
Canonical Correlation, an Approximation, and the Prediction of

Protein Abundance

Anthony Bonner∗ Han Liu†

Abstract

This paper addresses a central problem of Bioinformat-
ics and Proteomics: estimating the amounts of each of
the thousands of proteins in a cell culture or tissue
sample. Although laboratory methods involving iso-
topes have been developed for this problem, we seek
a simpler method, one that uses fewer laboratory pro-
cedures. Specifically, our aim is to use data-mining
methods to infer protein levels from the relatively cheap
and abundant data available from high-throughput tan-
dem mass spectrometry (MS/MS). In this paper, we de-
velop and evaluate a method for tackling this problem.
The method is based on a simple generative model of
MS/MS data. We first show how to linearize the model
and fit it to data using Canonical Correlation Analy-
sis (CCA). Then, because CCA is computationally ex-
pensive for the large datasets we are dealing with, we
develop an efficient approximation of CCA, one that
exploits the structure of our data. We prove that the
method is correct in that it achieves a well-defined opti-
mization criterion. We also evaluate the method on sev-
eral biological datasets. The datasets themselves were
generated by MS/MS experiments performed on various
tissue samples taken from Mouse.

keywords: Bioinformatics, Proteomics, Data Min-
ing, Machine Learning, Peptides, Tandem Mass Spec-
trometry.

1 Introduction

Proteomics is the large-scale study of the thousands
of proteins in a cell [9]. In a typical Proteomics
experiment, the goal might be to compare the proteins
present in a certain tissue under different conditions.
For instance, a biologist might want to study cancer
by comparing the proteins in a cancerous liver to the
proteins in a healthy liver. Modern mass spectrometry

∗Department of Computer Science, University of Toronto.
www.cs.toronto.edu/̃ bonner

†Department of Computer Science, University of Toronto.
Mr. Liu was supported by the University of Toronto.

makes this possible by enabling the identification of
thousands of proteins in a complex mixture [13, 3].
However, identifying proteins is only part of the story.
It is also important to quantify them, that is, to estimate
how much of each protein is present in a cell [1, 5]. To
this end, a number of laboratory methods have been
developed, notably those based on mass tagging with
isotopes [4, 12]. However, simpler, more-direct methods
may be possible, methods that do not require additional
laboratory procedures, but which are simply based on
the data provided by tandem mass spectrometers [10].
This paper is an initial exploration of this possibility.
In particular, we investigate the use of data-mining
techniques to infer protein quantity from tandem mass
spectrometry data.

1.1 Tandem Mass Spectrometry Tandem mass
spectrometry involves several phases in which proteins
are broken up and the pieces separated by mass [9, 13].
First, a complex mixture of thousands of unknown
proteins is extracted from a cell culture or tissue sample.
Since proteins themselves are too large to deal with,
they are fragmented, producing a mixture of tens of
thousands of unknown peptides. The peptides are
then ionized and passed through a mass spectrometer.
This produces a mass spectrum in which each spectral
peak corresponds to a peptide. From this spectrum,
individual peptides are selected for further analysis.
Each such peptide is further fragmented and passed
through a second mass spectrometer, to produce a
so-called tandem mass spectrum. The result is a
collection of tandem mass spectra, each corresponding
to a peptide. Each tandem mass spectrum acts as a
kind of fingerprint, identifying the peptide from which it
came. By searching a database of proteins, it is possible
to identify the protein that produced the peptide that
produced the tandem mass spectrum. In this way,
the proteins in the original tissue sample are identified.
Often, the entire process is completely automatic.

A peptide mixture is not analyzed all at once. In-
stead, to increase sensitivity, the peptides are “smeared

out” over time (often using liquid chromatography), so
that different kinds of peptides enter the mass spectrom-
eter at different times. A typical MS/MS experiment
may last many hours, with proteins and peptides being
identified each second. Copies of a particular peptide
may continue to enter the mass spectrometer for sev-
eral seconds or minutes. As the copies enter, the pep-
tide will be repeatedly identified, once a second. In this
way, a peptide may be identified and re-identified many
times, increasing the confidence that the identification
is correct. The number of times a particular peptide
is identified is called the peptide’s spectral count , since
each identification requires the generation of a tandem
mass spectrum. A large spectral count indicates that
the peptide has been confidently identified.

In general, as protein abundance increases, so does
spectral count [10]. However, the exact relationship is
not at all clear and seems to depend on many factors,
including the amino acid sequence of the peptides and
the properties of the experimental set up. At present,
there is no complete quantitative theory relating a pro-
tein’s abundance to the spectral counts of its peptides.
This paper is an initial attempt at using data-mining
methods to develop such a theory, and using the theory
to estimate protein abundance.

1.2 Data Mining To this end, the Emili Laboratory
at the Banting and Best Department of Medical Re-
search at the University of Toronto has provided us with
datasets of several thousand proteins and peptides. The
datasets were derived from MS/MS experiments on pro-
tein mixtures extracted from various tissue samples of
Mouse. Each mixture contains tens of thousands of pro-
teins, and each protein is present in the mixture with
a specific (but unknown) abundance. A small sample
of the data is shown in Table 1. (Details on how this
data was generated can be found in [8].) Each row in
the table represents a peptide ion. The first (left-most)
column is the Swissprot accession number identifying a
protein. The second column is the amino-acid sequence
of the peptide. The third column is the spectral count
of the peptide, and the last column is its charge. Notice
that there may be many entries for the same protein,
since a single protein can produce many peptides, and
each peptide can produce ions with different amounts
of charge. Protein ID, Peptide and Charge define a key
for the table, that is, they uniquely identify a row.

