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Abstract— Proteomics—the direct analysis of the expressed peak intensities. One important factor is clearly the amount
protein components of a cell—is critical to our understanding of protein input to the mass spectrometer (since more input

of cellular biological processes. Key insights into the action ;yhlias more output). However, other factors are important as
and effects of a disease can be obtained by comparison of theweII such as the efficienc Wi,th which various peptides are
expression of the expressed proteins in normal versus diseased ’ y pep

tissue. Tandem mass spectrometry(MS/MS) of peptides is aproduced, fractionated and ionized. Our goal is to determine
central technology for Proteomics, enabling the identification how all these other factors are influenced by a peptide’s amino-
of thousands of peptides from a complex mixture. With the acid sequence. Once these influences are understood, it may
increasing acquisition rate of tandem mass spectrometers, there be possible to predict the exact MS/MS spectrum of a protein

is an increasing potential to solve important biological problems . - . o . . .
by applying data-mining and machine-learning techniques to including the mten_smes of all its pe_aks. More |mporta_ntly, it
MS/MS data. These problems include(i) estimating the levels May also be possible to solve the inverse problem: given the
of the thousands of proteins in a tissue sample(ii) predict- MS/MS spectrum of a protein, estimate the amount of protein

ing the intensity of the peaks in a mass spectrum, andiii) that was input to the mass spectrometer. This is a fundamental
explaining why different peptides from the same protein have .j1em whose solution would enable biologists to determine

different peak intensities. In other works, we have focussed the | Is of the th ds of teins i i le [2
on the first two problems. In this paper, we focus on the last € levels of the thousands of proteins in a tissue sample [2],

problem. In particular, we try to explain why some peptides (3]
produce peaks of great intensity, while others produce peaks As a first step in explaining why different peptides produce
of low intensity, and we treat this as a classification problem. peaks of different intensity, we reduce the problem to its

That is, we experimentally evaluate and compare a variety of _. . . .
discrimination methods for classifying peptides into those that simplest terms: explaining why some peptides produce peaks

produce high-intensity peaks and those that produce low-intensity ©f great intensity, while others produce peaks of low intensity.
peaks. The methods considered include K-Nearest Neighbours Moreover, we treat this as a classification problem. That is,
(KNN), Logistic Regression, Linear Discriminant Analysis (LDA), ~ given the amino-acid sequence of a peptide, we attempt to
Quadratic Discriminant Analysis (QDA), Naive Bayes, and Hid-  ¢|assify the peptide as either high-intensity or low-intensity. If

den Markov Models (HMMs). Experiments using these methods . . . .
were conducted on three real-world datasets derived from tissue we can do this reliably, then we have effectively discovered

samples of Mouse. The methods were then evaluated using ROCWhat it. is about the _amino-acid sequence Of a pe_ptide that
curves and cross validation. determines whether it produces high- or low-intensity peaks.

Index Terms—Data mining, Machine leaming, Proteomics, This is espec_ially true if the parameters of the_: cla_lssifier can be
Bioinformatics, Tandem mass spectrometry, Peptide classifica- interpreted biologically. To tackle this classification problem,
tion. this paper evaluates and compares a variety of classification
methods on MS/MS data. Conducting the evaluation involves
three main steps: producing a set of labeled data, training
a number of different classifiers on a portion of the data

ANDEM Mass Spectrometry (MS/MS) of peptides is gthe “training data”), and evaluating the effectiveness of the

