ct+b*c" as the editor will be using the same block to

represent the two occurrences of "a".

Figure 19 shows how this is done. Note that in creating the new
tree, only the blocks representing the ancestors of the block being
"changed" need be recreated, the rest of the new tree is shared with

the old tree.

For similar reasons, the user's cursor may not be represented by a
simple pointer to the block representing the subtree where the cursor
is, because if the subtree occurs in the tree several times it would
not be apparent at which of these occurrences the cursor was pointing.
Instead, the cursor position must be represented as a set of directions
for finding the cursor starting at the root. For example, the cursor
might be described as being at the third child of the second child of

the root of the tree.

39

%
01d New
comp— comp—
onent onent

% indicates newly allocated block list

Figure 19. Creation of a modified tree.

40
Producing the Display.

The central procedure used in producing the display of the tree is

one which, when given a tree produces a display element list which

describes how that tree should be displayed. This list contains
elements of two types. The first type is simply a line of text. The
second type is a reference to a subtree. The full (unelided) display
of the tree is obtained by replacing these subtree references by the
lines (indented) comprising the full display of the indicated
subtrees. Note that these subtrees need not be immediate children of
the tree nor will all children necessarily appear in the list. The
controlling factor is the display type of the subtrees; a display type
of '-' or '*' leads to the display of that subtree being simply
incorporated into a line element; a display type of '|' causes the
editor to include a reference element in the list without actually

producing the display for that subtree.

These display element lists define another tree, related but not
identical to the original. The leaves of this tree are the line
elements; the non-leaf subtrees correspond to subtrees of the original
tree whose display type was '|'. The position of the cursor in the
original tree is transformed into a position at a subtree in this new

tree or within a line that is a leaf of this tree.

The production of the elided display shown on the screen is
accomplished in two passes., First a table is constructed which gives

the number of line elements of the display tree which are found at each

41

diséance {in the display tree) from the location of the cursor; this
involves a traversal of the display tree. Based on this table and the
known size of the display (or the window of the display being used),
the editor can determine how close a line element must be to the cursor
for it to be displayed. A second traversal of the display tree then

produces a list of the line elements comprising the display.

This process is basically fairly simple, but is complicated by the
details of how to calculate the distance function for siblings of
direct ancestors of the subtree at which the cursor is located and by
the fact that line elements which are not displayed still require space
for their elipses. These factors are the prime reason why the elision

method employad is rather simple-minded.

The display tree described above is not actually constructed.
Instead, the procedure for finding the display element list of a
subtree (of the original tree) is called again each time the 1list is
required. On the other hand, this procedure does not necessarily
actually calculate the element list each time it is called, as it would
require several seconds to perform this calculation for all the
subtrees of a large tree. A cache scheme is used to save the most
recently calculated elements lists. During the main phase of the
editor, the "misc" field of a block is used to point to the element

list for the subtree that that block represents, if it has been saved.

42

Cancellation of Commands.

In order to allow cancellation of commands, the editor stores
backup information on a stack held on disk. This stack holds a number

of frames each consisting of a list of items and a count of how many

items there are in the frame. Each item contains the information

needed to reverse one action of the editor.

Normally, the editor puts two frames on the stack for every command
(keystroke). The first of these contains items required to undo the
basic action of the command, the second the items required to undo the
automatic follow-up actions. The command to cancel the automatic
follow-up of a command is implemented by reading the top frame off the
stack and undoing actions as described in the items of the frame, The

command to cancel the whole last command reads the top two frames.

The simplest items consist of two words - the address of a word of
memory which has been changed by the editor and the previous contents
of that word. Items of this form suffice to allow the reversal of
anything thé editor does, since all changes in the state of the editor
are reflected as changes in certain memory words. Note that not all
alterations of memory need be saved - in particular, changes to local
variables that do not form part of the representation of the state of

the editor need not be recorded.

To reduce the amount of data saved on the stack, specialized items

are used to allow the reversal of certain operations. These items

43

conéist of the address of a reversal routine and a varying nﬁmber of
words whose number and interpretation is determined by that routine. A
simple example is the reversal of the incrementation of a variable.
Using a basic item, this requires that two words be stored on the stack
- the address of the variable and the contents of the variable before
it was incremented. By using a specialized item, this can be reduced
to one word - the address of a routine which will decrement that

particular variable, reversirng the effect of the incrementation.

The principal application of these specialized items is in the
reversal of the allocation of a block. Undoing the allocation of a
block requires taking the block out of its hash list, decrementing the
reference counts of blocks pointed to by the contents of the block,
restoring the previous contents of the block, incrementing the
reference counts of hlocks pointed to by the previous contents, and

putting the block back into its old hash list.

An important property of this method of recording information for
command cancellation is that the amount of information to be recorded
is approximately constant, regardless of the command whose cancellation
is being provided for. Deleting a large subtree does not cause the
entire contents of that subtree to be saved to allow for the deletion
command's cancellation. Instead, the reference count of the root of
the subtree will be reduced to zero and the contents of the subtree
will be saved a bit at a time as subsequent commands reuse the blocks

which made up the subtree. The commands which cause the reuse of these

44

blocks must necessarily be cancelled (and the blocks restored to their
previous state) before the deletion command can be cancelled, This
contributes to a constant response time, as saving a large amount of

information on disk would be time consuming.

Typically, each keystroke results in about one hundred bytes of
information being written to disk to allow for the keystroke's
cancellation. The transfer rate of the floppy disk used is about 5000
bytes/second, so time to write cancellation informaﬁion to disk is not
a factor in supporting a response time of a tenth of a second. Some
response time problems arise when actually cancelling commands due to

peculiarities of reading the disk backwards.

Finally, the cancellation mechanism is also used to back out of
error situations and to backtrack when exploring different possible

automatic actions.

RAYTIONALE FOR DESIGN DECISIONS

In this section I will explain the reasoning behind some of the
design decisions taken and indicate where I feel better alternatives
are possible. More speculative suggestions are deferred to the next

section.

The editor described in the preceding sections was the second
version I implemented. The first version was completely experimental
and is described in [Neal, 1979al]. Although it was based on the same
principles, it differed ffom the present version in a number of ways.
Most notably, the implementation was totally different, It lacked the

window facility of the present editor and was in many ways less

genaral.

The method used in designing the tree editor was subjective
evaluation of the alternatives available, supplemented with trial and
error. The creation of a first version, intended from the beginning to
be discarded, is naturally the most prominent example of trial and
error, but the method was used on a smaller scale also. In particular,
the details of how the automatic actions work required a lot of
iterations to get right. 1In general, however, it is just not practical

to implement all the alternatives in order to try them out.

45

46
Requirements of the Design.

The primary application of the tree editor is the modification of
computer programs hy expert programmers. One expects that the
programmers would use the program very frequently (several hours a day,
on and off). Time to learn the editor is thus less important than the
ease with which it can be used by experts. I have assumed that the
user types in the conventional, skilled manner (two-handed, all four

fingers), but typing another way should not cause great problems.

As I am also interested in the use of the editor for document
preparation and the manipulation of other information, I hope that
people other than programmers will be able to use the editor, but this
was not a principal design goal. The possibility of using the editor
in teaching programming (thereby constraining the student to producing
syntactically correct programs) is another interesting possibility
which was not considered a primary goal. The editor is thus intended

primarily as a tool for expert programmers.

Programmers using batch systems and interactive systems with
hard-copy terminals usually write and revise their programs by hand and
only then enter them into the machine. Minor modifications may be made
directly, but major modifications are generally scribbled on listings
or otherwise written out. When a good screen-oriented text editor is
available, many programmers dispense with the step of writing their
programs on paper and compose them using the editor directly; this is

possible because of the superiority of the screen text editor for

47

performing modifications. The behaviour ot a programmer using an
editor to compose a program will be quite different from that of a
programmer entering an already-written program, since he will make
false starts and skip about filling in portions of the program
non-sequentially. The tree editor is intended to be used in this later
manner, an important point because, if the user has text written out
before him, the pressure to think of the program as text rather than a

tree is greater, particularly if he is a good typist.