High-throughput MS/MS experiments can provide
a large amount of data of this kind on which to train
and test data-mining methods. However, they also
introduce a complication, since the amount of protein

Table 1: A fragment of a data file

Protein ID Peptide Count Charge

Q91VA7 TRHNNLV IIR 4 2
Q91VA7 KLDLFAV HV K 3 2
· · · · · · · · · · · ·

input to the mass spectrometer is unknown. This can
be seen in Table 1, where spectral count is provided, but
protein abundance is not. Thus, it is in general unclear
whether a low spectral count for a peptide is due to the
properties of the peptide or to a small amount of protein
at the input. One of the challenges is to untangle these
two influences. What makes the problem approachable
is that we have data on spectral counts for peptides
from the same protein, so differences in their counts
cannot be due to differences in protein abundance.
The data-mining methods developed and tested in this
paper were chosen, in part, because of their ability to
exploit this information. In effect, they treat protein
abundance as a latent, or hidden variable, whose value
must be estimated. In addition, they lead to efficient
algorithms based on well-developed operators of linear
algebra (specifically, eigenvector decomposition).

The methods are based on a simple generative
model of MS/MS data. Because this is an initial study,
we chose the model for its simplicity and tractability,
and the goal was to see how well (or poorly) it fits the
data, and to quantify the error. The model predicts the
spectral count of a peptide based on two factors: its
amino-acid sequence, and the abundance of the protein
from which it was derived. We show that the model pro-
vides an explanation for the linear relationship between
protein abundance and spectral count observed in [10].
More importantly, we show how to use the model to
estimate protein abundance from spectral count.

Although the model is non-linear in the unknowns,
it can be linearized without difficulty (Section 2.3). In
its linearized form, the model can be fit to data using
Canonical Correlation Analysis (CCA), a well-known
statistical procedure that measures the linear relation-
ship between two random vectors [7]. However, while
we have found that CCA is quite adequate for small
datasets, we have also found that it is computationally
expensive for the large datasets we are dealing with. As
an alternative, this paper develops an efficient algorithm
for an approximation of CCA, one that avoids the need
to deal with large, dense matrices. We show that the
algorithm is correct for data of a certain form, which in-

cludes the kind of data we are dealing with. Finally, we
evaluate the method on the real-world datasets provided
by the Emili Laboratory, and compare its performance
to CCA.

The rest of this paper is organized as follows. Sec-
tion 2 shows how to use CCA to estimate protein quan-
tity. Section 3 discusses the computational bottlenecks
of CCA and develops our approximate method. Sec-
tion 4 describes our experiments on real-world data, and
presents and discusses our experimental results. Finally,
Section 5 presents conclusions and suggests possible ex-
tensions. In addition, the appendix provides a proof
that our approximation method is correct, i.e., that it
computes a well-defined approximate optimization cri-
terion.

2 Using CCA to Mine MS/MS Data

This section first reviews Canonical Correlation Anal-
ysis (CCA), then presents our model of MS/MS data,
and finally shows how to use CCA to fit the model to
experimental data.

2.1 Canonical Correlation Analysis (CCA)
Canonical correlation analysis (CCA), first developed
by Hotelling [7], is a way of measuring the linear re-
lationship between two multidimensional random vari-
ables, X and Y. In this paper, we are interested in find-
ing the largest of the so-called canonical correlations.
This can be defined as finding a linear combination of
the X variables and a linear combination of the Y vari-
ables that are maximally correlated. More formally, if
we treat X and Y as column vectors, then we want to
find two other column vectors, α and β, such that the
correlation coefficient between x = XT α and y = YT β

has maximal magnitude. We therefore want to maxi-
mize the magnitude of the following expression:

ρ = E[(x−Ex)(y−Ey)]√
E(x−Ex)2 E(y−Ey)2

= E[αT (X−EX)(Y−EY)T β]√
E[αT (X−EX)]2 E[(Y−EY)T β]2

= αTCxyβ√
αTCxxαβTCyyβ

(2.1)

Here, Cxy = E[(X− EX)(Y− EY)T] is the covari-
ance matrix of X and Y.

Maximizing this expression leads to the following
generalized eigenvalue equations:

{
ρ2Cxxβ = CxyC−1

yy Cyxβ

ρ2Cyyα = CyxC−1
xx Cxyα

(2.2)

The eigenvalue, ρ2, is the square of the correlation

coefficient whose magnitude we want to maximize. We
should therefore choose the eigenvectors, α and β,
with the largest eigenvalue. In other applications,
eigenvectors and eigenvalues other than the maximum
can be of interest. In general, the eigenvalues of
these equations are known as the squared canonical
correlations of X and Y, and the eigenvectors are the
canonical correlation basis vectors.