central technology of Proteomics, enabling the identifelassifiers on the remaining data (the “testing data”).
cation of thousands of peptides and proteins from a complexrg produce a labeled set of data, we first obtained a set
mixture [16], [12], [1]. In a typical experiment, thousands obf several thousand MS/MS spectr&rom these spectra, we
proteins from a tissue sample are fragmented into tens gbduced two classes of peptides, those with high-intensity
thousands of peptides, which are then fractionated, ionizggaks, and those with low-intensity peaks. One complication
and passed through a tandem mass spectrometer. The reslat in the high-throughput MS/MS experiments from which
is a collection of spectra, one for each protein, where eage data was derived, the amount of protein input to the
peak in a spectrum represents a single peptide [11], [18]. Wiifuss spectrometer is unknown. Thus, it is in general unclear
the increasing acquisition rate of tandem mass spectromet@ygether a high-intensity peak is due to the properties of the
there is an increasing potential to solve important biologicgbptide (which we are interested in) or simply due to a large
problems by applying data-mining and machine-learning teCdmount of protein at the input (which we are not interested
niques to MS/MS data [8], [6]. In this paper, we focus on ong). we resolved this problem by focusing on the spectra one
such problem: explaining why different peptides have differegtotein at a time. In the spectrum of a single protein, all the
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peaks are derived from the same (unknown) amount of protedme digested and fragmented into peptides. The resulting mix-
so differences in peak intensity are not due to differencesture is then fractionated, ionized and sent at high speed through
protein input. In this way, by picking the highest and lowesin electric field, where the paths of the different peptides are
peaks in each spectrum, we produced two classes of peptides)t by different amounts before hitting a plate. This produces
one class labeled “high intensity” and the other labeled “loa so-called “mass spectrum” consisting of various peaks. Each
intensity”. peak occurs at a particular location on the plate, as determined
Since this is an initial study, we chose a number of badity the peptide’s mass-to-charge ratio, and the intensity of the
classification methods which are extensively used in the dapeak represents the number of peptide molecules to hit the
mining literature: K-Nearest Neighbours (KNN), Logistic Replate at that location [16], [12], [1].
gression, Linear Discriminant Analysis (LDA), Quadratic Dis- The intensity of a peak is influenced by the amount of
criminant Analysis (QDA), Naive Bayes, and Hidden Markowrotein in the input mixture. However, the exact mechanism
Models (HMMs). Most of these methods have also been usddtermining the intensity of a spectral peak is poorly under-
in the context of microarray data to distinguish various cancstood [8]. In an ideal experiment, there would be no loss during
types [5]. To evaluate the methods for our application, waigestion, fractionation and ionization. So, in the MS/MS
first trained them on two thirds of the labeled data, armgpectrum for a given protein, one would expect that each peak
then evaluated them on the remaining one third. To compaweuld contain one peptide molecule for each protein molecule
the methods, we produced both ROC curves and a tallethe input. Consequently, an ideal spectrum for a given
of classification error rates. In general, classification errprotein would consist of peaks of equal intensity. However,
rates depend on the size of the labeled classes, and carthi® is not observed experimentally. Figure 1 illustrates the
deceptively low when the classes have very different sizd#ferences between an ideal MS/MS spectrum and an exper-
(as ours do, since most peptide peaks are low-intensity, moEental one.
high-intensity). To compensate for this, we used the ROC
data to estimate classification error rates for classes of eq ™
size. In addition, the ROC curves themselves are insensit |
to differences in class size. In this way, we can compare tg

