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Markov chain Monte Carlo (MCMC) allows statisticians to sample from a wide variety

of multidimensional probability distributions. Unfortunately, MCMC is often difficult to

use when components of the target distribution are highly correlated or have disparate

variances. This thesis presents three results that attempt to address this problem. First,

it demonstrates a means for graphical comparison of MCMC methods, which allows re-

searchers to compare the behavior of a variety of samplers on a variety of distributions.

Second, it presents a collection of new slice-sampling MCMC methods. These methods

either adapt globally or use the adaptive crumb framework for sampling with multivariate

steps. They perform well with minimal tuning on distributions when popular methods

do not. Methods in the first group learn an approximation to the covariance of the tar-

get distribution and use its eigendecomposition to take non-axis-aligned steps. Methods

in the second group use the gradients at rejected proposed moves to approximate the

local shape of the target distribution so that subsequent proposals move more efficiently

through the state space. Finally, this thesis explores the scaling of slice sampling with

multivariate steps with respect to dimension, resulting in a formula for optimally choos-

ing scale tuning parameters. It shows that the scaling of untransformed methods can

sometimes be improved by alternating steps from those methods with radial steps based

on those of the polar slice sampler.
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Chapter 1

Introduction

1.1 Motivation

When researchers need to perform a statistical analysis, they usually reach for standard

tools like t-tests, linear regression, and ANOVA. The results may not be easy to interpret

correctly, but they are at least easy to generate. The methods have a gentle learning

curve, allowing users with minimal sophistication to interpret the most straightforward

aspects of their results. One can, for instance, make use of a regression line without

understanding diagnostics like Cp (Mallows, 1973). As a user becomes more familiar

with a method, they can draw richer conclusions and perform more subtle analyses.

They do not need to understand the inner workings of the method the first time they use

it. LOESS illustrates this phenomenon. While it has many free parameters, a LOESS

fit can be computed entirely automatically. Users do not even know what they are

estimating—they just ask their statistics software to fit a curve to their data.

It is my hope that this simplicity can be extended to a wider variety of models.

Currently, balanced ANOVA is used more often than more general multilevel models of

the sort described by Gelman et al. (2004, ch. 5) because the more general models must

be specified in a language at least as complex as that of BUGS (Spiegelhalter et al.,

1



2 Chapter 1. Introduction

1995, §4). Users must learn to tune a Markov chain Monte Carlo (MCMC) sampler

(Neal, 1993) and analyze the results for convergence. They must also learn how to

display the simulation results in a way that can be understood. The MCMC sampler

tuning step is the most difficult aspect of this procedure; each of the other steps must

also be performed in ANOVA, which runs entirely automatically. The necessity of user

involvement in fitting the model forces the user to manage the entire process themself.

The hope that a wider variety of models could be fit with the ease of LOESS or ANOVA

motivates the research described in this document.

In particular, this thesis focuses on the development of MCMC methods that are

applicable to a wide variety of probability distributions without manual tuning. Most of

those who use MCMC use some variation on Gibbs sampling (Neal, 1993, §4.1). Gibbs

sampling is only possible when one knows the full conditional distributions of the compo-

nents of the distribution, largely restricting its use to models with Gaussian, gamma, and

binomial conditional distributions. Even on those models, it only performs well when

those components are not highly correlated.

The class of models that can be modeled with Gibbs sampling can be expanded

to allow for components with log-concave distributions of unknown form by applying

adaptive rejection sampling (abbreviated ARS, Gilks and Wild, 1992). ARS requires users

to specify an initial envelope for the conditional, though this can often be automatically

determined. Further expansion to include those models with non-log-concave conditionals

is possible with the use of adaptive rejection Metropolis sampling (abbreviated ARMS,

Gilks et al., 1995). Like ARS, ARMS requires the user to specify an initial envelope, but

with ARMS, a simulation could miss modes if the envelope is badly chosen. A proper

envelope may depend on the values of the conditioning variables, so ARMS is also often

difficult to properly configure. More commonly, users use random-walk Metropolis to

update a single coordinate at a time, though it is often much less efficient than Gibbs

sampling or ARMS and requires careful tuning.
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An alternative to methods like ARMS and random-walk Metropolis, which require

significant tuning, is methods like adaptive Metropolis (Haario et al., 2001), which at-

tempt to learn a suitable proposal distribution from previous states instead of requiring

the user to specify one a priori. Adaptive Metropolis can update multiple components

of the state space simultaneously, and by learning the covariance matrix of the target

distribution, it can perform well even when the components are highly correlated. How-

ever, it is not acceptable to indiscriminately adapt a proposal distribution. Even if each

individual step holds the target distribution invariant, the resulting sequence of states

may not converge to the intended distribution once adaptation is taken into account.

Roberts and Rosenthal (2007) discuss this issue in greater depth. A second concern with

adaptive methods is that they may be difficult to embed in a larger scheme. For example,

if one knows the full conditional for some subset of the components and wishes to update

the remaining ones with adaptive Metropolis, the adaptive state may be inappropriate

because the target distribution, as seen by adaptive Metropolis, may change shape when

the conditioning variables change.

One promising approach to MCMC sampling when Gibbs sampling is not feasible is

slice sampling, which is more robust to peculiarities of target distributions than most

MCMC samplers (Roberts and Rosenthal, 1999). Slice sampling with univariate updates

(Neal, 2003, §4) is used as an alternative to ARMS and random-walk Metropolis to

update individual components of a simulation in turn. Like these two methods, it only

uses the log density of the target distribution, so it is not limited to distributions that

factor into conditional distributions of known, simple forms like Gibbs sampling is. And,

it is robust to poorly chosen tuning parameters.

However, like any method that only updates one component at a time, slice sam-

pling with univariate updates will not be efficient when the components of the target

distribution are highly correlated. Neal (2003, §5) also proposes several variations of

slice sampling with multivariate steps, but they largely share this weakness. This thesis
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extends his work on multivariate steps and proposes several slice sampling methods that

take multivariate steps that respect the local shape of the target distribution. Using

either previously visited states or the gradient of the log density at rejected moves, these

slice samplers can be efficient even when the distribution is badly scaled and the param-

eters are highly correlated, which is often the case with the multivariate models I hope

to make more broadly accessible.

In high-dimensional spaces, some methods that update multiple components at once

can move efficiently along the contours of a target distribution but not between them.

Roberts and Rosenthal (2002) propose the “polar slice sampler,” a variation of slice

sampling that operates in polar coordinates relative to a single, known mode. In this

coordinate system, the sampler mixes efficiently with respect to the log density. However,

the polar slice sampler uses non-adaptive rejection sampling to draw proposed moves,

which is often prohibitively inefficient, so it has not been used much. This thesis extends

the work of Roberts and Rosenthal, developing a practical means to modify an MCMC

method so that it can move efficiently between contours of a target distribution. The

proposed methods take radial steps similar to those of the polar slice sampler, but use a

secondary MCMC method to move in the angular coordinates so that rejection sampling

is not needed.

Development of new MCMC methods motivated another question: how can we iden-

tify the circumstances under which one MCMC method is superior to other methods? To

address this, I propose several figures of merit for MCMC samplers and develop schemes

for presenting the merits of a range of samplers and test distributions so that I and other

researchers can place newly developed methods in a broader context.
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1.2 Outline

Chapter 2 compares figures of merit for MCMC samplers and the means to present

them. First, I discuss how the mixing efficiency of a Markov chain can be described by

its autocorrelation time and describe several methods for estimating this. I describe a

test set developed for these methods, which I use to justify a preference for a method

that models a Markov chain as an autoregressive process. Autocorrelation time only

considers the state sequence of a Markov chain, not the resources used to compute it,

so it is not an acceptable figure of merit on its own. I describe how one can build on

autocorrelation time to compute a more appropriate figure of merit, log density function

evaluations per uncorrelated observation. Then, I demonstrate how this measure can

be used to make graphical comparisons of collections of MCMC methods with a range

of tuning parameters on several distributions simultaneously. These comparisons allow

researchers to see how particular MCMC methods fit into a broader context.

Chapter 3 contains the principal results of this research, several variations on slice

sampling that take multivariate steps. The first two methods are inspired by adaptive

Metropolis. They adaptively choose slice approximations using the eigendecomposition of

the sample covariance matrix of the target distribution. These methods often work well,

but have limitations that come from retaining state from iteration to iteration. To address

these, I first describe a simple but unworkable method that uses gradients at rejected

points to create a temporary polyhedral approximation to the slice. It is computationally

infeasible, but motivates the use of the crumb framework, which allows for methods with

more computationally tractable proposal distributions. I then describe one such method

in the crumb framework, covariance matching. Using log density gradients at rejected

proposals, covariance matching chooses crumb distributions so that the covariances of

the proposal distributions approximate the covariance of uniform sampling over the slice.

This is followed by a description of a second method in the crumb framework, shrinking

rank, which also uses gradients to adapt to local structure of the target distribution. It
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is more computationally efficient and simpler than covariance matching, and retains its

most desirable properties. The chapter closes with a comparison of the proposed MCMC

methods using the evaluation methods of chapter 2.

While chapter 3 focuses on efficient sampling with respect to linear functions of the

components of the state space of the target distribution, chapter 4 focuses on efficient

sampling with respect to the log density of the target distribution and addresses the

closely related topic of scaling with increasing dimension. It describes experiments that

explore the scaling behavior and proper tuning of samplers in the crumb framework. It

shows that samplers in the crumb framework commonly have linear scaling with respect

to the dimension of the target distribution and that this can be improved under some cir-

cumstances. It extends these results to more practical samplers, showing how combining

univariate radial steps with a method like covariance matching can result in improved

scaling with respect to log density.

Finally, chapter 5 describes the circumstances under which both the MCMC methods

and the techniques used to analyze them may be more broadly applied. It also provides

references to software that implements the methods described in this document.



Chapter 2

Measuring sampler efficiency

To compare the performance of MCMC methods using a collection of simulations, we

must be able to quantify the efficiency of a single simulation, and we must have a means

to display a collection of these measurements. In this chapter, I break down the efficiency

of a simulation into measurements of the correlation between observations and the cost

of obtaining an observation. Then, I demonstrate several types of plots for comparing

the efficiency of collections of simulations representing different samplers, distributions,

and tuning parameters.

2.1 Autocorrelation time

Autocorrelation time measures the convergence rate of the sample mean of a function of

a stationary, geometrically ergodic Markov chain with finite variance. Let {Xi}ni=1 be n

values of a scalar function of the states of such a Markov chain, where EXi = µ and

varXi = σ2. Let X̄n be the sample mean of (X1, . . . , Xn). Then, the autocorrelation

time is the value of τ such that:√
n

τ
· X̄n − µ

σ
=⇒ N(0, 1) (2.1)

7
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Conceptually, the autocorrelation time is the number of Markov chain transitions equiv-

alent to a single uncorrelated draw from the distribution of {Xi}. It can be a useful

summary of the efficiency of an MCMC sampler. However, one must be cautious when

using it with adaptive methods such as those discussed in section 3.2 because they do

not have stationary distributions, and equation 2.1 does not strictly apply.

Since there is rarely a closed-form expression for the autocorrelation time, many

methods for estimating it from sampled data have been developed. The following sections

describe four such methods in wide use: computing batch means, fitting a linear regression

to the log spectrum, summing an initial sequence of the sample autocorrelation function,

and modeling as an autoregressive process. Then, these methods are compared on a test

set of seven series. For a broader context, two classic overviews of uncertainty in MCMC

estimation are Geyer (1992) and Neal (1993, §6.3). An alternative to autocorrelation

time, potential scale reduction, is discussed by Gelman and Rubin (1992).

2.1.1 Batch mean estimator

Equation 2.1 is approximately true for a finite sequence, so one can obtain multiple

estimates of the mean by dividing the {Xi} into non-overlapping batches of size m and

computing the sample mean of each batch. The asymptotic variance of each batch mean

as m goes to infinity is σ2/(m/τ). So, if s2 is the sample variance of {Xi} and s2
m is the

sample variance of the batch means, one can estimate the autocorrelation time with:

τ̂n,m = m
s2
m

s2
(2.2)

For this to be a consistent estimator of τ , the batch size and the number of batches

must go to infinity. To ensure this, I use n1/3 batches of size n2/3. Fishman (1978, §5.9)

discusses batch means in great detail; Neal (1993, p. 104) and Geyer (1992, §3.2) discuss

batch means in the context of MCMC.
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2.1.2 Least squares fit to the log spectrum

In the spectrum fit method (Heidelberger and Welch, 1981, §2.4), a linear regression is

fit to the lower frequencies of the log-spectrum of the chain and used to compute an

estimate of the spectrum at frequency zero, denoted by Î0. Let s2 be the sample variance

of the {Xi}. The autocorrelation time can be estimated as:

τ̂ =
Î0

s2
(2.3)

This is implemented by the spectrum0 function in R’s CODA package (Plummer et al.,

2006). First and second order polynomial fits are practically indistinguishable on the test

series described in section 2.1.5, so I only include the results for a first order fit.

2.1.3 Initial sequence estimators

One formula for the autocorrelation time is (Straatsma et al., 1986, p. 91):

τ = 1 + 2
∞∑
k=1

ρk (2.4)

where ρk is the autocorrelation function (ACF) of the series at lag k. For small lags, ρk

can be estimated with:

ρ̂k =
1

ns2

n−k∑
i=1

(Xi − X̄n)(Xi+k − X̄n) (2.5)

But, ρ̂k is not defined when k is greater than n− 1, and the partial sum ρ̂1 + · · ·+ ρ̂n−1

does not have a variance that goes to zero as n goes to infinity, so substituting all values

from equation 2.5 into equation 2.4 is not an acceptable way to estimate τ .

One approach to this problem, initial sequence estimators, was created by Geyer

(1992). He shows that, for reversible Markov chains, sums of pairs of consecutive ACF

values, ρi+ρi+1, are always positive. He obtains a consistent estimator, the initial positive

sequence (IPS) estimator, by truncating the sum when the sum of adjacent sample ACF

values is negative, indicating that at that point ACF estimates are dominated by noise.
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Further, the sequence of sums of pairs is always decreasing, so one can smooth the initial

positive sequence when a sum of two adjacent sample ACF values is larger than the

sum of the previous pair; the resulting estimator is the initial monotone sequence (IMS)

estimator. Finally, the sequence of sums of pairs is also convex. Smoothing the sum to

account for this results in the initial convex sequence (ICS) estimator. For more details,

see Geyer (1992, §3.3). I was unable to distinguish the behavior of the IPS, IMS, and ICS

estimators on the series of section 2.1.5, so the comparisons of section 2.1.6 only include

the ICS estimator.

2.1.4 AR process estimator

Another way to estimate the autocorrelation time, based on CODA’s spectrum0.ar

(Plummer et al., 2006), is to model the series as an autoregressive (AR) process of order

p, with p chosen by AIC. Consider a model of the form:

Xt = µ+ π1Xt−1 + · · ·+ πpXt−p + at, at ∼ N(0, σ2
a) (2.6)

Let ρ̂1:p be the vector (ρ̂1, . . . , ρ̂p). The Yule–Walker method (Wei, 2006, pp. 136–138)

can be used to obtain an estimate of the AR coefficients, π̂1:p, using ρ̂1:p. Combining

equations 7.1.5 and 12.2.8b of Wei (2006, pp. 137, 274–275), the autocorrelation time

can be estimated with:

τ̂ =
1− ρ̂T1:pπ̂1:p(
1− 1Tp π̂1:p

)2 (2.7)

This is a consistent estimator for τ as n goes to infinity if AIC increases p along with n,

with p increasing more slowly than n so that errors in the coefficient estimates do not

dominate the estimate of τ̂ . (This does not include the case where an AR(p) model with

finite p generated the data, but that case is not important.) For more information on

the AR process method, see Fishman (1978, §5.10).