The most basic requirement if a user is to successfully use a
system is that he have a proper conceptual model of objects and
operations the system deals with, For the tree editor, the user must
understand the forms of trees and the operations that may be performed
on them. A programmer should not find this difficult, since trees are
an ubiquitous data structure throughout computing science. The
prevalence of hierarchical structures in the ordinary world, for
example, organizations with committees which have subcommittees, shows
that the ideas are familiar to non-programmers also; trees are a basic

method of organizing complexity.

Simplicity is an important design goal since it speeds learning,
reduces unexpected occurrences, and makes implementation easier.
[Nelscn, 1974] advocates a "ten-minute rule", which states that a user
should be able to learn the basics of using a human-computer system in
ten minutes given a working system and a knowledgable demonstrator.

This may be a bit too restrictive, but is certainly to be strived for.

48

Uniformity and generality are important means of achieving simplicity;
there should not be two commands if one will do; there should be no

arbitrary restrictions on when commands are valid.

The user should be provided with feedback on what he has done and
what his current situation is. The goal for this project was to
provide instant feedback; within a tenth of a second or less of his
typing a key. When this feedback indicates to the user that he has

made a mistake, it should be easily correctable,

The editor should allow the user to perform his tasks quickly.
This is particularly important with an intensively-used system such as
an editor for programs. A very rough estimate of how long a task takes
can be obtained by counting the number of keystrokes required, provided

the limitations of this approach are kept in mind.

Basic Choices in the Design of an Editor.

Several fundamental design decisions must be made before an editor
(of either text or trees) may be designed in detail. The first of

these is interaction style - the basic way in which information is

communicated from man to machine and vice versa. One may distinguish
between immediate and delayed interaction style. With the former, the
machine acts on the user's input immediately and communicates the
results of these actions to him immediately. With the latter style,
the user's input is not acted on until she indicates that this should

be done and the machine does not communicate the results of commands to

49

her’until she explicitly requests it. Delayed interaction is typical
of time-sharing systems due to technical constraints and lack of
imagination. Common sense and established principles dictate that
delaying feedback to the user is harmful, and this judgement is
confirmed by the near-unanimous opinion of those who have used text

editors based on both styles.

The input method is related to the interaction style. Delayed

interaction is usually accomplished with the keyboard as the input
medium, with the keystrokes typed representing a command which may well
have a fairly complex structure. With immediate interaction a keyboard
may also be used, but the keys will generally have independent
interpretations, not be simply components of a more complex command.
Menus are another input method - the machine displays a list of options
and the user selects one of these in some manner. Note that although a
keyboard may be used to select a menu item, this use is fundamentally
different from the use of keys to represent commands; with menus, the
user is presumed not to know which key is used to select which option,
or there would be no point in displaying the menu. Menus are
inappropriate for this tree editor because the desired speed of
information entry cannot be achieved if the user must search a menu

before each keystroke.

The designation method used is another fundamental property of an

editor. Most commands to the editor operate with respect to a

particular position in the object being edited -~ delete that, insert

50

EEEé' etc. Also, an immediate style editor must somehow decide which
part of the object being edited should be displayed at any time. A
curser provides a solution to both these needs - all commands act where
the cursor is positioned and areas "near" the cursor are displayed. Of
course, the user may desire independent control of these two aspects,
in which case two cursors could be used, or a cursor could be used to
control the display while the objects of commands could be indicated by
pointing (with a light-pen, say) or by naming a label associated with
the object (see [Neal, 1979b]). A single cursor was used in this
project for simplicity and because the alternatives seemed to have no

clear advantages; testing other methods would be desirable.

A third basic choice is whether the editor is to operate in several
modes, with a different set of valid commands for each mode, or whether
all commands are to -be valid at all times (and have the same effect}.
Particularly popular with delayed-interaction text editors is a special
"input mode” used for entering text in which all normal commands are
disabled. Some immediate-interaction text editors have an "insert
mode" and a "replace mode" which controls the manner in which input
text effects the file. I feel that such distinctions intrude upon the
user and make it difficult for editing operations to become automatic,
since the user must always remember in what mode the editor is
operating and adjust accordingly. The sole justification of multiple
modes would be to break up a complex task into simpler tasks, but

editing should not be a complex task.

51

‘Finally, one must consider the means the user has to correct the
editing errors he inevitably makes, The general cancellation scheme
employed in this project is a near-perfect solution to this problem and
eliminates the need for redundancy in editing commands (difficult with

single-keystroke commands in any case).

The Language—description Language.

A language description consists of three parts ~ the forms of trees
in the language, the way these trees are entered, and the way they are

displayed.

The first aspect is one of the few features of the editor which has— |

changed hardly at all from the beginning of the project. To simplify
the possible forms of trees by allowing only solitary child groups
would lead to unnatural tree structures, even though such trees are
theoretically capable of representing any information. Conversely, to
add further types of child groups, say a child group in which two or
more children are required, would complicate the structure without
adding significant benefit, as such groups would find little
application in present programming languages. If such a requirement on
the number of children is present in the language it would make more
sense to consider it to be a context-sensitive constraint and to deal
with it via some general facility for detecting such errors (as

discussed later).

One change I did consider seriously was to restrict series child

52

grons to being the only child group of their production. This would
simplify certain aspects of the implementation and may be wise anyway
because the user is likely to think of a series as a separable entity.
I rejected this option because it can increase the depth of the trees
undesirably; for example, the Pascal "with" statement allows a series
of record variables to be specified, but almost all actual "with"
statements specify only one; the user would continually be descending
an extra level to reach the variable if the series had to be a separate

entity.

Another possibility would be to treat comments specially and allow
them to be tacked on to any part of the tree. 1In actual programs, most
comments are in conventional positions and can be handled quite
adequately by having the language description allow (or require}
comments in these particular places, so I rejected any special feature

as unnecessary.

The fundamental problem concerning the display aspect of the
language descriptions is whether one should attempt to reproduce
completely the usual manner in which all programming languages are
displayed or whether one should instead aim at simply allowing some
display of the tree which is easily read and which makes the tree
structure evident, I now incline toward the latter view. The earlier
version of the editor allowed more freedom in how the tree was
displayed, but this caused implementation problems because the display

of a subtree could not be calculated independently of its parent and

53

the facility obscured the tree structure, if actually used, in any
case, This latter point is important because the user must be
encouraged to perceive the program in terms of trees if the whole tree

editing concept is to work.

Production names are the main aspects of the language descriptions
concerned with how the program is entered. The first version of the
editor allowed only single-character production names. This was
somewhat confining, so multi-character production names are allowed in
the current version. Nevertheless, single-character names should be
used whenever possible simply because they can be typed quickly. If
multi-character production names are used, it is best if one production
name cannot be obtained from another by adding characters at the end,
as the editor then cannot automatically determine when a production

name is completed.

Choosing production names for a language can be difficult,
particularly if the language has several statements whose keywords
begin with the same letter or several operators which commence with the
same character. C, for instance, has five operators which begin with a
minus sign. One possible solution, which has been experimentally
implemented, is to give several productions the same production name
and assume the first production when that name is typed; if the user
sees that was not the production he wished, he types a special
character and the next production is assumed; if he is satisfied he

continues just as he normally would. This seems to work better with

54
keyword-style statements than with operators.

The "very optional" aspect of the language-description language was
included to handle certain frequently used constructs of common
programming languages characterised by optional components which are
{relatively) rarely included and which would have to be explicitly
deleted by the user each time if it were not for the "very optional”
feature. It is somewhat of a fudge, but the added complication seems
justified considering the number of keystrokes saved. A better way to

handle the situation would be desirable.

The Editing Commands.

The editing commands are the central objects of the editing
system. It is through them that the user interacts with the editor; it
is they that determine more than anything else the acceptability of the

system.

