
Towards the Prediction of Protein Abundance
from Tandem Mass Spectrometry Data

Anthony J Bonner∗ Han Liu†

Abstract

This paper addresses a central problem of Proteomics:

estimating the amounts of each of the thousands of proteins

in a cell culture or tissue sample. Although laboratory

methods involving isotopes have been developed for this

problem, we seek a simpler method, one that uses more-

straightforward laboratory procedures. Specifically, our aim

is to use data-mining techniques to infer protein levels

from the relatively cheap and abundant data available from

high-throughput tandem mass spectrometry (MS/MS). This

paper develops and evaluates several techniques for tackling

this problem. First, we develop three generative models of

MS/MS data. Each model represents a different hypothesis

about the way MS/MS data is generated, the main difference

between them being their treatment of peptide ionization.

Second, for each model, we develop a family of methods

for efficiently fitting the model to data. Each method is

based on optimizing an objective function, and we prove

that the methods achieve the optimum values. Finally, to

evaluate the biological relevance of the models and methods,

we test them on three real-world datasets generated by

MS/MS experiments performed on various tissue samples

taken from Mouse. The evaluations are carried out on four

different representations of the data and involve two distinct

evaluation criteria, one based on correlation coefficients and

one based on data visualization.

keywords: Bioinformatics, Proteomics, Data Min-
ing, Proteins, Peptides, Tandem Mass Spectrometry.

1 Introduction.

Proteomics is the large-scale study of the thousands
of proteins in a cell [10]. In a typical Proteomics
experiment, the goal might be to compare the proteins
present in a certain tissue under different conditions.
For instance, a biologist might want to study cancer
by comparing the proteins in a cancerous liver to the
proteins in a healthy liver. Modern mass spectrometry
makes this possible by enabling the identification of
thousands of proteins in a complex mixture [14, 4].
However, identifying proteins is only part of the story.

∗Department of Computer Science, University of Toronto,
bonner@cs.toronto.edu

†Department of Computer Science, University of Toronto

It is also important to quantify them, that is, to estimate
how much of each protein is present in a cell [1, 5]. To
this end, a number of laboratory methods have been
developed, notably those based on mass tagging with
isotopes [6, 13]. However, simpler, more-direct methods
may be possible, methods that do not require additional
laboratory procedures, but which are simply based on
the data provided by tandem mass spectrometers [11].
This paper is an initial exploration of this possibility.
In particular, we investigate the use of data-mining
techniques to infer protein quantity from tandem mass
spectrometry data.

1.1 Tandem Mass Spectrometry. Tandem mass
spectrometry involves several phases in which proteins
are broken up and the pieces separated by mass [10, 14].
First, a complex mixture of thousands of unknown
proteins is extracted from a cell culture or tissue sample.
Since proteins themselves are too large to deal with,
they are fragmented, producing a mixture of tens of
thousands of unknown peptides. The peptides are
then ionized and passed through a mass spectrometer.
This produces a mass spectrum in which each spectral
peak corresponds to a peptide. From this spectrum,
individual peptides are selected for further analysis.
Each such peptide is further fragmented and passed
through a second mass spectrometer, to produce a
so-called tandem mass spectrum. The result is a
collection of tandem mass spectra, each corresponding
to a peptide. Each tandem mass spectrum acts as a
kind of fingerprint, identifying the peptide from which it
came. By searching a database of proteins, it is possible
to identify the protein that produced the peptide that
produced the tandem mass spectrum. In this way,
the proteins in the original tissue sample are identified.
Often, the entire process is completely automatic.

A peptide mixture is not analyzed all at once. In-
stead, to increase sensitivity, the peptides are “smeared
out” over time (often using liquid chromatography), so
that different kinds of peptides enter the mass spectrom-
eter at different times. A typical MS/MS experiment
may last many hours, with proteins and peptides being
identified each second. Copies of a particular peptide

may continue to enter the mass spectrometer for sev-
eral seconds or minutes. As the copies enter, the pep-
tide will be repeatedly identified, once a second. In this
way, a peptide may be identified and re-identified many
times, increasing the confidence that the identification
is correct. Each identification of a peptide is called a
spectral count , since it requires the generation of a tan-
dem mass spectrum. A large spectral count indicates
that a peptide has been confidently identified.

In general, as protein abundance increases, so does
spectral count [11]. However, the exact relationship is
not at all clear and seems to depend on many factors, in-
cluding the amino acid sequence of the peptides and the
properties of the experimental set up. At present, there
is no complete quantitative theory relating a protein’s
abundance to the spectral counts of its peptides. This
paper is an initial attempt at using data-mining tech-
niques to develop such a theory, and using the theory
to estimate protein abundance.