Because the Yule–Walker method also estimates the asymptotic variance of π̂1:p, de-

noted by Vπ, Monte Carlo simulation can be used to generate a confidence interval for



2.1. Autocorrelation time 11

the autocorrelation time. Draw (π(1), π(2), . . .) from the distribution:

π(i) ∼ N(π̂1:p, Vπ) (2.8)

When the roots of 1 = π
(i)
1 z + · · · + π

(i)
p zp all lie outside the unit circle, π(i) produces

a stationary time series (Wei, 2006, p. 47, equation 3.1.28). The corresponding auto-

correlation function, ρ(i), can be computed with the R function ARMAacf. Substituting

π(i) and ρ(i) into equation 2.7 gives a simulated draw from the distribution of τ̂ . When

at least one root lies inside or on the unit circle, π(i) produces a nonstationary process

(Wei, 2006, p. 26), and τ is not defined; an estimate of infinity is used in this case. After

simulating a sample of a reasonable size, the quantiles of the sample can be used as a

confidence interval for τ . If more than 2.5% of the simulated π(i) define nonstationary

processes, the resulting 95% confidence interval is unbounded.

2.1.5 Seven test series

I evaluate the methods described in sections 2.1.1, 2.1.2, 2.1.3, and 2.1.4 with seven series.

The first 10,000 elements of each are plotted in figure 2.1.

• AR(1) is an AR(1) process with an autocorrelation of 0.98 and uncorrelated stan-

dard Gaussian errors. From equation 2.7, its autocorrelation time is 99. It is, in

one sense, the simplest possible series with an autocorrelation time other than one.

• AR(2) is an AR(2) process with poles at −1 + 0.1i and −1− 0.1i:

Zt = 1.98Zt−1 − 0.99Zt−2 + at, at ∼ N(0, 1) (2.9)

Despite oscillating with a period of about 60, the terms in its autocorrelation func-

tion nearly cancel each other out, so its autocorrelation time is approximately two.

This series is included to identify methods that cannot identify cancellation in

long-range dependence.
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Figure 2.1: The first 10,000 elements of seven series used as a test set. See section 2.1.5

for discussion.
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• AR(1)-ARCH(1) is an AR(1) process with autocorrelation of 0.98 and autocor-

related errors:

Zt = 0.98Zt−1 + at, at ∼ N
(
0, 0.01 + 0.99 a2

t−1

)
(2.10)

Its autocorrelation time is also 99. This series could confound methods that assume

constant step variance.

• Met-Gauss is a sequence of states generated by a Metropolis sampler with stan-

dard Gaussian proposals sampling from a standard Gaussian target distribution.

It has a proposal acceptance rate of 0.7 and an autocorrelation time of eight. It is

a simple example of a state sequence from an MCMC sampler.

• ARMS-Bimodal is also a sequence of states from an MCMC simulation, ARMS

(Gilks et al., 1995) applied to a mixture of two Gaussians. The sampler is badly

tuned, so it rarely accepts a proposal when near the upper mode. It has an auto-

correlation time of approximately 200.

• Stepout-Log-Var is a third MCMC sequence, the log-variance parameter of slice

sampling with stepping out (Neal, 2003, §4) sampling from a ten-parameter multi-

level model (Gelman et al., 2004, pp. 138–145). Its autocorrelation time is approx-

imately 200.

• Stepout-Var was generated by exponentiating the states of Stepout-Log-Var. Be-

cause its sample mean is dominated by large observations, its autocorrelation time,

approximately 100, is different than that of Stepout-Log-Var. Like ARMS-Bimodal

and Stepout-Log-Var, it is a challenging, real-world example of a sequence whose

autocorrelation time might be unknown.



14 Chapter 2. Measuring sampler efficiency

series length

au
to

co
rr

el
at

io
n 

tim
e

0.1

1

10

100

0.1

1

10

100

AR(1)

i

i
i

i
i i

i i
i i i i i i i

a

a

a a
a a

a a
a a a a a a a

s

s
s

s
s

s

s

s
s s s s s s

b

b

b
b b

b
b

b

b
b b b b

b b

ARMS−Bimodal

i i i i

i
i

i

i i i i i i i i

a
a

a

a

a

a

a

a a a
a a a a a

s

s
s s

s
s

s

s
s

s
s s s s s

b

b

b

b

b

b

b

b b b
b b b b b

10 100
1,000

10,000
100,000

AR(2)

i

i

i i i i i i i i i i i i i

a

a

a

a

a
a a

a a a a a a a a

s s s s

s

s

s

s

s
s s

s s

b b

b
b

b b
b

b b
b b b

b b b

Stepout−Log−Var

i i
i

i i
i

i i i i i i i i i

a a
a

a a a

a a a a a a a a a

s s s
s

s
s

s

s

s
s

s s s s s

b

b

b

b
b b

b
b b b

b b b b b

10 100
1,000

10,000
100,000

AR(1)−ARCH(1)

i

i

i i
i i i

i

i i i i i i i

a

a

a
a

a a a a
a a a a a a a

s
s

s s

s
s

s

s
s

s s s s
s s

b b

b
b

b b b
b

b b
b b b b b

Stepout−Var

i i i

i
i i

i i i i i i i i i

a a a

a a a

a a a a a a a a a

s s s s

s
s

s

s
s

s s s s s s

b

b

b

b b b

b
b b b b b b b b

10 100
1,000

10,000
100,000

Met−Gauss

i i
i i i i i i i i i i i i i

a a
a

a a
a a a a a a a a a a

s s s s
s s s s

s s s s
s s s

b
b

b b

b
b

b
b

b b b b
b b b

10 100
1,000

10,000
100,000

method

i ICS

a AR process

s Spec. fit

b Batch means

Figure 2.2: Autocorrelation times computed by four methods on seven series for a range

of subsequence lengths. Each plot symbol represents a single estimate. The dashed

line indicates the true autocorrelation time. Breaks in the lines for spectrum fit indicate

instances where the method failed to produce an estimate. See section 2.1.6 for discussion.
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Figure 2.3: The autocorrelation function of the AR(2) series. See section 2.1.6 for dis-

cussion.

2.1.6 Comparison of autocorrelation time estimators

This section compares the true autocorrelation time of each series to the autocorrelation

time estimated by each method for subsequences ranging in length from 10 to 500,000.

The results are plotted in figure 2.2. All four methods converge to the true value on all

seven chains, with the exception of ICS on the AR(2) process. In general, the AR process

method converges to the true autocorrelation time fastest, followed by ICS, batch means,

and finally spectrum fit, which does not even produce an estimate in all cases. All four

methods tend to underestimate autocorrelation times for all short sequences except those

from the AR(2) process, which appears in small samples to have a longer autocorrelation

time than it actually does.

ICS is inconsistent on the AR(2) process because the autocorrelation function of the

AR(2) process is significant at lags larger than its first zero-crossing (see figure 2.3).

ICS and the other initial sequence estimators are not necessarily consistent when the

underlying chain is not reversible; the AR(2) process is not, when considered as a two

state system with the Markov property. These estimators stop summing the sample
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Figure 2.4: AR process-generated point estimates and 95% confidence intervals for the

autocorrelation times of seven series for a range of subsequence lengths. The dashed line

indicates the true autocorrelation time. The confidence intervals are somewhat reason-

able. See section 2.1.6 for discussion.

autocorrelation function the first time its values fall below zero, so these estimators

never see that negative values at large lags cancel positive values at small lags.

The AR process method can also generate approximate confidence intervals for the

autocorrelation time. 95% confidence intervals generated by the AR process method are

shown in figure 2.4. The intervals are somewhat reasonable for subsequences longer than

the true autocorrelation time for series other than AR(2), where the first few hundred

elements do not represent the entire series but appear as though they might. Even on

the others, they are only accurate enough to be used as a rough diagnostic.
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The AR process method is marginally more accurate than the three other methods

and is the only method that, as implemented, generates confidence intervals, so I usually

prefer it to the other three. The batch mean estimate is faster to compute and almost

as accurate, so it is useful when speed is important and confidence intervals are not

necessary.

2.1.7 Multivariate distributions

So far, I have considered the estimation of autocorrelation time for a scalar function of

the state of a Markov chain. Often, however, users are interested in how fast the Markov

chain as a whole mixes. Let Y be a linear combination of two scalar functions of state,

X(1) and X(2):

Y = aX(1) + bX(2) (2.11)

If the two functions have autocorrelation times τ (1) and τ (2), the variance of the sample

mean of Y will be:

var(Ȳn) = a2 var(X̄(1)
n ) + 2ab cov(X̄(1)

n , X̄(2)
n ) + b2 var(X̄(2)

n ) (2.12)

= a2 var(X̄(1)) + 2ab
√

var(X̄(1)) var(X̄(2)) corr(X̄(1)
n , X̄(2)

n ) + b2 var(X̄(2))

≈ a2 τ
(1)

n
var(X(1)) + 2ab

√
τ (1)τ (2)

n

√
var(X(1)) var(X(2)) corr(X̄(1)

n , X̄(2)
n ) (2.13)

+ b2 τ
(2)

n
var(X(2))

=
1

n

(
τ (1)A+ 2

√
τ (1)A

√
τ (2)B corr(X̄(1)

n , X̄(2)
n ) + τ (2)B

)
(2.14)

≤ 4

n
max

(
τ (1)A, τ (2)B

)
(2.15)

where A = a2 varX(1) and B = b2 varX(2). If the terms of the combination are not

anti-correlated (so that there is no possibility the sample means cancel each other out)

and the sample means come from independent observations, the variance of the sample

mean of Y is asymptotically bounded below by 1
n
(A + B). The bound of equation 2.15

is at most a factor of 4 ·max(τ (1), τ (2)) larger, so unless the terms of the combination are
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constructed to cancel each other out, the autocorrelation time of a linear combination of

scalar functions of state is itself bounded by four times the autocorrelation time of the

slowest mixing term.

More generally, unless the terms are constructed to cancel each other out, the au-

tocorrelation time of an arbitrary linear combination of k components of the state of a

Markov chain is, to a factor of 2k, bounded above by the autocorrelation time of the

slowest-mixing component of the state. So, it is usually appropriate to estimate autocor-

relation times for each component of state and to describe the chain as a whole by the

largest of these estimates. This document will take that approach.

Nonlinear functions of multiple components—or even a single component—may have

substantially different autocorrelation times than those of any linear combination of com-

ponents. The mixing rates of all possible functions of state cannot be summarized in a

single number; additional information about which functions are relevant is necessary.

One particular nonlinear function that may be of interest is the log density; its autocor-

relation time is discussed in chapter 4.

2.2 Framework for comparing methods

2.2.1 MCMC methods for comparison

To demonstrate comparison of MCMC methods, I use the following four samplers, each

of which has a single tuning parameter:

• Step-out Slice is slice sampling with stepping out, updating each coordinate se-

quentially, as described by Neal (2003, §4). The tuning parameter is w, the initial

estimate of slice size.

• Adaptive Metropolis is described by Roberts and Rosenthal (2009, §2) and is

based on an algorithm of Haario et al. (2001). The tuning parameter is the a scaling
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factor for the standard deviation of the non-adaptive component of the proposal

distribution, which they fix at 0.1 in their equation 2.1. This version of Metropo-

lis uses multivariate Gaussian proposals with a covariance matrix determined by

previous states. Unlike the version of Roberts and Rosenthal, this implementation

stops adapting after a burn-in period. As in Roberts and Rosenthal, the probability

of non-adaptive steps, β, is fixed at 0.05 unless otherwise specified.

• Univariate Metropolis is Metropolis with transitions that update each coordi-

nate sequentially. The proposals are Gaussians centered at the current state with

standard deviation equal to the tuning parameter.

• Nonadaptive Crumb is slice sampling with Gaussian crumbs (Neal, 2003, §5.2),

a variant of slice sampling that takes multivariate steps and is the basis for the

samplers described in sections 3.4 and 3.5. The tuning parameter is the standard

deviation of the first crumb. Section 4.1 discusses its tuning in detail; here, θ is

fixed at 0.95.

2.2.2 Distributions for comparison

These samplers are compared on the four distributions:

• GP (unlogged) is the posterior distribution of a Bayesian one-dimensional Gaus-

sian process model with three parameters: two variance components and a corre-

lation decay rate. The covariance between observations at xi and xj is:

σij = σ2
n1i=j + σ2

f exp

{
−(xi − xj)2

ρ

}
(2.16)

Observations at 30 random values on [0, 1] are drawn with (σ2
n, σ

2
f , ρ) = (0.01, 1, 0.1);

the distribution is the posterior for these three parameters given the observations

and lognormal priors on each parameter. The contours of the distribution of the

parameters are not axis-aligned. The distribution is right skewed in all parameters.
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Figure 2.5: The marginal distributions (solid) and conditional distributions at the

marginal mean (dashed) of the GP (unlogged) distribution. See section 2.2.2 for dis-

cussion.

The posterior marginal and conditional distributions of the three components are

plotted in figure 2.5.

• N4(ρ = 0.999) is a four dimensional Gaussian centered at (1, 2, 3, 4) with covari-

ance matrix:

Σ =



1 0.999 0.999 0.999

0.999 1 0.999 0.999

0.999 0.999 1 0.999

0.999 0.999 0.999 1


(2.17)

Σ has a condition number of 2870.

• Eight Schools is a multilevel model in ten dimensions, consisting of eight group

means and hyperparameters for their mean and log-variance (Gelman et al., 2004,

pp. 138–145). Its covariance is well-conditioned.

• German Credit (Girolami and Calderhead, 2011, p. 15) is a Bayesian logistic

regression with twenty-five parameters. Its data matrix is not standardized.
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2.2.3 Processor time and log density evaluations

Before comparing performance of methods on a distribution, we must choose a mea-

sure of cost. Here, the methods of section 2.2.1 and distributions of section 2.2.2 are

used to justify the choice of log-density evaluations per MCMC iteration multiplied by

autocorrelation time.

If a user’s goal is to estimate a parameter to a specific accuracy, they would want

to choose an MCMC method that minimizes processor time per iteration multiplied by

autocorrelation time. However, processor time measurements made on a researcher’s

machine depend on idiosyncratic factors such as the type of machine the researcher is

using, other simultaneous tasks running on the machine, etc. Even identically configured

simulations may generate different results.

An alternative to measuring processor usage is counting log-density function evalu-

ations. Initialized with the same random seed, an MCMC simulation would evaluate

this function the same number of times on machines of different speeds, on the same

machine with different concurrent processes, and often even when implemented in dif-

ferent programming languages. However, this measure does not capture the overhead of

the MCMC method, nor does it capture different ways a distribution can be represented

to the method. For example, some methods require gradients to be computed, increas-

ing the processor time per evaluation; some methods, such as Gibbs sampling, do not

compute log densities at all.

To see the comparability of these two measures, at least on the distributions and

methods described in sections 2.2.1 and 2.2.2, see figure 2.6, which plots the ratio of

processor usage to log-density function evaluations for those samplers and distributions

and for a range of tuning parameters. The ratios are normalized to the median processor

time for a function evaluation over the simulations of that distribution. If processor usage

and log density evaluations were perfectly comparable, every plotted point would lie on

the dashed horizontal line indicating a ratio of one. For the simulations in figure 2.6, the
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Figure 2.6: The ratio of processor usage to log density evaluations, normalized by distri-

bution. One can see that this ratio does not depend much on method choice or tuning

parameter; see section 2.2.3 for discussion. Each simulation is of length 250,000. The

gaps in some of the plots correspond to incomplete simulations.
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measures are at most a small multiple off from each other. Even though the overhead of

Adaptive Metropolis, which is implemented in R and performs expensive matrix manipu-

lations, is much larger than that of Nonadaptive Crumb, which is implemented in C and

does not perform any expensive computations, the log density evaluations dominate the

cost. Because no significant differences in ratios are observed, I am inclined to believe

that comparing processor usage and comparing log density evaluations will yield similar

conclusions regarding the merits of various MCMC methods.