Appendix D lists twenty-two editing commands, half are basic and
half are more-or-less non-essential embellishments. This number
compares favorably with the complexity of the command languages for
text editors; although some text editors have fewer commands, most have
considerably more. The complexity of the individual commands is more
difficult to evaluate, The basic actions of all the commands are
simple, but the automatic actions performed by the editor before and
after the basic actions can be fairly complex. Since these automatic

actions are intended to anticipate what the user wishes they hopefully

55

wili not be seen as a source of complexity by the user. On the whole,
I think the commands themselves are rather simple, although using them
skilfully may take. some practice (as is the case with text editors).

Any modifications jeopardising this simplicity should be regarded with

suspicion.

The manner in which the commands and the automatic actions
accompanying them allow programs to be entered in a smooth way is
particularly worthy of note. 1In this way, the need for a special
editing mode for entering subtrees, with the problems any such mode
brings, is avoided. An example of the way the commands dovetail for
this purpose is the action of the Remove command when the object
removed is the last child of its parent. 1Initially, one might feel
that the cursor should be positioned at the new last child after this
operation; instead, the cursor is moved to the parent of the object
that is removed. The cursor will then encounter any indicators of
automatic actions set at the parent to provide for continued entry of

subtrees.

The CaﬁcelAuto command is also related to the entry of new trees.
Its primary use is to cancel an automatic action which the editor made
on the assumption that the user wished to continue entering subtrees,
when in fact, the user wishes to go off and do something else. The
point to note here is that the editor cannot read the mind of the user;
all it can do is to make it easy for the user to do what he wishes. To

have a special mode for entering a subtree is to assume that the user

56

will persist in this task until the entire subtree has been entered; an
unwarranted assumption, since flitting about making corrections and
revisions is normal behaviour when composing a program. Without a
special input mode, this flitting about is easier, even if occasional
automatic actions must be cancelled. Refining the automatic actions to

eliminate some unwanted ones may still be possible, however.

The command for repeating the previous command indefinitely
provides a simple means of performing certain operations such as
deleting the remainder of a series or moving to the root of the tree,
for which one might otherwise be tempted to provide special commands.
The RepeatFive command also provides a powerful capability for reducing
tedious keystrokes without adding much complication to the command

language.

The principle behind the interaction of the Cancel command with the
repeat commands is that any single keystroke error should be
correctable by a single keystroke. If one were allowed to repeat the
Cancel command by typing Cancel followed by RepeatFive, the RepeatFive
key could be undone only by typing the five Keystrokes that were
cancelled. In any case, the Cancel would not be a true "movement back
in time" if the RepeatFive key did that. Instead, it must repeat
whatever key was last typed at the time back to which the Cancel
command has taken us. Similarly, a Cancel after a RepeatFive must
cancel all five repetitions, not just one. Allowing for the

cancellation of Cancel commands would greatly increase the complexity

57

of the command structure and of the implementation, because the history
of the editing session could no longer be regarded as a simple
one—-dimensional progression but would instead have to incorporate a

tree structure of cancelled command sequences.

In general, complex rearrangements of the program are to be done by
duplicating the tree and using the Copy command. The UnErase and
UnErasNxt commands are included to allow certain common operations to
be performed without the bother of using this procedure. In
particular, such operations as changing the expression "fred+george" to
"fred-george" or changing "mary" to "mary*10" may be easily perfomed

using these commands.

The reader may wonder what the purpose of the Wull command is,
since it does nothing. One use arises if, after typing CancelAuto, the
user wishes the automatic actions he cancelled to come back. Typimng
Null will cause this to happen since the indicators specifying the
automatic actions are still present and these actions are performed
after the Null command just as they are after other commands. Another
essential use is in terminating a production name when another
production name for that class has the production name typed so far as
a front part. Any command other than a printing character will cause
the editor to assume that the production name is finished, but the user
may not wish anything done other than the specification of that

production.

58
The Keyboard Layout.

The particular assignment of commands to keys is significant for
two reasons — certain keys are easier to type than others, and the
association of a key with a command should, ideally, be easy to
remember. The first of these is more important, since for a typical
user, the time to learn will be much less than the time spent as an

experienced user.

All editing commands are associated with control characters which
are typed by simultaneously pressing the control key and another key
{almost always a letter). Note that all nonh—-control characters are
required for use as production names. Several of the control
characters can also be generated by pressing a special key; in
particular, RETURN is control/M, LINE FEED is coﬁtrol/J, ESC is
control/[, and BACK SPACE is control/H. The local Unix system uses
RETURN to indicate the end of a line and BACK SPACE to erase a
character; the use of these characters becomes quite ingrained in users
and it is thus imperative that they be used for the analogous
operations in the tree editor. Since there is only one control key, at
the left side of the keyboard, control characters on the right side are
easier to type than those on the left. Less obviously, control
characters in the middle of the left side are easier to type than
others on the left side. (Note: these observations assume that the
user is a touch typist; two-fingered techniques may lead to different

results.)

59

.The keyboard layout used is shown in figure 20. &n attempt has
been made to distribute the commands so that the most frequently used
are in the most easily used positions and so that related keys are near
each other (for mnemonic reasons). For example, the cursor movement
keys are grouped in an easily typed position because they are very
frequently used. Within that group, the Left and Right keys are on the
"home" row because they are the most heavily used of the group (due to
their use in scanning through lists). The Left and Downleft keys are
at'the left side of the group and the Right and DownRight keys at the
right side for ease of remembering. Almost no attempt has been made to
associate commands with control characters for which the corresponding
letter has mnemonic significance. Attempts at this inevitably
encounter problems with the non-uniform distribution of first letters

of English words.

The lengths that the editor goes to to use the space key to mean
various things is justified by the fact that space is the easiest
character to type. It also has a conventional meaning in documents

which it is desirable to preserve if possible.

The Display.

Three aspects of the display merit discussion here - the elision
method employed, the display of the cursor, and the handling of

windows.

I am not very satisfied with the current elision algorithm, It is

*pAeoqAey SU3} U0 SPUPWLWOD JO INoAeT ‘gz oanbig

FAEO00B8B8006000 G
(2] N = ¥ Z
(=) OOOEOBOUBEIE O
a33d - 3 4 it 3] I 3ry n “ ol)
HEAOOOUBEEBEBHOEHE 6
) [N ‘ o 5 3 L S) () (< aa
HEOOOOO00RHEBEOO

61

unsfable in the sense that small changes in cursor position will often
result in large changes in the display. Directly correcting this would
require adding "interia" to the elision algorithm to allow it to select
a suboptimal set of lines to display if this allows the display to
remain the same or nearly the same as it currently is. Also, perhaps
the unit of elision should not be a line but an entity more closely

related to the original tree structure.

I now feel that it may be best to include in the language
description a designation of certain productions, always including all

the root productions, as display break productions, With Pascal, a

program, procedures, and functions might be the display break
productions. Elision would proceed as before, but the distance
function would count crossing a display break as an especially large
jump. Also, perhaps elision would be done not with reference to the
cursor position but rather with regpect to the closest display break
ancestor of the cursor. The object of this is to produce a stable
display by "chunking" the program and displaying primarily the chunk
the cursor is in. Only cursor movements that cross display breaks
would then cause large-scale changes in the display. Appropriate

choice of display breaks would lead to the chunks being natural units.

The cursor of the first version of the editor was drawn as a simple
box around the display of the subtree at which it was positioned. This
was generally satisfactory, but was changed in the second version

because I felt that the full box was somewhat obtrusive, distracting

62

one from viewing the program itself, and because I wished to encode
more information in the cursor. The present two-corner cursor also
eliminates the strangely-shaped boxes that resulted from subtrees whose
display was split between lines. The prime motivation in encoding the
information as to whether the cursor is at the first and/or last child
was not so much to provide the user with this specific information but
rather to ensure that some change in the display occurred as the result
of certain commands. For example, if the cursor is positioned at a
word of only one letter and the user moves the cursor down to that
letter, the position of the cursor will not change but its shape will
indicate that it is now positioned at an only child. The previous
version of the cursor would not change at all. This is upsetting, as
one is not sure that the command has actually been recieved by the

editor.

