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Abstract— Proteomics—the direct analysis of the expressed
protein components of a cell—is critical to our understanding
of cellular biological processes. Key insights into the action
and effects of a disease can be obtained by comparison of the
expression of the expressed proteins in normal versus diseased
tissue. Tandem mass spectrometry(MS/MS) of peptides is a
central technology for Proteomics, enabling the identification
of thousands of peptides from a complex mixture. With the
increasing acquisition rate of tandem mass spectrometers, there
is an increasing potential to solve important biological problems
by applying data-mining and machine-learning techniques to
MS/MS data. These problems include(i) estimating the levels
of the thousands of proteins in a tissue sample,(ii) predict-
ing the intensity of the peaks in a mass spectrum, and(iii)
explaining why different peptides from the same protein have
different peak intensities. In other works, we have focussed
on the first two problems. In this paper, we focus on the last
problem. In particular, we try to explain why some peptides
produce peaks of great intensity, while others produce peaks
of low intensity, and we treat this as a classification problem.
That is, we experimentally evaluate and compare a variety of
discrimination methods for classifying peptides into those that
produce high-intensity peaks and those that produce low-intensity
peaks. The methods considered include K-Nearest Neighbours
(KNN), Logistic Regression, Linear Discriminant Analysis (LDA),
Quadratic Discriminant Analysis (QDA), Naive Bayes, and Hid-
den Markov Models (HMMs). Experiments using these methods
were conducted on three real-world datasets derived from tissue
samples of Mouse. The methods were then evaluated using ROC
curves and cross validation.

Index Terms— Data mining, Machine learning, Proteomics,
Bioinformatics, Tandem mass spectrometry, Peptide classifica-
tion.

I. I NTRODUCTION

T ANDEM Mass Spectrometry (MS/MS) of peptides is a
central technology of Proteomics, enabling the identifi-

cation of thousands of peptides and proteins from a complex
mixture [16], [12], [1]. In a typical experiment, thousands of
proteins from a tissue sample are fragmented into tens of
thousands of peptides, which are then fractionated, ionized
and passed through a tandem mass spectrometer. The result
is a collection of spectra, one for each protein, where each
peak in a spectrum represents a single peptide [11], [18]. With
the increasing acquisition rate of tandem mass spectrometers,
there is an increasing potential to solve important biological
problems by applying data-mining and machine-learning tech-
niques to MS/MS data [8], [6]. In this paper, we focus on one
such problem: explaining why different peptides have different
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peak intensities. One important factor is clearly the amount
of protein input to the mass spectrometer (since more input
implies more output). However, other factors are important as
well, such as the efficiency with which various peptides are
produced, fractionated and ionized. Our goal is to determine
how all these other factors are influenced by a peptide’s amino-
acid sequence. Once these influences are understood, it may
be possible to predict the exact MS/MS spectrum of a protein,
including the intensities of all its peaks. More importantly, it
may also be possible to solve the inverse problem: given the
MS/MS spectrum of a protein, estimate the amount of protein
that was input to the mass spectrometer. This is a fundamental
problem whose solution would enable biologists to determine
the levels of the thousands of proteins in a tissue sample [2],
[3].

As a first step in explaining why different peptides produce
peaks of different intensity, we reduce the problem to its
simplest terms: explaining why some peptides produce peaks
of great intensity, while others produce peaks of low intensity.
Moreover, we treat this as a classification problem. That is,
given the amino-acid sequence of a peptide, we attempt to
classify the peptide as either high-intensity or low-intensity. If
we can do this reliably, then we have effectively discovered
what it is about the amino-acid sequence of a peptide that
determines whether it produces high- or low-intensity peaks.
This is especially true if the parameters of the classifier can be
interpreted biologically. To tackle this classification problem,
this paper evaluates and compares a variety of classification
methods on MS/MS data. Conducting the evaluation involves
three main steps: producing a set of labeled data, training
a number of different classifiers on a portion of the data
(the “training data”), and evaluating the effectiveness of the
classifiers on the remaining data (the “testing data”).