ki

performance of the classifiers on various data sets withc ™ ..}
having to worry about variations in class size. The RO -}
curves also allow us conveniently to compare classifiers f - A
many different values of a discriminant threshold paramett T
To assess variability in performance, we generated a num|
of ROC curves for each method using 10-fold cross validatiogi
Finally, it is worth noting that of the six classification "
methods we chose to evaluate, three are designed for cl ‘ ‘
sifying vectors (LDA, QDA and Logistic Regression), two are [l .t Hm Hun L, J L L L L)
most-easily applied to vectors (KNN and Naive Bayes), while
only the last (HMW) Is specifclly designed for classityinl . The Bes Fane & L e o, S o
sequence;. HMMs can therefore be applied directly to tﬁm er panel 9i]s an experimeEltaIIy derived spectrum o?the same ppc/){)ein.. There
amino-acid sequences of peptides. To apply the other figggood agreement between the locations of peaks in the two spectra, but
methods, we first converted the peptide sequences to featditaally no agreement between peak intensities.
vectors. Since there is a certain loss of information in this
conversion, one might expect HMMs to perform the best, Numerous reports in the literature address the question of
especially since they have achieved considerable successvirat factors affect the quality of a MS/MS experiment [11],
other areas of sequence classification, such as speech refb3. An obvious factor influencing peak intensity is the con-
nition [17] and DNA sequence analysis [15]. Surprisinglygentration of the peptides in the sample. However, it is not the
we found that for our peptide-classification problem, HMMsole factor. Other factors include sample preparation methods,
performed the worst. We discuss reasons for this in Sectionte pH and composition of the solution containing the protein
The paper is organized as follows: Section Il introduce®ixture, the characteristics of the MS/MS apparatus, and
Peptide Tandem Mass Spectrometry; Section Il reviews tkee characteristics of the tissue sample being analyzed [8].
six classification methods we evaluate; Section IV describ&gese factors and others all affect the intensities of peaks
our data and our experimental design; Section V presents anda MS/MS spectrum. Unfortunately, no model exists for
discusses our experimental results; and Section VI presefgsurately predicting these peak intensities. Explaining why
conclusions. some peptides produce high-intensity peaks and some produce
low-intensity peaks is a first step towards developing such a
model, and is the goal of this paper.
To this end, the Emili Laboratory at the Banting and Best
In Tandem Mass Spectrometry, a mixture of tens of tholepartment of Medical Research at the University of Toronto
sands of unknown proteins are taken from a tissue sample. Bys provided us with several thousand MS/MS spectra. Table |
adding a specific amount of the enzyme trypsin, the proteisBows a tiny sample of this data. (Details on how this data
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TABLE |

discrete (as we shall see), and the most common values are
A FRAGMENT OF THE ORIGINAL DATA FILE

0 and 1, so we use binary distributions to estim#te For
each class, Bayes Rule is then used to compute the posterior

Protein ID | Peptide Count | Charge e
Q91VA7 TISHNNLVHR 7 5 g probability thatx belongs to the class.

Q91VA7 | KLDLFAVHVK 3 2 b) Linear Discriminant Analysisin Linear Discriminant

: : Analysis (LDA), each class is modeled by a multivariate
Gaussian distribution, where each class is assumed to have the
same covariance matrix. In fitting the Gaussian distributions
to the data, LDA produces maximum likelihood estimates
was generated can be found in [21].) The first column in tfer several parameterst;,, the prior probability of class;
table is the Swissprot accession number identifying a protejy,, the mean of class; and £, the common covariance
The second column is the amino-acid sequence of a peptifatrix. Because the class distributions are Gaussian and the
fragmented from the protein. The third column correlates weajbvariance matrices are equal, the likelihood ratio test reduces
with the intensity of the spectral peak produced by the peptide. a particularly simple form: xew > ¢, wheret is a
(Its values are integers because it represents a count of pepgidéision thresholdy is a parameter vector computed frén
molecules.) The last column represents the charge of theandu,, ande denotes the inner product of two vectors [9].
peptide ion, which is typically 1 or 2. Notice that there mayhe decision boundary between the two classes is therefore
be many entries for the same protein, since a single protéitear, and more specifically, a hyperplane normaito
can produce many peptides. ¢) Quadratic Discriminant AnalysisQuadratic Discrim-

In fragmenting the proteins to produce peptides, the proteingant Analysis (QDA) is a generalization of LDA that does not
were digested by the enzyme trypsin, which cuts c-termir@édsume the classes have the same covariance matrix. In this
to lysine (K) or arginine (R). Trypsin may occasionally cutase, the decision boundary between the two classes is not
at other locations, and other enzymes may nick the protejiiiear but quadratic, and can in general be a hypersphere, a
hence, we sometimes see partial tryptic peptides (a K or Rigjiperellipsoid, a hyperparaboloid, a hyperhyperboloid, or any
the c-terminus, or flanking the peptide at the N-terminus). combination thereof [4].

d) Logistic RegressionLike QDA, Logistic Regression
[1l. DISCRIMINATION METHODS can be viewed as a generalization of LDA. However, whereas

This section outlines the classification methods used in o@PA has more parameters than LDA, Logistic Regression
study. Each of the methods can be used to assign object$& fewer. Like LDA, Logistic Regression provides a linear
one of several classes, though we use them in a strictly bin&l§cision boundary between classes. The main difference is
mode, to assign peptides to one of two classes, which Wt Logistic Regression is in a sense more direct. Instead
refer to simply as Class 1 and Class 2, respectively. In o®f first fitting multivariate Gaussians to each class (which re-
application, Class 1 is the set of peptides that produce higtiires estimating)(n”) parameters), Logistic Regression fits
intensity peaks, and Class 2 is the set of peptides that prod@déear decision boundary directly to the data (which requires
low-intensity peaks. How the peptides are represented depefigiémating only. parameters, where is the dimension of the
on the classification method used. For one of the metho@ature space).