The previous version of the editor displayed the name of the
production class in effect at the position of the cursor in a corner of
the screen. This was also largely intended to provide some feedback
when the user moved the cursor in a way that wouldn't otherwise cause
any change in the display. This was abandoned because the user will
generally be looking at the position of the cursor, not the corner of
the screen, so such a change will either not be noticed or will disrupt

visual continuity.

The window scheme of the present editor is rather primitive. The

second window is seen as a place for holding information temporarily in

63

ordér to allow one to perform operations requiring a rearranging of
information. This is why there is a command for discarding the
secondary window contents but not one for discarding the primary window
contents. As soon as one considers the second window as being oh a par
with the first, one feels that third and fourth windows would be nice
too. Splitting up the screen for these soon causes the windows to
become impractically small. The solution would appear to be the

adoption of overlapping windows as described in [Teitelman, in press].

Implementation Choices.

The present version of the editor suffers from a fairly small limit
on tree size and a failure to quite meet the response-time goal of a
tenth of a second in some situations. The description of Pascal given
in Appendix B is close to the maximum size which can be handled by the
language-description editor. Response can take up to half a second in
certain situations when much of the display representation must be
recomputed, or when many blocks must be allocated. Problems also arise
when the user types quickly; even when the.editor takes less than a

tenth of a second for each keystroke, it may fall behind.

In retrospect, the decision not to employ a general storage
allocation scheme capable of allocating and freeing variable-sized
blocks of memory was a mistake. Doing so would save some space now
wasted in fixed size blocks and would speed up the editor by making

tree manipulations easier.

64

.Still, if significantly larger trees are to be handled, the editor
must either have more memory available or resort to keeping part of the
tree on secondary storage. Using the current editor to edit large
programs is quite practical if the program is separated into modules
which are independently edited. A modest increase in available memory
(not possible on the PDP 11 due to address—space limitations) would
eliminate what problems there are with this approach. If large
programs are to be edited in one piece, storing the entire tree in main
memory is probably not practical. Parts of the tree that are distant
from the cursor can be kept on disk as long as the display routine is
able to realize that these distant parts are not needed in computing

the display.

The decision whether to make common subtrees shared is difficult.
Sharing subtrees has the direct effect of decreasing space requirements
by a factor of about 1.25 (this varies quite a bit with the
language) . However, when the user duplicates the tree in order to
perform a reshuffling operation, sharing gains one a factor of two.
Thus if we wish always to allow the user this option, we reduce space
requirements by a factor of about two and a half by sharing subtrees.
On the other hand, modifying the tree is significantly more time
consuming with shared trees, as nodes may not be actually changed.
Macro expansion can benefit from sharing of subtrees by implementing
automatic dynamic programming by saving the reduction of a subtree and
reusing it without recomputation when the same subtree's reduction is

required again.

65

-Decisions on vhether to share subtrees and on whether to keep parts
of the tree on secondary storage also affect command cancellation. Not
sharing subtrees would speed up the present command cancellation scheme
in most cases, since fewer new nodes would have tc be created, but it
would greatly slow down some operations involving duplicating large
subtrees since the previous contents of the space the new copies occupy
would have to be saved. If subtrees are shared and parts of the tree
not recently used are moved to secondary storage, a different
cancellation scheme could be used, in which all the trees created
during the editing session are kept, with older ones movihg naturally

to secondary storage,

The current implementation of the editor performs tree
manipulations without regard for the affect they have on the display
representation of the tree. This simplifies the tree manipulation
routines and allows the standard display routine to be replaced by a
specialized display module as was done with the document editor.
However, recomputing the entire display after every command is too
slow, hence the need for the display routine to remember previously

computed parts of the display.

The reader may wonder why I did not implement the editor in Lisp,
since it would appear to be the ideal language for the project. I
sometimes wonder about this myself, but I judged that the time and
space constraints were to stringent for Lisp, particularly since only

interpretative Lisp implementations were available.

DISCUSSION OF THE TREE EDITING CONCEPT

In this section I discuss the basic tree editing concept and
possible extensions to it. Of the more speculative possibilities
mentioned, I would particularly like to have implemented some of the
ideas I discuss in the section on how to check for context-sensitive
syntax errors. The advantage of working with a tree rather than text
should be substantial for this task; however, the problem is still
difficult and time and évailable equipment did not allow for its

solution.

Tree editors are not in common use. As far as I know, the only
editors operating on the tree structure of programs with a substantial
user community are those for Lisp (described below). The particular
kind of tree editor I have designed is characterised by the complete
absence of parsing - programe are entered as trees from the beginning.
This idea was developed without knowledge of any closely related work,
but it turns out to be not completely new. [Hoffmann, 1973} describes
some related earlier work and a system of his own. Details are
sketchy, but it appears that the system used menus for production
selection, an option I rejected above. Hoffmann seems to feel that the
editor can guide the user in creating a program that is not only
syntactically correct but also semantically correct, provided the
language designer makes the productions semantic options rather than

purely syntactic options. I think the problem is not that simple; I'm

66

67

not sure I would like to be guided in that way.

Alternatives to Tree Editing.

This project originally had the rather vague aim of writing an
editor for high-level language programs which would, in some sense,
"know about the language in which the program is written". It was
hoped, for instance, that syntax errors in the program being edited
would be detected soon after they were committed. This section will

examine several ways of accomplishing this objective.

A minimal approach to this problem is to augment an ordinary text
editor with a command which asks the editor to parse the program and
report on any errors found. This amounts to little more than a new way
to invoke the compiler, although the convenience of, say, having the
editor automatically move the line pointer of the text editor to the
location of the first syntax error could be substantial. An extension
of this concept would be to have the editor also automatically indent
the program when requested. All manipulations of the program would
still be performed in terms of its textual representation, however, and
syntax errors would remain undetected until the user explicitly asked

for his program to be checked.

A more ambitious editor might attempt to perform error checking
and/or program formatting as the program is typed in or modified. A
few text editing commands to perform operations particular to programs

in the language might also be added, while keeping the general

68

text-editing orientation. HEmacs [Greenberg, 1972] has some modes

resembling this.

This approach has a number of problems. The look-ahead required
for parsing results in program formatting and error checking lagging
behind the text actually entered. Manipulations are performed in terms
of the textual representation of the program and hence there may be
times when the program is unavoidably incorrect syntactically,
resulting in spurious error messages or bizarre formatting.
Implementation effort would vary depending on ambitions, but could
involve complex incremental compilation techniques if full error

checking after each command with instantaneous response is required.

There are a number of editors for Lisp [McCarthy, 1962] programs
(see, for example, [Sandewall, 1978] and [Neal, 1979b]) which typically
feature automatic program formatting, identification of positions
within the program in terms of the tree structure, and entry of data as
text which is parsed to create the new subtree. Lisp is a natural
language for a tree editor, since programs and data have a common
representation as trees. Lisp has a very simple, non-redundant syntax
which makes attempting to detect syntax errors immediately rather
pointless - most errors result in quite correct, albeit unintended,
programs, Immediate formatting of the program as it is entered would

be useful, but is not usually attempted.

The Lisp editor approach can be applied to other programming

languages, such as Pascal, but significant complications arise. The

69

treé structure of Pascal programs is much more complex than that of
Lisp and this tree structure does not serve as the data language. The
syntax of the textual representation of the trees is correspondingly
complex, is more difficult to parse, and presents numerous
possibilities for syntax errors which produce invalid programs.
Immediate parsing, error checking, and formatting of text as it typed
would be a complex task. Deferring these operations until a chunk of
text has been completely entered is probably the most feasible
approach. An editor for Pascal along these lines is described in

[Douzeau-Gorge, et al, 1975].

One final approach was considered - this was to treat the program
neither as text nor explicitly as a tree, but as an abstract data
structure defined by the operations which may be performed on it. For
example, there would be operations for adding and removing variable
declarations, but the actual representation of the declaration section
of the program would be of no concern to the user. The plan was to
reinterpret ordinary phrases in the programming language as editing
commands to perform these operations. Thus the phrase (in Pascal) "var
I: char;" would be seen not as a part of the program, but as a command
to add a new variable. Some new phrases {e. 9. "novar I;") would also
be needed. This plan was abandoned because it leads to a very complex
editor which is specific to a single language and because it does not

lend itself to an immediate feedback interaction style.

