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Abstract

When searching for new phenomena in high-energy physics, statistical analy-
sis is complicated by the presence of nuisance parameters, representing uncer-
tainty in the physics of interactions or in detector properties. Another compli-
cation, even with no nuisance parameters, is that the probability distributions
of the models are specified only by simulation programs, with no way of eval-
uating their probability density functions. I advocate expressing the result of
an experiment by means of the likelihood function, rather than by frequentist
confidence intervals or p-values. A likelihood function for this problem is dif-
ficult to obtain, however, for both of the reasons given above. I discuss ways
of circumventing these problems by reducing dimensionality using a classifier
and employing simulations with multiple values for the nuisance parameters.

1 The Problem

I will discuss a class of problems that I hope at least resemble those encountered in high-energy physics
experiments, such as searches for the Higgs Boson with the LHC. The solutions that I examine will
have much in common with some present practice, though I will not attempt to provide comprehensive
references. I hope that my discussion will clarify the role of existing techniques, such as the training of
classifiers for ‘signal’ vesus ‘background’ events, and also point to possible new approaches.

In this paper, I deal with experiments where we will observe O events, indexed by i =1,...,0,
that are described by variables, v;, computed from the raw observational data. Events can either be
from the ‘background’ or (if it exists) from the ‘signal’ — for instance, an event in which a previously-
unobserved particle appears. I assume that simulation programs for background and signal events exist,
which stochastically generate the variables from either a background distribution, which has probability
density function pg(v), or a signal distribution, which has probability density function p1(v). The real
events come from a mixture of signal and background distributions, with an unknown proportion, f,
of signal. We may be most interested in whether or not f is zero — since f > 0 may, for instance,
correspond to the existence of a previously-unknown particle.

Our first difficulty is that no explicit formulas for py(v) and p;(v) exist. We may know’ pg and
p1 in some sense, or we couldn’t have written the simulator programs, but we have no way of translating
this knowledge into a practical method for computing these density functions.

Our second difficulty is that, typically, we don’t actually know pq and p; exactly. The simulators
for generating from these distributions have some parameters — relating either to the physics or to the
behaviour of the detector — whose values are not known precisely. Call these parameters ¢. I’ll assume
that although ¢ is not known, we have a suitable prior distribution for ¢, with density p(¢). Note that
¢ is a ‘nuisance’ parameter, since our only real interest is in f. The fact that ¢ is unknown is just an
annoyance. (Though ¢ might be of interest to other people, such as the designers of the detector.)

2 The Role of the Lik elihood Function

The likelihood function is the probability (or probability density) of the observed data, seen as a function
of the model parameter(s). The likelihood function is defined only up to an arbitrary constant factor, and
hence only ratios of likelihoods for different values of the parameters are meaningful.
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When there are no nuisance parameters, the likelihood function for our problem (assuming inde-
pendent observations) is a function of f alone:
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Here, fp1(v;) + (1—f)po(v;) is simply the probability density for obtaining the observation v; from
either the signal distribution (with probability f) or the background distribution (with probability 1— f).
When there are nuisance parameters, ¢, the likelihood is a function of both f and ¢. I defer consideration
of nuisance parameters to Section 4.

According to the likelihood principle (see, for example, the discussion by Cox and Hinkley [1],
Section 2.3), the likelihood function contains all the information from the experiment that is relevant to
inference for the parameters. So inference should not depend on aspects of the data that do not enter into
the likelihood function. (An exception is that checks of the appropriateness of the model on which the
likelihood function is based may utilize other aspects of the data.) Note that the likelihood function is
itself a function of the data, and sometimes (not always!) depends only on some low-dimensional statistic
computed from the data, such as the sample mean and/or the sample variance. A quantity computed
from the data that can be used to compute the likelihood function is known as a ‘sufficient statistic’. The
likelihood function itself is a ‘minimal sufficient statistic’, containing no irrelevant information.