2.3 Graphical comparison of methods

The cost measure described in section 2.2.3, evaluations per uncorrelated observation,

provides a way of quantifying the performance of the MCMC methods described in sec-

tion 2.2.1 on the distributions described in section 2.2.2. I simulated each of these

distributions with each sampler for nine values of the sampler’s tuning parameter in the

range 0.001 to 1000. Each chain had a length of 250,000. Treating the first half of each

chain as a burn-in period, I computed the autocorrelation time of each simulation using

the AR process method of section 2.1.4 and multiplied it by the average number of log

density evaluations the simulation needed per iteration to generate an estimate of the

number of log density evaluations per uncorrelated observation. Smaller values indicate

better performance. In this section and subsequent ones, I use the true mean instead of

the sample mean when estimating autocorrelation times to reduce the chance that an er-

roneously low autocorrelation time will be estimated if a chain appears to have converged

but has not.

In figure 2.7, I compare the evaluations per uncorrelated observation by plotting them

as dots, with 95% simulation-based confidence intervals, against the tuning parameter for

each combination of distribution and method. Question marks indicate simulations with

too few unique states to identify an AR model. This occurs when Adaptive Metropolis
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Figure 2.7: A demonstration of graphical comparison of performance of MCMC samplers.

Columns of plots represent samplers; rows represent distributions. Each simulation is of

length 250,000. At a glance, a researcher can see how 208 simulations relate to each

other. See section 2.3 for discussion.
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has a near-100% rejection rate and when Step-out Slice is badly enough tuned that the

test framework aborts the simulation.

2.3.1 Between-cell comparisons

Scanning an individual cell in the grid of plots, one can see how performance varies

with the tuning parameter. Scanning down columns of the grid of plots, one can see

how performance varies from distribution to distribution for a given MCMC method.

Scanning across rows of the grid of plots, one can see how performance varies from

method to method for a given distribution.

Doing this, several patterns emerge. For example, one can see that Adaptive Metropo-

lis performs consistently well for a variety of tuning parameters, as long as the tuning

parameter is smaller than the square root of the smallest eigenvalue of the distribution’s

covariance. Either it performs well or does not converge at all. This suggests that Adap-

tive Metropolis users uncertain about the distribution they are sampling from should err

in the direction of small tuning parameters.

A second pattern is that Univariate Metropolis tends to have U-shaped comparison

plots. Tuning parameters that are either too small or too large lead to unacceptable

performance. And, the lowest points on these plots are still usually above the flat parts

of the Adaptive Metropolis plots. On low-dimensional distributions like these, where the

sampler does not know the structure of the target density, Adaptive Metropolis can be

considered to dominate Univariate Metropolis.

Reading across rows, one can see different sorts of patterns. For example, The GP

(unlogged) and N4(ρ = 0.999) rows are flat within cells, but not between them, suggesting

that for those distributions, one needs to pay more attention to the choice of method

than its tuning.
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2.3.2 Within-cell comparisons

A different sort of pattern can be seen in the slopes of the lines traced out by the

plot symbols. For Univariate Metropolis on GP (unlogged), Eight Schools, and German

Credit, for tuning parameters less than one, a decrease in the tuning parameter by a

factor of ten leads to a factor of almost one hundred degraded performance—a slope

of −2 in the log domain. For these tuning parameters, the Markov chains are nearly

a random walk. Such a random walk will travel some distance in a number of steps

proportional to the square of that distance (Feller, 1968, p. 90).

This contrasts with the slope of the plot symbols for Step-out Slice, which is close

to −1 for small tuning parameters on the same distributions. Step-out Slice requires a

number of log density function evaluations linear in the ratio of slice width to tuning

parameter to determine an initial slice estimate, so decreasing the tuning parameter by

some factor degrades the performance by that factor.

A pattern in the slopes for large parameters can be seen with Univariate Metropolis on

Eight Schools with tuning parameters larger than one. In those simulations, multiplying

the tuning parameter by ten degrades performance by a factor of approximately ten—a

slope of one in the log domain. Increasing the tuning parameter by some factor reduces

the acceptance rate by approximately that factor when the tuning parameter is large.

This behavior contrasts with the two slice samplers, whose costs trace logarithmic

curves for large tuning parameters on N4(ρ = 0.999) and German Credit. On average,

each rejected proposal reduces the estimated slice size by a constant factor, so an increase

in a tuning parameter above the optimal value by some factor increases the computation

cost by the log of that factor.

None of the patterns of this section would be easily visible if the results were presented

in tabular form. Figure 2.7 shows summaries of 208 simulations, more than could be

absorbed by a reader if presented as text.
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2.3.3 Comparison with multiple tuning parameters

While plots like figure 2.7 allow a broad comparison of distributions and methods, it is

often necessary to compare different sets of factors. The same type of plot can be used

when varying extra parameters associated with either the distribution or the MCMC

method. Figure 2.8 is an example of such a comparison. It focuses just on Adaptive

Metropolis sampling from badly-scaled Gaussians.

One tuning parameter of Adaptive Metropolis is β, the fraction of proposals drawn

from a spherical Gaussian instead of a Gaussian with a learned covariance. Roberts and

Rosenthal (2009) suggest the value of 0.05. In this example, I vary it from 0.001 to 0.95.

At the same time, I consider the effect of dimensionality on the performance of the

method. Each target distribution is a multivariate Gaussian with uncorrelated compo-

nents. The variance is equal to 1000 in one coordinate and one in the rest. The problem

dimension ranges from 2 to 128. While the high-variance component is axis-aligned,

this does not affect the results because the behavior of Adaptive Metropolis is invariant

to rotations of the target distribution. As with the simulations of figure 2.7, Adaptive

Metropolis performs well when the principal tuning parameter is smaller than the square

root of the smallest eigenvalue of the target distribution’s covariance, in this case one.

Having seen this pattern, it is useful to summarize the comparisons by choosing the

lowest-cost simulation from each grid cell and plotting them in a single graph, as in

figure 2.9. In both figure 2.8 and figure 2.9, one can see that while Adaptive Metropolis

performs better in low dimensional spaces, this performance does not vary much with β

in any of the dimensions simulated.

2.3.4 Discussion of graphical comparison

Section 2.3 shows the variation in performance of MCMC methods while varying method,

distribution, and one tuning parameter as well as the variation in performance of a single
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Figure 2.8: A demonstration of graphical comparison of performance of a single sampler,

Adaptive Metropolis, with two tuning parameters. Columns of plots represent different

values of one tuning parameter, β; the other is plotted on the horizontal axis of the

subplots. Rows of plots correspond to increasing dimensions of badly-scaled Gaussian

distributions. Each simulation is of length 40,000. See section 2.3.3 for discussion.
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tributions. Each plot symbol represents the best-performing simulation for a given di-

mension and value of β. See section 2.3.3 for discussion.
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MCMC method while varying two tuning parameters and the dimension of the target

distribution. In general, one may use the plots described in this section to compare

performance of MCMC methods while varying any three factors. Comparing performance

with tabulated summary statistics, in contrast, only allows researchers to study variation

in one factor at once, a significant disadvantage.

One might wonder, then, how one could visualize performance as more than three

factors vary simultaneously. While it may be useful, computational limits become an

obstacle as the number of parameters increases. Figure 2.7 compares 208 simulations.

Even if there were a clear way to visualize cost as four or five factors vary, one would need

to run thousands of simulations to make such a plot. The plots of this section display

approximately as much information as is currently feasible to gather.

Other variations on these plots are possible, such as the one used for figure 2.9. One

variant not shown replaces confidence intervals by multiple plot symbols, each represent-

ing a replication of the same simulation with a different random seed. Multiple symbols

are plotted in a column for a given tuning parameter. Making the symbols partially

transparent makes such a graph easier to read.

If one is willing to forego all measures of uncertainty under replication, one can omit

the confidence intervals and plot figures of merit for multiple values of a second factor,

such as a second tuning parameter, in a single grid cell, differentiating levels of this factor

by color or plot symbol. However, this technique can produce confusing graphs if the

factor represented by color or plot symbol is not naturally nested in the factor represented

by columns of plots—one should not vary a factor like problem dimension inside a single

grid cell.



Chapter 3

Samplers with multivariate steps

This chapter presents several new variations of slice sampling. First, it gives background

on slice sampling with multivariate steps. Then, it presents several globally-adaptive

eigendecomposition-based methods and several locally-adaptive gradient-based methods

in the crumb framework. Finally, it compares the methods using the scheme described

in chapter 2.

3.1 Slice sampling overview

Slice sampling is a robust Markov chain Monte Carlo method in which a new state

is drawn from a “slice” containing all points whose density is larger than an auxiliary

variable, y. Uniformly sampling from the volume under a probability density function,

f(·), gives a sample {(xi, yi)}, where xi ∈ Rp and yi ∈ R+. The marginal distribution of

xi then has density f(xi). So, if one can devise a way of sampling uniformly from the

volume underneath a distribution’s density curve, one can convert this to a method for

sampling from the distribution itself by dropping the yi from the resulting sample.

Slice sampling accomplishes this by alternating steps that update the y coordinate

and steps that update the x coordinates. Updating the y coordinate is easy: the con-

ditional distribution for yi+1 given xi is uniform on the interval [0, f(xi)]. Updating the

31
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x coordinate is more difficult, in general, so instead of updating xi with its conditional

distribution, general purpose slice samplers perform a state transition that leaves the

conditional distribution given yi invariant. An update to xi seeks an xi+1 such that if

xi is uniformly distributed on the current slice through the density, {x|f(x) ≥ yi}, then

xi+1 will also be uniformly distributed on the same slice. Neal (2003) discusses various

methods that satisfy this condition. This chapter and chapter 4 extend his work, focusing

on adaptive multivariate updates.

The methods described in this document evaluate the log density function of the target

distribution, usually denoted by `(·), rather than the density function itself, because

working in the log domain makes numeric underflow and overflow less likely. Let E

have an exponential distribution with mean one. The value exp(−E) has a uniform

distribution, so instead of using a uniform draw on [0, f(x)] as the slice level, we can use

`(x)− E as a log-domain slice level:

exp(`(x)− E) = f(x) · exp(−E), where E ∼ Exponential(1) (3.1)

= f(x) · U, where U ∼ Uniform[0, 1] (3.2)

∼ Uniform[0, f(x)] (3.3)

This way, we never need to compute exp `(x), which can overflow or underflow.

3.2 Methods based on eigenvector decomposition

In this section, the approach to adaptive MCMC that Haario et al. (2001) use to improve

random-walk Metropolis is applied to improve two variations on slice sampling. These

methods continuously adapt, learning the global structure of the distribution as they

move through the state space. They converge asymptotically to the target distribution,

but do not have a fixed stationary distribution, so they can be difficult to analyze for

convergence. They can also be difficult to embed in a larger sampling scheme because
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their adapted state may become inappropriate when the variables the target distribution

conditions on change.

When components of the target distribution are highly correlated, the Markov chains

generated by slice samplers that make univariate updates (Neal, 2003, §4) will mix slowly.

If two components are highly correlated, the contours of the target density will not be

axis-aligned, so univariate slice updates with stepping out or doubling will always take

steps across short, axis-aligned cuts through these contours. The hyperrectangle method

(Neal, 2003, §5.1) is a slice sampling variant that takes multivariate steps by drawing

proposals from an axis-aligned hyperrectangle positioned randomly with respect to the

current point. It is unlikely to accept a proposal until the hyperrectangle has edges of

length comparable to the shortest diameter of the log density contour that defines the

current slice. Therefore, it behaves similarly to methods that take univariate updates

when the components of the target distribution are highly correlated.

We must somehow take steps in non-axis-aligned directions for the Markov chain

to mix quickly on distributions where components of the target distribution are highly

correlated. If the target distribution is Gaussian, the contours are concentric ellipsoids. If

the log density of the target distribution is convex and not highly skewed, the contours are

at least roughly ellipsoidal. We can create an ellipsoidal approximation to a slice contour

by aligning the axes of an ellipsoid with the eigenvectors of the sample covariance matrix

and choosing the axis lengths to be proportional to the square roots of the corresponding

eigenvalues. Unless the log density is unimodal and normalized, it is difficult to compute

the optimal proportionality constant. (This issue is discussed in section 4.1.2.)

This idea motivates two variations on slice sampling that use an approximation to

the covariance matrix of the target distribution. One approach is to take univariate steps

with stepping out in the coordinate space defined by the eigenvectors, with initial slice

widths proportional to the square roots of the corresponding eigenvalues. This method

is discussed in section 3.2.1.
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The second approach is an extension of the hyperrectangle method. The hyperrect-

angle method can be modified so that the axes of the initial hyperrectangles are oriented

along eigenvectors, and the lengths of the sides of the initial hyperrectangle are propor-

tional to the square roots of the eigenvalues. This method is discussed in section 3.2.3.

Both methods require an approximation of the covariance matrix. Haario et al. (2001)

show that one can use a mixture of spherically symmetric Gaussian proposals and the

sample covariance matrix to generate an adaptive Metropolis proposal distribution. Using

a theorem from Roberts and Rosenthal (2007), they show that the resulting Markov chain

converges to the intended distribution. Section 3.2.5 uses a similar argument to show

that the modified hyperrectangle method converges to the intended distribution.

3.2.1 Univariate updates along eigenvectors

“Univar Eigen,” inspired by Tibbits et al. (2010), is a variation of slice sampling that

makes univariate updates along the eigenvectors of the sample covariance matrix. If the

log density of the target distribution is approximately convex, so that there is not radical

variation in the shape of the target distribution from point to point, the contours of the

distribution will be approximately ellipsoidal and the eigenvectors of its covariance will

roughly coincide with the axes of these ellipsoids. Steps taken along the eigenvectors,

therefore, will include steps along the long axes of a slice even when the axes of the

contours do not coincide with the coordinate axes.

Computing these directions requires an estimate of the covariance. Tibbits et al. use

the sample covariance from a trial run to estimate the full covariance matrix of the

hyperparameters and the marginal variances of the remaining parameters. Univar Eigen

instead uses the full sample covariance matrix of the current chain, as done by Haario

et al. (2001) in Adaptive Metropolis. Like Adaptive Metropolis, Univar Eigen takes a

small fraction of its steps from a fixed distribution to avoid becoming trapped in a bad

adaptive state. It has two tuning parameters: β, the proportion of iterations that use
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non-adapted steps, and w, the initial segment length for non-adapted steps. β is usually

fixed at 0.05, as in Adaptive Metropolis.

Suppose our Markov chain has taken n steps, generating a sequence of dependent

p-vector-valued random variables (X1, . . . , Xn) from the target distribution. Denote the

sample covariance of this sequence by Sn. Denote the eigenvectors of Sn by (v1, . . . , vp)

and the eigenvalues of Sn by (λ1, . . . , λp). Each iteration, Univar Eigen chooses a random

number U ∈ [0, 1]. If U < β or n < p (making Sn rank-deficient), the initial slice

approximation is a segment of length w in a random direction placed so that the offset

of the current state, Xn, from the end of the segment is uniformly distributed on [0, w].

If U ≥ β, an eigenvector-eigenvalue pair (vi, λi) is chosen, with i uniformly drawn from

{1, . . . , p}. The initial slice proposal is then a segment of length
√
λi in the direction vi

placed so that the offset of the current state from the end of the segment is uniformly

distributed on
[
0,
√
λi
]
.

The initial segment can be expanded by stepping out as discussed in Neal (2003, §4),

but this is not strictly necessary since using an eigenvalue to compute the initial slice

approximation leads to reasonable scaling. However, stepping out does lead to greater

robustness and has minimal downside. It is used in the experiments of section 3.2.2,

but the results are similar if it is not. Once an initial slice approximation is chosen, a

proposal for Xn+1 is drawn uniformly from the segment. If the proposed step is outside

the slice, it is rejected and the segment is shrunk so that the next proposal is drawn from

the portion of the segment on the same side of the rejected proposal as Xn. Proposals

are drawn and the approximation shrunk until a proposal is accepted.

When the target distribution is p-dimensional, the computation of the eigendecom-

position of Sn is O(p3), so it is not done every iteration. In the implementation evaluated

here, the number of decomposition updates is limited to one hundred. For example, on a

chain length of 50,000, the eigendecomposition will be updated every 500 iterations. Only

one in every p univariate updates is used to update the scatter matrix used to compute
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Sn, and each update takes O(p2) operations. Since an individual one-dimensional up-

date takes O(p) operations, neither the cost of updating the eigendecomposition nor the

cost of maintaining the scatter matrix is dominant for long chains or in high-dimensional

spaces.