To produce a labeled set of data, we first obtained a set
of several thousand MS/MS spectra.1 From these spectra, we
produced two classes of peptides, those with high-intensity
peaks, and those with low-intensity peaks. One complication
is that in the high-throughput MS/MS experiments from which
the data was derived, the amount of protein input to the
mass spectrometer is unknown. Thus, it is in general unclear
whether a high-intensity peak is due to the properties of the
peptide (which we are interested in) or simply due to a large
amount of protein at the input (which we are not interested
in). We resolved this problem by focusing on the spectra one
protein at a time. In the spectrum of a single protein, all the

1Courtesy of the Emili Laboratory at the Banting and Best Department of
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peaks are derived from the same (unknown) amount of protein,
so differences in peak intensity are not due to differences in
protein input. In this way, by picking the highest and lowest
peaks in each spectrum, we produced two classes of peptides,
one class labeled “high intensity” and the other labeled “low
intensity”.

Since this is an initial study, we chose a number of basic
classification methods which are extensively used in the data-
mining literature: K-Nearest Neighbours (KNN), Logistic Re-
gression, Linear Discriminant Analysis (LDA), Quadratic Dis-
criminant Analysis (QDA), Naive Bayes, and Hidden Markov
Models (HMMs). Most of these methods have also been used
in the context of microarray data to distinguish various cancer
types [5]. To evaluate the methods for our application, we
first trained them on two thirds of the labeled data, and
then evaluated them on the remaining one third. To compare
the methods, we produced both ROC curves and a table
of classification error rates. In general, classification error
rates depend on the size of the labeled classes, and can be
deceptively low when the classes have very different sizes
(as ours do, since most peptide peaks are low-intensity, not
high-intensity). To compensate for this, we used the ROC
data to estimate classification error rates for classes of equal
size. In addition, the ROC curves themselves are insensitive
to differences in class size. In this way, we can compare the
performance of the classifiers on various data sets without
having to worry about variations in class size. The ROC
curves also allow us conveniently to compare classifiers for
many different values of a discriminant threshold parameter.
To assess variability in performance, we generated a number
of ROC curves for each method using 10-fold cross validation.

Finally, it is worth noting that of the six classification
methods we chose to evaluate, three are designed for clas-
sifying vectors (LDA, QDA and Logistic Regression), two are
most-easily applied to vectors (KNN and Naive Bayes), while
only the last (HMM) is specifically designed for classifying
sequences. HMMs can therefore be applied directly to the
amino-acid sequences of peptides. To apply the other five
methods, we first converted the peptide sequences to feature
vectors. Since there is a certain loss of information in this
conversion, one might expect HMMs to perform the best,
especially since they have achieved considerable success in
other areas of sequence classification, such as speech recog-
nition [17] and DNA sequence analysis [15]. Surprisingly,
we found that for our peptide-classification problem, HMMs
performed the worst. We discuss reasons for this in Section V.

The paper is organized as follows: Section II introduces
Peptide Tandem Mass Spectrometry; Section III reviews the
six classification methods we evaluate; Section IV describes
our data and our experimental design; Section V presents and
discusses our experimental results; and Section VI presents
conclusions.

II. PEPTIDE TANDEM MASS SPECTROMETRY

In Tandem Mass Spectrometry, a mixture of tens of thou-
sands of unknown proteins are taken from a tissue sample. By
adding a specific amount of the enzyme trypsin, the proteins

are digested and fragmented into peptides. The resulting mix-
ture is then fractionated, ionized and sent at high speed through
an electric field, where the paths of the different peptides are
bent by different amounts before hitting a plate. This produces
a so-called “mass spectrum” consisting of various peaks. Each
peak occurs at a particular location on the plate, as determined
by the peptide’s mass-to-charge ratio, and the intensity of the
peak represents the number of peptide molecules to hit the
plate at that location [16], [12], [1].

The intensity of a peak is influenced by the amount of
protein in the input mixture. However, the exact mechanism
determining the intensity of a spectral peak is poorly under-
stood [8]. In an ideal experiment, there would be no loss during
digestion, fractionation and ionization. So, in the MS/MS
spectrum for a given protein, one would expect that each peak
would contain one peptide molecule for each protein molecule
in the input. Consequently, an ideal spectrum for a given
protein would consist of peaks of equal intensity. However,
this is not observed experimentally. Figure 1 illustrates the
differences between an ideal MS/MS spectrum and an exper-
imental one.
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Fig. 1. The upper panel is the theoretical MS/MS spectrum for the 47
peptides fragmented from protein MAP2-MOUSE digested with trypsin. The
lower panel is an experimentally derived spectrum of the same protein. There
is good agreement between the locations of peaks in the two spectra, but
virtually no agreement between peak intensities.