This ‘weak’ form of the likelihood principle is accepted by most statisticians. The ‘strong’ form,
which is not universally accepted, says that the same conclusions should be drawn from two experiments
(involving the same parameters) if they produced the same likelihood function. Bayesian inference obeys
the strong likelihood principle, since it simply combines the likelihood with a prior distribution (which
presumably does not vary with the choice of experiment). The strong likelihood principle is accepted
by some non-Bayesian statisticians as well, however, partly because it follows from the weak likelihood
principle together with a form of the principle that one should condition on an ancillary statistic (whose
distribution does not depend on the parameters).

Classical (ie, non-Bayesian, frequentist) confidence intervals and p-values (other than those used
for model checking) often violate the likelihood principle. For example, consider observations of n
independent binary events, of which k& turned out to be 1, with the remaining n — k being 0. If we
are interested in inferring the probability, €, that an event is 1 (assumed the same for all events), the
likelihood function will be L(#) = 6%(1—60)"*. In particular, if » = 10 and k = 1, the likelihood
function is L () = 6(1—0)°. This likelihood function is the same regardless of whether we had decided
to observe n = 10 events and found that £ = 1 of them were 1, or we had decided to observe events until
k = 1 of them were 1, and found that this was reached when n = 10. Hence, according to the likelihood
principle, our conclusions should be the same in these two scenarios. However, the one-sided p-value for
testing the null hypothesis that § = 1/2 versus the alternative that§ < 1/2is P(k < 1) = (10+1)2710
when the number of events is fixed at n = 10, but is P(n > 10) = 2-9 when the number of 1 events
is fixed at & = 1. Of the many arguments why such differing results should not be accepted, I will
mention only consideration of an observer who knows everything that the experimenter does and sees,
but doesn’t know the experimenter’s thoughts. Does this observer really need to ask the experimenter
whether the stopping condition was n = 10 or £ = 1 in order to draw an inference from the data? And
would inference really be impossible if the experimenter had forgotten?

This issue arises also with Feldman and Cousins’ [2] method for constructing confidence intervals
from data, n, that is a sum of Poisson-distributed counts of ‘signal’ events (with unknown mean, 1) and
‘background’ events (with known mean, b). (We will see in Section 3 that this problem can arise as a
much-reduced form of the problem discussed in this paper.) Their method (as well as some others) pro-
duces different confidence intervals for 1 from an observed count of zero depending on the mean number
of background events — the interval is tighter (with smaller upper limit) when the mean number of back-
ground events is higher. This violates the strong likelihood principle, since the likelihood functions for a
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count of zero from experiments with different background means differ only by a constant factor (which
is irrelevant for likelihoods):

L(p) = exp(—(b+p)) = exp(—b) exp(—p) oc exp(—p) 2

It makes intuitive sense that the inference drawn when the count is zero should not depend on the mean
background — with a count of zero, we know that no background events occurred, so how many would
occur on average if we were to repeat the experiment is of no relevance.

Feldman and Cousins are aware of this issue, but in responding to it, appear to have lost track of
the scientific purpose of a statistical analysis, as is not uncommon in such discussions. They say that
“for making decisions, [ Bayesian inference ] is probably how many scientists do (and should) think”,
but that “[ classical ] confidence intervals provide the preferred option for publishing numerical results
of an experiment in an objective way. However it is critical not to interpret them as Bayesian intervals,
i.e., as statements about P(u¢|xg)”. They remark with respect to the dependence of their intervals on
the expected background when the observed count is zero that “We find that objections to this behaviour
are typically based on a misplaced Bayesian interpretation of classical intervals, namely the attempt to
interpret them as statements about P(u.|ng).” In further discussion of this situation, and in particular
their method’s production of confidence intervals for a count of zero that are tighter when the experiment
is more poorly designed (with higher mean background), they say “The origin of these concerns lies in
the natural tendency to want to interpret these results as the probability ...of a hypothesis given data
rather than what they really are related to. .. It is the former that a scientist may want to know in order to
make a decision, but the latter which classical confidence intervals relate to.” In their discussion, they say
nothing about what actual scientific use their classical confidence intervals might have, leaving (at least
to me) the impression that they believe classical confidence intervals should be computed and reported
simply as a ritual activity.