(Hidden Markov Models), each peptide is represented by its €) K-Nearest NeighborsK-Nearest Neighbors (KNN)
amino-acid sequence. For the remaining methods, each peptdéifferent from the other methods considered in this paper
is represented by a vectox, of features extracted from thein that it is non-parametri¢ so there are no parameters to
sequence. How these features are extracted is describe@Sfmate. To classify an object, the method finds the<
Section IV. objects (or neighbors) in the training data that are closest

All the classification methods used in this study produd@ it. The object is then assigned to Class 1 if and only
classifiers that are discriminative [13], [14], [20]. That s, givefl K1/K> > t, for some decision threshold, Here, K,
an object, the classifier produces a score or likelihggdthat is the number of K-nearest neighbors in Class 1, afdis
the object belongs to Class 1, as well as a scpsethat it the number in Class 2 (s& + K> = K). To use KNN, one
belongs to Class 2. An object is assigned to Class 1 if aftHst choose a measure of “distance” (or similarity) between
only if pi/p» > t, wheret is a decision threshold. two objects. This paper uses Euclidean distance.

a) Naive BayesMost of the classification methods used ~ f) Hidden Markov Models: A (first-order) Hidden
in this paper are based on Bayes Rule. They differ primarilijarkov Model (HMM) is a finite-state automaton in which
in their assumptions about the prior probabilitigs(x). In the each state transition has a probability. In addition, each state
Naive Bayes classifier, it is assumed (simplistically) that tHeas a set of outputs symbols, each with an associated prob-
features of the vector can be treated as independent randoapility. When an HMM is in a given state, it chooses an

variables. Thus, ifx = (1, ...,z,), then output symbol probabilistically, and prints it. Efficient algo-
rithms have been developed for HMMs. For instance, given
fe) = T fri(z:) a sequences, and a HMM, inference algorithms compute
i

the probability,x(s), thats will be generated by the HMM.
where f;(x;) is the (marginal) probability of; for classk. Learning algorithms also exist for HMMs. Given a set of
In our application, the components of the feature vestosye sequences, these algorithms will find the HMM with a given



number of states that is most likely to generate the set.  peak intensities, since the high-intensity peaks are guaranteed
to be at least 15 times greater than the low-intensity peaks.

IV. DATASETS AND STUDY DESIGN In STD-DEV, the peptides in the two classes do not always

A. Real-world Datasets have such a great difference in peak intensity, but they contain

. N ore peptidesi.e., more data on whi i
The experimental results in this paper are based on a numg‘ bep 4.c which to train and test the

I .. . .. .
of tables of real-world data similar to Table I. They consist g ssifiers. In this way, from the original, unlabeled.K|dney

. ) ataset, we generated two labeled datasets, one using MAX-
three datasets derived from tissue samples taken from Mouﬁ

and were provided by the Emili Lab in the Banting and Be§rain

Department of Medical Research at the University of Toronto.

X'V:a:ffggtf tahedsle\i/l data ie_;s MDBS? B_rr?]ln |[3) at_a, g/l?use i method are as follows: the Brain dataset has 658 peptides in
» andhviouse Ridney Data The brain gata set ) o “high intensity” class, and 1567 in the “low intensity ”

contains 10,786 peptides, with peak intensities ranging fromC ss; the Heart dataset has 389 peptides in the “high intensity”

to 2,500; the Heart data set contains 9,623 peptides, with P& ss, and 1232 in the “low intensity ” class; the Kidney dataset

gt;a;lsltlgstfcriom 1 tt?] 1’99£{ a:nd t_?e Kfldneyldtate; Zg{lcoma'ﬂgs 470 peptides in the “high intensity” class, and 1,211 in the
' peptides, with peak intensilies from 1 1o 1,451 “low intensity ” class. The sizes of the datasets generated by