Numerous reports in the literature address the question of
what factors affect the quality of a MS/MS experiment [11],
[18]. An obvious factor influencing peak intensity is the con-
centration of the peptides in the sample. However, it is not the
sole factor. Other factors include sample preparation methods,
the pH and composition of the solution containing the protein
mixture, the characteristics of the MS/MS apparatus, and
the characteristics of the tissue sample being analyzed [8].
These factors and others all affect the intensities of peaks
in a MS/MS spectrum. Unfortunately, no model exists for
accurately predicting these peak intensities. Explaining why
some peptides produce high-intensity peaks and some produce
low-intensity peaks is a first step towards developing such a
model, and is the goal of this paper.

To this end, the Emili Laboratory at the Banting and Best
Department of Medical Research at the University of Toronto
has provided us with several thousand MS/MS spectra. Table I
shows a tiny sample of this data. (Details on how this data



TABLE I

A FRAGMENT OF THE ORIGINAL DATA FILE

Protein ID Peptide Count Charge
Q91VA7 TRHNNLV IIR 4 2
Q91VA7 KLDLFAVHV K 3 2

...
...

...
...

was generated can be found in [21].) The first column in the
table is the Swissprot accession number identifying a protein.
The second column is the amino-acid sequence of a peptide
fragmented from the protein. The third column correlates well
with the intensity of the spectral peak produced by the peptide.
(Its values are integers because it represents a count of peptide
molecules.) The last column represents the charge of the
peptide ion, which is typically 1 or 2. Notice that there may
be many entries for the same protein, since a single protein
can produce many peptides.

In fragmenting the proteins to produce peptides, the proteins
were digested by the enzyme trypsin, which cuts c-terminal
to lysine (K) or arginine (R). Trypsin may occasionally cut
at other locations, and other enzymes may nick the protein;
hence, we sometimes see partial tryptic peptides (a K or R at
the c-terminus, or flanking the peptide at the N-terminus).

III. D ISCRIMINATION METHODS

This section outlines the classification methods used in our
study. Each of the methods can be used to assign objects to
one of several classes, though we use them in a strictly binary
mode, to assign peptides to one of two classes, which we
refer to simply as Class 1 and Class 2, respectively. In our
application, Class 1 is the set of peptides that produce high-
intensity peaks, and Class 2 is the set of peptides that produce
low-intensity peaks. How the peptides are represented depends
on the classification method used. For one of the methods
(Hidden Markov Models), each peptide is represented by its
amino-acid sequence. For the remaining methods, each peptide
is represented by a vector,x, of features extracted from the
sequence. How these features are extracted is described in
Section IV.

All the classification methods used in this study produce
classifiers that are discriminative [13], [14], [20]. That is, given
an object, the classifier produces a score or likelihood,p1, that
the object belongs to Class 1, as well as a score,p2, that it
belongs to Class 2. An object is assigned to Class 1 if and
only if p1=p2 > t, wheret is a decision threshold.

a) Naive Bayes:Most of the classification methods used
in this paper are based on Bayes Rule. They differ primarily
in their assumptions about the prior probabilities,fk(x). In the
Naive Bayes classifier, it is assumed (simplistically) that the
features of the vectorx can be treated as independent random
variables. Thus, if x = (x1; :::; xn), then

fk(x) =
Y

i

fki(xi)

wherefki(xi) is the (marginal) probability ofxi for classk.
In our application, the components of the feature vector,x, are

discrete (as we shall see), and the most common values are
0 and 1, so we use binary distributions to estimatefki. For
each class, Bayes Rule is then used to compute the posterior
probability thatx belongs to the class.

b) Linear Discriminant Analysis:In Linear Discriminant
Analysis (LDA), each class is modeled by a multivariate
Gaussian distribution, where each class is assumed to have the
same covariance matrix. In fitting the Gaussian distributions
to the data, LDA produces maximum likelihood estimates
for several parameters:�k, the prior probability of classk;
�k, the mean of classk; and �, the common covariance
matrix. Because the class distributions are Gaussian and the
covariance matrices are equal, the likelihood ratio test reduces
to a particularly simple form: x � w > t, where t is a
decision threshold,w is a parameter vector computed from�,
�1 and�2, and� denotes the inner product of two vectors [9].
The decision boundary between the two classes is therefore
linear, and more specifically, a hyperplane normal tow.