2.2 Modeling Spectral Counts This section
presents our model of MS/MS data. The model
represents a hypothesis about the way MS/MS data
is generated. As mentioned above, because this is
an initial study, the model was chosen largely for its
simplicity and computational tractability. Section 4
evaluates the model on real MS/MS data.

To keep track of different proteins and peptides, we
use two sets of indices, usually i for proteins and j for
peptides. Proteins are numbered from 1 to N, and the
peptides for the ith protein are numbered from 1 to ni.
In addition, we use y to denote spectral count, and z to
denote protein abundance. Each protein has a unique
abundance, and each peptide has a unique spectral
count. We therefore use zi to denote the abundance
of protein i, and yij to denote the spectral count of
peptide j of protein i. With this notation, the following
equation provides a simple model of spectral count:

yij = zi · eij(2.3)

This equation divides spectral count into two factors:
zi, the amount of protein from which peptide ij was
generated; and eij , the ionization efficiency of the
peptide. Ionization efficiency can be thought of as the
propensity of the peptide to ionize and contribute to
a peak, though it includes all factors that contribute to
spectral count other than the amount of protein. In this
way, we hope to untangle the amount of protein (which
we want to estimate) from all other factors. Note that
yij is observed, while zi and eij are both unknown.

Of course, Equation 2.3 is not exact. It provides
at best an approximate description of the data, and it
is not yet clear what the errors look like. The rest of
this paper spells out this model in greater detail, fits it
to real-world data, quantifies the error, and estimates
values for zi and eij in the process.

It is worth noting that the model already accounts
for an experimentally observed property of MS/MS
data. Specifically, the abundance of a protein is di-
rectly proportional to the total spectral count of its pep-

tides [10]. Formally,

zi = bi

∑

j

yij

where bi is an (unknown) proportionality constant that
depends on the protein. The notion of ionization effi-
ciency provides an explanation for this proportionality
and a way of computing the constants bi. In particular,
it follows immediately from Equation 2.3 that

zi =

∑
j yij∑
j eij

In other words, bi = 1/
∑

j eij . Thus, according to the
model of Equation 2.3, learning ionization efficiencies,
eij , is the central problem in estimating protein abun-
dance.

It should also be noted that with the model and
data described above, we can only learn relative values
of protein abundance and ionization efficiency, not abso-
lute values. This is because any solution to Equation 2.3
is only unique up to a constant: multiplying all the zi by
a constant, and dividing all the eij by the same constant
gives another, equally good solution. However, inferring
relative protein abundance would be an extremely useful
biological result. Moreover, by using a small amount of
calibration data, the relative values can all be converted
to absolute values.

In order to estimate relative values for these un-
knowns, we need a model of ionization efficiency. In
this paper, we investigate the use of linear models, that
is, models of the following form:

eij = xij • β(2.4)

Here, β is a vector of parameters (to be learned), xij is a
vector of (known) peptide properties, and • denotes the
dot product (or inner product) of the two vectors. The
peptide properties could include such things as length,
mass, charge, amino-acid composition, and estimates of
various biochemical properties such as hydrophobicity.
Section 4 spells out the specific properties used in this
study.

Combining Equations 2.3 and 2.4 gives

yij = zi · (xij • β)(2.5)

Here, β is a parameter vector of our model, and zi, the
amount of protein, is a variable. Since the amounts
of protein are unknown, each zi is a latent, or hidden
variable, whose values must be estimated. Note that if
the values of zi were known (i.e., if they were included

in the training data), then estimating a value for β

would be a straightforward problem of multivariate
linear regression. Unfortunately, the training data does
not include this information, as can be seen in Table 1.
This makes the model non-linear in the unknowns.

Fortunately, it is not hard to transform this non-
linear model into a linear one. We simply divide both
sides of the Equation 2.5 by zi, to give the following
linear equations:

yij · αi = xij • β(2.6)

where αi = 1/zi is unknown. This, then, is our final
model. Like Equation 2.3, it is an approximation, and
our goal is to see how closely we can fit it to the
data. Since the model is linear, we can use linear fitting
methods, such as CCA.

2.3 Fitting the Model with CCA Since both
sides of Equation 2.6 contain unknowns, we cannot
estimate their values by minimizing the total error, as
in linear regression. This is because the error is trivially
minimized to 0 by setting αi = 0 and β = 0, which is
clearly incorrect. However, we can choose values for αi

and β that maximize the correlation coefficient between
the two sides of the equation. This is what CCA does.

To apply CCA we first express the problem in
matrix notation. To this end, we construct the following
sparse N ×M matrix, Y:

y11 · · · y1n1 0 · · · 0 · · · 0 · · ·
0 · · · 0 y21 · · · y2n2 · · · 0 · · ·

· · · · · · · · ·
0 · · · 0 0 · · · 0 · · · 0 · · ·
0 · · · 0 0 · · · 0 · · · yN1 · · ·

where N is the number of proteins, M =
∑

i ni is the
total number of peptides, and yij is the spectral count of
peptide j of protein i. We also construct the following
p×M matrix:

X = (x11, ..., x1n1 , x21, ..., x2n2 , ..., xN1, ..., xNnN
)

where each xij is a column vector of length p, the vector
of peptide properties defined above. Finally, in addition
to these two (known) matrices, X and Y, we define
a new (unknown) column vector, α = (α1, ..., αN)T ,
where αi = 1/zi. With these definitions, Equation 2.6
can be rewritten as:

YT α = XT β(2.7)

Our aim is now to estimate values for α and β. From
the value of α, we can easily estimate an input amount

for each protein, using ẑi = 1/αi; and from the value
of β, we can easily estimate an ionization efficiency for
any peptide, using êij = xij • β.