3.2.2 Evaluation of univariate updates

Univar Eigen learns a covariance matrix like Adaptive Metropolis (Haario et al., 2001)

and takes steps of the type used by slice sampling with stepping out (Neal, 2003, §4).

Figure 3.1 shows the results of a comparison of these three methods using the four

test distributions described in section 2.2.2 using the plots described in section 2.3. In

addition, it includes a variation, “Cheat Univar Eigen,” that uses the true covariance

instead of the adaptive estimate used by Univar Eigen. The true covariance is unknown

for real problems, but including this variant distinguishes performance characteristics of

the underlying method from performance differences related to inadequate covariance

estimates. The scale tuning parameter for Univar Eigen and Cheat Univar Eigen is the

initial slice approximation length for the non-adaptive steps, w; β is set to 0.05 for both.

Simulations generated by Univar Eigen are nonstationary, so autocorrelation-time based

cost measures are not strictly appropriate. However, these simulations are long enough

that the simulations are approximately stationary. It can be seen in figure 3.1 that Univar

Eigen and Cheat Univar Eigen perform similarly in all the chains simulated, suggesting

that the covariance estimator used by Univar Eigen is adequate.

While Adaptive Metropolis sometimes has a moderate edge on Univar Eigen when

carefully tuned, Univar Eigen generally performs as well or better than either of the two

methods on which it is based. The difference is particularly striking on the German

Credit distribution. Univar Eigen and Cheat Univar Eigen perform similarly, and both

are substantially better than Adaptive Metropolis and Step-out Slice. This shows that

both the ability to take large steps using the learned global structure and the ability to
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Figure 3.1: A comparison of Univar Eigen to two other MCMC methods using simulations

of length 50,000. Question marks indicate simulations that were aborted or trapped in a

single state. See section 3.2.2 for discussion.
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take small steps when the local structure differs from the global structure contribute to

fast mixing.

Because of the promise shown by Univar Eigen in this section, it is included in a

broader comparison of methods in section 3.6.

3.2.3 Multivariate updates with oblique hyperrectangles

Section 3.2.1 extends slice sampling with stepping out to use a coordinate system based

on the covariance of the target distribution; this section similarly extends the hyper-

rectangle method (Neal, 2003, §5.1), which takes multivariate steps in a slice using a

hyperrectangular initial slice approximation.

In each iteration of Neal’s hyperrectangle method, an axis-aligned hypercube approxi-

mating the slice is placed randomly so that the distribution of the current state is uniform

relative to the hypercube. A proposal is then drawn from the hypercube; if it is inside the

slice, it is accepted. Since the distributions of the current state and the proposal are the

same relative to the hypercube, the stationary distribution is invariant. If the proposal

is not in the slice, just as a segment is shrunk towards the current state when sampling

with univariate updates, the hypercube is divided in two by the hyperplane through the

rejected proposal and normal to the coordinate direction in which the gradient of the log

density is largest, and the section of the hypercube not containing the current state is

removed from the approximation. Then, a new proposal is drawn, a new section of the

hyperrectangle is removed if this proposal is not in the slice, and so on until a proposal

is inside the slice. If gradients are not available, instead of only shrinking one coordi-

nate, every coordinate is shrunk towards the initial state, leaving the rejected proposal

as a corner of the updated hyperrectangular slice approximation. (Figure 3.3 on page 45

includes a graphical example of these updates.)

If gradients are available, efficient sampling is possible on distributions whose compo-

nents have greatly unequal variances but little correlation. If gradients are not available,



3.2. Methods based on eigenvector decomposition 39

efficient sampling is only possible on distributions whose coordinates are uncorrelated

and have similar variances because a proposal will only be accepted when the slice ap-

proximation has edge sizes comparable to the least variable coordinate.

Here, I present an alternative hyperrectangle method that uses an approach similar

to that of section 3.2.1. It orients the initial hyperrectangle so that its edges are parallel

to the eigenvectors of the sample covariance and have lengths proportional to the square

roots of the eigenvalues of the sample covariance. Since the approximation is hopefully

properly scaled and aligned with the contours, when a proposal is rejected, it is reasonable

to assume that the estimate is too large in all directions and that gradients are not

necessary to pick a direction in which to shrink the approximation.

This method has two tuning parameters, β and w, similar to the parameters with the

same names in section 3.2.1. An iteration begins by creating an initial hyperrectangular

slice approximation. With probability β, the initial hyperrectangle is a unit hypercube

with edge length 5w and axes aligned with the coordinate axes. Otherwise, axis i (for

i ∈ (1, . . . , p)) has length 5
√
λi and orientation vi. In either case, the hyperrectangle

is positioned so that the offset of the current state, Xn, from a corner of the initial

hyperrectangle has a uniform distribution.

A proposal is drawn uniformly from the hyperrectangle, and the log density at the

proposal is evaluated. If the log density is greater than or equal to the slice level, the

proposal is accepted. Otherwise, it is rejected, and the hyperrectangle is shrunk without

changing the orientation of its axes so that the rejected proposal is a corner of the

hyperrectangular slice approximation and the current state remains in the interior of

the hyperrectangle. Proposals are drawn, and the slice approximation is shrunk, until

a proposal is accepted. This procedure is identical to the procedure described by Neal

except in the way that the initial hyperrectangle is chosen.

Empirically, the performance of the method does not depend much on the propor-

tionality constant for the edge lengths, five. If the constant is at least one, the slice
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approximation will be larger than a typical slice, and the hyperrectangle volume will

decrease exponentially as proposals are rejected. So, excessively large values degrade

performance only slightly, much like excessively large tuning parameters degrade the

performance of the standard hyperrectangle method only slightly, as seen in figure 3.2

on page 41.

3.2.4 Evaluation of hyperrectangle updates

Just as Univar Eigen is a fusion of slice sampling with stepping out and Adaptive

Metropolis, the oblique hyperrectangle method is a fusion of the hyperrectangle method

and Adaptive Metropolis. So, this section compares the oblique hyperrectangle method

to Adaptive Metropolis and the hyperrectangle method, both with and without gra-

dients. As with Univar Eigen, a “cheat” version of the sampler that takes the target

distribution’s covariance as a given instead of learning it from prior states is included for

comparison.

The results of this comparison are shown in figure 3.2, a plot of the cost of an uncor-

related observation against a scale tuning parameter for each sampler and distribution.

For the hyperrectangle methods, the scale tuning parameter is w, the edge length of the

initial hypercube. The oblique hyperrectangle methods perform similarly to or better

than Adaptive Metropolis and the standard hyperrectangle variants at their best for

nearly all values of w. That is, the performance of the oblique hyperrectangle method is

similar to the reference methods when all methods’ tuning parameters are well-chosen,

but outperforms the others when they are not.

As with Univar Eigen, the performance of Cheat Oblique Hyperrect and that of

Oblique Hyperrect are similar, though an exception occurs on German Credit. Its di-

mension is 25, more than the other three, so the covariance has 325 free parameters.

They are not estimated well by either Oblique Hyperrect or Adaptive Metropolis by a

simulation of length 50,000. A risk of using MCMC methods that converge but are not
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Figure 3.2: A comparison of oblique hyperrectangle slice sampling to Adaptive Metropolis

and the two standard variants of the hyperrectangle method using simulations of length

50,000. Question marks are plotted for simulations that were aborted or trapped in a

single state. See section 3.2.4 for discussion.
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stationary is that diagnostic summaries are dependent on the simulation length.

Like Univar Eigen, Oblique Hyperrect shows potential and is included in a broader

comparison of methods in section 3.6.

3.2.5 Convergence of the oblique hyperrectangle method

In this section, I use a theorem of Roberts and Rosenthal to show that the distribution of

the observations generated by the oblique hyperrectangle method converges to the target

distribution in the total variation norm as a consequence of its diminishing adaptation

when it is used to sample from distributions with connected, compact support. The

support of the target distribution must be connected because otherwise, even the non-

adaptive hyperrectangle method might not converge to the target distribution.

Roberts and Rosenthal (2007) show that several sets of conditions are sufficient for an

adaptive MCMC method to converge to the target distribution. All of these conditions

include “diminishing adaptation,” defined as:

sup
x
‖PΓn+1(x, ·)− PΓn(x, ·)‖TV → 0 in probability as n→∞ (3.4)

Here, PΓn(x, ·) is the transition density at iteration n with “adaptation state” Γn and

current state x. The norm, ‖ · ‖TV, is the total variation norm. For the oblique hyper-

rectangle method, the adaptation state is the sample covariance, which encapsulates all

non-constant aspects of the transition density at a particular iteration.

When computing the sample covariance matrix, each iteration has weight 1/n. Since

oblique hyperrectangle transitions are bounded by the initial hyperrectangle, the most

extreme transition can only move a finite distance from the center of the hyperrectangle.

The relative change in the ith eigenvalue between steps n and n + 1 is O(1/n) since

the maximum step size in the direction of the corresponding eigenvector is proportional

to the square root of that eigenvalue. The same holds for updates to the eigenvectors:

the eigenvectors of Γn+1 are a mixture of the eigenvectors of Γn and the observation at
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iteration n, where the total weight given to the observation at iteration n over all the

directions is O(1/n). Since each eigenvalue can change by O(1/n) and each eigenvec-

tor can rotate by an angle O(1/n), each initial hyperrectangle diameter can change by

O
(
1/
√
n
)
. Conditioning on the random draw that positions the initial hyperrectangles

with respect to the current state, the ratio of the volume occupied by the symmetric

difference between the hyperrectangles for states Γn and Γn+1 to the volume of either

hyperrectangle is O
(
1/
√
n
)
. Therefore, the probability of a proposal falling inside one

hyperrectangle and not another is O
(
1/
√
n
)
; the difference in densities for proposals

falling inside both is also O
(
1/
√
n
)
. Consequently, the total variation distance between

PΓn(x, ·) and PΓn+1(x, ·) is O
(
1/
√
n
)
, where the proportionality constant does not depend

on x, so the diminishing adaptation condition is satisfied. Golub and Van Loan (1996,

pp. 395–397) discuss changes in eigendecompositions after rank-one updates in greater

detail.

If the target distribution has compact, connected support, the non-adaptive hyper-

rectangle method converges to the target distribution for any initial state and any full-

rank initial hyperrectangle orientation and dimensions. Let the space of adaptive states

be the set of all positive definite covariance matrices with all eigenvalues no smaller than

some positive lower bound. Because the maximum eigenvalue of the covariance matrices

is limited by the the boundedness of the support of the target distribution, this space

is compact with respect to the Euclidean norm. The probability mass in the difference

between two full-rank initial hyperrectangles in a neighborhood of γ will shrink to zero

as the size of the neighborhood approaches zero, so the mapping (x, γ) 7→ Pγ(x, ·) is con-

tinuous with respect to the total variation norm. By lemma 1 of Roberts and Rosenthal

(2007), this implies that the mapping (x, γ) 7→ ‖P n
γ (x, ·) − f(·)‖TV is also continuous.

This continuity, along with diminishing adaptation and the convergence of P n
γ (x, ·) to

f(·) for each individual x and γ, imply, by corollary 3 of Roberts and Rosenthal (2007),

that the adaptive hyperrectangle method converges to the target distribution in total
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variation.

An immediate consequence is that the expectation of all bounded functions of state of

the Markov chain converge to their expectations with respect to the target distribution.

Since this applies at every point in the chain, the sample mean of a bounded function

of state is an asymptotically unbiased estimator of the expectation of that function with

respect to the target distribution.

The argument of this section cannot be directly used to show that Univar Eigen

converges to the target distribution. Univar Eigen only takes steps along eigenvectors,

so a proof of convergence would need to consider multiple steps along eigenvectors as a

group to demonstrate diminishing adaptation.

3.3 Irregular polyhedral slice approximations

Section 3.2.3 extended the hyperrectangle method by allowing the orientation of the

hyperrectangular slice approximation to depend adaptively on global state. This section

describes an alternative that, instead of reorienting the initial hyperrectangle, allows it

to deform into non-hyperrectangular polyhedra. Assume the gradient of the log density

is available. When a proposal is rejected, instead of dividing the slice approximation by a

hyperplane normal to the gradient’s largest coordinate and updating the approximation

to be the portion of the approximation on the same side as the current point, divide the

approximation by a hyperplane normal to the gradient itself. The approximation can

then shrink quickly to approximate any convex shape. This technique is illustrated for a

two-dimensional slice in figure 3.3.

Unfortunately, after the first rejection, the slice approximation is irregular, and sam-

pling uniformly from an irregular polyhedron is difficult. One approach to this sub-

problem is rejection sampling. It is straightforward to compute the minimum bounding

hyperrectangle for a convex body defined by a set of hyperplanes. Unfortunately, since the
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hyperrectangle, with gradient

convex polyhedron

Figure 3.3: Three different ways to update a hyperrectangular slice approximation. The

true slice is shown as an ellipse, the approximation is shown as a polygon, and the initial

state is marked x0. (Upper left) A hyperrectangular approximation of the slice is drawn,

and a proposal, x1, is drawn from the approximation. It is outside the slice, so it is

rejected. The gradient at x1 is shown as a dashed arrow; the hyperplane normal to the

gradient is shown as a dashed line. (Upper right) In the standard hyperrectangle method

without gradients, the approximation is shrunk so that x1 is a corner of the updated

approximation. (Lower right) In the standard hyperrectangle method with gradients,

the approximation is shrunk toward x0 in the direction where the gradient at x1 is

the largest, so that x1 lies on a face of the updated approximation. (Lower left) If

approximations can be convex polyhedra, a new face normal to the gradient at x1 is

added to the approximation.
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motivation for allowing polyhedral slice approximations is that hyperrectangles are not

a tight enough approximation to a slice, this method is infeasible—in high-dimensional

spaces, vanishingly few candidate proposals drawn from a bounding hyperrectangle are

inside the polyhedral slice approximation.

Alternatively, instead of rejection sampling from a bounding hyperrectangle, one could

sample from a bounding ellipsoid with axes not aligned with the coordinate axes. Finding

a minimum-volume ellipsoid containing a convex polyhedron is a convex optimization

problem and can be expressed as a semidefinite program (Boyd and Vandenberghe, 2004,

pp. 169–170). The fastest known way to solve such problems is the barrier method

(Boyd and Vandenberghe, 2004, pp. 261–278), which must estimate O(p2) parameters

each iteration of the Markov chain, and so is prohibitively slow.

A simpler approach is to update the bounding ellipsoid from the previous proposal

instead of finding a new one each time. Given a bounding ellipsoid for proposal k and

a hyperplane normal to the gradient at the rejected proposal, the bounding ellipsoid for

the slice approximation for proposal k + 1 would be the minimum volume ellipsoid that

contains all of the points of the ellipsoid on the same side of the hyperplane as the current

point. This is a well-studied problem; it is at the heart of the ellipsoid method for linear

programming (Grötschel et al., 1993, ch. 3). Unfortunately, the available solutions are not

satisfactory. The expected volume reduction in the ellipsoid is exponentially decreasing

in its dimension. Even though the polyhedron that the ellipsoid approximates shrinks

in volume by a factor independent of dimension on a typical iteration, the bounding

ellipsoid itself shrinks much more slowly. Rejection sampling based on the ellipsoidal

approximation takes unacceptably long if the target distribution has more than a few

dimensions (empirically, around four).

The fundamental problem with this approach is that arbitrarily shaped convex polyhe-

dra are difficult to sample from. Sections 3.4 and 3.5 address this issue by approximating

the slice with a Gaussian distribution instead of a uniform distribution. Since the family
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of Gaussian distributions is conjugate to itself, the proposal distribution conditional on

rejected points remains simple. Yet, it is still possible to derive such a slice approximation

entirely from information obtained in a single MCMC iteration, as with the polyhedral

method described in this section.