c) Quadratic Discriminant Analysis:Quadratic Discrim-
inant Analysis (QDA) is a generalization of LDA that does not
assume the classes have the same covariance matrix. In this
case, the decision boundary between the two classes is not
linear but quadratic, and can in general be a hypersphere, a
hyperellipsoid, a hyperparaboloid, a hyperhyperboloid, or any
combination thereof [4].

d) Logistic Regression:Like QDA, Logistic Regression
can be viewed as a generalization of LDA. However, whereas
QDA has more parameters than LDA, Logistic Regression
has fewer. Like LDA, Logistic Regression provides a linear
decision boundary between classes. The main difference is
that Logistic Regression is in a sense more direct. Instead
of first fitting multivariate Gaussians to each class (which re-
quires estimatingO(n2) parameters), Logistic Regression fits
a linear decision boundary directly to the data (which requires
estimating onlyn parameters, wheren is the dimension of the
feature space).

e) K-Nearest Neighbors:K-Nearest Neighbors (KNN)
is different from the other methods considered in this paper
in that it is non-parametric, so there are no parameters to
estimate. To classify an object,x, the method finds theK
objects (or neighbors) in the training data that are closest
to it. The object is then assigned to Class 1 if and only
if K1=K2 > t, for some decision threshold,t. Here,K1

is the number of K-nearest neighbors in Class 1, andK2 is
the number in Class 2 (soK1 +K2 = K). To use KNN, one
must choose a measure of “distance” (or similarity) between
two objects. This paper uses Euclidean distance.

f) Hidden Markov Models: A (first-order) Hidden
Markov Model (HMM) is a finite-state automaton in which
each state transition has a probability. In addition, each state
has a set of outputs symbols, each with an associated prob-
ability. When an HMM is in a given state, it chooses an
output symbol probabilistically, and prints it. Efficient algo-
rithms have been developed for HMMs. For instance, given
a sequence,s, and a HMM, inference algorithms compute
the probability,�(s), that s will be generated by the HMM.
Learning algorithms also exist for HMMs. Given a set of
sequences, these algorithms will find the HMM with a given



number of states that is most likely to generate the set.

IV. DATASETS AND STUDY DESIGN

A. Real-world Datasets

The experimental results in this paper are based on a number
of tables of real-world data similar to Table I. They consist of
three datasets derived from tissue samples taken from Mouse
and were provided by the Emili Lab in the Banting and Best
Department of Medical Research at the University of Toronto.
We refer to these data sets asMouse Brain Data, Mouse
Heart Data, and Mouse Kidney Data. The Brain data set
contains 10,786 peptides, with peak intensities ranging from 1
to 2,500; the Heart data set contains 9,623 peptides, with peak
intensities from 1 to 1,996; and the Kidney data set contains
8,791 peptides, with peak intensities from 1 to 1,491.

B. Study Design

As described in Section I, we divide the peptides in the
training data into two classes, those that produce high-intensity
peaks, and those that produce low-intensity peaks. One compli-
cation is that in the high-throughput MS/MS experiments from
which the data was derived, the amount of protein input to the
mass spectrometer is unknown. Thus, it is in general unclear
whether a high-intensity peak is due to the properties of the
peptide (which we are interested in) or simply due to a large
amount of protein at the input (which we are not interested
in). We resolved this problem by focusing on the spectra one
protein at a time. In the spectrum of a single protein, all the
peaks are derived from the same (unknown) amount of protein,
so differences in peak intensity are not due to differences in
protein input. In this way, by picking the highest and lowest
peaks in each spectrum, we can factor out the effect of protein
input levels.

To do this, we first identified those proteins that have at
least two peptides with observable peaks in their spectra. We
then built an index for these proteins, and a separate index
for their peptides. For the Brain dataset, the indexes contain
8,527 peptides and 1,664 proteins, respectively. For the Heart
dataset, the indexes contain 7,660 peptides and 1,281 proteins,
respectively. For the Kidney dataset, the indexes contain 7,074
peptides and 1,291 proteins, respectively.