We use CCA to find values for α and β that maxi-
mize the sample correlation coefficient between the two
random vectors YT α and XT β. From Equations 2.2,
we need the sample covariance matrices of X and Y.
These are given by the following matrix equations:

Cxx = (X−X)(X−X)T

Cyy = (Y−Y)(Y−Y)T

Cxy = (X−X)(Y−Y)T

Cyx = (Y−Y)(X−X)T

Here, X is a matrix of sample means. That is, element
ij in matrix X is the average of all the elements in row
i of matrix X (i.e., the sample mean of peptide feature
i). Likewise for Y. With these covariance matrices,
Equations 2.2 give the values of α and β that maximize
the correlation coefficient.

Although straightforward, we have found that solv-
ing Equations 2.2 is computationally expensive, both in
terms of time and space. The main problem is the large
size of the matrix Y. The data we are dealing with
contains roughly 10,000 different peptides and 2,000
different proteins. Matrix Y therefore has dimensions
2, 000× 10, 000, and so the covariance matrix Cyy has
dimensions 2, 000× 2, 000. The first of Equations 2.2
requires inverting this matrix. However, inverting such
a large matrix requires considerable time and space, and
can lead to severe numerical problems [14]. The second
of Equations 2.2 requires inverting the covariance ma-
trix Cxx, which is not nearly so large and can easily
be inverted. However, on the left side of the equation,
we again encounter the large matrix Cyy, which makes
the generalized eigenvector equation costly to solve. In
addition, since Cyy is a N ×N matrix, where N is the
number of proteins, the cost of this method increases
rapidly with the number of proteins in the dataset.

3 An Efficient Approximation

Although it is very large, the matrix Y defined in
the previous section is also very sparse. In every
column, only one element is non-zero. By exploiting
the structure and sparseness of this matrix, we develop
an efficient algorithm for an approximation of CCA.

In CCA, the statistical measure of similarity be-
tween two random vectors is correlation coefficient. For-
mally, we want to find α and β that maximize the fol-

lowing expression:

(YT α−YT α) • (XT β −XT β)

‖YT α−YT α‖ · ‖XT β −XT β‖
(3.8)

The point to notice here is that the two vectors are
centered, by subtracting their means. The correlation
coefficient is thus the cosine of the angle between the two
centered vectors, and CCA finds α and β to minimize
this angle. Unfortunately, from a computational point
of view, the centering of the vectors causes a great
deal of problems, because it effectively destroys the
sparse structure of matrix Y. This is because the large
covariance matrix, Cyy, is defined not in terms of Y,
but in terms of Y−Y. Unfortunately, although Y is
sparse, Y is dense, so Y−Y is also dense. In fact, in
row i of matrix Y, each entry is

∑ni

j=1 yij/N , so Y has
no zeros and is maximally dense. Likewise for Y−Y.

In the approximation method developed here, we
retain the idea of minimizing the angle, but without
the requirement of centering the vectors first. That
is, we minimize the angle between the uncentered
vectors YT α and XT β, by maximizing the cosine of
the angle between them. This amounts to maximizing
the following expression:

YT α •XT β

‖YT α‖ · ‖XT β‖(3.9)

Maximizing this expression leads to the same general-
ized eigenvector equations given in Equation 2.2, ex-
cept that now the covariance matrices are defined in
terms of uncentered random variables. Thus, instead
of Cyy = (Y−Y)(Y−Y)T , we now use Cyy = YYT .

Of course, this does not change the dimensions of
any of the covariance matrices. In particular, Cyy is
still very large. However, it is now possible to simplify
Equations 2.2 so that the remaining matrices are rela-
tively small. This is shown in Theorem 1 below. In this
theorem, Yi is the column vector (yi1, yi2, ..., yini)

T , and
Xi is the matrix (xi1, xi2, ..., xini). They represent, re-
spectively, the spectral counts and peptide properties
for protein i. Note that X = (X1,X2, ...,XN), so each
Xi is a vertical slice of the larger matrix X.

Theorem 1: Expression 3.9 above is maximized
when the parameter vector β is a solution of the follow-
ing generalized eigenvector equation:

ρ2XXT β = [
∑

i

XiYiY
T
i XT

i /‖Yi‖2] β(3.10)

Moreover, it is the eigenvector with the largest eigen-
value, ρ2. In addition, ρ = cos θ, where θ is the angle

between the vectors YT α and XT β. Finally, the ele-
ments of the parameter vector α are given by the fol-
lowing equation:

αi = YT
i XT

i β/ρ‖Yi‖2(3.11)

Proof: Given in the appendix.