1.2 Data Mining. We develop and evaluate three
generative models of MS/MS data, and for each, we de-
velop a family of methods for efficiently fitting the model
to data. Because this is an initial study, the models were
chosen for their simplicity and tractability, and the goal
is to see how well (or poorly) they fit the data, and to
quantify the error. Each model predicts the spectral
count of a peptide based on two factors: its amino-acid
sequence, and the abundance of the protein from which
it was derived. The three models differ in their treat-
ment of peptide ionization. However, they each provide
an explanation for a recently observed linear relation-
ship between protein abundance and spectral count [11].
More importantly, we show how to use each model to
estimate protein abundance from spectral count.

To evaluate the models, the Emili Laboratory at
the Banting and Best Department of Medical Research
at the University of Toronto has provided us with
datasets of several thousand proteins and peptides. The
datasets were derived from MS/MS experiments on
protein mixtures extracted from various tissue samples
of Mouse. Each mixture contains tens of thousands of
proteins, and each protein is present in the mixture with
a specific (but unknown) abundance. A small sample
of the data is shown in Table 1. (Details on how this
data was generated can be found in [9].) Each row in
the table represents a peptide ion. The first (left-most)
column is the Swissprot accession number identifying a
protein. The second column is the amino-acid sequence
of the peptide. The third column is the spectral count
of the peptide, and the last column is its charge. Notice
that there may be many entries for the same protein,
since a single protein can produce many peptides, and

each peptide can produce ions with different amounts
of charge. Protein ID, Peptide and Charge define a key
for the table, that is, they uniquely identify a row.

Table 1: A fragment of a data file

Protein ID Peptide Count Charge

Q91VA7 TRHNNLV IIR 4 2
Q91VA7 KLDLFAV HV K 3 2
· · · · · · · · · · · ·

High-throughput MS/MS experiments can provide
a large amount of data of this kind on which to
train and test data-mining methods. However, they
also introduce a complication, since the amount of
protein input to the mass spectrometer is unknown.
This can be seen in Table 1, where spectral count
is provided, but protein abundance is not. Thus, it
is in general unclear whether a low spectral count
for a peptide is due to the properties of the peptide
or to a small amount of protein at the input. One
of the challenges is to untangle these two influences.
What makes the problem approachable is that we have
data on spectral counts for peptides from the same
protein, so differences in their counts cannot be due
to differences in protein abundance. The models and
methods developed here were chosen, in part, because
of their ability to exploit this information. In effect,
they treat protein abundance as a latent, or hidden
variable, whose value must be estimated. In addition,
they lead to efficient algorithms based on well-developed
operators of linear algebra (specifically, matrix inversion
and eigenvector decomposition). Finally, we evaluate
each of the methods on the MS/MS datasets provided
by the Emili Laboratory.

2 Modeling the Data.

In this section, we present our three models of MS/MS
data. Each model represents a different hypothesis
about the way MS/MS data is generated. The main
difference between them is their treatment of peptide
ionization. In Section 4, we evaluate the effectiveness of
each model.

2.1 Modeling Spectral Counts. To keep track of
different proteins and peptides, we use two sets of in-
dices, usually i for proteins and j for peptides. Proteins
are numbered from 1 to N, and the peptides for the ith

protein are numbered from 1 to ni. In addition, we use
y to denote spectral count, and in to denote the amount
of protein input to the mass spectrometer. Each protein
has a unique abundance, and each peptide has a unique

spectral count. Thus, ini is the abundance of protein
i, and yij is the spectral count of peptide j of protein
i. With this notation, the following equation provides a
simple model of spectral count:

yij = ini · ieij(2.1)

This equation divides spectral count into two fac-
tors: ini, the amount of protein from which peptide ij
was generated; and ieij , the ionization efficiency of the
peptide. Ionization efficiency can be thought of as the
propensity of the peptide to ionize and contribute to a
mass spectrum, though in this paper, we are using it to
refer to all factors that contribute to a peptide’s spec-
tral count other than the amount of protein. In this
way, we hope to untangle the amount of protein (which
we want to estimate) from all other factors. Note that
yij is observed, while ini and ieij are both unknown.
Of course, Equation 2.1 is not exact. It provides at best
an approximate description of the data, and it is not
yet clear what the errors look like. The rest of the pa-
per develops the model in three different ways, fits each
model to real MS/MS data, quantifies the errors, and
estimates values for ini and ieij in the process.

It should be noted that with the model and data de-
scribed above, we can only learn relative values of pro-
tein abundance and ionization efficiency, not absolute
values. This is because any solution to Equation 2.1 is
unique only up to a constant: multiplying all the ini

by a constant, and dividing all the ieij by the same
constant gives another, equally good solution. How-
ever, estimating the relative amounts of protein is an
extremely useful biological result. Moreover, by using
a small amount of calibration data, the relative values
can all be converted to absolute values.