For each protein, we then picked the peptides with the
highest and lowest spectral peaks. Moreover, we did this only
for proteins with a wide range of peak intensities, so that
we could be sure of obtaining peptides with genuinely low-
and high-intensity peaks. We did this in two different ways,
producing two pairs of peptide classes, which we call MAX-
MIN and STD-DEV, respectively. The two pairs differ only in
the proteins selected. For MAX-MIN, a protein is selected if
(i) the most intense peak in its spectrum has a count greater
than 12, and(ii) the count of this highest peak is at least
12 times greater the count of the lowest peak. For the STD-
DEV, a protein is selected if the standard deviation of all its
peak intensities is greater than 4. Both MAX-MIN and STD-
DEV contain two classes of peptides, one with high-intensity
peaks, and one with low-intensity peaks. In MAX-MIN, the
two classes of peptides are guaranteed to have very different

peak intensities, since the high-intensity peaks are guaranteed
to be at least 15 times greater than the low-intensity peaks.
In STD-DEV, the peptides in the two classes do not always
have such a great difference in peak intensity, but they contain
more peptides,i:e:, more data on which to train and test the
classifiers. In this way, from the original, unlabeled Kidney
dataset, we generated two labeled datasets, one using MAX-
MIN and one using STD-DEV. Likewise for the Heart and
Brain datasets, for a total of six labeled datasets.

The sizes of the datasets generated by the MAX-MIN
method are as follows: the Brain dataset has 658 peptides in
the “high intensity” class, and 1567 in the “low intensity ”
class; the Heart dataset has 389 peptides in the “high intensity”
class, and 1232 in the “low intensity ” class; the Kidney dataset
has 470 peptides in the “high intensity” class, and 1,211 in the
“low intensity ” class. The sizes of the datasets generated by
the STD-DEV method are as follows: the Brain dataset has
818 peptides in the “high intensity” class, and 1,735 in the
“low intensity ” class; the Heart dataset 463 peptides in the
“high intensity” class, and 1,297 in the “low intensity ” class;
the Kidney dataset has 550 peptides in the “high intensity”
class, and 1,327 in the “low intensity ” class;

We estimated the generalization error of the methods in
two ways. In the first approach, we divided each of the six
labeled datasets randomly into training and testing data, in a
2:1 ratio. We then trained and tested each classification method
on each of the six datasets. The results show the variation
in performance of the methods over different datasets and
different data-generation methods. In the second approach, we
used only one of the six datasets: the Kidney dataset generated
by STD-DEV. On this dataset, we did 10-fold cross validation
for each classification method. The results show the variation
in performance of each method over different splits in the
dataset.

Finally, for many of the classification methods used in
this study, we must represent each peptide as a vector,x.
We have two ways of doing this, using vectors with 21
and 421 components, respectively. The 21-component vectors
represent the amino-acid composition of a peptide. Since
there are twenty different amino acids, the vector has 20
components,(x1; :::; x20), where the value ofxi is the number
of occurrences a particular amino acid in the peptide. In
addition, the vector has a21st , x0, whose value is always
1, to represent a bias term, as is common in machine learning
models [9]. The 421-component vector includes the original 21
components plus 400 more representing the dimer composition
of a peptide. Adimer is a sequence of two amino acids,
and since there are 20 distinct amino acids, there are 400
distinct dimers. This, larger vector representation was used
only with the Naive bayes classifier, because of its reputation
for working well in high dimesnions. The other vector-based
classifiers were used only with 21-component vectors, to
prevent overfitting. For comparison purposes, Naive Bayes was
sometinmes also used with this shorter vector representation.

V. RESULTS AND ANALYSIS

Figures 2 through 5 show ROC curves evaluating the per-
formance of each of the classification methods under various
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Fig. 2. ROC curves illustrating the performance on three different datasets of the KNN and HMM classifiers. The top panels show KNN with six different
values of K. The bottom panels show HMM with five different numbers of states. The left figures are for the Mouse brain dataset, the middle figures are for
the Mouse heart dataset, and the right figures are for the Mouse kidney dataset. All three datasets were generated by the STD-DEV method.

conditions. Following the convention given in [9], the hori-
zontal axis of our ROC curves is specificity, and the vertical
axis is sensitivity. In our case, specificity is the probability
that a peptide with high-intensity peaks is predicted to have
high-intensity peaks. Likewise, sensitivity is the probability
that a peptide with low-intensity peaks is predicted to have
low-intensity peaks. Each ROC curve corresponds to a single
classification method, and each point in an ROC curve cor-
responds to the method being used with a different decision
threshold.