Comparing Equation 3.10 in this theorem with
Equation 2.2 in Section 2.1, the important point is
that we no longer need to compute or invert the large
covariance matrix Cyy. As for the other matrices,
Xi has dimensions p× ni, where p is the number of
properties (or features) characterizing each peptide.
Matrix X has dimensions p×M , where M =

∑
i ni

is the total number of peptides. The matrices XXT

and XiYiY
T
i XT

i thus have dimensions p× p. It is the
size of these p× p matrices that is important, since this
determines the cost of solving eigenvector equation 3.10.

Since our datasets contain roughly 10,000 peptides,
M is large. However, p, the number of peptide features
is much smaller. In this paper, we use two different
feature sets, one with p = 21 and one with p =
421, as described in Section 4. With p = 21 the
eigenvector matrices are very small. With p = 421
they are much larger, and although they slowed down
the eigenvector computations discernably, they still
posed no significant problems. Moreover, they are
considerably smaller than the covariance matrix Cyy in
Equation 2.2, whose dimensions are roughly 2000×2000,
which did cause significant computational problems.
Perhaps more importantly, the size of the p×p matrices
is independent of how many proteins or peptides are
in the dataset. Thus, computational cost will not be
significantly affected as the datasets grow.

3.1 Weighting the Data In fitting a model to data,
one may not wish to treat all data points equally, but to
place different importance on different data. To allow
for this, one can introduce weights into the optimization
criterion. For our approximation to CCA, the optimiza-
tion criterion is given by Equation 3.9, which specifies
the angle between two vectors. In this case, we can de-
fine what might be called a generalized angle, in which
different vector components are weighted differently. If
the two vectors are denoted U and V , then the general-
ized angle is defined by (the arc cosine of) the following
expression:

UT WV√
UT WU

√
V T WV

Here, W is a diagonal matrix, whose ith diagonal
element, wi, is the weight of the ith component of the
vectors. When W is the identity matrix, we get the
ordinary, unweighted angle. To compute the generalized
angle between U and V , we can use the above formula,
or we can first transform the vectors as follows:

U ′
i = Ui

√
wi V ′

i = Vi
√

wi

and then compute the unweighted angle between U ′ and
V ′. This latter approach shows that giving weight wi to
data point (Ui, Vi) is equivalent to simply multiplying
Ui and Vi by

√
wi. This makes intuitive sense, since the

angle between two vectors is more strongly influenced
by large vector components than by small ones.

In the case of our MS/MS data, this corresponds
to assigning a different weight to each peptide and
transforming its spectral count and feature vector as
follows:

y′ij = yij
√

wij x′ij = xij
√

wij

where wij is the weight assigned to peptide j of protein
i. We then apply Theorem 1 to y′ij and x′ij , instead
of to yij and xij . The choice of what weights to use
is heuristic, and in our experiments, we chose two dif-
ferent sets of weights, wij = ||Yi|| and wij = 1/||Yi||,
respectively. These weights are a simple attempt to ad-
dress two different sources of noise and error. The first
set of weights emphasizes peptides from proteins with
high spectral counts, since they have a higher reliabil-
ity and a better signal-to-noise ratio. The second set of
weights attempts to stabilize the model error, assuming
that peptides from proteins with larger spectral counts
will tend to have larger error.

4 Experiments

This section uses real-world data to experimentally eval-
uate the data-mining methods and models described
above. The main evaluation strategy is ten-fold cross
validation, with correlation coefficient used to measure
the fit of a learned model to the testing portion of the
data. The main difficulty in carrying out the evalua-
tion was the distribution of the spectral counts, which
ranges over several orders of magnitude and is highly
skewed, with most data concentrated at very low val-
ues. To deal with this difficulty, we use the Spearman
rank correlation coefficient to measure the goodness-of-
fit [2]. Unlike the more common Pearson correlation co-
efficient, which measures linear correlation, Spearman’s
coefficient measures monotone correlation and is insen-
sitive to extreme data values. In addition, we use plots

of observed v.s. estimated values to provide an informa-
tive visualization of the fit.

4.1 Study Design We evaluated the data-mining
methods on three datasets derived from tissue samples
taken from Mouse. Similar in form to Table 1, the
datasets were provided by the Emili Laboratory at the
Banting and Best Department of Medical Research at
the University of Toronto. We refer to these datasets
as Mouse Brain Data, Mouse Heart Data, and
Mouse Kidney Data. In each of these datasets, many
proteins have multiple entries, each entry corresponding
to a different peptide. In fact, the vast majority of
entries correspond to proteins of this type. However,
some proteins have only one entry, since they give
rise to only one observable peptide. Such proteins
provide no information about protein abundance, so
we remove them from the datasets. After removal,
the Brain dataset contains 8,527 peptides and 1,664
proteins, Heart dataset contains 7,660 peptides and
1,281 proteins, and the Kidney dataset contains 7,074
peptides and 1,291 proteins.