3.4 Covariance matching

Sections 3.2 and 3.3 describe methods for taking multivariate steps using uniform pro-

posal distributions. This section takes an alternate approach, using Gaussian proposal

distributions in the crumb framework (Neal, 2003, §5.2). Each sampler iteration in the

crumb framework, a crumb is drawn, and a proposal is drawn from the distribution of

initial states that could have generated that crumb. If the proposal is in the slice, it

is accepted. Otherwise, a second crumb is drawn, a second proposal is drawn from the

distribution of possible initial states conditional on having drawn both crumbs, and so

on until a proposal is accepted.

Crumb distributions may depend on, amongst other things, the log density and gra-

dient at rejected proposals. This section describes one way to choose the crumb dis-

tributions to reduce autocorrelation times on badly scaled distributions with correlated

parameters. The method attempts to match the proposal distribution to the local cur-

vature of the log density. It assumes that while computing the log density at a proposal,

one can compute its gradient with minimal additional cost. This is often a realistic

assumption, since the log density and its gradient are often computed from the same

intermediate values. The human effort required to implement the gradient function is

almost always more relevant.
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3.4.1 Adaptive Gaussian crumbs

Let `(·) be the log density of the target distribution, let yslice be the current slice log

density, and let S be the slice through the distribution at that level:

S = {x|`(x) ≥ yslice} (3.5)

Ideally, the proposal distribution would be a uniform distribution over S. To approxi-

mate uniform sampling over S, we draw a sequence of crumbs that produces a Gaussian

proposal distribution with the same covariance matrix as a uniform distribution over S.

Since there are no rejected proposals to adapt on when the first crumb is drawn, the

first crumb has a fixed multivariate Gaussian distribution:

c1 ∼ N(x0,W
−1
1 ) where W1 = σ−2

c I (3.6)

The standard deviation of the initial crumb, σc, is the only tuning parameter for this

method that is modified in normal use; it is reasonable to set it to a guess of the largest

marginal standard deviation of the components of the target distribution divided by the

square root of the distribution’s dimension, as with equation 4.10. Larger values degrade

performance only slightly, so it is better to err on the high side.

The distribution for x0 given c1 is a Gaussian with mean c1 and precision matrix W1,

so we draw a proposal from this distribution:

x1 ∼ N(c1,W
−1
1 ) (3.7)

If `(x1) is at least yslice, then x1 is inside S, so we accept x1 as the next state of the chain.

When a proposal, xk, is not in the slice, we choose a different precision matrix, Wk+1,

for the next crumb, so that the covariance of the next proposal will look more like that

of uniform sampling over S. After sampling k crumbs from Gaussians with mean x0 and

precision matrices (W1, . . . ,Wk), the distribution for the kth proposal (the posterior for
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x0 given the crumbs) is:

xk ∼ N(c̄k,Λ
−1
k ) (3.8)

where Λk = W1 + · · ·+Wk (3.9)

and c̄k = Λ−1
k (W1c1 + · · ·+Wkck) (3.10)

The posterior precision is the sum of the precisions of the crumbs; the posterior mean is

the sample mean of the crumbs, weighted by their precisions. If `(xk) is at least yslice, xk

is accepted as the next state. Otherwise, we must choose a covariance for the distribution

of (k + 1)th crumb, draw a new proposal, and repeat until a proposal is accepted.

3.4.2 Adapting the crumb covariance

This section describes a particular method for choosing a precision matrix, Wk+1, for the

(k + 1)th crumb, so that the covariance of the next proposal will approximate that of

uniform sampling over S. Specifically, it attempts to find Wk+1 so that the (k + 1)th

proposal distribution has the same conditional variance as uniform sampling from S in

the direction of the gradient of `(·) at xk. This gradient is a good guess at the direction in

which the proposal distribution is least like S; figure 3.4(a) illustrates this. With a two-

dimensional Gaussian target distribution (with correlation equal to 0.95), I drew a crumb

with σc equal to one and plotted the gradients of the log density at several points drawn

from the resulting proposal distribution. Most of these gradients point in the direction

where the spherically-symmetric proposal variance is least like the slice. Usually, in an

ill-conditioned distribution, gradients at rejected proposals do not point towards a mode,

they point towards the nearest point on the slice. (In a well-conditioned distribution, the

directions to a mode and to the nearest point on the slice will be similar.)

To compute Wk+1, we estimate the second derivative of the target distribution in

the direction of the gradient, assuming the target distribution is approximately locally

Gaussian. Consider the (approximately) parabolic cut through the log-density surface
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Figure 3.4: (a) shows contours of the target distribution as thin grey ellipses and shows

gradients at several points drawn from the first proposal distribution, a Gaussian centered

at c1. These gradients tend to point towards the slice, shown as a thick black ellipse. (b)

shows two parabolic cuts through the log-density surface in the direction of the gradient

at a rejected proposal, x1. One cut passes through x1; the other passes through the mode.

The gradient at x1 is shown as an arrow. u1 is a point on the cut through x1 defined by

equation 3.16. The two parabolas have approximately the same second derivative. The

distance between the two arms of the second parabola when the vertical coordinate is

equal to yslice is shown as a double-ended arrow, equal to d in equation 3.20.
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passing through x1 in figure 3.4(b). This cut has the equation:

˜̀
1(t) = −1

2
κt2 + βt+ γ (3.11)

t is a parameter that is zero at the rejected proposal and increases in the direction of

the gradient; κ, β, and γ are unknown constants we wish to estimate. The coefficient

−1
2

is arbitrary; this choice makes κ equal to the negative of the second derivative of

the parabola. We already had to compute `(xk) to determine whether xk was in S; we

assume that ∇`(xk) was computed simultaneously. To fix two degrees of freedom of the

parabola, we plug these quantities into equation 3.11 and its derivative with respect to

t:

`(xk) = −1

2
κ · 02 + β · 0 + γ = γ (3.12)

‖∇`(xk)‖ = −κ · 0 + β = β (3.13)

There is still one degree of freedom remaining, so we must evaluate `(·) at another point

on the parabola. We choose a point as far away from xk as ck is, hoping that this

distance is within the range where the distribution is approximately Gaussian. Let δ be

this distance:

δ = ‖xk − ck‖ (3.14)

Let g be the normalized gradient at xk:

g =
∇`(xk)
‖∇`(xk)‖

(3.15)

Then, the point uk is defined to be δ away from xk in the direction g:

uk = xk + δ · g (3.16)

In equation 3.11, uk corresponds to t = δ. We evaluate the log density at uk to fix the

parabolic cut’s third degree of freedom, and plug this into equation 3.11:

`(uk) = −1

2
κδ2 + βδ + γ (3.17)



52 Chapter 3. Samplers with multivariate steps

Solving equations 3.12, 3.13, and 3.17 for κ gives:

κ = − 2

δ2

(
`(uk)− `(xk)− ‖∇`(xk)‖ · δ

)
(3.18)

We can now use κ to approximate the conditional variance in the direction g. If the

Hessian is locally approximately constant, as it is for Gaussians, a cut through the mode

in the direction of ∇`(xk) would have the same second derivative as the cut through xk.

This second parabola, also shown in figure 3.4(b), has the equation:

˜̀
2(t) = −1

2
κt2 +M (3.19)

M is the log density at the mode. We set t = 0 at the mode, so there is no linear term.

For now, assume `(·) is unimodal and that M was computed with the conjugate gradient

method (Nocedal and Wright, 2006, ch. 5) or some other similar procedure before starting

the Markov chain. We solve equation 3.19 for the parabola’s diameter d at the level of

the current slice, yslice, shown as a doubled-ended arrow in figure 3.4(b):

d =

√
8(M − yslice)

κ
(3.20)

Since the distribution of points drawn from an ellipsoidal slice, conditional on their lying

on that particular one-dimensional cut, is uniform with length d, the conditional variance

in the direction of the gradient at xk is:

σ2
k+1 =

d2

12
=

2

3
· M − yslice

κ
(3.21)

With this variance, we can construct a crumb precision matrix that will lead to the

desired proposal precision matrix. We want to draw a crumb ck+1 so that the posterior

of x0 given the k crumbs has a variance equal to σ2
k+1 in the direction g. Equation 3.9

indicates that the precision of the proposal given these crumbs is:

Λk+1 = Λk +Wk+1 (3.22)
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If we multiply both sides of equation 3.22 by gT on the left and g on the right, the left

side is the conditional precision in the direction g.

gTΛk+1g = gT
(
Λk +Wk+1

)
g (3.23)

We would like to choose Wk+1 so that this conditional precision is σ−2
k+1, so we replace

the left hand side of equation 3.23 with that:

σ−2
k+1 = gT

(
Λk +Wk+1

)
g (3.24)

As will be discussed in section 3.4.4, computation will be particularly easy if we choose

Wk+1 to be a scaled copy of Λk with a rank-one update, so we choose Wk+1 to be of the

form:

Wk+1 = θΛk + αggT (3.25)

α and θ are unknown scalars. θ controls how fast the precision as a whole increases. If

we would like the variance in directions other than g to shrink by 9/10, for example,

we choose θ = 1/9. Since θ is constant, there will be exponentially fast convergence

of the proposal covariance in all directions, which allows quick recovery from overly

diffuse initial crumb distributions. For this method, θ is not a critical choice. Setting

θ close to zero causes excessively slow convergence when σc is large relative to the slice

without corresponding benefits when it is small, but a broad range of values larger than

zero give similar performance. I generally set θ to one. Substituting equation 3.25 into

equation 3.24 gives:

σ−2
k+1 = gT

(
Λk + θΛk + αggT

)
g (3.26)

Noting that gTg = 1, we solve for α, obtaining:

α = max{σ−2
k+1 − (1 + θ)gTΛkg, 0} (3.27)

α is restricted to be positive to guarantee positive definiteness of the crumb covariance.

(By choosing θ simultaneously, we could perhaps encounter this restriction less frequently,
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a possibility I have not explored.) Once we know α, we then compute Wk+1 using

equation 3.25.

The resulting crumb distribution is:

ck+1 ∼ N(x0,W
−1
k+1) (3.28)

After drawing such a crumb, we draw a proposal according to equations 3.8 to 3.10,

accepting or rejecting depending on whether `(xk+1) ≥ yslice, drawing more crumbs and

adapting until a proposal is accepted.

3.4.3 Estimating the density at the mode

We now modify the covariance matching method to remove the restriction that the target

distribution be unimodal and remove the requirement that we precompute the log density

at the mode. Estimating M each time we update x0 instead of precomputing it allows

M to take on values appropriate to local modes. Since the proposal distribution only

approximates the slice even in the best of circumstances, it is not essential that the

estimate of M be particularly good.

To estimate M , we initialize M to yslice before drawing the first crumb. Then, every

time we fit the parabola described by equation 3.11, we update M to be the maximum

of the current value of M and the estimated peak of the parabola. As more crumbs

are drawn, M becomes a better estimate of the local maximum. We could also use the

values of the log density at rejected proposals and at the {uk} to bound M , but if the

log density is locally concave, the log densities at the peaks of the parabola will always

be larger than these values.

3.4.4 Efficient computation of the crumb covariance

This section describes a method for using Cholesky factors of precision matrices to make

implementation of the covariance matching method of section 3.4.2 efficient. If imple-
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mented naively, the method of section 3.4.2 would use O(p3) operations when drawing a

proposal with equation 3.8, a cost we would like to avoid. One way is to represent Wk

and Λk by their upper-triangular Cholesky factors Fk and Rk, where F T
k Fk = Wk and

RT
kRk = Λk.

First, we must draw proposals efficiently. If z1 and z2 are p-vectors of standard normal

variates, we can replace the crumb and proposal draws of equations 3.28 and 3.8 with:

ck = x0 + F−1
k z1 (3.29)

xk = c̄k +R−1
k z2 (3.30)

Since Cholesky factors are upper-triangular, evaluation of F−1
k z1 and R−1

k z2 by backward

substitution takes O(p2) operations.

We must also update the Cholesky factors efficiently. We replace the updates of Wk

and Λk in equations 3.25 and 3.22 with:

Fk+1 = chud(
√
θRk,

√
αg) (3.31)

Rk+1 = chud(
√

1 + θRk,
√
αg) (3.32)

Here, chud(R, v) is the Cholesky factor of RTR + vvT . The function name is an abbre-

viation for “Cholesky update.” It can be computed with the LINPACK routine DCHUD,

which uses Givens rotations to compute the update in O(p2) operations (Dongarra et al.,

1979, ch. 10).

Finally, we would like to compute the proposal mean efficiently. We do this by

keeping a running sum of the un-normalized crumb mean (the parenthesized expression

in equation 3.10), which we will represent by c̄∗k. Define:

c̄∗k = W1c1 + · · ·+Wkck (3.33)

= c̄∗k−1 +Wkck (3.34)

= c̄∗k−1 + F T
k Fkck (3.35)
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Then, using forward and backward substitution, we can compute the normalized crumb

mean, c̄k, as:

c̄k = R−1
k R−Tk c̄∗k (3.36)

This way, we can compute c̄k in O(p2) operations and do not need to save all the crumbs

and crumb covariances.

With these changes, the resulting algorithm is numerically stable even with ill con-

ditioned target distributions. Each crumb and proposal draw takes O(p2) operations.

Figure 3.5 shows pseudocode for a single iteration.

3.5 Shrinking rank proposals

This section presents a second MCMC method in the crumb framework, shrinking rank. It

is simpler than covariance matching, but retains its desirable properties. Like covariance

matching, shrinking rank draws a sequence of Gaussian crumbs with mean equal to

the current state and variance chosen adaptively based on information from rejected

proposals. Instead of attempting to match the curvature of the log density along the

gradient, however, it sets the crumb variance in that direction to zero, causing subsequent

proposals to have a variance of zero in that direction as well. This technique aims to

cause proposal variances to be nonzero only in the longest direction of the slice, which is

usually the slowest mixing one.

Each iteration begins by drawing a slice level as discussed in section 3.1:

yslice = `(x0)− E where E ∼ Exponential(1) (3.37)

When the first crumb, c1, is drawn, there are no previous proposals providing information

to adapt on, so it is drawn from a spherical Gaussian distribution with marginal standard

deviation σc, where σc is a tuning parameter. The distribution for the first proposal, x1,

is also a spherical Gaussian with standard deviation σc but centered at c1 instead of x0.
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One step in the covariance matching method

initialize `, x0 ∈ Rp, σc, and θ.

M ← `(x0)

yslice ←M − draw from Exponential(1)

R← σ−1
c I

F ← σ−1
c I

c̄∗ ← 0

repeat until a proposal is accepted:

z ← draw fromNp(0, I)

c← x0 + F−1z

c̄∗ ← c̄∗ + F TFc

c̄← R−1R−T c̄∗

z ← draw fromNp(0, I)

x← c̄+R−1z

y ← `(x)

if y ≥ yslice:

accept proposal x.

end (if)

G← ∇`(x)

g ← G/‖G‖
δ ← ‖x− c‖
u← x+ δg

`u ← `(u)

κ← −2δ−2 (`u − y − δ‖G‖)
`x,u ← 1

2
‖G‖2
κ

+ y

M ← max {M, `x,u}
σ2 ← 2

3
M−yslice

κ

α← max
{

0, σ−2 − (1 + θ)gTRTRg
}

F ← chud
(√

θR,
√
αg
)

R← chud
(√

1 + θR,
√
αg
)

end (repeat)

Figure 3.5: A single iteration of the adaptive algorithm of section 3.4. The variables are

mostly the same as in the text. The k subscript is dropped since there is no need to keep

copies of the values from any but the most recent iteration. The variable `x,u indicates

the peak of the parabolic cut through x and u.
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Figure 3.6: (a) The grey lines represent the contours of a two-dimensional distribution;

the solid ellipse represents the boundary of the slice. The first crumb, c1, is drawn from

a spherical Gaussian represented by a dotted circle; a proposal, x1, is drawn from a

spherical Gaussian centered at c1, represented by a dashed circle. x1 is rejected because

it is outside the solid ellipse. (b) A second crumb, c2, is drawn from a reduced-rank

subspace, represented by a dashed line. A second proposal, x2, is drawn from the same

subspace. Since x2 is inside the solid ellipse, it is accepted.
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If `(x1) is at least yslice, then x1 is inside the slice and is accepted. Up to this point, the

method is identical to covariance matching and Nonadaptive Crumb.