Fortunately, Feldman and Cousins do say that “it is important to publish relevant ingredients to the
calculation so that the reader.. . can (at least approximately) perform alternative calculations or combine
the result with other experiments”. The “relevant ingredient” is in fact the likelihood function. Nothing
more is needed, and nothing less than the full likelihood function would allow (for example) any Bayesian
with any prior to make inferences.

When there is only a single parameter, such as f, the result of an experiment can easily be commu-
nicated fully by a plot of L( f) versus f. In general, such a plot contains more information than a classical
confidence interval, or any other interval that attempts to summarize the result. However, in many situ-
ations, the likelihood function approaches the exponential of a quadratic function as the amount of data
increases (see [1], Section 10.6), and for simple Gaussian models, the log likelihood may be a quadratic
function even for small samples. In such situations it is possible to specify the likelihood function using
only two numbers (recall that the likelihood is defined only up to a constant factor). The end-points of a
classical confidence interval can sometimes serve this purpose. If the parameter space is also unbounded,
it is possible to develop intuitions about the meaning of classical confidence intervals that reflect what
really matters — the likelihood function — explaining (in my view at least) how their use has survived.

However, when the log likelihood is not approximately quadratic, or when the parameter space is
bounded, as in the example above where L(u) o< exp(—p), with u € (0, 00), applying these intuitions
about confidence intervals, developed in another contexts, is dangerous. One simply cannot represent the
various forms that a likelihood function can in general take using only two numbers. Obtaining the full
likelihood function, or a good approximation to it, is therefore a crucial objective of statistical inference.

3 First Difficulty: We Can’'t Computethe Lik elihood

Consider again our model with no nuisance parameters, with likelihood function given by equation (1).
For a model like this with only a single scalar parameter, the full result of the experiment can easily be
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communicated by simply plotting the likelihood function. In typical problems, one can also easily find
the maximum likelihood parameter estimate, as well as various Bayesian inferences, such as the posterior
density obtained when some prior distribution is assumed.

But for our problem, we don’t know how to compute the likelihood! So we can’t easily produce
a plot of L(f) versus f. The likelihood involves p, and p;, which are known only through simulation
programs. If the v; are low-dimensional (not more than around four dimensional), we could generate
many points from pg and p;, and use them to get good estimates for these density functions, but for high-
energy physics experiments, it seems that it is more typical for each event to be described by dozens or
hundreds of values. It might be possible to compute the pg and p; densities by using techniques similar
to those used to compute free energies from Monte Carlo simulations, but these techniques would likely
be too slow for this application, since the number (O) of observations for which these densities would
need to be computed is typically quite large.

Fortunately, we only really need to compute the ratio p1(v;)/po(v;) for each observation. Since
constant factors in the likelihood can be ignored, we can reduce the likelihood as follows:

O
L) = [ | + =feow)] )
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Here, we can ignore the product of the po(v;) since factors in the likelihood not depending on f can be
ignored. So we can look for a way to compute p1(v)/pp(v) without having to compute po(v) and p1(v).

One way to compute p1(v)/pp(v) is to produce a classifier to distinguish signal and background
events, training it on many simulated signal and background events, drawn according to p; and pg.
This is commonly done, as illustrated, for example, by [3]. The classifier could be based on neural
networks, decisions trees, or many other methods, though I will assume here that the classifier can
produces probabilities for the two classes, not just a guess at the class, with no indication of how likely it
is to be correct. Suppose that the fraction of simulated events used to train such a classifier that are from
the signal distribution is s. If we manage to train an excellent classifier, the probability it outputs that an
event described by variables v is a signal event (call this c(v)) will match the true probability that such a
simulated event is signal, so that

B sp1(v)
© = T + epi0) 7

Once we have this classifier, we can find the desired ratios as follows:

pi(v) c(v) 1-s
po(v) - 1—c(v) s ®)

If we really trust our classifier, we can now compute the likelihood function for f, and present a plot of
L(f) as the result of the experiment.

