Using Deterministic Maps when Sampling from

Complex Distributions

Radford M. Neal

University of Toronto, Vector Institute Affiliate

http://www.cs.utoronto.ca/~radford

http://radfordneal .wordpress.com

Evolution of Deep Learning Symposium, Toronto, 16 October 2019

Two Foundational Papers From the 1950s

Metropolis, Rosenbluth, Rosenbluth, Teller and Teller, “Equation of State
Calculations by Fast Computing Machines”.

Introduced the “Metropolis algorithm” (the first “Markov Chain Monte Carlo”
method) — a general way of sampling from complex, high-dimensional
distributions. Applied it to simulating a system of molecules. Has been used

extensively in physics ever since.

Its applicability to statistical learning went unrecognized for decades.

Alder and Wainwright, “Studies in Molecular Dynamics. I. General Method”.

Simulated molecular systems deterministically. It also has been used
extensively in physics ever since, with applications overlapping those of the

Metropolis algorithm.

The Metropolis Algorithm

Sample a sequence x1, x9, ... whose distribution
converges to m(x).

Use a “proposal” distribution, ¢(x*|z), with
q(z|z*) = q(z*|z).

To update from x; to x;41, first propose z* from
q(-|ze)-

With probability min|1, 7(z*)/7(x)], set x¢11
to x* (“accept”); otherwise let x;y1 remain at

ry (“reject”).

Molecular Dynamics
Simulate the dynamics of molecules moving as
influenced by forces between them, and from

outside.

For one molecule, with mass 1, position ¢, and
momentum p, we can (approximately) simu-
late movement from time t to t + n with the

“leaptrog” method:

Peansz = P — (0/2) VU (zy)
Tttn Tt + 1 Dttn/2

Pt+n = Pt4n/2 — (n/2) VU(fct—H?)

If it were exact, this would conserve the total
energy (the “Hamiltonian”), U(z)+ K(p), with
K(p) = |p|*/2 in this example. The approxi-

mate simulation exactly preserves volume.

Two Foundational Papers From 1986
(in “Parallel Distributed Processing”)

Y

Hinton and Sejnowski, “Learning and Relearning in Boltzmann Machines”.

An elegant approach to probabilistic modeling, implemented using Markov
chain Monte Carlo methods, before these were commonly known outside

physics.

Learning was done by gradient descent, with the gradient evaluated by
Monte Carlo, as a difference of “positive” and “negative” phase statistics.

This turned out not to work well in practice...
Rumelhart, Hinton, and Williams, “Learning Internal Representations by

Error Propagation”.

The classic “backpropagation” paper — the start of a demonstration that
gradient descent optimization can do much more than you might have
thought.

A dynamical approach of “gradient descent with momentum” was often used.

A Crucial Paper from 1987

Duane, Kennedy, Pendleton, and Roweth, “Hybrid Monte Carlo”.

Merged molecular dynamics and the Metropolis algorithm, using gradient
information to greatly improve sampling — dynamical simulation can

propose distant points, avoiding slow exploration by a random walk.

Used by physicists doing lattice field theory, a numerical approach to

computations for quantum chromodynamics.

The method is now dubbed “Hamiltonian Monte Carlo”, since the

formulation of dynamics using a “Hamiltonian” function is used.

This is made possible by imagining that x is the position of a “molecule” that
has momentum p. We let £ and p be independent, with densities proportional
to w(x) = exp(—U(x)) and exp(—K(p)). After sampling for (z,p), we can just

ignore p to get a sample for x.

Hamiltonian Monte Carlo

Sample (x1,p1), (x2,p2), ... converging to a

distribution with density proportional to

exp(=U (@) exp(~K (p)). 2

Propose a new (x*, p*) by simulating dynamics // |
starting at (x¢,py) for L leapfrog steps, with // /
stepsize 1, then negating p (so the proposal will / /

be reversible). /
Accept or reject (z*, p*) in Metropolis fashion. y /

/
Then sample p;y1 according to exp(—K(p)). L

An HMC trajectory for

a bivariate Gaussian.

The World in 1989

I began my PhD at Toronto with Geoft in Fall 1989.

Geoff and his students were using backprop, and trying to get Boltzmann

machines to work better using a “mean field” approach.

Neural networks and similar “connectionist” ideas were a minority approach
in Al, with symbolic approaches being dominant. (These two schools of

thought seemed to get along fine at U of T, however.)

There was debate about whether probability was of any use in Al, though
Hidden Markov Models trained by the EM algorithm were the dominant

approach to speech recognition.

There was lots of hype about “expert systems”, built with manually codified

knowledge, sometimes in terms of manually specified probabilities.

Few ML researchers knew much statistics; fewer statisticians knew of ML.

Bayesian Learning

I was dis-satisfied with the ad hoc nature of machine learning methods, in

particular how “overfitting” was avoided only by limiting model complexity.