If x1 is outside the slice, we can use the gradient of the log density at x1 to determine

a distribution for c2 that leads to a distribution for x2 that more closely resembles the

shape of the slice itself. In particular, we consider setting the variance of the distribution

of c2 to be zero in the direction of the gradient, since the gradients are orthogonal to the

contours of the log density. If the contour defined by the log density at the proposal and

the contour defined by the slice level are the same shape, this will result in a crumb, and

therefore a proposal, being drawn from a distribution oriented along the long directions

of the slice. This procedure is illustrated in figure 3.6.

The nullspace of the subspace the next crumb is to be drawn from is represented

by J , a matrix with orthogonal, unit-length columns. Let g∗ be the projection of the

gradient of the log density at a rejected proposal into the nullspace of J . When g∗ makes

a large angle with the gradient, it does not make sense to adapt based on it, because

this subspace is already nearly orthogonal to the gradient. When the angle is small, we

extend J by appending g∗/‖g∗‖ to it as a new column. Here, we consider an angle to be

large if it is greater than 60◦, but the exact threshold is not crucial.

Formally, define P (J, v) to be the projection of vector v into the nullspace of the

columns of J (so that it returns vectors in the space that crumbs and proposals are

drawn from):

P (J, v) =


v − JJTv if J has at least one column

v if J has no columns

(3.38)

We let g∗ be the projection of the gradient at the proposal orthogonal to the columns of

J :

g∗ = P (J,∇`(xk)) (3.39)
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Then we update J if

g∗T∇`(xk)
‖g∗‖ ‖∇`(xk)‖

> cos 60◦ (3.40)

and the nullspace of J is not one dimensional. This update to J is:

J ←
[
J

g∗

‖g∗‖

]
(3.41)

To ensure a proposal is accepted in a reasonable number of iterations, if we do not

update J for a particular crumb, we scale down σc by a parameter, θ, commonly chosen

to be 0.95. Write the standard deviation for the kth crumb as σc(k). If we never updated

J , then σc(k) would equal θk−1σc. Since we only change one of J or the standard deviation

each step, σc(k) does not fall this fast. If the standard deviation were updated every step,

it would fall too fast in high-dimensional spaces where many updates to J are required

before the proposal distribution is reasonable. As a further refinement, we down-scale

σc(k) by an additional factor of 0.1 when the density at a proposal is zero. Since the usual

form of adaptation is not possible in this case, this scaling results in significantly fewer

crumbs and proposals on distributions with bounded support.

After drawing the kth crumb the mean of the distribution for the next proposal is:

x0 + µx = x0 + P

(
J,

σ−2
c(1)(c1 − x0) + · · ·+ σ−2

c(k)(ck − x0)

σ−2
c(1) + · · ·+ σ−2

c(k)

)
(3.42)

The mean of the proposal distribution is computed as an offset (µx) to x0, but any point

in the nullspace of the columns of J would generate the same result. In that space, the

offset of the proposal mean is the mean of the offsets of the crumbs weighted by their

precisions. The variance of the proposals in that space is the inverse of the sum of the

precisions of the crumbs:

σ2
x =

(
σ−2
c(1) + · · ·+ σ−2

c(k)

)−1

(3.43)

Pseudocode for one shrinking rank update is shown in figure 3.7. These updates can

be combined with others, as in section 4.3.
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One step in the shrinking-rank method

initialize x0 ∈ Rp, σc ∈ R+, θ ∈ R+, and `(·) : Rp 7→ R.

yslice ← `(x0)− draw from Exponential(1)

k ← 0

σc(1) ← σc
J ← [ ]

repeat until a proposal is accepted:

k ← k + 1

ck ← P
(
J, draw fromNp(x0, σ

2
c(k)I)

)
σ2
x ←

(
σ−2
c(1) + · · ·+ σ−2

c(k)

)−1

µx ← σ2
x

(
σ−2
c(1)(c1 − x0) + · · ·+ σ−2

c(k)(ck − x0)
)

xk ← x0 + P (J, draw fromNp(µx, σxI))

if `(xk) ≥ yslice:

accept proposal xk.

end (if)

g∗ ← P (J,∇`(xk))
if `(xk) is not finite:

σc(k+1) ← 0.1 · θ · σc(k)

else if J has fewer than p− 1 columns and g∗T∇`(xk) > cos(60◦) · ‖g∗‖ ‖∇`(xk)‖:
J ← [ J g∗/‖g∗‖ ]

σc(k+1) ← σc(k)

else

σc(k+1) ← θ · σc(k)

end (if)

end (repeat)

Figure 3.7: This pseudocode represents a single transition in the shrinking rank method

with log density function `(·), starting from state x0 ∈ Rp, and with tuning parameters

σc and θ. The projection function, P , is defined in equation 3.38.
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3.6 Evaluation of the proposed methods

Sections 3.2, 3.4, and 3.5 propose new MCMC methods in the hope that they will outper-

form existing methods. This section uses the graphical technique described in section 2.3

to compare these methods to each other, to Adaptive Metropolis, and to slice sampling

with stepping out.

Adaptive Metropolis (Haario et al., 2001) is relevant because the methods of sec-

tion 3.2 are inspired by it and it performs well on low dimensional targets. Slice sampling

with stepping out (Neal, 2003, §4), the other component of the univariate method de-

scribed in section 3.2.1, is a robust alternative to Metropolis used when Gibbs sampling

to update components of distributions whose full conditional is not available.

3.6.1 Comparison on reference distributions

A comparison of these methods on the distributions described in section 2.2.2 is shown

in figure 3.8. On the first distribution, GP (unlogged), no sampler performs well. It is

unimodal and only three-dimensional, but its components are right-skewed and highly

correlated with each other. Estimates of the mean are dominated by extreme values

and therefore slow to converge. While some of the methods compared can perform well

on highly correlated parameters, they are less efficient when the target distribution has

heavy tails.

The next distribution, N4(ρ = 0.999), is a four-dimensional Gaussian. Its curvature

is constant, so methods that make an attempt to understand the local structure up to

the first two moments—all except Step-out Slice—perform well when their scale param-

eters are large enough to take reasonably-sized steps. Shrinking Rank and Covariance

Matching are effectively a random walk when their tuning parameters are too small. As

a result, as described in section 2.3.2, their cost measures show a slope of −2 until they

reach approximately ten, a small factor off the square root of the largest eigenvalue of
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Figure 3.8: A comparison of MCMC methods described in this document to two ref-

erence methods using simulations of length 80,000. Section 2.2.2 describes the target

distributions. Section 3.6 discusses the results.
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the covariance matrix.

The third distribution, Eight Schools, is well conditioned and is not substantially

skewed. As a result, every sampler tested performs similarly on it when their tuning

parameters are in a reasonable range. As before, the slice samplers that do not do

global adaptation (Shrinking Rank, Covariance Matching, and Step-out Slice) perform

well for sufficiently large tuning parameters, and Adaptive Metropolis performs well for

sufficiently small ones. Globally adaptive slice samplers (Oblique Hyperrect and Univar

Eigen) perform well for all tuning parameters tested, assuming they are run long enough

to learn the covariance matrix.

The fourth distribution, German Credit, is 25-dimensional, so its covariance has 325

degrees of freedom. Shrinking Rank, Oblique Hyperrect, and Univar Eigen all perform

reasonably well on it, but the adaptation required makes their performance more idiosyn-

cratic on German Credit than on other distributions.

3.6.2 Comparison on a latent AR process

This section extends the comparison of section 3.6 by comparing the same six sam-

plers on a family of latent jump-autoregressive processes. In this model, one observes

a sequence of N Bernoulli random variables {Yi}Ni=1 such that Yi = 1 with probability

1/(1 + exp(−Xi)). The {Xi} are themselves generated by a mean-zero autoregressive

process with an autocorrelation of α, a probability ρ of a jump to an uncorrelated state,

and a variance σ2. The parameters σ2, α, and ρ are transformed and given Student-t
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Figure 3.9: A realization of a latent AR process with α = 0.95, ρ = 0.04, and σ2 = 22

as described in section 3.6.2. The circles correspond to the {Yi}, and the thick line

corresponds to the latent {Xi} that generated the {Yi}. Jumps in the latent process are

shown as gaps in the line. In this plot, N = 100 and ρ = 0.04, so the expected number of

jumps is N · ρ = 4, which happens to coincide with the actual number. This realization

is also used in the N = 100 row of figure 3.10. The thin colored lines are draws from the

posterior distribution of {Xi} given {Yi}. Jumps are not explicitly part of the model, so

those two lines are not shown with gaps.
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priors with four degrees of freedom, loosely following Gelman et al. (2008). Formally:

Yi|Xi ∼ Bernoulli

(
1

1 + exp(−Xi)

)
for i = 1, . . . , N (3.44)

Xi|Xi−1, α, ρ, σ
2 ∼


N (αXi−1, (1− α2)σ2) with prob. 1− ρ

N (0, σ2) with prob. ρ or when i = 1

(3.45)

log

(
α

1− α

)
∼ t4 (3.46)

log

(
ρ

1− ρ

)
∼ t4 (3.47)

log σ2 ∼ t4 (3.48)

We observe the {Yi} and use an MCMC sampler to simulate {Xi}, α, ρ, and σ2. An

example of a single realization of such a process is shown in figure 3.9 along with two

draws of {Xi} given just the same {Yi}. This distribution is distinguished from previous

distributions in that the correlation between nearby latent variables depends on ρ, α, and

σ2, so global Gaussian approximations are not appropriate. Unlike real-data examples,

we can realize {Yi} automatically for a range of N to investigate scaling behavior of

samplers.

A comparison of six samplers using latent AR processes of lengths 5, 11, 22, 47, 100,

200, and 400 is shown in figure 3.10. Each process was generated with α = 0.95 and

σ2 = 22. The jump probability ρ was chosen so that N · ρ = 4, resulting in an expected

number of jumps of four for all process lengths. For processes of length 200 and 400,

some simulations were not run because they were too slow, particularly those of Adaptive

Metropolis.

The most conspicuous pattern is that the tuning parameters tend not to affect the

efficiency of sampling much. It is therefore clearer to compare the efficiency of the most

efficient simulation in each cell; the results of this comparison are shown in figure 3.11.

(The plot is not substantially different if the least efficient simulations are chosen instead.)

Shrinking Rank and Cov. Matching outperform the other samplers for longer processes.
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Figure 3.10: A comparison of MCMC methods on the latent AR process described in

section 3.6.2. Each row of plots corresponds to a set of simulations with the specified

latent process length, N . Including the hyperparameters, the dimension of the target

distribution is N + 3.
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Figure 3.11: A reduced-dimension representation of figure 3.10 showing how performance

scales with increasing N . Each plot symbol represents the best-performing simulation

for a particular dimension and sampler. See section 3.6.2 for discussion.

Their costs increase more slowly than linearly—about as well as can be hoped for, as

discussed in section 4.2. The globally adaptive samplers, Oblique Hyperrect, Univar

Eigen, and Adaptive Metropolis, do not fare as well as they do in section 3.6, likely due

to the dependence of the correlation structure on the state of the chain.



Chapter 4

Scaling and radial steps

If a random variable X has a log density function `(·), then `(X) is a scalar random

variable. For many p-dimensional probability distributions, this random variable has

a standard deviation proportional to
√
p (Roberts and Rosenthal, 2002; Neal, 2003,

pp. 758–760). Multivariate slice sampler updates change the log density by at most

O(1) each iteration using the exponential draws of section 3.1, so they take at least O(p)

iterations to reach an independent state. (The updates of random-walk Metropolis work

differently but scale similarly.) This chapter explores this scaling behavior and proposes

methods to improve it. First, it describes the scaling of simple and idealized slice sam-

plers to establish a baseline and to identify proper tuning parameters. Then, it extends

the comparison to more realistic distributions and shows how the scaling of practical

methods can be improved with radial steps toward or away from a local mode.

4.1 Optimal tuning of Gaussian crumbs

4.1.1 Scaling on slices of known radius

A representative example of a slice sampler that takes multivariate steps is slice sampling

with nonadaptive Gaussian crumbs (Neal, 2003, §5.2), on which the covariance matching

69
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Figure 4.1: Distance squared traveled per crumb-proposal pair on a unit p-ball slice as a

function of σc and θ, with each cell representing a value of p. Varying θ has little effect,

so the lines for each value overlap. See section 4.1.1 for discussion.
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method of section 3.4 and the shrinking rank method of section 3.5 are based. The

method draws crumbs from a sequence of Gaussians centered at the current state, drawing

proposals from the posterior distribution for the current state given the crumbs. While a

method in the crumb framework may adapt the crumb distribution based on log densities

at rejected proposals (amongst other possibilities) as in sections 3.4 and 3.5, this section

focuses on the non-adaptive case where the crumb distribution depends only on how

many crumbs have been drawn.

With non-adaptive Gaussian crumbs, there are two free parameters: the standard

deviation of the distribution of the first crumb (σc) and the rate with which the standard

deviation of successive crumbs falls (θ). This section describes an experiment intended

to identify reasonable values for these parameters when the shape and scale of the slice

is known. Suppose the slice from which we want to draw an update is a p-ball of known

radius R, but we do not know its location. Given an initial state x0, we would like use the

Gaussian crumb method to draw a new point from the slice. To do this, for k = 1, 2, . . .,

we draw crumb k:

ck ∼ Np

(
x0, σ

2
(k)I
)

(4.1)

and then draw proposal k from the posterior distribution of x0 given the sequence of

crumbs, {c1, . . . , ck}:

xk ∼ Np

(
c̄k,Λ

−1
k

)
(4.2)

where: Λk =
(
σ−2

(1) + · · ·+ σ−2
(k)

)
I (4.3)

and: c̄k = Λ−1
k

(
σ−2

(1)c1 + · · ·+ σ−2
(k)ck

)
(4.4)

If x0 is near the edge of the slice, a larger number of proposals will be rejected before one

is accepted than if x0 were in the interior of the slice. So, the optimal crumb standard

deviation depends on x0. Since x0 is unknown (from the perspective of proposals), we

start with a large σ(1) and decrease it quickly so that the elements of the proposal variance,

Λ−1
k , decrease exponentially rather than linearly in terms of k as would happen if the
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crumb standard deviation were constant.

Take the standard deviation of the kth crumb to be of the form:

σ(k) = σcθ
k−1R (4.5)

Both σc and θ can depend arbitrarily on p. For this experiment, I fix the slice radius, R,

to one. The method is scale invariant, so by making the standard deviation proportional

to the slice radius, the results generalize to any slice known to be a p-ball.

When p is larger than two or three, each individual step is small relative to the scale

of the distribution because most of the mass of a p-ball is very close to its surface. As a

result, the sequence of states is approximately a random walk. In r steps, a random walk

travels O(
√
r) distance, so the correlation between pairs of states of a random walk is

minimized by maximizing the expected squared distance of an individual step (Pasarica

and Gelman, 2010, §1.2). To determine the σc and θ that lead to the highest average

squared distance traveled per log density evaluation (of which there is one per crumb-

proposal pair), I simulated 5,000 MCMC iterations for a range of θ, σc, and p. The

results of this experiment are plotted in figure 4.1.

In this experiment and in one that explored θ ranging from 0.01 to 10, the performance

does not appear to depend much on θ, as long as it is less than one. Choosing θ to be

exactly one leads to qualitatively worse performance, though 0.99 does not. Therefore, I

am comfortable fixing θ to be 0.95 for the experiments in this section.