. the STD-DEV method are as follows: the Brain dataset has

B. Study Design 818 peptides in the “high intensity” class, and 1,735 in the

As described in Section |, we divide the peptides in th#dow intensity ” class; the Heart dataset 463 peptides in the
training data into two classes, those that produce high-intensitygh intensity” class, and 1,297 in the “low intensity " class;
peaks, and those that produce low-intensity peaks. One compiie Kidney dataset has 550 peptides in the “high intensity”
cation is that in the high-throughput MS/MS experiments fromlass, and 1,327 in the “low intensity " class;
which the data was derived, the amount of protein input to theWe estimated the generalization error of the methods in
mass spectrometer is unknown. Thus, it is in general uncléap ways. In the first approach, we divided each of the six
whether a high-intensity peak is due to the properties of thabeled datasets randomly into training and testing data, in a
peptide (which we are interested in) or simply due to a largel ratio. We then trained and tested each classification method
amount of protein at the input (which we are not interestegh each of the six datasets. The results show the variation
in). We resolved this problem by focusing on the spectra oiite performance of the methods over different datasets and
protein at a time. In the spectrum of a single protein, all thdifferent data-generation methods. In the second approach, we
peaks are derived from the same (unknown) amount of proteitsed only one of the six datasets: the Kidney dataset generated
so differences in peak intensity are not due to differencestiy STD-DEV. On this dataset, we did 10-fold cross validation
protein input. In this way, by picking the highest and lowedbr each classification method. The results show the variation
peaks in each spectrum, we can factor out the effect of proté#inperformance of each method over different splits in the
input levels. dataset.

To do this, we first identified those proteins that have at Finally, for many of the classification methods used in
least two peptides with observable peaks in their spectra. s study, we must represent each peptide as a vegtor,
then built an index for these proteins, and a separate inddf have two ways of doing this, using vectors with 21
for their peptides. For the Brain dataset, the indexes containd 421 components, respectively. The 21-component vectors
8,527 peptides and 1,664 proteins, respectively. For the He@eresent the amino-acid composition of a peptide. Since
dataset, the indexes contain 7,660 peptides and 1,281 proteihgre are twenty different amino acids, the vector has 20
respectively. For the Kidney dataset, the indexes contain 7,0f@mponents(z1, ..., 29 ), where the value of; is the number
peptides and 1,291 proteins, respectively. of occurrences a particular amino acid in the peptide. In

For each protein, we then picked the peptides with tragldition, the vector has 21 , z,, whose value is always
highest and lowest spectral peaks. Moreover, we did this orllyto represent a bias term, as is common in machine learning
for proteins with a wide range of peak intensities, so thatodels [9]. The 421-component vector includes the original 21
we could be sure of obtaining peptides with genuinely lowsomponents plus 400 more representing the dimer composition
and high-intensity peaks. We did this in two different wayxyf a peptide. Adimer is a sequence of two amino acids,
producing two pairs of peptide classes, which we call MAXand since there are 20 distinct amino acids, there are 400
MIN and STD-DEV, respectively. The two pairs differ only indistinct dimers. This, larger vector representation was used
the proteins selected. For MAX-MIN, a protein is selected {nly with the Naive bayes classifier, because of its reputation
(i) the most intense peak in its spectrum has a count gredtsr working well in high dimesnions. The other vector-based
than 12, and(ii) the count of this highest peak is at leastlassifiers were used only with 21-component vectors, to
12 times greater the count of the lowest peak. For the STPrevent overfitting. For comparison purposes, Naive Bayes was
DEV, a protein is selected if the standard deviation of all itsometinmes also used with this shorter vector representation.
peak intensities is greater than 4. Both MAX-MIN and STD-