For the data-mining methods developed in this pa-
per, each peptide must be represented as a vector, x.
This section evaluates two ways of doing this, using vec-
tors with 21 features and 421 features, respectively. The
vectors with 21 features represent the amino-acid com-
position of a peptide. Since there are twenty different
amino acids, the vector has 20 features, (x1, ..., x20),
where the value of feature xi is the number of occur-
rences of a particular amino acid in the peptide. In
addition, the vector has a 21st feature, x0, whose value
is always 1, to represent a bias term, as is common in
data-mining and machine-learning models [6]. The vec-
tors with 421 features include the original 21 plus an
additional 400 features representing the dimer compo-
sition of a peptide. A dimer is a sequence of two amino
acids, and since there are 20 distinct amino acids, there
are 400 distinct dimers.1

We evaluated numerous combinations of feature
vector, data-mining method and weighting scheme. Due
to space limitations, we present only five of them here.
In addition, because of the time required to execute
CCA, we used it in only one combination: unweighted
and with vectors having 21 features. We also evalu-
ated four versions of the approximate method devel-
oped in Section 3. The first two versions are both
unweighted and use vectors with 21 features and 421

1In [11] we explore other peptide features, including peptide
charge.

features, respectively. We refer to these two versions
as Approx-21 and Approx-421. The other two ver-
sions are both weighted and use vectors with 21 fea-
tures. The two weighting schemes used are wi = ||Yi||
and wi = 1/||Yi||, as described in Section 3.1.

Using ten-fold cross validation, we evaluated each
of these five data-mining methods on each of the three
Mouse datasets. Thus, each method was trained on
nine tenths of the data (the training set), and the
fitted model was then evaluated on the remaining one
tenth of the data (the test set), and this was repeated
in ten possible ways. Each training session produced
an estimate, β̂, of the parameter vector β, and an
estimate, ẑ , of the input amount for each protein in
the training set. Using β̂, we estimated the ionization
efficiency of each peptide in the entire dataset, using the
formula ê = x • β̂, where x is the vector representation
of the peptide. Applying univariate linear regression
to Equation 2.3, we then estimated an input amount,
ẑ , for each protein in the test set. We then estimated
the spectral count of each peptide in the entire dataset,
using ŷ = ẑ · ê. Finally, we compared the estimated and
observed spectral counts (that is, ŷ and y) by computing
Spearman rank correlation coefficients.

The results are shown in Table 2. In this table, each
column corresponds to a Mouse dataset, and each row
corresponds to a data-mining method. Each position in
the table shows four numbers, stacked vertically. The
top two numbers are the mean and standard deviation
of the correlation coefficient of ŷ and y on the training
data. The bottom two numbers are the mean and
standard deviation of the correlation coefficient on the
test data. (Since at this stage, we are only interested
in rough estimates of correlation coefficient, the ten
estimates produced by ten-fold cross validation are
enough.) In addition, by dividing ŷ and y by ẑ , we get
two different estimates of ionization efficiency, which we
denote ê and e, respectively. The correlation coefficient
between these two estimates is what CCA tries to
maximize. Thus, while the correlation coefficient of ŷ

and y measures the ability of the fitted model to predict
experimental observations, the correlation coefficient of
ê and e provides the most direct measure of fit between
the model and the data. The results are shown in
Table 3, which has the same format as Table 2.

4.2 Results The first point to notice is that of all
the methods that use vectors with 21 features, CCA
provides the best fit to the training data in Table 3.
(only Approx-421 produces a better fit, and only on
the Kidney data, but it uses more features.) This is

Table 2: Correlation of y and ŷ on real data

Method Statistics Brain Heart Kidney
Data Data Data

CCA Mean Train: 0.0350 0.0273 0.0335
Std Train: 0.0292 0.0162 0.0413
Mean Test: 0.3694 0.2575 0.3563
Std Test: 0.1118 0.1683 0.0865

Approx Mean Train: 0.2180 0.3319 0.2850
-21 Std Train: 0.0356 0.0135 0.0583

Mean Test: 0.4190 0.4250 0.4109
Std Test: 0.1133 0.0906 0.0705

Approx Mean Train: 0.0660 0.1299 0.1742
-421 Std Train: 0.0529 0.1631 0.0745

Mean Test: 0.2869 0.2839 0.4090
Std Test: 0.1975 0.1098 0.0999

Weighted Mean Train: 0.2121 0.4004 0.3518
Approx Std Train: 0.0678 0.0935 0.0363
w = |y| Mean Test: 0.4225 0.4406 0.4302

Std Test: 0.1004 0.0934 0.0951

Weighted Mean Train: 0.2568 0.3811 0.3005
Approx Std Train: 0.0067 0.0168 0.0186
w = |1/y| Mean Test: 0.3924 0.4223 0.3999

Std Test: 0.0924 0.0799 0.0586

to be expected since CCA maximizes the correlation
coefficient, which is what the table measures. On the
other hand, Approx-21 provides the best fit to the test
data. The same is true in Table 2, where Approx-21
provides better test predictions of y, the spectral count
(the main biological observable). These results suggest
that while our method may be an approximation of
CCA, it may also be more appropriate for this problem,
in terms of accuracy as well as speed.

The effect of the weighted methods is inconclusive.
In Table 3, the unweighted Approx-21 has consistently
better performance on the test data than either of the
two weighted schemes, but not dramatically better. In
Table 2, the three methods perform comparably on the
test data, though weights of |1/y| seem to be marginally
best, and weights of |y| seems to be marginally worst,
with Approx-21 in between.