If we don’t totally trust our classifier, we can still use it to get good results. We just treat it as a
way of reducing the dimensionality of the data — from the multidimensional measurements, v;, to the
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scalar r; = c(v;) produced using the classifier. If the classifier were perfect, this reduction would not lose
any useful information (since the r; determine the likelihood function). If it’s not perfect, it will throw
away a bit of information, but the reduction to a scalar allows us to easily estimate p((r) and p1 () from
simulation data, and use them to compute a likelihood function given the r;. The results will be valid (e,
not systematically misleading), since this likelihood captures what can be learned from the experiment
if one insists on reducing dimensionality in this way. However, the results may not be as precise (ie, as
informative) as would have been obtained using a perfect classifier, which would have produced the true
likelihood given all the information in the data.

One could reduce the data further by binning the r; values, but this loses information. Using a
fairly large number of bins might be OK, however, if it loses little information, and makes estimating
the probabilities easier. If only two bins are used (ie, the output of the classifier is thresholded at some
value), we get a Poisson count with background problem, of the sort discussed in Section 2 — assuming
there are many events and signal events are rare, the number of events in the “signal” bin will be Poisson
distributed, with some being real signal events and some being mis-classified background events. But
such a drastic reduction of the data might throw away quite a bit of relevant information.

4 SecondDifficulty: NuisanceParametersfor the Physicsand the Detector Behaviour

In practice, we probably don’t know pg and p; exactly. The simulators for generating from these distri-
butions will have some parameters, ¢, relating either to the physics or to the behaviour of the detector,
which are not known precisely. (As a convenience, we can assume that ¢ is the same for simulating pg
and p1, since we can let some components of ¢ be used by only one of these simulators.)

We have to assume that these ¢ parameters are known to some degree, or there’s no hope of
solving the problem. I’ll assume that based on theory or previous experiments, a prior distribution for
¢ is available, with density p(¢4). It’s unlikely that this prior will be perfect — eg, it might assume
independence of components of ¢ when it really ought not to. We must hope that the results are not too
sensitive to this — formally checking whether this is true is a difficult problem.

Once there are ¢ parameters, the likelihood is a function of both f and ¢:
O
L(f.0) = I [miwile) + (1—Dpo(elo)] ©
i=1

2

where po(v|¢) and p1(v|¢) denote probability densities for generating v from the background and signal
simulators with parameters set to ¢.

This is a high dimensional function (since ¢ is typically high dimensional), and hence will be
difficult to visualize. Just plotting L(f, ) will not be a feasible way of presenting the results of the
experiment. Many ways of dealing with this type of problem have been proposed. For instance, we
might look at the “profile likelihood”, a function of f alone defined as sup,, L(f, ). This ignores many
aspects of the likelihood function, however. A Bayesian approach is to instead integrate L(f, ¢) with
respect to a prior distribution for ¢, to obtain a marginal likelihood function for f alone:

L(f) = / L(f. ) plo) do (10)

We often could compute this fairly easily by simple Monte Carlo (sampling from the prior for ¢), if
we could compute L(f, ¢). Since the marginal likelihood is one-dimensional, we would then be able to
present the result of the experiment by simplying plotting L( f), if we could compute it.

The role of the prior, p(¢), in producing a marginal likelihood is worth examining. When there are
no nuisance parameters, the likelihood function L(f) is an ‘objective’ presentation of the experimental
result (if one ignores subjectivity in the choice of model). Inferences can then be drawn using this
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likelihood in various, possibly ‘subjective’, ways. There is no need for the experimenters to draw such
inferences (though they may of course do so if they wish), and hence no need for them to choose a
prior for the parameter of interest, f. The situation is different for the nuisance parameters, ¢, since
many components of ¢ will relate to experimental details about which the experimenters are much more
knowledgeable than anyone else. It therefore seems most sensible for the experimenters to decide on
a suitable prior, p(¢), and use this to produce a marginal likelihood, L(f), that can be interpreted by
others.

Unfortunately, actually computing L(f, ¢), and from it L(f), is at least as difficult as computing
L(f) when there are no nuisance parameters. We might try, as in Section 3, to rewrite the likelihood in
terms of ratios of probabilities:

o

L(£.6) = [I[fmle) + (1 Fpo(wiis)] an
=1
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= [Epo ulo)] - 1_11[ g =) (12)

However, unlike before, the first factor is now relevant, since it depends on the parameter ¢. Properties
of events that are irrelevant for classifying them as signal versus background may still be relevant for
inferring ¢, and hence indirectly for inferring f.

