
Technical Report No. 0510, Department of Statistics, University of Toronto

Improving Classification When a Class Hierarchy is Available

Using a Hierarchy-Based Prior

Babak Shahbaba

Dept. of Public Health Sciences, Biostatistics
University of Toronto

Toronto, Ontario, Canada
babak@stat.utoronto.ca

Radford M. Neal

Dept. of Statistics and Dept. of Computer Science
University of Toronto

Toronto, Ontario, Canada
radford@stat.utoronto.ca

18 October 2005

Abstract. We introduce a new method for building classification models when we have prior
knowledge of how the classes can be arranged in a hierarchy, based on how easily they can be
distinguished. The new method uses a Bayesian form of the multinomial logit (MNL, a.k.a. “soft-
max”) model, with a prior that introduces correlations between the parameters for classes that
are nearby in the tree. We compare the performance on simulated data of the new method, the
ordinary MNL model, and a model that uses the hierarchy in different way. We also test the new
method on a document labelling problem, and find that it performs better than the other methods,
particularly when the amount of training data is small.

1 Introduction

In this paper, we consider classification problems where classes have a hierarchical structure. The
hierarchy reflects our prior opinion regarding similarity of classes. Two classes are considered
similar if it is difficult to distinguish them from each other on the basis of the features available.
The similarity of classes increases as we descend the hierarchy.

One example of a hierarchical classification scheme is the annotations describing the biological
function of genes. Functions are usually presented in a hierarchical form starting with very general
classes and becoming more specific in lower levels of the hierarchy. There are many different gene
annotation schemes. Figure 1 shows a small part of the scheme proposed by Rison [1].

Another example of hierarchical classification is the document labelling problem. This involves
classification of document regions to one of many predefined classes. It is possible to arrange these
classes in a hierarchy such as that of Figure 4 below. We arranged these classes in a hierarchical
form based on our guess as to how easily they can be distinguished. For instance, we considered
“Figure Caption” and “Table Caption” similar to each other since they both usually contain small
amounts of straight text and both are centre justified.

1

Gene
Functions

) q

= ? ~ / w

Metabolism Process

Energy
Small

Molecules
Cell

Process
Organism
ProcessMacromolecules

Figure 1: A part of a gene annotation hierarchy.

Bayesian models provide a framework that allows us to incorporate prior knowledge of this sort.
The prior distribution in Bayesian models represents our belief (as well as our uncertainty) regarding
likely values of parameters. For modelling hierarchical classes, we introduce a new method which
is based on a Bayesian form of the multinomial logit (MNL) model. We use a prior that introduces
correlations between the parameters of nearby classes.

This paper is organized as folllows. In section 2, simple classification models and their extensions
for analysing hierarchical classes are discussed. In section 3, using simulated data, we compare
the performance of our model, the ordinary MNL model and an alternative model that uses the
hierarchy in a different way. In section 4 we compare the same models on a document labelling
problem. The last section summarizes our findings and presents some ideas for future research.

2 Hierarchical classification

Consider a classification problem in which we have observed data for n cases, (x(1), y(1)),
...,(x(n), y(n)), where x(i) = x

(i)
1 , ..., x

(i)
p is the vector of p covariates (features) for case i, and y(i)

is the associated class. Our goal is to develop a model that assigns each data item to its correct
class based on the observed covariates. The resulting model will be used to classify future cases for
which the class membership is unknown but the covariates are available. For binary classification
problems, a simple logistic model can be used:

P (y = 1|x, α, β) =
exp(α + xβ)

1 + exp(α + xβ)
(1)

Here, α is the intercept, β is a p × 1 vector of unknown parameters and xβ is its inner product
with the covariate vector.

When there are three or more classes, we can use a generalization known as the multinomial

2

logit (MNL) model:

P (y = j|x,α,β) =
exp(αj + xβj)∑c

j=1 exp(αj + xβj)
(2)

where c is the number of classes. For each class, j, there is a vector of p unknown parameters βj .
The entire set of regression coefficients β = β1, ..., βc can be presented as a p × c matrix. This
representation is redundant, since one of the βj ’s can be set to zero without changing the set of
relationships expressible with the model, but removing this redundancy would make it difficult to
specify a prior that treats all classes symmetrically. For this model we can use the following priors:

αj |τ0 ∼ N(0, τ2
0)

βjl|τ ∼ N(0, τ2)

τ−2
0 ∼ Gamma(a0, b0)

τ−2 ∼ Gamma(a, b)

where j = 1, ..., c and l = 1, ..., p.