Next, to find the σc with the best squared distance traveled per crumb as a function

of p with R fixed at one, I fit the following linear model to the optimal σc for each p:

log σc = β0 + β1 log p+ ε (4.6)

For dimensions greater than two, the fit is quite good. A 95% confidence interval for β1,

the exponent on p, is (−1.01,−0.94) with a regression R-squared of 0.997. To simplify,

I round β̂1 to −1, yielding the following expression for the optimal σc:

σc =
2.6

p
(4.7)
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Using equation 4.7, we choose the standard deviation of the kth crumb to be:

σ(k) = 2.6 · 0.95k−1 · R
p

(4.8)

4.1.2 Scaling on slices of χp radius

The previous section established optimal tuning parameters for slice sampling with Gaus-

sian crumbs when we know that the slice is a p-ball with radius R. This may not be

practical. But, it is not unreasonable to assume we know, through some sort of adapta-

tion, the shape of the slice. If the slices are ellipsoids known up to a unknown scale factor

and an unknown translation, the results of section 4.1.1 apply by affine transform of the

crumb distribution. However, while we may be willing to approximate the slice with an

ellipsoid, and we can estimate the shape of such an ellipsoid using the sample covariance

(or a variant that takes into account local structure), we do not know the scale of the

slice. That is, even if we know everything there is to know about the target distribution,

since the log density may not be normalized, we cannot, in general, determine the scale

factor, R, from just the slice level and shape. This section attempts to find an optimal

σc given p but not R.

A standard p-dimensional Gaussian has log density:

`(x) = −‖x‖
2

2
+ C (4.9)

C is an unknown constant (equal to −p
2

log 2π if the distribution is normalized). Since

‖x‖2 has a χ2
p distribution, slices from this distribution are of the form ‖x‖2 < R2 for

some value of R, with the squared slice radii, R2, having a χ2
p distribution. So, to find

an optimal σc and θ, we can simulate R2 from a χ2
p distribution instead of setting R to

one to see which σc and θ lead to the best general performance.

Using this method of generating R, I repeated the experiment of section 4.1.1. The

results are shown in figure 4.2. I repeated the analysis of section 4.1.1 to obtain a

curve for the the optimal standard deviation for the kth crumb. The resulting fit is
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Figure 4.2: Distance squared traveled per crumb-proposal pair on a p-ball slice with

radius-squared distributed as χ2
p as a function of σc and θ, with each cell representing

a value of p. Varying θ has little effect for the plotted range of σc, so the lines for the

different θ overlap. See section 4.1.2 for discussion.
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also quite good: a 95% confidence interval for the optimal exponent is (−0.52,−0.42)

with a regression R-squared of 0.97. Because the optimal proposal standard deviation

for random-walk Metropolis with Gaussian proposals is proportional to p−1/2 (Roberts

et al., 1997), I suspected the same might hold for the optimal initial slice approximation

size, so I am comfortable rounding β̂1 to −1/2, giving the following model, where σ` is

the assumed-spherically-symmetric standard deviation of the target distribution:

σ(k) = 2.7 · 0.95k−1 · σ`√
p

(4.10)

Unlike equation 4.8, equation 4.10 does not depend on R, so it can be used without

knowing the normalization of the distribution. The expectation of a χ2
p random variable

is p, so equation 4.10 is nearly the same as what one obtains by taking the expectation

of equation 4.8 with respect to R. Empirically, the distance-squared traveled per crumb

when R2 is χ2
p-distributed is approximately p times larger than when R is held at one.

That is, samplers that can compute R, and therefore use equation 4.8, have step sizes

that scale similarly to samplers that cannot, and therefore use equation 4.10.

4.2 Comparisons of non-adaptive Gaussian crumb

methods

4.2.1 Comparison to ideal slice sampling

Now that we have values for the tuning parameters of the crumb method, we can compare

the crumb method to ideal slice sampling with the knowledge that any performance

difference could not be overcome by improved tuning—that differences we observe are

likely to be properties of the MCMC methods themselves. In this section, both crumb

sampling and ideal slice sampling have access to the true distribution variance. Ideal

slice sampling uses the location and slice scale as well, drawing the next state directly

from the uniform distribution over the p-ball slice. Crumb sampling does not use the



76 Chapter 4. Scaling and radial steps

target dimension

au
to

co
rr

el
at

io
n 

tim
e

1

3

10

30

100

300

log density

●

●

●
●

●

●

●

●

●

●

1 3 8 24 70 20
0

slowest coord.

●

●

●

●

●

●

●

●

●

●

1 3 8 24 70 20
0

sampler

Gaussian crumbs

● Gaussian crumbs (known R)

Ideal multivariate

Figure 4.3: Autocorrelation time of simulations of Gaussians plotted against dimension.

The left panel shows the autocorrelation time of the log density; the right shows the

autocorrelation time of the slowest-mixing coordinate of the distribution. The sloped

grey lines represent autocorrelation time being equal to dimension.

location. I include simulations that use the scale (with equation 4.8) and ones that do

not (with equation 4.10).

I simulated standard p-dimensional Gaussians for 20,000 iterations for dimensions

ranging from 1 to 200. The autocorrelation times of the slowest-mixing component and

log density are shown in figure 4.3. The autocorrelation time of individual components

is one for the ideal sampler because the states for each individual iteration are uncorre-

lated. The autocorrelation time is linear in the dimension for the crumb sampler because

the states of subsequent iterations are approximately a random walk with step size pro-

portional to 1/
√
p. However, the autocorrelation time of the log density scales linearly

for both samplers. The crumb sampler is about twice as efficient when it uses the scale

of the slice to choose σ(k), but both variations scale similarly with dimension. As with

other plots in this thesis, figure 4.3 shows the autocorrelation time of the slowest-mixing
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Figure 4.4: The scaling of evaluations per observation for the crumb slice samplers when

drawing from Gaussians of increasing dimension when using optimally chosen σc and θ.

component. By symmetry, all the components have the same autocorrelation time, so

this estimate has a slight positive bias.

To properly compare the performance of the crumb slice sampler in target distribu-

tions of different dimensions, one ought to take into account not only the autocorrelation

time but also the processor time. As a proxy for processor time, I use log-density function

evaluations, as discussed in section 2.2.3. The evaluations per iteration for the crumb

sampler are shown in figure 4.4. They do not change significantly with increasing di-

mension for either variation—the vertical scale is linear, not logarithmic. So, comparing

the two crumb variations using only autocorrelation time is reasonable. The number of

evaluations per iteration is not well-defined for ideal slice sampling.

One can see in figure 4.4 that the Gaussian crumb method takes more evaluations

per iteration on average when it knows R than when it does not because its initial slice

approximations tend to be larger. However, this is balanced by the lower autocorrelation

times seen in figure 4.3. If one were to compare the product of evaluations per iteration

and autocorrelation time, the performances of the two variations would appear even more

similar than figures 4.3 and 4.4 imply individually.
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4.2.2 Polar slice sampling

Roberts and Rosenthal (2002, §2) discuss the scalability of slice sampling in terms of

Q(y), the (p-dimensional) volume of the slice at density y. They show that if yQ′(y)

is non-increasing, autocorrelation time is bounded by a constant. They explore this

with the distribution with p-dimensional log density −‖x‖. For the log density −‖x‖,

the quantity yQ′(y) is increasing for dimensions larger than one, so it does not have

the desirable scaling properties that Roberts and Rosenthal describe. However, neither

does the Gaussian distribution. Repeating the experiments described in section 4.2.1, all

samplers performed similarly on both this distribution and Gaussian distributions.

One approach to improving the scaling of the autocorrelation time of the log density

is the polar slice sampler of Roberts and Rosenthal, which transforms the distribution to

one for which yQ′(y) is non-increasing. For example, they transform the density e−‖x‖

to ‖x‖p−1e−‖x‖. However, their method is not directly applicable to most problems. A

related alternative is to alternate steps with a standard, untransformed method, such

as the ones described in chapter 3, with polar-slice-sampler steps along the line through

the current state and the mode. These radial steps are one dimensional, so they can be

taken with univariate slice sampling with stepping-out instead of the expensive rejection

sampling Roberts and Rosenthal propose. Radial steps are invariant under the target

distribution, so if the standard method is ergodic with respect to the target distribution,

the combined method will be ergodic as well and will have a less correlated log-density

sequence than the standard method.

Pseudocode for a single combined step is shown in figure 4.5. First, a multivariate

slice sampler step is taken from xn to an intermediate state, xstd
n+1, with a method like

the crumb method of section 4.1. Then, a univariate slice sampler step is taken from

xstd
n+1 to the next state, xn+1, with a method like stepping out (Neal, 2003, §4) along the

line connecting xstd
n+1 and M , the mode of the distribution. Each such step is taken along

a line passing through M , so if `(·) were used unmodified, points close to M would be
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Pseudocode for a combined standard-radial step

E1 ← draw from Exponential(1)

ystd
n+1 ← `(xn)− E1

xstd
n+1 ← uniform invariant update of xn on {x | `(x) ≥ ystd

n+1}

E2 ← draw from Exponential(1)

yrad
n+1 ← (p− 1) log |xstd

n+1 −M |+ `(xstd
n+1)− E2

xn+1 ← uniform invariant update of xstd
n+1 on

{x′ |x′ = x+ β(x−M), β ∈ R, and (p− 1) log |x′ −M |+ `(x′) ≥ yrad
n+1}

Figure 4.5: Pseudocode for a combination of a step with a standard MCMC method and

a radial step of the polar slice sampler. M is the location of the mode. xstd
n+1 can be

drawn with any slice sampler that takes multivariate steps; xn+1 can be drawn with any

slice sampler that takes univariate steps. See section 4.2.2 for discussion.

overrepresented in the sample. The Jacobian factor of the radial transform is ‖ · ‖p−1,

so when taking radial steps, its log is added to `(·) to obtain a log density for radial

steps that holds the target distribution invariant. This transform is discussed further by

Roberts and Rosenthal (2002, §4).

To investigate whether such steps improve the efficiency of slice sampling with mul-

tivariate steps, I repeated the experiments of section 4.2.1, combining radial steps with

both the ideal slice sampler and crumb sampling. For crumb sampling, I again set

θ = 0.95 and chose σc with equation 4.10. The results are compared in figure 4.6. From

the right panel, one can see that the radial steps do not affect the autocorrelation time of

the individual components of the distribution. However, from the left panel, one can see

that the radial steps do reduce the growth in autocorrelation time from linear to constant

when alternated with either ideal slice sampling or the Gaussian crumb method. Radial

steps do require several evaluations per iteration, roughly as many as steps with Gaus-
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sian crumbs. However, the growth of the autocorrelation time with increasing dimension

dominates this cost.

4.2.3 Univariate steps

An alternative to the crumb method is slice sampling with univariate updates (Neal,

2003, §4). This section compares the previously described samplers to two variants

of slice sampling with univariate updates. The first variant, “Ideal univariate,” is an

analogue of ideal slice sampling that only moves in one dimension at a time. The second,

“Univariate,” uses Neal’s doubling method to determine the extent of the current slice.

The relative advantage of univariate updates depends on whether it is more efficient to

evaluate the log density function after changing only one coordinate than it is to evaluate

it at an arbitrary point. I will consider both the case where both costs are the same and

the case where univariate updates are a factor of p more efficient, as could be the case

when full conditional distributions are known. The more efficient variant is denoted by

“Efficient univariate.”

Figure 4.7 shows the results of this simulation. Assuming the less efficient scenario

for univariate updates, the cost measure increases linearly for univariate slice sampling

for both components of the target distribution and the log density when slice extents

cannot be computed analytically, and nearly linearly when they can be. Radial steps

(not plotted) have no effect on this scaling. Univariate steps take a step in the log

density direction p times in a sweep through the coordinates rather than once, so a single

sweep will travel O(
√
p) in the log density direction instead of O(1), even without radial

steps. Unfortunately, so many evaluations are spent updating the individual coordinates

that there is no overall efficiency improvement. So, if there is no special efficiency to

univariate updates, univariate slice sampling is comparable in performance to crumb

sampling without radial steps when we are interested in the efficiency with respect to

either the coordinates or the log density. However, if univariate updates are a factor of
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p cheaper than arbitrary updates, they have a clear advantage, scaling similarly to ideal

slice sampling with multivariate steps.

4.2.4 Discussion

The Gaussian crumb method is a prototypical slice sampler that uses the shape of a

distribution but not the location of its mode. From the experiments of section 4.2.1, it

seems that the autocorrelation time of components of a distribution sampled with this

method can scale linearly with dimension. One would need to use a method that takes

advantage of the location of the mode to allow for methods where the autocorrelation

time is roughly constant.

However, even if the location of the mode is known, making a method like the ideal

slice sampler plausible, the autocorrelation time of the log density scales linearly with

dimension. As seen in section 4.2.2, the scaling of multivariate step methods can be

improved to a constant when Gaussian crumbs or ideal slice sampling is combined with

the radial steps of the polar slice sampler. The improvements gained changing from

crumb to ideal slice sampling and from adding radial steps are independent. Switching

from crumb to ideal slice sampling improves the coordinate autocorrelation time scaling

from linear to constant, but does not affect the log density autocorrelation time scaling.

Combining crumb or ideal sampling with polar slice sampling improves the log density

autocorrelation time scaling from linear to constant, but does not affect the coordinate

autocorrelation time scaling. If the contours of the target distribution may have sub-

stantially different shapes at different log densities or if one is interested in nonlinear

functions of state, one must take care to achieve convergence in both the log density and

the coordinates.
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4.3 Practical algorithms for radial steps

Radial steps as described in section 4.2.2 are not directly useful because they require the

distribution to have a single, known mode. This section presents a version of radial steps

that relaxes these assumptions.

One could assume there is a single (but unknown) mode and locate it with a mul-

tidimensional optimization routine. Then, steps with any sampler can be alternated

with radial steps of the type described in section 4.2.2. This approach works well for

unimodal distributions. Alternatively, one could run the optimization routine each iter-

ation. Then, the sampler would always take steps toward or away from a local mode. To

maintain invariance of the stationary distribution, the sampler would also have to re-run

the optimization routine and reject a tentatively-accepted proposal whenever the opti-

mization routine does not find the same mode when starting the search at the proposal.

The method to be described in section 4.3.1 is an extension of this idea that allows for

caching of the located maxima.

4.3.1 Radial steps using a gridded state space

A multidimensional optimization each iteration will dominate the cost of the sampler.

One partial solution is to grid the state space and cache the maximum found starting

from each cell. Denote the current state by x0. To find a mode, start the optimization

routine from the center of the grid cell that the current point is in, x′0; denote the resulting

maximum by M0. The next time a mode is needed for any point in the same grid cell,

the maximum is known to be M0, and no optimization need be done. The challenge with

this approach is to identify a grid size, e, small enough for grid cells not to cover multiple

modes but large enough for caching to provide a benefit. Unfortunately, even for very

large grid sizes, the number of grid cells is exponential in the dimension unless one cell

spans the entire state space. So, caching gives the greatest benefit in low dimensional
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state spaces, when the radial steps are least necessary.

Pseudocode for a single gridded radial step is shown in figure 4.8. Subscripts of

0 represent aspects of the current state in Rp; subscripts of 1 represent aspects of a

proposal. The symbol 1p represents a p-dimensional vector of ones, so that ebx/ec +

(e/2) · 1p computes the center of the grid cell with edge length e containing the p-vector

x. The details of maximization are left out; BFGS (Nocedal and Wright, 2006, ch. 6) is a

reasonable method. Stepping out from x0 to find Rmin and Rmax is similar to the stepping

out method described by Neal (2003, §4), but instead of finding a log density less than

yslice in each direction from x0, we search for x such that (p − 1) log ‖M0 − x‖ plus the

log density is less than yslice since we are using polar slice sampling steps. The logged

Jacobian factor, (p − 1) log ‖M0 − x‖, is the same as the one described in section 4.2.2.

Rmin and Rmax are taken to be negative and positive offsets from x0; the endpoints of the

slice approximation are at x0 +Rming0 and x0 +Rmaxg0.