70
Advantages and Disadvantages of Tree Editing.

There is a gap between the textual input and display devices of
computers and the tree structure of the information manipulated with
them, Systems based on text editors keep the user as much as possible
on the textual side of this gap, and bridge it by parsing. Tree
editors bring the user across the gap and bridge it by command
interpretation and "unparsing™. The advantages and disadvantages of

the two approaches derive directly from this basic difference.

First, use of a tree editor eliminates the possibility of syntax
errors., More generally, a tree editor reduces the number of
"unintentional"™ errors - those errors which arise from a mistake in the
entry of the program rather than a mistake of logic. It remains
possible that the user of the tree editor could, through a slip-up,
create an unintended tree structure without noticing it. This is not

too likely however.

The elimination of syntax errors per se is perhaps less important
than it might appear. Experienced programmers do not insert too many
of these errors in thelr programs, and correction of them when they are
detected by the compiler is generally straightforward. It may be that
the elimination of errors which like syntax errors are "unintentional”,
but which happen to result in syntactically correct programs, is more
importaht, since these errors can persist undetected (or at least

unlocated) .

71

'Second, the user of a tree editor manipulates his data in terms of
its tree structure rather than its textual representation. The extent
to vwhich this is an advantage rather than a disadvantage is determined
by whether the user thinks in terms of trees or not. Clearly, a
programmer must have some understanding of the underlying structure of
his program if he is to function; the question is whether this

information is easily usable during editing.

Third, the user need not bother with laying out his data in a
nicely formatted way, since the editor creates the textual
representation of the tree on its own. Some programmers like to have
control over the formatting of their program; specially formatting
certain statements to make them more readable. I feel that a point of
diminishing returns is reached; that as long as the automatic formatter
produces reasonable formatting in most cases, the fact that the reader
can rely on absolutely consistent formatting more than compensates for
the occasional case where the programmer could have formatted a
statement more readably than the editor did. The advantage of
automatic formatting is even more apparent when documents, rather than

programs, are being edited.

Fourth, the user need not type in the characters that are
displayed. 1In particular, the user can view a display with verbose
keywords, redundant display cues, etc. but still type a short
non-redundant form of the program. In this way the program can be made

more readable without increasing the time required to enter it,

72

-Fifth, since the information being edited is always stored in tree
form, other programs dealing with the information (such as compilers)
do not have to parse it. Of course, this advantage arises only if
these programs were written with the tree editor in mind. The
possibility of creating advanced program development systems capable of
aiding the programmer in testing, verifying, debugging, documenting,
optimizing, and other aspects df the program development process has
been discussed by several authors (e. g. [Sandewall, 1978]). The user
of such a system must understand the actions of the system; using trees

as the communication medium can help ensure this.

Finally, the principal disadvantage of tree editors is the less
direct correspondence between the display the user sees and the objects
he manipulates. For example, when the user of a text editor sees that
the cursor is in one place and he wishes it to be somewhere else, the
direction the cursor must be moved is directly visible on the screen.
With a tree editor, the direction of cursecr movement wiil have no close

relation to the appearance of the display.

Applications of Tree Editing.

The primary motivation for the tree editor was its application to
the editing of computer programs, but the concept is potentially
applicable to a wide variety of tasks in which structured information

is manipulated by people with the aid of computers.

The editing of documents has received some attention in this

73

proiect. Documents have a natural tree structure and hence should be
good candidates for a tree editor. One difference in the tree
structure of documents as compared to that of a typical programming
language is that the information in documents tends to be concentrated
in the leaves of the tree. This makes a linear representation of the
information somewhat more attractive than with programs. Another
difference is the greater difficulty of hand-formatting a document,
since changes tend to propagate over many lines. This argues in favor
of a tree editor, but the same property also leads to large-scale
changes to the display when small changes are made with the tree

editor, a phenomenon which can be distracting.

These considerations make a decision on how to edit documents
difficult. Considering the large size of the application area, it may
make sense to construct a specialized editing system rather than use a
general tree editor (or a slightly specialized tree editor as was done
in this project). Still, the tree editing approach solves many
problems which arise in attempting to design such a system. For
example, a document editor should have commands for deleting letters,
words, sentences, and paragraphs. The obvious approach leads to four
commands. The tree editor provides a command framework in whibh these

four operations are unified into a single command.

A third area touched on in this project was the use of the tree
editor to prepare input to computer programs which require structured

information as input. Language descriptions given to the language

74

deséription compiler are an example of this. Input languages of this
kind are fairly common; examples are input to a compiler-compiler,
data-base descriptions for a data-base management system, and file
dependency descriptions for a program management system. One advantage
of Lisp for applications such as thecrem-proving is that the programmer
need not parse an input language since the input may be represented as
S-expressions parsed by the Lisp system; this is a considerable
convenience, especially in an experimental system in which the input
language is changing. The tree editor could provide similar

advantages.

An area not developed in this project is the representation of
information in a data-base by trees and the entry and modification of
such information using the tree editor. For example, a language
description for a record of employee personal information containing
fields for name, address, etc. could easily be written, and the tree
editor then used for display, entry, and modification of the record.
How this would fit in with the rest of payroll system is a matter for

future research.

System command languages provide commands for deleting, renaming,
and otherwise manipulating files, for running programs, and for other
tasks performed in the course of an interactive session. The tree
editor could be used to enter these commands, but a more interesting
approach would be to use the tree editor to edit file directories, and

thus eliminate the need for the file manipulation commands (see

75

[Fraser, 1980] for a somewhat similar idea). The ultimate expression
of this approach would be to regard all the information in the machine
as one big tree, manipulated by the tree editor; what are now seen as

file directories would simply be the higher levels of the tree.

Finally, one area not appropriate for the tree editor in its
present form is the editing of two or three dimensional information.
Although a two-dimensional array of objects could be represented by a
tree consisting of a series of rows with each row consisting of a
series of columns, the natural transition from a row and column to the
same column in the row above does not correspond to a natural
transition in the tree. Graphical objects may exhibit a tree structure

at a higher level, however.

Further Development of the Tree Editor.

The editor as implemented illustrates the essential features of the
tree editing approach. Several more-or-less obvicus enhancements would

be desirable in a production system.

First, the macro expansion language should be integrated into the
editor to allow the user to perform large-scale transformations, such
as changing the name of a variable in his program, correcting a
spelling mistake in a document, or removing all third parameters of the
call of a particular procedure. I have implemented this extension in a
version of the editor, but have not bothered to provide for the user

aborting the transformation while it is in progress and restoring the

76

state before the transformation was bequn. This facility would be
necessary in a production system since some transformations are

non-terminating.

Secondly, it would be desirable for the editor to read the language
description itself rather than having the language description compiled
by a second program. This is an essentially minor change which was not
made because it increases the size of the editor (and memory space is

precious in this implementation).

Once the second change has been made, it may be desirable to allow
the user to change the language description in the middle of editing a
program in the language. This would allow the user to very
conveniently extend the language to fit the requirements of one
particular program. Some problems arise in keeping track of all the
changes and in merging extensions to the language made at different

times.

More powerful facilities for handling multiple trees or multiple
versions of trees would be desirable., The current one-or-two tree
editor allows all operations (splitting a program up, merging programs,
rearrainging a program) to be performed, but some operations (e. g.

merging three programs) are clumsy.

Many improvements are possible in how the tree is displayed by the
editor. The algorithm for splitting long lines could be improved. For

the document editor, allowing for hyphenation of words would be

77

desirable. Perhaps most importantly, the elision algorithm could be
much improved. With all these improvements, it must be remembered that

not much time is available for computing the display.