The MNL model treats classes as unrelated entities without any hierarchical structure. This
is not always a realistic assumption. In many classification problems, like those discussed above,
one can arrange classes in a hierarchical form analogous to the hierarchy of species arranged in
genera, families, etc. If the classes have in fact the assumed structure, one would expect to obtain
a higher performance by using this additional information. A special case is when the classes are
ordered (e.g., education level). For these problems a more parsimonious model (e.g., cumulative
logit model) with improved power can be used [2].

One approach for modelling hierarchical classes is to decompose the classification model into
nested models (e.g., logistic or MNL). Nested MNL models are extensively discussed in econo-
metrics (e.g., [3, 4]) in the context of estimating the probability of a person choosing a specific
alternative (i.e., class) from a discrete set of options (e.g., different modes of transportation).
These models, known as discrete choice models, aim at forecasting and explaining human decisions
through optimizing an assumed utility (preference) function, which is different from our aim of
maximizing classification accuracy.

Goodman [5] showed that using hierarchical classes can significantly reduce the training time of
maximum entropy-based language models and results in slightly lower perplexities. He illustrated
his approach using a word labelling problem, and recommended that instead of predicting words
directly, we can first predict the class the word belongs to, and then predict the word itself. This
approach can be applied to the other learning techniques.

Fox [6] suggested using successive binary partitions (i.e., dichotomies) of classes and fitting a
logistic model to each partition. In other words, we recursively split a set of classes into two
mutually exclusive subsets where each subset contains similar classes. In Figure 2, these partitions
are {12, 34}, {1, 2}, and {3, 4}. The resulting nested binary models are statistically independent.
The likelihood can therefore be written as the product of the likelihoods for each of the binary
models. For example, in Figure 2 we have

P (y = 1|x) = P (y ∈ {1, 2}|x)× P (y ∈ {1}|y ∈ {1, 2}, x) (3)

3

Restriction to binary models is unnecessary. At each level, classes can be divided into more than
two subsets and MNL can be used instead of logistic regression. We refer to methods based on
decomposing the tree structure into nested MNL models as treeMNL. Consider a parent node, m,
with cm children nodes. The portion of the nested MNL model for this node has the following form:

P (y = k|x,αm,βm) =
exp(αmk + xβmk)∑cm

k=1 exp(αmk + xβmk)

αmk|τ0 ∼ N(0, τ2
0)

βmkl|τm ∼ N(0, τ2
m)

τ−2
0 ∼ Gamma(a0, b0)

τ−2
m ∼ Gamma(am, bm)

where k = 1, ..., cm and l = 1, ..., p. We calculate the probability of each end node, j, by multiplying
the probabilities of all intermediate nodes leading to j.

We introduce an alternative Bayesian framework for modelling hierarchical classes. Consider
Figure 2, which shows a hierarchical classification problem with four classes. For each branch in
the hierarchy, we define a different set of parameters. In Figure 2, these parameters are denoted as
φ11 and φ12 for branches in the first level and φ21, φ22, φ23 and φ24 for branches in the second
level. We assign objects to one of the end nodes using a MNL model (equation 2) whose regression
coefficients for class j are represented by the sum of parameters on all the branches leading to that
class. In Figure 2, these coefficients are β1 = φ11 + φ21, β2 = φ11 + φ22, β3 = φ12 + φ31 and
β4 = φ12 + φ32 for classes 1, 2, 3 and 4 respectively. Sharing the common terms, φ11 and φ12,
introduces prior correlation between the parameters of nearby classes in the hierarchy.

In our model, henceforth called corMNL, φ’s are vectors with the same size as β’s. We assume
all the components of the φ’s are independent, and have normal prior distributions with zero
mean. The variance of the φ’s is regarded as a hyperparameter, which controls the magnitude of
coefficient parameters. When a part of the hierarchy is irrelevant, we hope the posterior distribution
of its corresponding hyperparameter will be concentrated near zero, which results in the related
parameters becoming close to zero. In figure 2, for example, when the hyperparameters in the first
level become small (compare to the hyperparameters in the second level), the model reduces to
simple MNL. In contrast, when these hyperparameters are relatively large, the model reinforces
our assumption of hierarchical classes. For this hierarchy we use the following priors:

αj |τ0 ∼ N(0, τ2
0) j = 1, ..., 4

φmkl|τm ∼ N(0, τ2
m)

τ−2
0 ∼ Gamma(a0, b0)

τ−2
m ∼ Gamma(am, bm)

Here, φmbl refers to the parameter related to covariate xl and branch k of node m. As we can see,
all the branches that share the same node are controlled by one hyperparameter.