As we did in Section 3, we might try to avoid our difficulties by reducing the dimensionality
of the data. If we can map the high-dimensional v; to quantities r; that are low-dimensional (and then
possibly binned), it will be feasible to estimate po(r;|¢) and p1(r;|¢) using a reasonable number of events
generated by the simulators. We probably can’t expect to reduce dimensionality in a way that preserves
all relevant information, but we can hope to keep the loss of information small.

We can define a likelihood function based on this reduced data:

O

L(f,6) = [I[fm(rlo) + (1= po(rile) (13)

i=1

Since we have likely lost information by going from v; to r;, this is not the same function as L(f, ¢).
But it can be used to make valid (though less efficient) inferences, provided that the mapping from v to r
was not chosen based on the observed data. We can again define a marginal likelihood, integrating over
the prior for ¢:

L(f) = / L, (f.6) p(¢) db (14)

If we can compute this, plotting it will display the results of the experiment, as well as possible given our
computational limitations, which forced the reduction from v; to r;.

To compute L, (f), we could choose K values for ¢ from the prior, labelled ¢1, ..., ¢k, either
randomly or by some quasi-Monte Carlo scheme, and then average L, (f, ¢x) over these K values to
approximate the integral above. Computing L, (f, ¢5) will require simulating many events from the
background and signal distributions with parameters ¢, and then using these to estimate the probability
densities po(r|¢y) and p1(r|¢y) (or the bin probabilities, if the r; were binned).

Though not easy, this computation seems to be feasible, provided a value for K in the hundreds
or thousands is adequate, and the dimensionality of the r; is small enough that for each ¢y, the densities
po(r|ér) and p1(r|¢y) can be adequately modeled using a few thousand events generated by each of the
simulators. (Alternatively, one might try to build one general model for the conditional densities po(7|¢)
and p1(r|¢) using data generated with all values ¢,.) The total number of simulated events required
would then be no more than a few tens of millions.
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The choice of K is not easy, however. If one is sure that L,.( f, ¢) does not vary drastically with ¢,
a value for K of a few hundred would suffice. However, if drastic variation is conceivable, a much larger
value of K might be needed in order to be confident that the results are valid. Suppose, for example, that
the actual observations are such that for most ¢, L(0, ¢) is small (compared to L(f, ¢) for some f > 0),
but that in some region of ¢ values with small but not negligible prior probability, L(0, ¢) is very much
larger, sufficiently so that this region dominates the integral defining L(0) — or to put it another way,
if ¢ is in this region, the experiment will produce many more background events that look like signal
events than for other values of ¢. If none of the K values for ¢ that were chosen happen to lie in this
region, the value for L(0) that is computed will be much smaller than the true value. If this situation
is a possibility, one would need to use a value for K that is sufficiently large for the p-value, or other
measure of confidence, that one aims to report for a discovery (certainly no smaller than the reciprocal
of this p-value, and preferrably somewhat larger), in order to reduce to the required level the chance that
such problematic values for ¢ might have been missed.

The most difficult problem is deciding how to reduce dimensionality. Training a classifier to
distinguish signal from background still seems to be a useful way of isolating relevant information. This
might be done in several ways, however, and we may also wish to preserve other information, relating to
the first factor in equation (12).

We could train a classifier using background and signal events generated using a single value for
the nuisance parameters (eg, the prior mean), reducing the data from v; to r; = P(signal|v;), as approx-
imated by this classifier. This is much the same as we would do if there were no nuisance parameters
(equivalently, if the correct ¢ were known). The predictions could of course be binned, and with only
two bins, we would end up with Poisson-distributed counts in which the mean background is uncertain,
but with a distribution that can be estimated from simulations, as described more generally above.

The danger of this approach is that the classifier that is trained may not work well for events
generated with other values of ¢, and in particular, may not work well for the true ¢. If so, the number
of background events misclassified as signal may be large, leading to a substantial loss of information
(though not to misleading results, if the rest of the inference task is properly done).