I found “Bayesian” methods more attractive.

e They express prior beliefs about what might be (eg, how the class of an
objects relates to its features) in terms of probabilities, which are updated

when data is observed — a philosophically coherent approach.

e | found that they avoid overfitting with large models — even neural
network models with nfinitely many hidden units and parameters give
good results, when fitted properly by Bayesian methods.

e Moreover, one can learn “hyperparameters” — high-level parameters that
control the distribution of lower-level parameters — and hence learn

things like which features are actually relevant to classification.

e Bayesian methods give predictions that quantify uncertainty, since they

are based on a distribution over model parameters, not a single estimate.

The Difficulty of Bayesian Learning for Neural Networks

Even modest-size neural networks are much more complex than many
“traditional” statistical models. Eg: 10 inputs, 20 hidden units, one output

— 241 parameters. Of course, “deep” networks can have far more parameters.

Neural network posterior distributions are also hard to visualize, and possibly
quite strange. Eg: The maximum likelihood estimate will be non-unique, and
have some parameters at infinity (though infinities will be avoided with a

proper prior).

The traditional computational methods of Bayesian statistics in 1990 were
hopelessly inadequate for such a problem, without resorting to simplifying
approximations. Markov chain Monte Carlo methods were only just being
looked at by statisticians (eg, Gelfand and Smith’s Gibbs sampling paper).
The problem is too difficult for simple MCMC methods in any case.

How to do Bayesian learning?

Around when I became interested in Bayesian neural networks, David
MacKay did as well. He developed computational methods based on
approximating the posterior parameter distribution by a Gaussian, with

covariance matrix found from 2nd derivatives at the mode.
Approximations can also be found by minimizing a “variational” criterion.

I preferred to use Markov chain Monte Carlo methods, which are exact

asymptotically (but in practice?).

The complexities of neural network posterior distributions perhaps resemble
those of distributions found in statistical physics. So it is maybe not

surprising that the Hamiltonian Monte Carlo method from physics is useful.

Hamiltonian Monte Carlo Makes
Bayesian Neural Networks Practical

A breakthrough for me came when I read about “hybrid” (Hamiltonian)
Monte Carlo, and recognized that it was a powerful method applicable beyond

its lattice field theory origins — in particular, to Bayesian neural networks.

Three characteristics of HMC make it highly suited to this task:

1. It uses the information in the gradient — which is readily available via
backpropagation. In fact, simulation of a trajectory to find a proposal is

very similar to standard “backprop with momentum”.

2. It can propose distant points by simulating long trajectories, with a high
acceptance probability (since the exact dynamics preserves H). This

avoids ineflicient exploration via a random walk with small steps.

3. It has favourable scaling behaviour with dimensionality, D (with certain
assumptions on how dimensionality increases). If computing the density
is proportional to D, the time to sample with HMC scales as D54, much
better than the D? scaling of simple Metropolis updates.

... But Not Practical Enough for Everyone

Bayesian neural networks implemented with Hamiltonian Monte Carlo
perform very well for classification and regression problems of small to

moderate size. For example, I used them in the winning entry for the
NIPS*2003 feature selection challenge (Neal and Zhang 2006).

But these methods can’t be used directly for problems with millions of

training cases, or when models with millions of parameters are needed.

However, the idea that with a good learning method, model complexity does
not need to be limited to prevent overfitting does extend to such large-scale
problems. In particular, “dropout” (Hinton, et al 2012) can be interpreted in
Bayesian terms (Gal and Ghahramani 2016).

Other Uses of Deterministic Maps for Sampling?

Hamiltonian Monte Carlo uses a complex deterministic process utilizing
ogradients to propose a new state, combined with stochastic sampling of
momentum and stochastic accept/reject decisions. It can be enormously

better than purely stochastic random-walk Metropolis methods.

Are there other ways of usefully incorporating deterministic maps into
Markov chain Monte Carlo?

Some possible stochastic aspects that might be made deterministic:
— Metropolis accept /reject decisions.
— Choosing Metropolis proposals.
— Sampling from univariate conditional distributions (“Gibbs sampling”).

— Everything.

Taking the Monte Carlo out of MCMC

Two papers from 2012 hint at how MCMC might not require any (or very

minimal) random inputs:

Murray and Elliott, “Driving Markov chain Monte Carlo with a

dependent random stream”.

Neal, “How to view an MCMC simulation as a permutation, with

applications to parallel simulation and improved importance sampling”.

They describe closely related methods, but differ in motivations. Murray and
Elliott consider how to handle low quality “random” numbers. One
application I consider is parallel simulation with all threads using the same

random number stream (but hopefully giving different results).

A simple version for Gibbs sampling: Include a uniform value, u, in the state
space. To sample a new value for component x from its conditional
distribution with CDF F, set z;.1 = F~1(u;), and set ;11 = F(x;) (so the

method is reversible). Also add some ¢, to u;, wrapping around to stay in [0, 1].