By introducing prior correlations between parameters for nearby classes, we can better handle
situations in which these classes are hard to distinguish. If the hierarchy actually does provide

4

φ11 φ12

φ21 φ22 φ23 φ24

Class 1 Class 2 Class 3 Class 4

β1 = φ11 + φ21 β2 = φ11 + φ22 β3 = φ12 + φ23 β4 = φ12 + φ34

��
��

1

��
��

��
��

2 3

Figure 2: A simple representation of our model. The coefficient parameters for each classes are
presented as a sum of parameters at different level of hierarchy

information about how distinguishable classes are, we expect that performance will be improved.
This would be especially true when the training set is small and the prior has relatively more
influence on the results. Using an inappropriate hierarchy will likely lead to worse performance than
a standard MNL model, but since the hyperparameters can adapt to reduce the prior correlations
to near zero, the penalty may not be large.

3 Results for synthetic datasets

So far, we have discussed three alternative models: MNL, treeMNL, and corMNL. We first com-
pare these models using a synthetic four-way classification problem with two covariates. Data are
generated from each of these models in turn, and then fit with each model in order to test the
robustness of the models when applied to data generated from other models .

All regression parameters are given normal priors with mean zero. For the MNL model, the
standard deviation for all the intercepts, τ0, and the standard deviation for the rest of coefficients,
τ , have the following priors:

τ−2
0 ∼ Gamma(1, 10) (0.16, 0.38, 1.98)

τ−2 ∼ Gamma(1, 1) (0.52, 1.20, 6.27)

We use the parameterization of the Gamma distribution in which Gamma(a, b) has density
f(x|a, b) = [baΓ(a)]−1xa−1e−x/b, for which the mean is ab and the standard deviation is a1/2b.
We gave the 2.5, 50 and 97.5 percentiles of τ in parenthesis.

For treeMNL and corMNL models, we assume that classes are arranged in a hierarchical form
as shown in Figure 2. This hierarchy implies that while it might be easy to distinguish between
groups {1, 2} and {3, 4}, further separation of classes might not be as easy. As mentioned above,

5

the treeMNL model for this hierarchy is comprised of three nested logistic models. These models
are: P (y ∈ {1, 2}|α1,β1, x), P (y = 1|α2,β2, x, y ∈ {1, 2}) and P (y = 3|α3,β3, x, y ∈ {3, 4}). For
corMNL model, we use the priors discussed in section 2. The variance of regression parameters
β’s in treeMNL and φ’s in corMNL are regarded as hyperparameters. For these two models, one
hyperparameter controls all the parameter emerging from the same node. These hyperparameters
are given the following prior distributions:

τ−2
0 ∼ Gamma(1, 10) (0.16, 0.38, 1.98)

τ−2
1 ∼ Gamma(1, 5) (0.23, 0.54, 2.82)

τ−2
2 ∼ Gamma(1, 20) (0.05, 0.12, 0.63)

τ−2
3 ∼ Gamma(1, 20) (0.05, 0.12, 0.63)

Here, τ1, τ2 and τ3 correspond to nodes 1, 2, and 3 respectively (Figure 2). These parameters have
a narrower prior compared to τ in the MNL model. This is to account for the fact that the role of β

in the MNL model is played by more than one parameter in treeMNL and corMNL. Moreover, the
regression parameters in the second level of hierarchy have a relatively smaller standard deviation
τ . As a result, these parameters tend to be smaller, making separation of class 1 from 2 and class
3 from 4 more difficult.

We do three tests, in which we assume that each of the MNL, treeMNL and corMNL is the
correct model. This allow us to see how robust each model is when data actually come from a
somewhat different model. For each test, we sample a set of parameters from the prior distribution
of the corresponding model. Pairs of data items (x(i), y(i)) are generated by first drawing 10000
independent samples x

(i)
1 , x

(i)
2 from the uniform(−5, 5) distribution and then assigning each data

item to one of the four possible classes. The assignment is either based on the multinomial model
(for data generated from the MNL and corMNL) or based on successive logistic models (for data
generated from the treeMNL).