Another simple approach is to generate events with many values of ¢, drawn from the prior (a
different ¢; for every v;), and train a classifier with v; as inputs on all of this data. The classifier might
then learn how to distinguish signal from background in a robust way, that works for all ¢. Of course, it
could well be that there is no way to accurately classify without knowing ¢, in which case this method
will also lose much information.

When neither of these approaches work, it seems that one must rely on the data being informative
about ¢. 1 sketch here a scheme that may perhaps provide a feasible solution in this situation, based on
reducing the dimensionality of both ¢ and v.

As before, we will train a classifier for signal versus background events, using data generated
from the two simulation programs, with some fraction s of signal events, using values for ¢» drawn from
its prior. This classifier will take both ¢ and v as inputs — ie, it learns to classify for any value of ¢,
provided that the correct ¢ is known. Furthermore, this classifier will contain “bottlenecks” for both ¢
and v, which force the classifier to learn to use reduced-dimension versions of these inputs. In detail,
we specify some small dimensionality for ¢* and some small dimensionality for v* (eg, perhaps both
are two-dimensional), and then train a classifier that has the following functional form for the estimated
probability that an event is from the signal distribution:

P(signallv,¢) =~ d(g(¢), h(v)) (15)

where ¢* = g(¢) is the reduced form of ¢ and v* = h(v) is the reduced form of the variables describing
the event. The functions d, g, and h are parameterized in some way, such as with a multilayer perceptron
(‘backprop’) neural network. Training of the classifier is done by adjusting these parameters to match the
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data as sell as possible (eg, by some maximum penalized likelihood criterion). Dimensionality reduction
schemes similar to this have long been used with neural networks (eg, see [4]).

We cannot use this classifier on real data, since we don’t know the correct value for ¢ — nor
for ¢*, which is all we would need. The only reason to train this classifier is to obtain the mappings
¢* = g(¢) and v* = h(v), which, if the classifier is successful, must preserve most of the relevant
information from ¢ and v. Note that we can obtain v} = h(v;) for all the real events, since (once
training is finished) A does not depend on the unknown value of ¢. To obtain information about ¢*
from the real events, we use simulated data to train a regression model (probably non-linear, perhaps a
neural network) that approximates the expectation of ¢* given a single observation, v, by e(v), where e is
another parameterized function, learned from the data. Using data simulated only from the background
distribution, pgy, may be sufficient, since even when the fraction of signal events is non-zero, it is typically
quite small. This regression model also is merely used for dimensionality reduction, and will not be
directly used to predict ¢*.

We are now in a position to produce the reduced data we will use for inference, consisting of the
pairs 7; = (h(v;),e(v;)). If the dimensionality of these pairs is quite small, we can hope to build good
models of the conditional densities po(r|¢) and p;(r|¢) — most crudely, just by binning values for r,
and using many simulated events with each value for ¢, though more sophisticated methods may work
better. Inference for f is then based on the marginal likelihood defined in equation (14), along with
equation (13), computed by Monte Carlo, using a sample of values for ¢ drawn from its prior.

Note that the validity of the inference will depend only on the accuracy with which these densities
are estimated, not on the quality of the classification and regression models described above. However,
if these models are poor, much information may be lost, so the inferences may be uninformative. If
instead our models are good, the e(v;) component of the r; values will carry information about ¢*, with
the result that most of the weight in the integral of (14) will be on values of ¢ close to the true value (or
at least for which ¢* is close to its true value). For these values of ¢, the likelihood will tend to favour
values for f near the true value, because of the information carried in the h(v;) portion of r;.

This scheme is untested, and may prove in practice to either lose too much information or be com-
putationally infeasible — it may, for instance, prove necessary to train something more than a simple
regression model in order to learn about ¢*. We can hope that success will be achievable using some
such strategy for reducing dimensionality so that estimates for probabilities or probability density func-
tions become feasible, allowing an approximation to the marginal likelihood function to be computed.
When the parameter of interest (f in this problem) is one-dimensional (or more generally, of low enough
dimension that a plot is intelligible), such a likelihood function is the most complete, and most useful,
report of the experimental result.
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