4.3.2 Radial steps using auxiliary variables

This section describes two more variations on radial steps. Like gridded radial steps,

they can be alternated with a standard method as demonstrated in figure 4.5. The first

such method, “Random Pole,” draws a point, c, from a spherically symmetric Gaussian

centered at the current state, x0, with standard deviation σc, a tuning parameter. It

then takes a radial step along the line connecting x0 and c, just as the previous method

takes a radial step along the line connecting x0 and M0. To hold the target distribution

invariant, we must make transitions from x0 to the next state after drawing c equally

likely as transitions from the next state to x0 after drawing c. So, we must multiply

the density for drawing c to the target density, or equivalently, add the log density for

drawing c to the log density. Because this is a radial step, we must also add the Jacobian
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Pseudocode for a gridded radial step

initialize p, e, x0, and `, where x0 ∈ Rp, e ∈ R+, and ` : Rp 7→ R.

x′0 ← e · bx0/ec+ (e/2) · 1p

M0 ← local maximum of `(·) starting search from x′0.

g0 ← (M0 − x0)/‖M0 − x0‖

E ← draw from Exponential(1)

yslice ← (p− 1) log ‖M0 − x0‖+ `(x0)− E

find Rmin and Rmax by stepping out along g0.

repeat until a proposal is accepted:

R← draw from Uniform(Rmin, Rmax)

x1 ← x0 +R · g0

x′1 ← e · bx1/ec+ (e/2) · 1p

M1 ← local maximum of `(·) starting search from x′1.

if M0 ≈M1 and (p− 1) log ‖M0 − x1‖+ `(x1) > yslice:

accept the proposal, x1.

end (if)

if R < 0:

Rmin ← R

else:

Rmax ← R

end (if)

end (repeat)

Figure 4.8: Pseudocode for a gridded radial step; see section 4.3.1 for discussion.
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term as before. The resulting log density is:

`∗(x) = (p− 1) log ‖c− x‖+ `(x)− 1

2

‖x− c‖2

σ2
c

(4.11)

The first term is the Jacobian for the radial transform, the second is the underlying log

density, and the third is the log density for drawing c from x. First, a slice level is drawn:

yslice = `∗(x0)− E, E ∼ Exponential(1) (4.12)

The slice is therefore {x | `∗(x) ≥ yslice}. Stepping out (Neal, 2003, §4) is used to find

the endpoints of the slice approximation on the line {x0 + β(c− x0) | β ∈ R}. Finally, a

univariate slice transition is performed between the endpoints, as described by Neal. This

is similar to the gridded method of section 4.3.1, except the method for finding the line

to search on is different, and the gridded method does not need a density adjustment to

account for the differing probabilities of drawing c, since every proposal that is considered

by that method uses the same local maximum.

A second auxiliary variable method, “1D Pole,” attempts to substitute a one dimen-

sional maximization for the p-dimensional maximization of section 4.3.1. It draws c as

with Random Pole and computes the gradient at c, g = ∇`(c). A parabola through c

and c+ αg, for any nonzero α, has three degrees of freedom. By fixing the log densities

at c and c+αg and the slope at c, which is ‖g‖, we can find Mc, the maximum along the

approximately parabolic cut through `(·). Then, as with Random Pole, 1D Pole takes a

radial step along the line connecting x0 and Mc. It uses the log density:

`∗∗(x) = (p− 1) log ‖Mc − x‖+ `(x)− 1

2

‖x− c‖2

σ2
c

(4.13)

Since the transition is along a line connecting x0 and Mc, the Jacobian adjustment

(the first term) must use Mc, but since Mc is determined from c, the adjustment for the

auxiliary variable (the third term) must use c. I choose α to be one somewhat arbitrarily;

the method is not sensitive to its choice on distributions with roughly concentric contours.

In addition, ‖Mc − x0‖ is restricted to be less than 100 · σc, ensuring that floating-point

roundoff does not cause all proposals to be rejected when the gradient is very steep.
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4.3.3 Evaluation on a sequence of Gaussians

This section shows how the methods of section 4.3.1 and 4.3.2 can be combined with

the covariance matching slice sampler of section 3.4 to create a sampler that mixes

efficiently with respect to both the state space and log density. Figure 4.9 compares

four samplers, one implementing the standard covariance matching method and three

where covariance matching steps were alternated with steps described in section 4.3.1

and section 4.3.2. Two variations on gridded radial steps are included: one that uses

conjugate gradient (Fletcher and Reeves, 1964) and one that uses BFGS (Nocedal and

Wright, 2006, ch. 6). The target distributions are a sequence of Gaussians, each with

marginal variances from one to one hundred with uniformly spaced logarithms. For

example, the three-dimensional distribution has marginal variances 1, 10, and 100. The

components of the test distributions are uncorrelated, but since the methods tested are

rotationally invariant except for the minor effect of grid cell alignment when using gridded

radial steps, this does not affect the results. The alignment of the grid and the mode of

the target distributions is such that even with large grid sizes, the number of grid cells

visited is still exponential in the target dimension.

The scale tuning parameter determines σc for covariance matching, σc for 1D Pole

and Random Pole, and e for Grid Cov. Match. The methods’ performance on a given

measure was not sensitive to their tuning parameters, but occasionally different tuning

parameters worked better for different cost measures, so I include two sets of plots. In

general, one need only ensure that σc be at least the same order of magnitude as the

largest marginal standard deviation. Further experiments with tuning parameters chosen

independently had results that were substantially the same as those plotted in figure 4.9.

Whether one optimizes for fast mixing of the log density or the slowest mixing co-

ordinate, the samplers perform similarly with respect to the slowest-mixing coordinates,

with costs scaling approximately quadratically with dimension. This is dominated by

increasing autocorrelation time, which grows approximately as p3/2. As discussed in sec-
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Figure 4.9: Evaluations per uncorrelated observation of variations on covariance matching

as a function of target dimension. The plots display the cost for the log density (left)

and the slowest-mixing coordinate (right). They compare the base covariance matching

method to covariance matching with the three variations on radial steps described in

sections 4.3.1 and 4.3.2. Each method was run with a variety of tuning parameters; the

best-performing simulation for each was chosen based on either the autocorrelation time

of the log density (top) or the slowest-mixing coordinate (bottom). See section 4.3.3 for

discussion.
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tion 4.2.2, this would not be better than linear in p even if the target distributions were

spherically-symmetric Gaussians. Evaluations per iteration grow approximately as p1/2;

the relation is somewhat flatter in higher dimensions as the cost of a single optimization

levels out and the elements of the crumb covariance used by covariance matching steps

become dominated by θ-induced shrinkage rather than the parabolic approximations to

the log density.

The cost to obtain an uncorrelated log density is roughly linear in the dimension for all

methods except covariance matching with gridded radial steps, for which it is constant.

The autocorrelation time for the log density in simulations that use either variant of grid-

ded radial steps is effectively one for all dimensions; the increase in cost before the curve

flattens reflects the extra evaluations spent on optimization. It seems that radial steps

must be taken towards a mode for them to have the desired affect. Similar experiments

interleaving gridded radial steps with steps from the oblique hyperrectangle method, de-

scribed in section 3.2.3, and the shrinking rank method, described in section 3.5, suggest

the scaling seen in figure 4.9 is more broadly generalizable.

In high dimensional target spaces, the mixing of coordinates in the target state space

tends to be slower than the mixing of the log density, especially when gridded radial steps

are used. One might prefer to take several steps in the target state space between single

radial steps to minimize the added cost of the radial steps while retaining their benefit.

In the experiment plotted in figure 4.9, the marginal variances are geometrically

spaced. In a supplementary experiment, I simulated several other patterns. Grid Cov.

Match performs well for any pattern. 1D Pole Cov. Match performs comparably well only

when there is at most one marginal variance larger than the smallest ones, such that a

one-dimensional search will be able to nearly attain the maximum log density from any

initial state.



4.3. Practical algorithms for radial steps 91

scale tuning parameter

ev
al

s.
 p

er
 u

nc
or

re
la

te
d 

sl
ow

es
t c

om
po

ne
nt

104

105

106

107

108

104

105

106

107

108

Cov. Matching

●
●

● ●

● ●
●

●

●

●

● ●
● ● ●

●

0.
01 0.

1 1 10 10
0

10
00

Grid Cov. Match

● ●

●
●

●

●

● ●

● ●

●

●
●

0.
01 0.

1 1 10 10
0

10
00

Random Pole Cov. Match

●

●
●

●

● ●
●

●

● ●
● ● ●

● ●
●

0.
01 0.

1 1 10 10
0

10
00

1D Pole Cov. Match

●
●

●

●

●

●

● ●

●

● ●
●

●
● ● ●

0.
01 0.

1 1 10 10
0

10
00

E
ight S

chools
G

erm
an C

redit

scale tuning parameter

ev
al

s.
 p

er
 u

nc
or

re
la

te
d 

lo
g 

de
ns

ity

102

103

104

105

106

107

102

103

104

105

106

107

Cov. Matching

●
●

●
●

● ●
●

●

● ● ● ● ● ● ● ●

0.
01 0.

1 1 10 10
0

10
00

Grid Cov. Match

●
●

●
●

●

●

● ●

●
●

●
● ●

0.
01 0.

1 1 10 10
0

10
00

Random Pole Cov. Match

●
●

●
●

● ●
●

●

● ● ● ● ● ● ● ●

0.
01 0.

1 1 10 10
0

10
00

1D Pole Cov. Match

● ●

●
●

●

●

● ●

●

●

●
● ● ● ● ●

0.
01 0.

1 1 10 10
0

10
00

E
ight S

chools
G

erm
an C

redit

Figure 4.10: Costs of running covariance matching with three radial step methods when

simulating from two regression parameter distributions. The top panel shows mixing

efficiency in the state space; the bottom panel shows mixing efficiency of the log density.

See section 4.3.4 for discussion.
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4.3.4 Evaluation on two regressions

To see whether alternating with radial steps is useful on more realistic distributions, not

just Gaussians, I ran a set of simulations on the Eight Schools and German Credit ex-

amples introduced in section 2.2.2. Figure 4.10 shows the results. As in section 4.3.3,

the scale tuning parameter determines the crumb standard deviations, initial slice ap-

proximation sizes for radial steps, and the grid edge sizes for gridded radial steps, though

the results do not change if they are varied independently. In this experiment, only

the BFGS variant of Grid Cov. Match is included. As with the previous experiment,

Random Pole Cov. Match performs similarly to standard covariance matching. 1D Pole

Cov. Match performs similarly except when precisely tuned. The initial point chosen

for the search, c, must be close enough to the current state, x0, for the gradients at c

and x0 to be similar but far enough away that radial steps can cover a non-negligible

distance. Grid Cov. Match does not depend on its tuning parameter to take large steps;

varying its tuning parameter affects the evaluations per iteration much more than the

autocorrelation time. Grid Cov. Match is generally more efficient with respect to the log

density on German Credit. Since German Credit is a higher-dimensional distribution,

and radial steps are intended to improve scaling with dimension, this is consistent with

earlier results.



Chapter 5

Conclusion

5.1 Contributions

This thesis presents three principal results. First, in chapter 2, I demonstrate a method

for comparing MCMC samplers in more depth and clarity than the dominant methods in

the literature. By using multi-panel graphics rather than tables of numbers, my method

allows researchers to see how new methods compare to established ones in a variety of

conditions, limited by processor time more than other considerations.

Second, in chapter 3, I demonstrate several new variations on slice sampling, all of

which take multivariate steps using only the log density of a target distribution or the

log density and its gradient. Methods based on the eigendecomposition of the sample

covariance matrix perform similarly to Adaptive Metropolis, sampling efficiently on dis-

tributions with highly correlated components and moderate skewness. Like Adaptive

Metropolis, they are globally adaptive, so they may not be appropriate for updating a

subset of the components of the state space. And, like Adaptive Metropolis, they cannot

be used when the target density is of a dimension where operations on the sample covari-

ance are impractical. Since slice samplers can expand and contract slice approximations in

a more straightforward way than Metropolis samplers can expand and contract proposal

93
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densities, they are less dependent on tuning. As a result, the eigendecomposition-based

methods are a promising alternative to Adaptive Metropolis.

Later in chapter 3, I demonstrate how the crumb framework can be used to con-

struct samplers that can be embedded in a larger sampling scheme and perform well

when the local curvature of the target distribution is not well-captured by a global co-

variance. These methods, covariance matching and shrinking rank, perform similarly to

the eigendecomposition-based methods but without global adaptation, though they do

require the gradient of the log density, not just the log density. However, they can be

embedded in a larger sampling scheme and are shown to perform well on target distribu-

tions where the correlation structure varies throughout the state space. As a result, they

are applicable to an even wider variety of densities than the eigendecomposition-based

methods. In addition, the shrinking rank method does not store a covariance matrix at

any point, so it is suitable for higher-dimensional distributions than eigendecomposition

methods and covariance matching. This method has displaced all others for my own use

when sampling from distributions with computable gradients.

One way to compute the gradient of a log density function is automatic differentiation;

see Nocedal and Wright (2006, §8.2) for an introduction or Griewank and Walther (2008)

for a more comprehensive treatment. Unfortunately, it is not a mature field. The deriv

R function can compute derivatives of simple expressions, but it is not general enough

for most log densities. At this point, users must still implement gradient functions by

hand. While tedious to write, they can be easily checked for correctness with discrete

approximation.

Finally, in chapter 4, I consider the effect of increasing dimension on the performance

of slice sampling with multivariate steps and demonstrate a practical way to apply the

polar slice sampler, which until now was not practical to implement. I argue that the

number of log density evaluations required to obtain an uncorrelated observation scales

linearly with dimension in most samplers, whether one considers correlation with respect
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to the components of the distribution or the log density. The scaling behavior of the

log density can be improved by alternating MCMC steps from a gradient-based sampler

like shrinking rank, covariance matching, or reflective slice sampling (Neal, 2003, §7)

with the radial steps of the polar slice sampler. For the common case where the target

distribution does not have a single, known mode, this section shows how steps can use

multidimensional optimization to take radial steps in a way that leaves the target dis-

tribution invariant. If one knows the true shape of the slice, a more difficult condition

than knowing the location of a local mode, scaling with respect to the coordinates can be

improved similarly. These are independent effects; improving one aspect of scaling does

not tend to affect the other.

Together, these results are one step towards the goal of generally applicable Markov

chain Monte Carlo. I hope that other researchers find the methods of model comparison

useful in their own analyses and the sampling methods useful on their own distributions,

ultimately improving the ability of non-specialist end users to analyze data with a broader

range of models than is currently technically feasible.

5.2 Limitations and future work

While the methods described in this thesis are designed to be fairly general, they assume

that the target distribution is continuous. They do not depend on unimodality for cor-

rectness, but they do not make any attempt to move efficiently between modes. They

can, however, be used as part of a larger sampling scheme that uses, for example, Gibbs

sampling to update discrete components and simulated tempering (Marinari and Parisi,

1992) to move between modes.

For some distributions, alternating traditional MCMC steps with gridded radial steps

can improve scaling with respect to the log density. However, efficiency is improved only

if lines through the current state and a local maximum cut across density contours. This
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requires that local maxima be identifiable with relatively few function evaluations. In an

attempt to make such steps more efficient and reflective of local structure, I am presently

working on an MCMC method that takes moves along a perturbed gradient, analogously

to the steepest ascent method for multidimensional maximization. I hope to extend

this method to one where sequential steps are orthogonal, analogous to quasi-Newton

methods like BFGS (Nocedal and Wright, 2006, ch. 6).

5.3 Software

• ACTCompare is an R package that compares methods for computing autocor-

relation time, as in section 2.1. It is available at the author’s website, http:

//www.utstat.toronto.edu/mthompson.

• SamplerCompare is an R package for comparing MCMC samplers, as described

in section 2.3. It includes R implementations of the covariance matching method,

univariate sampling along eigenvectors, and the oblique hyperrectangle method and

a C implementation of the shrinking rank method. It is available from CRAN at

http://cran.r-project.org/web/packages/SamplerCompare/index.html.

• A demonstration implementation of covariance matching with gridded radial steps

is available at http://www.utstat.toronto.edu/mthompson/gridded-radial.R.
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