All three models are trained on the first 100 data items and tested on the remaining 9900 items.
The regression coefficients were sampled from their posterior distribution using MCMC methods
with single-variable slice sampling [7]. At each iteration, we used the “stepping out” procedure
to find the interval around the current point and used the “shrinkage” procedure for sampling
from the interval. Since the hyperparameters were given conjugate priors, direct Gibbs sampling
could be used for them. For all tests we drew 1000 samples from the posterior distributions. We
discarded the initial 250 samples and used the rest for prediction. Performance is measured in
terms of average log-probability and error rate on the test set.

The above procedure was repeated 100 times. Each time, new regression parameters were sam-
pled from priors and new pairs of data items were created based on the assumed models. The
average results (over 100 iterations) are presented in Table 1. In this table, each column corre-
sponds to the model used for generating the data and each row corresponds to the model used for
building the classifier. As we can see, the diagonal elements have the best performance in each
column. That is, the model whose functional form matches the data generation mechanism per-
forms significantly better than the other two models (all p-values based on average log-probability
are less than 0.01 using a paired t-test with n = 100). Moreover, the results show that when

6

Data from MNL Data from treeMNL Data from corMNL
N=100 AvgLogProb Error % AvgLogProb Error % AvgLogProb Error %
MNL method -0.7958 32.9 -0.8918 41.6 -0.9168 40.6
treeMNL method -0.8489 35.0 -0.8770 41.3 -0.9113 40.6
corMNL method -0.7996 32.9 -0.8797 41.4 -0.9075 40.5

Data from MNL Data from treeMNL Data from corMNL
N= 50 AvgLogProb Error % AvgLogProb Error % AvgLogProb Error %
MNL method -0.8041 33.6 -0.8915 42.4 -0.9248 41.4
treeMNL method -0.8506 35.1 -0.8779 42.0 -0.9227 41.5
corMNL method -0.8086 33.7 -0.8794 42.1 -0.9167 41.3

Table 1: Comparison of models on simulated data based on average log-probability using training
sets of size N = 100 and N = 50.

Data from MNL Data from treeMNL Data from corMNL
N= 100 AvgLogProb Error % AvgLogProb Error % AvgLogProb Error %
MNL method -0.2539 10.1 -0.3473 12.3 -0.3106 11.3
treeMNL method -0.6837 23.1 -0.2898 9.7 -0.3614 12.1
corMNL method -0.2910 10.3 -0.2854 9.9 -0.2841 9.7

Table 2: Comparison of models using a more complex hierarchy.

the samples are generated according to the MNL model (i.e., classes are unrelated), corMNL has
a significantly (p-value < 0.001) better performance compared to treeMNL. Reducing the size of
training sets, N , to 50 increases the gap between the average performance of models but provides
the same conclusions. The conclusions also remain the same when we use different priors and ranges
of covariates.

While statistically significant, the results presented in Table 1 might not be significant for some
practical purposes. This is mostly due to the simplicity of the hierarchical structure. Next, we
repeated the above tests with a more complex hierarchy, as shown in Figure 3. For this prob-
lem we used four covariates randomly generated from the uniform(0, 1) distribution. In all
three models, we used the same prior as before for the intercepts. For the MNL model we set
τ−2 ∼ Gamma(1, 1). The hyperparameters of treeMNL and corMNL were given Gamma(1, 5),
Gamma(1, 20) and Gamma(1, 100) priors for the first, second and third level of the hierarchy
respectively.

Table 2 shows the average results over 100 datasets for each test. As we can see, the differences
between models are more accentuated. Nevertheless, corMNL is still performing well even when
the data are generated by other models, where corMNL is outperformed only by the true model.
When data come from treeMNL, the results from corMNL are very close to those of the actual
model (i.e., treeMNL).

7

1 2 3 4 5

6

7 8

Figure 3: A hypothetical hierarchy with a relatively more complex structure.

4 Results on a document labelling problem

We next test our approach using a dataset of the page images of 15 articles (472 pages) from the
Journal of Machine Learning Research (JMLR) collected by Laven [8]. Each page was segmented
to several regions, and each region was manually classified to one of 24 possible classes. Figure 4
presents these classes in a hierarchical form. The hierarchy is based on our belief regarding how
difficult it is to separate classes from each other using the available features.