Gibbs Sampling for a Truncated Bivariate Gaussian

X2

05 1.0 15 20

x1
0.0 05 10 15 20 25

50

100 150 200 250

lteration

Six independent chains (different colours) sampling a bivariate Gaussian with
means of zero, standard deviations of one, and correlation 0.95, truncated to
the interval (—1, 2.5) for 1 and the interval (—1.5, 2) for x,.

X2

The six chains have different, random initial u values, but are thereafter

Deterministic Gibbs Sampling — Random ¢

05 10 15 20

x1
00 05 10 15 20 25

-1.0

50

100 150 200 250

Iteration

updated by the same mapping (same random c¢; for all chains).

X2

Deterministic Gibbs Sampling — All ¢; = 0.211

05 10 15 20

x1
00 05 10 15 20 25

Maybe better than standard Gibbs sampling?

50

100 150 200 250

Iteration

0.017

Deterministic Gibbs Sampling — All ¢

150 200 250

100

Iteration

Very pretty. Maybe even correct...

Deterministic Gibbs Sampling — All ¢; =0

o Lo
7 LANNANNANAN
[] ()
. .
3- <E NN Ve,
s *
0o _ o _
N © F: O — -
P ° P
_ 0 _
© eocses ©
O [J .. o)
P r — ° °
[e : © a'.."’o&” o‘ :."),:.:;
e : _ % '0’ '2 :‘ g Vv ¥
e ° d
T oe & o ‘A..ﬂ 1 A.;.)
H—hnd — — *
LT T T T T T 1 L | | | | |
-1.0 0.0 1.0 2.0 0 50 100 150 200 250
x1 Iteration

Obviously gone a bit too far here...

A Little Paper from 1991

Horowitz, “A Generalized Guided Monte Carlo Algorithm”.

Considers Hamiltonian Monte Carlo with one-step trajectories (also called
Langevin Monte Carlo) — but with a trick so that these steps nevertheless

usually keep going in the same direction (except on a rejection).

This is an early example of a “non-reversible” Markov chain Monte Carlo
method.

Using one-step trajectories would sometimes be helpful because other updates

(eg, of hyperparameers or discrete variables) could be done more often.

Unfortunately, even with the non-reversibility trick, Horowitz’s method is not
as efficient as HMC with long trajectories — keeping reversals rare requires a

low rejection rate, only obtainable inefficiently by taking small steps.

The Non-Reversibility Trick

Do each update of (x,p) as three steps:

1) Update p to ap + V1 — a?n, where « is slightly less than 1 and n is a
N(0,0°I) random variable (assuming that K (p) = |p|?/202).

2) Propose a new state by doing one leapfrog step for (z,p) and then

negating p. Accept or reject this proposal the usual way.
3) Negate p.
All steps leave the desired distribution invariant and are reversible.

Their sequential combination leaves the desired distribution invariant but is

not reversible.

For o near 1, Step (1) only slightly changes p. If Step (2) accepts, the
negation in the proposal is canceled by the negation in Step (3). But a

rejection will reverse p, leading the chain to almost double back on itself.

Non-Reversible Modification of the Accept/Reject Decision

To decide whether to accept a Metropolis proposal to move from x to =¥,

one can check whether u < w(x*)/mw(x), with v a random uniform over |0, 1].

Equivalently, one can check whether w(x*) > s, where s is a random uniform
over [0, w(x)].
Rather than choosing s randomly, we can make it (or u = s/7(x)) part of the

state, and update it in any way that leaves the joint distribution invariant.

One possible update: For some constant §, add/subtract ds to s, reflecting off

the boundaries at 0 and 7 (x).

It may be wise to also randomly alter s by a small amount, to ensure that it

will vary over its whole range.

Benefit for High-Dimensional Metropolis Updates

The number of simple Metropolis updates needed to reach an independent
point increases in proportion to dimensionality, D, if we assume (as is typical)

that the range of variation in the log density increases as v/ D (Caracciolo,
Pelisseta, and Sokal 1994).

This is a consequence of an update typically changing the log density by ~ 1,

and doing so in a random walk.

We might hope that the non-reversible modification of accept/reject decisions
could avoid this — when s is small, rejections are less likely, and one would
expect a drift to regions of small log density, with the opposite when s is large.

Since s will change only slowly, this should reduce random walk behaviour.

I’'ve found in tests on D-dimensional Gaussian distributions with identity
covariance that there is a gain — but only of about 10% (empirically, the

percentage gain is constant as D increases).

Improving Horowitz’s Method

We might also hope that non-reversible accept /reject decisions could benefit
Horowitz’s one-step HMC method.