Finally, the biggest improvement that could be made would be to
implement the editor on an appropriate machine. Single~character at a
time interaction with instant response is an essential requirement of a
tree editor of this type. A high-resclution screen which can he
instantly updated is almost as important. Neither of these needs are
likely to be satisfied by a multi-user time-sharing system. The
single~user system for which this implementation was primarily intended
suffers from serious deficiencies also, notably a lack of memory and a

display which can't be refreshed fast enough to avoid flicker.

Handling Context-sensitive Syntax.

It would be nice if the editor knew something about the
context-sensitive syntax of the language being edited and could inform
the user of such errors as undeclared identifiers, wrong numbers of

parameters for procedure calls, or type clashes.

One way of so informing the user would be to signal an error
whenever he tried to, say, enter an undeclared indentifier (except, of
course, in a declaration). There are potential problems with this
approach. The user may know that the identifier is undeclared and be
intending to enter its declaration later. The spelling of the

identifier may not match that in its declaration and it may be the

78

declaration that is wrong. An override would probably be necessary to
allow the user to enter the incorrect identifier anyway, but the

existence of this error might confuse further error checking.

An alternative would be to check for errors only when explicitly
requested. The editor could move the cursor to the location of an
error automatically. Of course, detemining the real location of an

error is in general impossible.

More sophisticated things might be attempted beyond simple
error-checking. The editor might automatically fill in parts of the
program which are uniquely determined by context-sensitive
constraints, For example, if the user types 'a' as the first letter of
an identifier and the only valid identifier beginning with 'a' is
Yaardvark", the editor could £ill in the rest of the identifier
automatically. Similarly, the editor could create the proper number of
holes for parameters of a procedure call as soon as the name of the
procedure was known. Warnings of ridiculous contructs could also be

issued in addition to actual errors.

Scope rules could be incorporated into a facility for making global
changes. The user could then ask for the name of a variable to be
changed without variables in other scopes with the same name being
changed also. To implement this feature in full generality is more
difficult than it appears. Consider, for instance, the problem of
changing the name of a field of a Pascal record, taking full cognizance

of the possible existence of other records with fields of the same

79

name, of with statements, and of inner blocks in which names are masked

by new declarations.

Implementation of these features may be divided into two parts -
specifying the context-sensitive syntax for a language and using this
specification in the editor. Attribute grammars [Knuth, 1968] seem to
provide a appropriate framework for the first task. An attribute
grammar associates certain values with each point in the tree; these
values are computed from zero or more values at neighboring points in
the tree. The computations must be non-circular, of course. Certain
restrictions may have to be imposed on the ways attributes can be
computed. One possibility is to restrict the computations to allow
them to be computed in a single traversal of the tree. Requiring that
all values be computed without reference to values higher in the tree
is another possibility. Neither of these restrictions impair the
theoretical completeness of the method but may lead to practical
difficulties in writing the language descriptions. Note that the
actual computations used may be expressed in whatever language is

convenient.

These attributes could indicate to the editor that an error is
present at a particular place in the tree or that a certain option
should be automatically filled in by the editor. Naturally, those
features which reguire the editor to check syntax on every keystroke
require very fast computation of attributes. Storing the attributes of

all subtrees would help (if the attributes are not invalidated by the

80

keyatreoke) but would require a lot of space.

Possible Human-factors Improvements.

This section describes several possible improvements to the editor
which might improve the ease and pleasure with which it can be used but
which do not affect the over-all design. In one sense these could be
considered "minor" changes, but they can nevertheless have a major
influence on the quality of the editor. Of the two terminals the
editor currently is set up to use, the VT1l is far preferable in theory
as it has a larger screen and the ability to draw the cursor properly.
In practice, I seldom use that terminal with the tree editor because
the flickering of the screen and the high noise level make it more
pleasant to use the editor with less adequate terminals in a better
environment., As these problems are not unique to a tree editor, I will
say no more about them, but they may be more important than the items

mentioned below.

One problem with the tree editor is a shortage of characters for
commands. There are two contexts where this is a problem - choosing
characters to represent editing commands and choosing characters for
production names in a language description. The shortage is not really
absolute but is rather a shortage of easily remembered and easily typed
characters. One possibility is to add further shift keys in addition
to the ordinary shift and the control key. Just adding a second

control key on the other side of the keyboard would help. Adding extra

81

laBels to the keys to show where the editing commands are located would
also be helpful. An alternative to adding more shift keys would be to
add a new block of keys used only for entering editing commands, but
this requires the user to move a hand away from the main keyboard which
disrupts the normal typing process. Using another input device In
addition to the keyboard causes similar disruptions. B2 possibility
worthy of investigation is the use of a one-handed keyboard to free a
hand for using a light-pen or specialized keyboard. One-handed
keyboards using a "chord" method exist, but I don't know much about

them.

Currently, the tree editor makes all charnges to the display as fast
as it can (instantly with the VT1l). This is not necessarily
desirable, The instant insertion of lines in the display is sometimes
confusing as the user must hunt for what he used to be looking at. The
alternative is to smoothly create a opening for the lines to be added
by moving the adjoining lines apart. If the time for this to occur is
not to become annoying, it should take less than a second (a quarter of
a second seems about right, but different times would have to be tried
out). Since the object is to prevent disorienting changes, this motion
should be as smooth as possible; this imposes some constraints on the
refresh time of the screen which may be more severe than those required
to prevent flicker, No experiments along these lines were performed
because the VT1l's phosphors are too persistent, causing the objects to

appear blurred when one moves them.

82

A related problem is encountered with the document editor. When a
word is inserted in the middle of a paragraph, the rest of the
paragraph may have to be rearrarnged to accomodate the change. This
occurs fairly frequently when inserting text in the middle of a
document and can be disconcerting. Smoothly moving the text, as
described above, may help. Banother possibility is to reduce the
frequency of these rearrangements by making the right margin "fuzzy",
i. e. not requiring that exactly as many words as possible be on each

line.

Implications for Language Design.

Considering the great difference between the way programs are
entered with the tree editor and with a text editor, it is not
surprising that the two methods lead to different preferences in

language design.

One problem with writing language descriptions for languages not
designed with the tree editor in mind is the selection of appropriate
production names. For instance, the description of Pascal given in
appendix B uses the first letter of the primary keyword as the
production name for statement types. A problem arises with the "while"
and the "with" statements, resolved by arbitrarily assigning a
production name of "T" to the "with" statement. This discordance
between input and display languages could likely have been avoided if

the language had been designed for the tree editor. A similar, but

83

more serious, problem arises with C [Kernighan & Ritchie, 1978], which
has a plethora of operators whose lexical representations are optimized

for parsing, not for use as production names.

Ridiculous language design decisions become obvious when one
attempts to describe the resulting tree structure for the tree editor.
The occurrence of colons in the parameters of Pascal's "write" and
"writeln" standard procedures is one instance of this. Pascal's
pretence that its standard procedures are just like any other
procedures, everywhere a bit thin, becomes clearly absurd in this case,
as colons are not allowed in the parameter lists of any other
procedures. The solution adopted in appendix B, considering colon to
be just another operator, is such a blatant fudge that any
self-respecting language designer would surely rethink things at this
point. 1In general, one would expect cleaner abstract syntaxes to
result from the use of tree editors, because the tree structure is no

longer hidden from the user.

The syntax of a language should make plain the underlying tree
structure (this is a good idea even if a tree editor isn't being
used) . Pascal is quite good in this regard; the various components of
a block are all set off by keywords. In contrast, Algol's syntax
places visually similar declarations and statements next to each other

without ahy separator.

Infix operators are a problem. Their natural ambiguity has lead in

the past to baroque precedence schemes and other strange conventions to

84

disambiguate them. With the tree editor, they are not very natural,
since the user must enter the operator before the operands in any

case. Despite their long use in mathematics and programming languages,
it is tempting to get rid of them in favor of prefix operators.

Perhaps their use results from the infix position of the English wverb;
if =0, it is worthwhile to note that there are plenty of human

languages with prefix or postfix verb pesition.