The effect of the larger feature vector is more
conclusive. If we compare the Approx-21 and Approx-
421 methods in Table 3, we can see that Approx-421
shows evidence of overfitting, since the fit on the testing
data is often much worse than on the training data. The
400 dimer values included among the 421 features thus
appear to have little predictive value. Biologically, this
a useful negative result.

Table 2 shows some apparently anomalous patterns.

Table 3: Correlation of e and ê on real data

Method Statistics Brain Heart Kidney
Data Data Data

CCA Mean Train: 0.6027 0.5929 0.5971
Std Train: 0.0042 0.0054 0.0040
Mean Test: 0.1054 0.0459 0.2049
Std Test: 0.0763 0.0486 0.0846

Approx Mean Train: 0.4298 0.3921 0.4078
-21 Std Train: 0.0057 0.0081 0.0074

Mean Test: 0.2759 0.2234 0.2530
Std Test: 0.0432 0.0605 0.0485

Approx Mean Train: 0.5460 0.5469 0.6080
-421 Std Train: 0.1998 0.2616 0.0071

Mean Test: 0.0982 0.0913 0.2335
Std Test: 0.1125 0.1058 0.0424

Weighted Mean Train: 0.4613 0.3909 0.3916
Approx Std Train: 0.0051 0.0104 0.0135
w = |y| Mean Test: 0.2021 0.1163 0.2272

Std Test: 0.0737 0.0788 0.0456

Weighted Mean Train: 0.3118 0.2995 0.3072
Approx Std Train: 0.0056 0.0070 0.0093
w = |1/y| Mean Test: 0.1999 0.1786 0.1905

Std Test: 0.0349 0.0528 0.0376

For instance, the fit on the testing data is often better
than on the training data. Also, Approx-21 has a better
fit to the training data than Approx-421, even though
the features used in Approx-21 are a subset of those used
in Approx-421. These patterns are probably a result of
comparing ŷ and y, whereas the data-mining methods
try to fit ê and e. The same patterns are not present in
Table 3, which compares ê and e.

In addition to the measurements presented in Ta-
bles 2 and 3, Figures 1 and 2 provide a visual repre-
sentation of how well the estimated models fit the data.
In each figure, the horizontal axis is ê, the vertical axis
is e, and each point represents a single peptide. Fig-
ure 1 was generated by the Approx-21 method, and Fig-
ure 2 by the Approx-421 method, with both trained on
the entire Kidney dataset. The other methods gener-
ate similar figures. The first point to notice is that in
both figures, the vast majority of values of ê and e are
positive, which is how things should be, since ioniza-
tion efficiency is inherently positive. The Approx-421
method has more negative points than Approx-21, but
again, this could be a result of overfitting. The second
point to notice is that each figure appears to consist of
two components—a fairly linear diagonal component,
and a less-linear horizontal blob. This suggests that
there are two populations of peptides, those whose ion-

ization efficiency is well-modeled by a linear function,
and those whose ionization efficiency is much less pre-
dictable. This would explain why the correlation coef-
ficients in Table 3 are low. It also suggests a natural
topic for future research: characterizing those peptides
that can be modeled linearly.

−0.005 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Figure 1: e vs. ê as estimated by Approx-21.

−0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05
−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Figure 2: e vs. ê as estimated by Approx-421.

5 Conclusions and Future Directions

This paper developed and evaluated a data-mining
method for estimating protein levels from high-
throughput Tandem Mass Spectrometry (MS/MS)
data. The method is based on a simple generative model
of MS/MS data. We showed how to linearize the model
and fit it to data using Canonical Correlation Analysis
(CCA). However, for the large data sets we are work-
ing with, we found CCA to be computationally expen-

sive. As an alternative, we developed an efficient algo-
rithm for an approximation to CCA, one that exploits
the structure of our data.

We provided a proof of correctness of the method,
and we evaluated its effectiveness on real MS/MS data
derived from tissue samples of Mouse. The evalua-
tions included three different tissue samples, two dif-
ferent vector representations of peptides, three different
schemes for weighting the data, and three different eval-
uation measures (two based on correlation coefficients
and one based on data visualization). The results sug-
gest that our method may be better than CCA at fitting
the model to MS/MS data. Biologically, they suggest
that spectral count is not influenced by the dimers in a
peptide. They also suggest that there may be two types
of peptide, only one of whose ionization efficiency can
be adequately modeled by a linear function.

This research is just a first step, and additional work
is needed before protein levels can be predicted accu-
rately. This includes developing non-linear models of
ionization efficiency (e.g., models based on regression
trees, neural nets, or support vector machines), iden-
tifying those peptides for which linear models are ade-
quate, and investigating additional peptide representa-
tions, especially ones that retain more of the sequential
content of a peptide. Other possibilities include devel-
oping more sophisticated models of the entire MS/MS
process, especially models that account for interactions
between peptides in the mass spectrometer.

Finally, the methodology of Section 4 evaluates a
model in terms of its ability to predict the spectral
counts of peptides, based on peptide properties and pre-
dicted protein abundance. The ability to accurately
predict spectral counts in this way would be strong
evidence that a model is correct, and would suggest
that protein abundance was accurately predicted. How-
ever, conclusive proof requires a more direct compar-
ison with known protein amounts (e.g., as measured
by the more laboratory-intensive isotope marker exper-
iments [4, 12]).