Figure 2 shows ROC curves for K-Nearest Neighbors and
Hidden Markov Models, with different values forK and
number of states, respectively. The six subfigures represent
experimental results for each of the two methods on each of
the three datasets generated by the STD-DEV method. Note
that in these figures, K-NN performs best when K=50, except
on the heart dataset, where 10-NN performs better. Likewise,
HMM performs best when it has only 1 state, except on the
brain dataset, where it performs best with 5 states. Figure 3
shows ROC curves for all six classification methods on all six
labeled datasets. In the top half of the figure, the datasets were
generated by the MAX-MIN method. In the bottom half, they
were generated by the STD-DEV method. Except for Naive
Bayes, which used the 421-component vectors, all the vector-

based classifiers in this figure used 21-component vectors.
Figure 4 shows the results of cross validation on each of the

six methods. Here, KNN is used with K=50, and HMM is used
with a single state, the values for which they performed best in
the earlier experiments. Each of the six subfigures contains ten
ROC curves, one for each run of 10-fold cross validation. The
one exception is the subfigure for the Naive Bayes classifier,
which contains twenty ROC curves, ten for Naive Bayes
used with 21-component vectors, and ten for 421-component
vectors. The other vector-based classifiers were all used with
21-component vectors. The curves in Figure 4 illustrate the
variability in our estimates of generalization error, variability
due to the splitting of the data into training and test sets.
Figure 5 shows average ROC curves for each classification
method. Each point in an average curve is the mean of ten
corresponding points in ten curves in Figure 4. These average
curves provide an estimate of the average generalization error
of each classification method.

A. ROC Curves and Evaluation

From the ROC curves, several conclusions are immediately
apparent:(i) LDA performs the best,(ii) Hidden Markov
Models perform the worst,(iii) the variability in the other
methods is large compared to the differences in their average
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Fig. 3. Comparison of all the discrimination methods on three datasets. The top panels are for datasets generated by the MAX-MIN method, and the bottom
panels are for datasets generated by the STD-DEV method.

performance, and(iv) except for HMM, all the methods
performed better with a 9:1 split of training to testing data
than with a 2:1 split. This last observation is probably due to
the larger portion of training data available in the 9:1 split.

The simple LDA method produced impressively better
performance than other, more-sophisticated methods, such
as QDA and especially Hidden Markov Models. With the
exception of the Mouse Kidney dataset generated by STD-
DEV, on which Logistic Regression performed best, LDA
performed better than all other methods on all datasets. Many
of the other methods appear to be overfitting, which may be
why their performance on the testing data is worse than LDA.
For example, since QDA has almost twice as many parameters
as LDA, it may be overfitting. Likewise, Logistic Regression
is more general than LDA and can require about 30% more
data to obtain the same fit [9].

Although it is hard to rank methods other than LDA and
HMM, it should be noted that Naive Bayes performed better
with 421-component vectors than with 21-component vectors.
This is apparent both in Figure 5 and in Figure 4. Of course,
more parameters can always lead to a better fit on the training
data, and with only 1000 to 1500 training points, Naive Bayes
is in danger of overfitting when used with 421-component
vectors. So, it is surprising that it performs well on the testing
data, living up to its reputation of performing well in high-

dimensional spaces. It may be possible to further improve
the performance of Naive Bayes by using more-complex prior
distributions for the individual features. At present, we use
binary distributions. Since each feature represents an amino-
acid count, a binary distribution effectively means that each
amino acid is modeled as being either present or absent in a
peptide. This represents a loss of information, which more-
complex prior distributions could eliminate.

To our surprise, Hidden Markov Models performed the
worst of all the classification methods: sometimes even worse
than randomly guessing. This is despite the fact that they work
directly on the peptide sequences, and not on vectors with
lower information content. One reason seems obvious from
the ROC curves in Figure 2. These show that performance
generally degrades as the number of states in the HMM in-
creases. This is a sure sign of overfitting. In fact, a HMM with
10 states will have 10 + 102 + 10� 20 = 310 parameters.
The factor of 20 comes from the 20 amino acids that each
of the 10 states must be able to output. Since the classes in
our training data often have only about 300 samples, over
fitting is surely taking place. Even with only 5 states, the
number of parameters is5 + 52 + 5� 20 = 130, which is
still too many. In addition to this, HMMs only capture the
proportionof amino acids in a peptide sequence. In particular,
with only a small number of states, they cannot capture the
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Fig. 4. Results of the cross-validation experiments on all the discrimination methods.