DEV contain two classes of peptides, one with high-intensity V. RESULTS AND ANALYSIS
peaks, and one with low-intensity peaks. In MAX-MIN, the Figures 2 through 5 show ROC curves evaluating the per-
two classes of peptides are guaranteed to have very differlarmance of each of the classification methods under various

and one using STD-DEV. Likewise for the Heart and
datasets, for a total of six labeled datasets.
The sizes of the datasets generated by the MAX-MIN



ROC for K Nearest Neighbour Classifier with different K on Brain Dataset ROC for K Nearest Neighbour Classifier with different K on Heart Dataset ROC for K Nearest Neighbour Classifier with different K on Kidney Dataset
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Fig. 2. ROC curves illustrating the performance on three different datasets of the KNN and HMM classifiers. The top panels show KNN with six different
values of K. The bottom panels show HMM with five different numbers of states. The left figures are for the Mouse brain dataset, the middle figures are for

the Mouse heart dataset, and the right figures are for the Mouse kidney dataset. All three datasets were generated by the STD-DEV method.

conditions. Following the convention given in [9], the horibased classifiers in this figure used 21-component vectors.
zontal axis of our ROC curves is specificity, and the vertical Figure 4 shows the results of cross validation on each of the
axis is sensitivity. In our case, specificity is the probabilitgix methods. Here, KNN is used with K=50, and HMM is used
that a peptide with high-intensity peaks is predicted to hawéth a single state, the values for which they performed best in
high-intensity peaks. Likewise, sensitivity is the probabilityhe earlier experiments. Each of the six subfigures contains ten
that a peptide with low-intensity peaks is predicted to halROC curves, one for each run of 10-fold cross validation. The
low-intensity peaks. Each ROC curve corresponds to a singiee exception is the subfigure for the Naive Bayes classifier,
classification method, and each point in an ROC curve carhich contains twenty ROC curves, ten for Naive Bayes
responds to the method being used with a different decisiaeed with 21-component vectors, and ten for 421-component
threshold. vectors. The other vector-based classifiers were all used with

21-component vectors. The curves in Figure 4 illustrate the

[Figure 2 shows ROC curves for K-Nearest Neighbors aRdyiaility in our estimates of generalization error, variability
Hidden Markov Models, with different values fok™ and e to the splitting of the data into training and test sets.

number of states, respectively. The six subfigures represgfre 5 shows average ROC curves for each classification
experimental results for each of the two methods on each gkinod. Each point in an average curve is the mean of ten
the three datasets generated by the STD-DEV method. N@ifresponding points in ten curves in Figure 4. These average

that in these figures, K-NN performs best when K=50, excegfiryes provide an estimate of the average generalization error
on the heart dataset, where 10-NN performs better. Likewi$g§,e5ch classification method.

HMM performs best when it has only 1 state, except on the

brain dataset, where it performs best with 5 states. Figure 3 )

shows ROC curves for all six classification methods on all sfx ROC Curves and Evaluation

labeled datasets. In the top half of the figure, the datasets wer&rom the ROC curves, several conclusions are immediately
generated by the MAX-MIN method. In the bottom half, thewpparent:(i) LDA performs the best(ii) Hidden Markov
were generated by the STD-DEV method. Except for Naildodels perform the worst(iii) the variability in the other
Bayes, which used the 421-component vectors, all the vectorethods is large compared to the differences in their average



ROC for all discriminantion methods on Mouse Brain Dataset ROC for all discriminantion methods on Mouse Heart Dataset ROC for all discriminantion methods on Mouse Kideny Dataset
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Fig. 3. Comparison of all the discrimination methods on three datasets. The top panels are for datasets generated by the MAX-MIN method, and the bottom
panels are for datasets generated by the STD-DEV method.

performance, andiv) except for HMM, all the methods dimensional spaces. It may be possible to further improve
performed better with a 9:1 split of training to testing datthe performance of Naive Bayes by using more-complex prior
than with a 2:1 split. This last observation is probably due distributions for the individual features. At present, we use

the larger portion of training data available in the 9:1 split. binary distributions. Since each feature represents an amino-

The simple LDA method produced impressively bettekcid count, a binary distribution effectively means that each
performance than other, more-sophisticated methods, s@epino acid is modeled as being either present or absent in a
as QDA and especially Hidden Markov Models. With th@eptide. This represents a loss of information, which more-
exception of the Mouse Kidney dataset generated by STERMPplex prior distributions could eliminate.