The problem is that rejections cause reversals of direction, so a small step size
is needed to reduce rejection rate. But a higher rejection rate would be

tolerable if rejections cluster in time, producing long runs of no rejections.

Note: Rejection-free runs of 20, 0, 20, O, ... are better than rejection-free runs

of 10, 10, 10, 10, ..., since N of the former will move a distance proportional
to 20\/N/2 ~ 14v/N, but N of the latter only 10v/N.

The Improved Method for a Gaussian Distribution

I tried this for a bivariate Gaussian with variances of 1 and correlation 0.98.

[used n =0.21, « = 0.97, and § = 0.067. Here are the values for u = s/m(x)

for 200 consecutive iterations, with rejections in red:

o
Fi @ ‘. [] ‘ PY [
..o .:“ o® o '.o. °® °
(D_ | .. "‘. [o ® [] .. P
°
= o. .‘ o.. : p * N ’ : .o o
8 © . ° . e % .0. ° e o ..0.
o o e o ° ° . ® % °
Ry [J o) [] (] Y P
%) P ° [] LY ® o [] [}
S ° * oo o © * N °e ®
s © . * * ¢ o %o ¥ S o e o
)
(\! a L o o ¢ Q. .. ° * : o .. (] PY
o :: 0. L °® o ° % ¥) ® o L4
°
o _ % < ': ‘: .Q ° ®
o
| | | | |
0 50 100 150 200

Autocorrelation time for a coordinate was 17.2, compared to 25.9 without the

non-reversible update of s.

The Improved Method for a Neural Network Model

I’'ve also tried the improved method for a simple Bayesian neural network

model (binary classification, 2 inputs, 12 hidden units, 300 training cases).

Preliminary results show that one-step HMC can almost match performance
of multi-step HMC with hyperparameters fixed, and may be better when

hyperparameters are sampled via separate Gibbs sampling steps.

References

Alder, B. J. and Wainwright, T. E. (1959) “Studies in molecular dynamics. I. General method”, Journal of
Chemical Physics, vol. 31, pp. 459-466.

Caracciolo, S, Pelisseto, A, and Sokal, A. D. (1994) “A general limitation on Monte Carlo algorithms of
Metropolis type”, Physical Review Letters, vol. 72, pp. 179-182. Also at arxiv.org/abs/hep-1lat/9307021

Duane, S., Kennedy, A. D., Pendleton, B. J., and Roweth, D. (1987) “Hybrid Monte Carlo”, Physics Letters B,
vol. 195, pp. 216-222.

Gal, Y. and Ghahramani, Z. (2016) “Dropout as a Bayesian approximation: Representing model uncertainty in
deep learning”, arxiv.org/abs/1506.02142.

Gelfand, A. E. and Smith, A. F. M. (1990) “Sampling-based approaches to calculating marginal densities”,
Journal of the American Statistical Association, vol. 85, pp. 398-409.

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I.; and Salakhutdinov, R. R. (2012) “Improving neural
networks by preventing co-adaptation of feature detectors”, arxiv.org/abs/1207.0580

Hinton, G. E. and Sejnowski, T. J. (1986) “Learning and relearning in Boltzmann machines”, in Rumelhart, D. E.|
McClelland, J. L., and the PDP Research Group, Parallel Distributed Processing: Explorations in the
Microstructure of Cognition, Volume 1: Foundations, Cambridge, Massachusetts: MIT Press.

Horowitz, A. M. (1991) “A generalized guided Monte Carlo algorithm”, Physics Letters B, vol. 268, pp. 247-252.

MacKay, D. J. C. (1992) “A practical Bayesian framework for backpropagation networks”, Neural Computation,
vol. 4, pp. 448-472.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953) “Equation of state
calculations by fast computing machines”, Journal of Chemaical Physics, vol. 21, pp. 1087-1092.

Murray, I. and Elliott, L. T. (2012) “Driving Markov chain Monte Carlo with a dependent random stream”,
arxiv.org/abs/1204.3187

Neal, R. .M. (1994) Bayesian Learning for Neural Networks, PhD thesis, University of Toronto.

Neal, R. M. and Zhang, J. (2006) “High dimensional classification with Bayesian neural networks and Dirichlet
diffusion trees”, in I. Guyon, S. Gunn, M. Nikravesh, and L. A. Zadeh (editors) Feature Extraction:
Foundations and Applications, Studies in Fuzziness and Soft Computing, Volume 207, Springer, pp. 265-295.

Neal, R. M. (2012) “How to view an MCMC simulation as a permutation, with applications to parallel simulation
and improved importance sampling”, arxiv.org/abs/1205.0070

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986) “Learning internal representations by error
propagation”, in Rumelhart, D. E., McClelland, J. L., and the PDP Research Group, Parallel Distributed
Processing: Ezxzplorations in the Microstructure of Cognition, Volume 1: Foundations, Cambridge, Massachusetts:
MIT Press.