TABLE II

TEST-SET ERRORRATES. MISCLASSIFICATION RATES FOR SIX DISCRIMINATION METHODS APPLIED TO THREE DATASETS, EACH GENERATED IN TWO

DIFFERENT WAYS.

Mouse Brain Mouse Heart Mouse Kidney
MAX-MIN STD-DEV MAX-MIN STD-DEV MAX-MIN STD-DEV

Linear Discriminant Analysis 0.3316 0.3446 0.3192 0.3178 0.3080 0.3218
Quadratic Discriminant Analysis 0.3498 0.3635 0.3542 0.3632 0.3398 0.3744
Logistic Regression 0.3632 0.3544 0.3336 0.3517 0.3237 0.3272
K-Nearest Neighbour Classifier 0.3641 0.3633 0.3651 0.3528 0.4056 0.3681
Naive Bayes Classifier 0.4078 0.3794 0.3880 0.3832 0.3775 0.3397
Hidden Markov Models 0.4065 0.4235 0.3808 0.3791 0.3492 0.3352

absolute number of amino-acid occurrences, as our vectors do.
It seems reasonable to suppose that the actual presence of a
particular number of certain acids may be an important factor
in the ionization of peptides. In fact, in a separate experiment,
we used vectors whose components represented amino-acid
proportions, instead of absolute numbers, and this caused the
performance of Logistic Regression to decrease greatly, to
about the same level as HMMs.

B. Classification Error Rate

In general, classification error rates depend on the size of the
labeled classes, and can be deceptively low when the classes
have very different sizes (as ours do, since most peptide peaks

are low-intensity, not high-intensity). Even random guessing
can appear to produce very low error rates. To compensate
for this, we used the ROC data to estimate classification error
rates for classes of equal size. This is easily done with the
following formula

error rate = 1 �

speci�city + sensitivity

2
(1)

We applied this formula to every point on every ROC curve in
Figure 3. For each curve, we chose the lowest resulting error
rate, to indicate the best possible performance for the classifier
on the dataset. Table II shows the resulting classification error
rates for each of the six classifiers on each of the three different
datasets, with both MAX-MIN and STD-DEV used to choose
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Fig. 5. Mean ROC curves for the seven methods

proteins. The table shows that the classification error rates
range from 0.3 to 0.4. In addition, it corroborates some of the
results discussed above. For instance, LDA performs the best
across all datasets, while HMMs perform the worst.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, we applied several well-known classification
methods to Peptide Tandem Mass Spectrometry data. We
evaluated and compared the methods based on their ability
to predict the intensity of peaks in a mass spectrum based on
the amino-acid sequence of peptides. Specifically, the methods
were required to divide peptides into two classes: those that
produce high-intensity peaks, and those that produce low-
intensity peaks.

Overall, we found that for our datasets, simple classifiers
such as LDA performed well compared with more sophis-
ticated ones, such as QDA and Hidden Markov Models. In
the main comparison based on ROC evaluation, LDA has
the best generalization performance. In decreasing order of
performance, the other classifiers were Logistic regression,
Naive Bayes (with 421-component vectors), QDA, KNN (with
K=50), Naive Bayes (with 21-component vectors), and finally
HMMs (with any number of states), which sometimes per-
formed worse than random guessing. The performance of all
the methods was quite variable. Misclassification rates for
classes of equal size were also estimated, and they corroborate
our conclusions drawn from the ROC evaluation.

Several further steps suggest themselves. For instance, the
performance of each of the methods might be improved by
boosting. Decision trees (which often work well with boosting)
could be tried. Clustering methods could also be used to search
for structure within each of the labeled classes, in order to
provide better priors for the classification methods. In addition,
Bayesian inference, bootstrapping and bagging could be used
to deal with the problems of overfitting. To prevent over
fitting of Hidden Markov Models, we are considering more-
structured versions of them, such as Profile Hidden Markov
Models, which have significantly fewer parameters. Finally,

we are considering methods for extracting more training data
from the MS/MS spectra. In this paper, we considered two
methods, MAX-MIN and STD-DEV, but many other methods
are also possible.
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