A language that is parsed must be completely unambiguous. No such
constraint exists if programs in the language are entered solely with
the tree editor. Of course, if the display of the program is highly
ambiguous, the user will be unable to determine what the tree structure
of the program is and will not be able to use the editor effectively.
Occasional ambiguities that are easily disambiguated by context are not
necessarily ruled out, however. WNaturally, there are no positive
advantages to ambiguous languages, but a less cluttered syntax may
result from using one, The language description language described in
appendix A omits the numerous quotation marks or escape characters
which would be needed to produce a completely unambiguous display
language. The result is quite useable but can occasionally be

confusing.

The macro expansion language associated with the tree editor has
effects on programming language design. True syntactic extensibility,
while not unknown (see, for instance, [Irons, 19701}, is not present in

any commonly used programming language. As a result, many constructs

85

are included in programming languages which are not fundamental and
might more logically be considered extensions. 2An example from Pascal
is the "for" statement. A particularly striking example is the
"activate" statement of Simula [Dahl, Myhrhaug & Nygaard, 1970}, which
is defined by an ordinary procedure call but cast in the form of a
statement for syntactic convenience. Easy extensibility allows a
language to be tailored to the needs of a particular application area,

a particular programmer, or even a particular program.

Significance of the Macro Expansion Language.

The pattern-match and replacement facility described earlier as a
macro expansion language has full computing power and thus merits
consideration as a programming language in its own right. Figure 21
shows a simple language description for strings of characters with two
extra productions that play the role of functions to reverse a string
and to append a character to the end of a string. Figure 22 shows the
reductions that expand these "functions" into their results. The style
used here is very Lisp-like. Whether this programming style is the
best for this language or whether I have just not really learned how to

program in this language is an open gquestion.

The language is inherently applicative; more so than pure Lisp.
Pure Lisp was easily augmented by procedural constructs and functions,
but it is difficult to see how to add, say, a "print" construct to the

macro expansion language. However, the language could be used to

86

<string>
* | "{<character>}"
R | reverse<string>
A | append <character> to<{string>
1%

Figure 21. Description of strings and string functions.

find string
reverse

Lial}

reduce to
nn

find string
reverse
"<character.a>{character.b}"
reduce to
append <character.a> to
reverse
"{character.b}"

find string
append <character.a> to
*{character.b}"
reduce to
"{character.b}<character.a>"

Figure 22, ©Definition of string functions in the macro language.

87

implement non-applicative programs via a state transition method in
which a new state and output is computed from an old state and input by
purely applicative means., Many interactive programs (including this

implementation of the tree editor) have this structure in any case.

An outstanding characteristic of the language is its simplicity.
That such a simple language can easily express transformations which
would be very difficult to express with a textual macro language 1S one
illustration of the advantages to be gained from treating programs as
trees instead of text. For general programming, the language has |
available a rich tree structure for representing data and these trees
can be immediately manipulated without the need for defining special
procedures for doing so. Consider the case of a compiler from Pascal
to assembly language. The input and output languages can be easily

represented as trees as could the symbol table and any intermediate

languages used in the translation process. Not only should the
compiler be easier to write than in a conventional language, it should
also be easier to understand, since the effect of a segment of the
pProgram on the data structures is exactly what is pictured by the
pattern and its replacement. I should note, however, that I haven't

actually written such a compiler.

Of particular interest would be the writing of all or part of the
tree editor itself in the macro expansion language. The computation of
the display would be an especially appropriate section to rewrite if

speed constraints can be met. This would allow special display modules

88
to be written with much less effort than at present.

Although it seems a shame to clutter such a simple language, there
are some reasons for contemplating extensions to the macro language.
The class of patterns is not extensible in the present scheme; it would
be nice, for instance, to provide not only for matching a subtree in
which two components are equal but also for matching when two
components are equivalent in some user—defined sense. Of course, some
extensions could be made by applying the language's macro capabilities

to itself.

The current implementation of the language is not very fast. The
fundamental problem is that finding a subtree and a pattern matching it
may involve many unsuccessful comparisons. Since any match may be
found (i. e. the process need not be deterministic), the problem seems
amenable to the use of multiple processors. One could organize this in
several ways — a processor might handle a particular part of the tree
or it might handle a particular reduction or the processors might
randomly search for matches., This is an interesting problem for future

research.

CONCLUSION

The current state of the tree editor project is that an
experimental implementation of the tree editor incorporating the basic
concepts has been written, along with an interpreter for the macro
expansion language. 1 can state that the tree editing concept is quite
viable. T am most experienced with the document editor, and, aside
from the defects noted before in the implementation and in the
terminals employed, I found the experience positive. However, the
present implementation is not of production gquality, partly because the
equipment used is rather inappropriate. Consequently, it has not been
possible to test the value of the editor by judging the reaction of a
user community or by conducting experimental comparisons with text

editors.

The next logical step would be to produce a production—-quality
implementation of the editor, with a few relatively minor improvements,
on a personal computer with a good display (60 lines by 80 columns,
say) and an adequate amount of memory (128KB, or perhaps a bit more).
This would allow more experience to be accumulated and provide a sound

base for attempting the more ambitious extensions.

89

REFERENCES

DAHL, O-J., MYHRHAUG, B. & NYGAARD, K. (1970). [Simulal] Common Base
Language. Oslo: Norwegian Computing Center.

DOUZEAU-GORGE, V., HUET, G., KAHN, G., LANG, B., & LEVY, J. (1975). "A
structure-oriented program editor: A first step towards computer
assisted programming", International Computer Symposium 1975,
Amsterdam: North Holland Publishing Company.

GREENBERG, B. (1979). An Introduction to Using Multics Emacs
On-line documentation on the University of Calgary Multics system.

FRASER, C. (1980). "A generalized text editor", Communications of the
ACM. vol. 23 no. 3 (March 1980} pp. 154-158,

HOFFMAN, H-J. (1973). "Programming by selection", International Computer
Symposium 1973. Amsterdam: North Holland Publishing Company.

IRONS, E. (1970). "Experience with an extensible language",
Communications of the ACM, vol. 13 no. 1 (January 1970).

JENSEN, K. & WIRTH, N. (1975). Pascal User Manual and Report. New York:
Springer-Verlag.

KERNIGHAN, B. & RITCHIE, D. (1978). The C Programming Language.
Englewood Cliffs, New Jersey: Prentice-Hall.

KNUTH, D. (1968). "Semantics of context-free languages", Mathematical
Systems Theory. vol. 2 no. 2 (June 1968) pp. 127-145,

MCCARTHY, J., et al. (1962). LISP 1.5 Programmer's Manual. Cambridge,
Mass,: MIT Press.

NEAL, R. (1979a). A Tree Editor. unpublished.

%0

91

-~ (1979b). A Brief Geli Manual. On-line documentation on the University
of Calgary Department of Computer Science Unix system.

NELSON, T. (1974). Computer Lib / Dream Machines. Published by
the author.

RITCHIE D. & THOMPSON, K. {1974). "The UNIX Time-Sharing System",
Communications of the ACM, vol. 17 no. 7 {July 1974}.

SANDEWALL, E. (1978). "Programming in an interactive environment®,
Computing Surveys, vol. 10 no. 1 (March 1978) pp. 35-71.

TEITELMAN, W, (in press). "A display oriented programmer's assistant”,
International Journal of Man-Machine Studies.

WINOGRAD, T. (1979). "Beyond programming languages", Communications of
the ACM, vo0l.22 no. 7 {(July 1979) pp. 391-40l.

APPENDIX A - DESCRIPTION OF THE LANGUAGE-DESCRIPTION LANGUAGE

Beware of confusing the occurances of '"(', '|', etc. as

characters with their occurances as meta-characters.

<language-description>
4 | (Kclass-modification>)

<class-modification>
| <class>(<modificaticn>)

<modification>
| <string> <type> {<element>}
/e | eliminate (<string>,)
/i | include <class> {<string>, 1}

<type>
include <character> 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, — |, *

<element>
include <character®>
/1 * [{}<class>)

/{ * {{)<class>{}}
/0 * (<elass>{})
/< ¥ <class>
/b *
/b % 1{<digit>) !

include <character>
include <element> /|, /!