The covariates are 59 different features such as the location of the region on the page and the
density of the ink inside the region. We normalized all features so they have zero mean and standard
deviation 1.

Laven divided the dataset into a training set (including 10 articles with 3521 regions), and a

Text

Abstract

Bullet
Item

Auth.
List

Subsec.
Head.

Fig.
Cap.

Table
Cap.

Ref.

Main
Title

Foot
Note

Sec.
Head.

Eq.Eq. Decoration

Graph Fig.

Table CodeEd.
List

PageHeader Footer

Fig. Table
Label Label

#

Figure 4: Hierarchical structure of document labels.

8

test set (including 5 articles with 2035 regions). The items from the same article are considered as
independent even though they clearly are not. Although this may cause overfitting problems, we
follow the same assumption for our initial test in order to make our results comparable to Laven’s.

We trained the three models (MNL, corMNL and treeMNL) on the training set and evaluated
their performance on the test set. The coefficient parameters in the MNL models were given normal
prior with mean zero. The variances of these parameters were regarded as hyperparameters. For this
problem, since the number of covariates, p = 59, is relatively large, we use the Automatic Relevance
Determination (ARD) method suggested by [9]. ARD employs a hierarchical prior to determine
how relevant each covariate is in classification of objects. In this method, one hyperparameter, σl,
is used to control the variance of all coefficients, βjl (j = 1, ..., c), for covariate xl. If a covariate
is irrelevant, its hyperparameter will tend to be small, forcing the coefficients for that covariate be
near zero. As before, we also use one hyperparameter, τ , to control all β’s in the MNL model.
We set the standard deviation of βjl equal to τσl. Therefore, while σl control the relevance of
covariate xl compared to other covariates, the scale parameter τ , controls the overall usefulness of
all covariates in separating classes. For the MNL model we used the following priors:

αj | σ0 ∼ N(0, τ2
0) j = 1, ..., 24

βjl|τ, σl ∼ N(0, τ2σ2
l) l = 1, ..., 59

τ−2
0 ∼ Gamma(0.5, 1) (0.63, 2.09, 46.31)

τ−2 ∼ Gamma(0.5, 20) (0.14, 0.47, 10.07)

σ−2
l ∼ Gamma(1, 10) (0.16, 0.38, 1.98)

Similar priors are used for the parameters of treeMNL and corMNL. For these two models, we
used one hyperparamter, σ−2

l ∼ Gamma(1, 10) to control all parameters related to covariate xl.
We also used one scale parameter τ−2

m ∼ Gamma(0.5, 100) for all parameters (β’s in treeMNL, φ’s
in corMNL) sharing the same node m. The prior for the intercepts was the same as in the MNL
model.

We used Hamiltonian dynamics [10] for sampling from the posterior distribution of coefficients
parameters. To reduce the random walk aspect of sampling procedure, we use a reasonably large
number of leapfrog steps (L = 500). The stepsizes is set to 0.02 in order to maintain an acceptance
rate of about 90%. In the MNL and corMNL models, the new updates are proposed for all regression
parameters simultaneously. Nested MNL models in treeMNL are updated separately since they are
regarded as independent models. The coefficient parameters within each nested model, however,
are updated at the same time. We used single-variable slice sampling [7], as described above, for
hyperparameters. The convergence of the Markov chain simulations were assessed by plotting the
values of hyperparameters and average log-likelihood (on training cases). We ran each chain for
2500 iterations, of which the first 500 were discarded.

Table 3 compares the results from different models. As we can see, our MNL model has ex-
actly the same performance as the likelihood-based model developed by Laven. The corMNL and
treeMNL models have a slightly better error rate and a higher average log-probability compared to
the MNL model.