Acknowledgments

The authors would like to thank Dr. Andrew Emili for
his comments and discussions and for generous access to
his data. We would also like to thank Clement Chung
for generating and preprocessing the data. Finally, we
would like to thank the anonymous reviewers for their
constructive and helpful comments.

References

[1] R. Aebersold, M. Mann. Mass spectrometry-based pro-
teomics, Nature 422, pp 198-207, 2003.

[2] P. Bickel and K. Doksum. Mathematical Statistics:
Basic Ideas and Selected Topics, Holden-Day INC,
1977.

[3] Joshua E Elias, Francis D Gibbons, Oliver D King,
Frederick Roth, Steven P Gygi Intensity-based protein
identification by machine learning from a library of
tandem mass spectra,Nature, biotechnology. Volume 22
Number 2, 2004

[4] S.P. Gygi, B. Rist, S.A. Gerber, F. Turecek, M.H.
Gelb, and R. Aebersold. Quantitative analysis of com-
plex protein mixtures using isotope-coded affinity tags,
Nature Biotechnology 17, pp 994–999.

[5] S.P.Gygi and R. Aeberold. Mass Spectrometry and
Proteomics, Current Opinion in Chemical Biology, 4,
pp 489–494, 2000.

[6] T. Hastie, R. Tibshirani, J. Friedman. The elements
of statistical learning—Data mining, inference and
prediction, Springer 2001.

[7] H. Hotelling. Relations between two sets of variates.
Biometrika, 28:321-377, 1936.

[8] T. Kislinger, K. Ramin, D. Radulovic, et al. PRISM, a
Generic Large Scale Proteomics Investigation Strategy
for Mammals, Molecular & Cellular Proteomics 2.1
2003.

[9] D.C. Liebler. Introduction to Proteomics, tools for the
new biology, Humana Press, NJ, 2002.

[10] H. Liu, R.G. Sadygov, and J.R. Yates. A Model for
Random Sampling and Estimation of Relative Protein
Abundance in Shotgun Proteomics, Anal. Chem. 76, pp
4193–4201, 2004.

[11] H. Liu. Development and Evaluation of Methods for
Predicting Protein Levels from Tandem Mass Spec-
trometry Data, Masters thesis, Department of Com-
puter Science, University of Toronto. January 2005.

[12] S. Ong, B. Blagoev, I. Kratchmarovat, D.B. Kris-
tensen, H. Steen, A. Pandey, and M. Mann. Stable Iso-
tope Labelling by Amino Acid in Cell Culture, SILAC,
as a Simple and Accurate Approach to Expression Pro-
teomics, Molecular & Cellular Proteomics 1.5 2002.

[13] G. Siuzdak. The Expanding Role of Mass Spectrometry
in Biotechnology, Mcc Press, 2003.

[14] David S. Watkins Fundamentals of Matrix Computa-
tion, Wiley-Interscience 2002.

6 Appendix: Proof of Theorem 1

Observe that the maximum of expression 3.9 is the same
as the maximum of the simpler expression YT α •XT β

subject to the constraints ‖YT α‖ = 1 and ‖XT β‖ = 1.
In fact, α and β maximize the unconstrained expression
if and only if α′ and β′ maximize the constrained ex-
pression, where α′ = α/‖XT α‖ and β′ = β/‖XT β‖.
It is therefore sufficient to maximize the simpler, con-
strained expression. To carry this out, we use Lagrange

multipliers and maximize the following expression:

YT α •XT β − λ(‖YT α‖2 − 1) − µ(‖XT β‖2 − 1)

It is not hard to see that this expression is equivalent
to the following:
∑

i

αiY
T
i XT

i β − λ(
∑

i

‖αiYi‖2− 1) − µ(‖XT β‖2− 1)

Taking partial derivatives with respect to β and αi and
setting the results to 0 gives the following equations:

∑

i

αiXiYi = 2µXXT β(6.12)

Y T
i XT

i β = 2λαi‖Yi‖2(6.13)

Left-multiplying Equation 6.12 by βT gives

βT
∑

i

αiXiYi = 2µβT XXT β(6.14)

= 2µ‖XT β‖2(6.15)

= 2µ(6.16)

since, by our constraint, ‖XT β‖ = 1. In a similar
fashion, multiplying Equation 6.13 by αi and summing
over i gives

∑

i

αiY
T
i XT

i β = 2λ
∑

i

α2
i ‖Yi‖2(6.17)

= 2λ‖YT α‖2(6.18)

= 2λ(6.19)

since, by our constraint, ‖YT α‖ = 1. Note that
Equations 6.16 and 6.19 can be rewritten as follows:

2λ = YT α •XT β = 2µ(6.20)

In other words, λ = µ = ρ/2, where ρ is the value we
are maximizing. From this and Equation 6.13, it follows
immediately that

αi = Y T
i XT

i β/ρ‖Yi‖2(6.21)

This proves Equation 3.11. To prove Equation 3.10,
note that from Equations 6.12 and 6.21, we get

2µρXXT β = [
∑

i

XiYiY
T
i XT

i /‖Yi‖2] β

The result follows immediately, since 2µρ = ρ2.