<digit>
include <character> 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

<string>
* (<character>)

{class>
* {(<letter>)>

{letter>
include <character> a, b, ¢, 4, e, £, 9, h, i, 3, k;, 1, m,
n, o, P, 4, ty S, t, 0, v, W, X, ¥, 2, —

<modification>
/a | assume <string> before {<character>}

92

<element>
?[* [?{}<class>]
?{ * {?{}<class>{}}

93

APPENDIX B - DESCRIPTION OF PASCAL

This description is of full standard Pascal as described in
[Jensen & Wirth, 1975], except that the name of the case selection field
of a variant record may not be omitted (for minor technical reasons).
There are also no semicolons and no period at the end of the program;
these serve no useful purpose during editing and cause some problems in
aesthetically formatting the program. A language description describing
the same tree structure but with semicolons in the places required by
standard Pascal is available for preparing programs for a compiler.

<program>
| program <name><program-parameters>|[<block-comment>]
[<label-section>»][<const-section>][<type-section>]

[<var-section>]{ <procedure-definition> } <body>

{program-parameters>
- ((<name>, })

<hbody>
| begin|{<statement>}end

<block—comment>
| { (Kword>)1}

<word>
* (<non-space-character>}

<non-gpace-character>
include <character>
eliminate

<label-section>
$ | label (<label>,)

{const-section>
$ | const(<const-definition>)

<const-definition>
| <name> = <constant>[127!<side-comment>]

94

95

<type-section>
| type(<type-definition>)

<type-definition>
| <name> = <type>[127!<side-comment>}

<var-section>
| var(<var—declaration>)

<var-declaration>
| (<mame>,) 1 <type>[127!<side-comment>]

<side-comment>
- { {(<word>) }

<procedure-definition>

L%

P | procedure <name>[<formal-parameters>] | [<block-comment>]
[<label-section>] [<const-section>]| <type-section>]
[<var-section>]{ <procedure-definition> } <body>

F | function <name>{<formal-parameters>] : <name> |
[<block-comment>] [<label-section>]{ <const-section>]
[<type-section>][<var-section>]{ <procedure-definition> }
<body>

<formal-parameters>
- ((<parameter-group>;)}

<parameter—-group>
$ - (<name>,)} : <name>
V - var (<name>, } : <name>
P - procedure (<name>,)
F - function (<name>,)} : <name>

<name>
* <letter>{<letter-or-digit>}

{letter>
include <character> a, b, ¢, d, e, £, 9, h, i, 3, k, 1, m,
N, o, Pr 9, Iy 8¢ L, 0, v, W, %, ¥, 2

<digit>
include <character> O, 1, 2, 3, 4, 5, 6, 7, 8, ¢
<letter-or-digit>

include <letter>
include <digit>

<statement>

#1#

<variable> :=

<name> [<actual

O R E e

for <name> :=
< tatement>

96

<{expression>

!
| <label>:<statement>

] —parameters>]

| while <expression> do<statement>

| with (<variable>,) do<statement>.

| if <expression> then<statement>[else<statement>]
| repeat{<statement>}until <expression>

I

s

C |

<expression> <direction> <expression> do

case <expression> of (<case-list>)end

G | goto <label>

B | begin|{<statement>}end
assume = before abcdefghijklmnopgrstuvwxyz
assume : before 0123456789

{case-list>

| ({constant-range>,)} :<statement>

<constant-range>
include <constant>

. — <constant?>..<constant>

<actual-parameters>
¥ - ({<expression>

<direction>
T - to
D - downto

<label>
} * (<digit>)

variable>
~ <name>{Kmodif

<modifier>
« — <name>

~

[- [(<expression>

{constant-base>
L * nil
" & "({<{character>)

r))

ier>}

]

X * {<digit>)[?.<fraction>] [?E<exponent>]

{fractiony>
. * (<digit>)

{exponent>

E - [<sign>] (<digit>)

97

<sign>
include <character> +, -

{constant-intermediate>
include <constant-base>
include <name>
assume X before 0123456789

<constant>
include <constant-intermediate>
assume X before 0123456789
- — —<constant-intermediate>
+ - +<constant—intermediated>

<{expression>

include <constant-base>

include <variable>

assume X before 0123456789

0 <expression>:<expression>{:<expression>]

[[{<expression-range>, }]
{<expression>]+<expression>
[€expression>]-<expression>
<expression> or <expression>
<expression>*<{expression>
<{expression>/<expression>
<expression> mod <expression>
<expression> div <expression>
<expression> and <expression>
not <expression>
>> 2 <Lexpression>><expression>
<< 2 <expression><<{expression>
>= 2 <{expression>>=<expression>
<= 2 <expression><{=<expression>

+
0
*
/
M
D
A
N

0o Y Ch OV OY B)

A

<> 2 <Lexpression><{><expression>
= 2 <expression>=<expression>
{ - <name><actual-parameters>

<expression-range>
include <expression>
. - <expression>..<expression>
assume X before 0123456789

<{scalar-type>
include <name>
. — <constant>,.<constant’>
{ = ((<name>, })

<structured-type>
F - file of <type>
S - set of <{scalar-type>

98

A - array [(<scalar-type>,)] of <type>
R | record{<field-definitiond>}[?<record-case>]end

<type>
include <structured-type>
include <scalar-type>
- “<name>
P - packed <structured-type>

<field-definition>
1 (Kname>,) : <type>[!27!1<side-comment>]

<record—case>
| case <name> : <name> of (<record-case-1list>)

<{record-case-list>
| (<constant-range>, } : ({<field-definition>}
[?<record-case>})

<{constant-range>
include <constant>
. — <constant>..<constant>
assume X before 0123456789

APPENDIX C - DESCRIPTION OF THE DOCUMENT LANGUAGE

The description of the document language given below adequately
describes only the tree structure and the input aspects of the language.
the display aspects of the description are suggestive only, the actual
specialized display routine ignores that part of the description. 1In
particular, words which are shown here as being enclosed in accents)
are instead underlined when printed. Also, the text is single-spaced

when displayed by the editor and double-spaced when printed.

<section>
/s | <sentence>{| <section> }
/p | (<sentence>)

/1 1 (<line>)
assume /p before 1234567890-"\!"#5%&" ()O= |qwertyuiop@ ([OWER
TYUIOP' {asdfghikl; :]ASDFGHIKL+*} zxcvbnm, . ZXCVBNMS> 2

<line>
| (<character>)

<sentence>
- (Kpart>)

<word>
$ - (Kletter>)

<part>
include <word>
include <character> ., ,, 2, 3, !, ?
noo_ “(<mrt>)“
' - "(Kpart>)'
{ - ({<part>))
e Yword>®

{letter>

include <character>
eliminate , ., ,, &, 3, 1, ?

99

APPENDIX D - SUMMARY OF EDITING COMMANDS

The summary below lists all commands of the editor, classified by
function, with the command's name, the control character used to invoke

it, and a brief description of what it does.

Cursor movement:

~

Up P Move the cursor to the parent of the present node
DownLleft "I Move the cursor to the leftmost child

DownRight "0 Move the cursor to the rightmost child

Left "K Move the cursor to the next sibling to the left
Right "L Move the cursor to the next sibling to the right

Window manipulation:

Dup "A Duplicate the tree, creating the secondary window
Discard "5 Discard the secondary window

Switch "N Switch to the other window's cursor

WToggle "W Toggle whether both windows are displayed at once

Tree modification:

InsertA "F Insert a hole after the present node

InsertB "D Insert a hole before the present node

Remove "M Remove the present node

Copy "C Copy from the other window's tree

UnErase "E Replace with the last erased node

UnErasNext "R Replace with the next child of the last erased object

any printing character is used as a production name (or part thereof)

Meta-commands:

Quit "Q Terminate the editor, writing the window(s) to file(s)
Null "Z Do nothing, but do the automatic follow-up actions
Cancel "H Cancel the last command

CancelAuto “J Cancel the automatic follow-up of the last command
Repeatind "U Repeat the last command indefinitely

RepeatFive "Y Repeat the last command five times

100