We speculated that the assumed structure would have a more profound effect when a smaller

9

AvgLogProb Error rate %
Laven’s model (ML) − 9.4
MNL -0.3998 9.4
treeMNL -0.3602 9.3
corMNL -0.3598 9.2

Table 3: Performance of models for the document labelling problem on the test set.

sample is available. To test this idea, we reduced the size of the training set to 200, and used 10
non-overlapping training sets in order to obtain a confidence interval for the performance of each
model. To avoid problems from incorrectly assuming independence, we first combined the training
and the test sets and then randomly sampled (without replacement) 10 training sets each with 200
cases and used the remaining 3556 cases as the test set. Sampling was performed without regard to
which document each region comes from, which artificially makes the independence assumption be
true. We trained the models on each training set and measured the performance on the test set. We
discarded a burn-in period of 500 initial updates and retained the next 3500 updates for prediction.
The results are shown in Table 4. Since the test set is large, the observed variation in the results
is dominated by the difference between training sets, and we can use paired t-tests (n = 10) for
comparing the results. Based on the average log-probability results, the corMNL model outperforms
both MNL (p-value = 0.002) and treeMNL (p-value = 0.004) models. The improvement on error
rate is only slightly significant compared to MNL (p-value = 0.09) and treeMNL (p-value = 0.06).
The differences in performance of MNL and treeMNL are not statistically significant.

AvgLogProb Error rate %
MNL -0.5441 15.4
treeMNL -0.5381 15.5
corMNL -0.5160 14.9

Table 4: Performance of models for the document labelling problem on the test set using 10 non-
overlapping training sets of size 200.

5 Conclusions and future directions

In this paper, we have introduced a new approach for modelling hierarchical classes. Our analysis
shows that when the hierarchy actually does provide information regarding the similarity of classes,
our approach outperforms simple MNL model and models based on decomposing the hierarchy into
nested MNL models. Our method can be applied to many classification problems where there is
prior knowledge regarding the structure of classes. One such problem, which we hope to investigate
soon, is annotation of gene functions.

So far, we have focused only on simple tree-like structures. There are other hierarchical structures
that are more complex than a tree. For example, one of the most commonly used gene annotation
schemes, known as Gene Ontology (GO), is implemented as a directed acyclic graph (DAG). In
this structure a node can have more than one parent. Our method, as it is, cannot be applied to
these problems, but it should be possible to extend the idea of summing coefficients along a path

10

to the class in order to allow for multiple paths.

In our approach, we considered only one structure for each hierarchical classification problem.
However, we might sometimes be able to think of more than one possible class hierarchy. We might
then consider all possible hierarchies as equally likely and form an ensemble model based on this
assumption (as done in [11]), but this might not be easy when the number of classes is large. Also,
in most cases we have prior knowledge that leads us to prefer some structures over others a priori.
It is possible to generalize our method to multiple hierarchies. As for the generalization to DAG’s,
it should be possible to sum coefficients along the multiple paths within different hierarchies. We
can further use a set of hyperparameters to discover the relevance of each hierarchy.

The results presented in this paper are for linear models. We expect that a similar approach can
be used in non-linear models such as neural networks.

Acknowledgements

We thank Kevin Laven for providing the document labelling dataset. This research was supported
by the Natural Sciences and Engineering Research Council of Canada. Radford Neal holds a Canada
Research Chair in Statistics and Machine Learning.

References

[1] Rison S. Comparison of functional annotation schemes for genomes. Functional and Intergra-
tive Genomics, 1:56–69, 2000.

[2] Agresti A. Categorical Data Analysis. John Willey and Son, Hoboken, New Jersy, 2002.

[3] Sattath S. and Tversky A. Additive similarity trees. Psychometrika, 42:319–345, 1977.

[4] McFadden D. Econometric Models for Probabilistic Choice Among Products. Journal of
Business 53:13-36, 1980.

[5] Goodman J. Classes for fast maximum entropy training. Proceedings of the IEEE International
Conference on Acoustics, Speach and Signal Processing (ICASSP-2001), IEEE press, 2001.

[6] Fox J. Applied Regression Analysis, Linear Models and Related Methods. Sage, 1997.

[7] Neal R. M. Slice sampling. Annals of Statistics, 31(3):705–767, 2003.

[8] Laven K. Application of Statistical Pattern Recognition to Document Segmentation and La-
belling. Master’s Thesis, University of Toronto, Department of Computer Science, 2005.

[9] Neal R.M. Bayesian Learning for Neural Networks. Springer Verlag, New York, 1996.

[10] Neal R.M. Probabilistic Inference Using Markov Chain Monte Carlo Methods. Technical Report
CRG-TR-93-1, Department of Computer Science, University of Toronto, 1993.

[11] Eibe F. and Kramer S. Ensembles of nested dichotomies for multi-class problems. Proceedings
of the 21st International conference of Machine Learning (ICML-2004), 2004.

11