DEV, on which Logistic Regression performed best, LDA To our surprise, Hidden Markov Models performed the
performed better than all other methods on all datasets. Magyrst of all the classification methods: sometimes even worse
of the other methods appear to be overfitting, which may Bgan randomly guessing. This is despite the fact that they work
why their performance on the testing data is worse than LDﬁirecﬂy on the peptide sequences, and not on vectors with
For example, since QDA has almost twice as many parametgfger information content. One reason seems obvious from
as LDA, it may be overfitting. Likewise, Logistic Regressiofhe ROC curves in Figure 2. These show that performance
is more general than LDA and can require about 30% MOgRnerally degrades as the number of states in the HMM in-
data to obtain the same fit [9]. creases. This is a sure sign of overfitting. In fact, a HMM with
Although it is hard to rank methods other than LDA andO states will have 10 + 10?2 + 10 x 20 = 310 parameters.
HMM, it should be noted that Naive Bayes performed bettdte factor of 20 comes from the 20 amino acids that each
with 421-component vectors than with 21-component vectors. the 10 states must be able to output. Since the classes in
This is apparent both in Figure 5 and in Figure 4. Of courseur training data often have only about 300 samples, over
more parameters can always lead to a better fit on the trainfitgng is surely taking place. Even with only 5 states, the
data, and with only 1000 to 1500 training points, Naive Bayesimber of parameters iss + 5% + 5 x 20 = 130, which is
is in danger of overfitting when used with 421-componestill too many. In addition to this, HMMs only capture the
vectors. So, it is surprising that it performs well on the testingroportionof amino acids in a peptide sequence. In particular,
data, living up to its reputation of performing well in high-with only a small number of states, they cannot capture the
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Fig. 4. Results of the cross-validation experiments on all the discrimination methods.

TABLE Il
TEST-SET ERRORRATES. MISCLASSIFICATION RATES FOR SIX DISCRIMINATION METHODS APPLIED TO THREE DATASET,£ACH GENERATED IN TWO
DIFFERENT WAYS.

Mouse Brain Mouse Heart Mouse Kidney
MAX-MIN STD-DEV | MAX-MIN STD-DEV | MAX-MIN STD-DEV

Linear Discriminant Analysis 0.3316 0.3446 0.3192 0.3178 0.3080 0.3218
Quadratic Discriminant Analysi 0.3498 0.3635 0.3542 0.3632 0.3398 0.3744
Logistic Regression 0.3632 0.3544 0.3336 0.3517 0.3237 0.3272
K-Nearest Neighbour Classifier 0.3641 0.3633 0.3651 0.3528 0.4056 0.3681
Naive Bayes Classifier 0.4078 0.3794 0.3880 0.3832 0.3775 0.3397
Hidden Markov Models 0.4065 0.4235 0.3808 0.3791 0.3492 0.3352

absolute number of amino-acid occurrences, as our vectors die low-intensity, not high-intensity). Even random guessing

It seems reasonable to suppose that the actual presence odra appear to produce very low error rates. To compensate
particular number of certain acids may be an important factfor this, we used the ROC data to estimate classification error
in the ionization of peptides. In fact, in a separate experimenates for classes of equal size. This is easily done with the
we used vectors whose components represented amino-dcilbwing formula

proportions, instead of absolute numbers, and this caused the specificity + sensitivity
performance of Logistic Regression to decrease greatly, to ~ €rror rate = 1 — D) )

about the same level as HMMs. We applied this formula to every point on every ROC curve in
Figure 3. For each curve, we chose the lowest resulting error
B. Classification Error Rate rate, to indicate the best possible performance for the classifier
In general, classification error rates depend on the size of threthe dataset. Table 1l shows the resulting classification error
labeled classes, and can be deceptively low when the classass for each of the six classifiers on each of the three different
have very different sizes (as ours do, since most peptide pedksasets, with both MAX-MIN and STD-DEV used to choose




Mean ROC curve bn seven methode we are considering methods for extracting more training data
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