It is also worth noting that the model already
accounts for an experimentally observed property of
MS/MS data. Specifically, the abundance of a protein is
known to be directly proportional to the total spectral
count of its peptides [11]. Formally, ini = bi

∑
j yij ,

where bi is an (unknown) proportionality constant that
depends on the protein. The notion of ionization effi-
ciency provides an explanation for this proportionality
and a way of computing the constants bi. In particular,
it follows immediately from Equation 2.1 that

ini =

∑
j yij∑
j ieij

(2.2)

In other words, bi = 1/
∑

j ieij . Thus, in the model of
Equation 2.1, learning ionization efficiencies, ieij , is the
central problem in estimating protein abundance.1

1Recall that in this paper, the term ”ionization efficiency” is

2.2 Modeling Ionization Efficiency. In order to
estimate relative values for these unknowns, we need
a model of ionization efficiency. In this paper, we
investigate three relatively simple models:

Linear : ieij = xij • β
Exponential : ieij = exij•β

Inverse : ieij = 1/(xij • β)
(2.3)

Here, β is a vector of parameters (to be learned),
xij is a vector of (known) peptide properties, and •
denotes the dot product (or inner product) of the two
vectors. The peptide properties are all derived from
the amino-acid sequence and charge of the peptide ion.
They could include such things as length, mass, amino-
acid composition, and estimates of various biochemical
properties such as hydrophobicity, chargeability, pH
under the experimental conditions, etc. Section 4.2
spells out the specific properties used in this study.

We investigate linear models because they are di-
rectly amenable to the techniques of linear algebra. We
investigate exponential models because, by taking logs,
they become linear. In addition, exponential models
have the advantage that the ionization efficiency is guar-
anteed to be positive. In contrast, the linear model
may produce a preponderance of positive values, but it
sometimes produces negative values as well, which are
meaningless (though very small negative values can be
assumed to be zero).

The inverse model has a different motivation. Spec-
tral counts have a very skewed distribution of values,
ranging over several orders of magnitude, with most of
the values concentrated at the very low end of the spec-
trum. In fact, Section 4.1 shows that the distribution
is O(1/y2), where y denotes spectral count. It can be
difficult to fit a linear model to data with this kind of
distribution, since a small number of very large values
tends to dominate the fit. Even if the largest values are
removed, the next largest values dominate, ad infinitum.
Taking logarithms helps, but even log(y) has a skewed
distribution. However, 1/y has a uniform distribution,
thus eliminating all skew. This is the motivation for the
inverse model: to transform the data to a form that is
more manageable. In addition, all the methods we de-
velop for fitting the linear model are easily adapted to
fit the inverse model.

Finally, it is worth noting that not all the data
contains useful information. In fact, only those proteins
that produce at least two observable peptides can be
used for learning β. To see this, note that for each
model, yij = ini · f(xij , β), for some function, f . If a

used broadly to refer to all factors (other than protein abundance)
that contribute to a peptide’s spectral count.

protein produces only one peptide, then j = 1 and the
protein yields only one equation: yi1 = ini · f(xi1, β).
This is the only equation containing the unknown value
ini. Once we know β, we can use this equation to
estimate ini. However, the equation provides absolutely
no help in estimating β itself, since it does not constrain
β in any way. In fact, the equation is trivially satisfied
for any β by using ini = yi1/f(xi1, β). If all the
proteins produced only one peptide, then we would
have no way to estimate β, since any β would fit the
data exactly. For this reason, our methods ignore all
proteins that produce only one peptide. In fact, the first
method considered below explicitly requires at least two
peptides per protein.

3 Fitting the Models to Data.

The models described above each require the estimation
of a parameter vector, β. In addition, since the amounts
of protein are unknown, each of the ini is a latent, or
hidden variable whose value must be estimated. Since
a tissue sample may contain thousands or tens of thou-
sands of proteins, we have thousands of hidden variables
to estimate. If the values of these variables were known
(i.e., if they were included in the training data), then for
each model, the problem of estimating β would reduce to
multivariate linear regression. Unfortunately, the train-
ing data does not include protein abundance, as can be
seen in Table 1. This makes each model non-linear in
the unknowns. This section develops a number of meth-
ods for transforming these non-linear models into linear
ones and for efficiently fitting them to data. In some
cases, the problem still reduces to multivariate linear
regression, but in most cases it reduces to generalized
eigenvector problems. We consider each model in turn,
and for each, we develop a family of methods for fitting
the model to data.

3.1 Linear Models. This section develops three
methods for fitting the linear model to experimental
data, where each method is meant to improve upon the
one before. The first two methods are closely related.
They have in common that learning is divided into two
phases: the first phase estimates a value for β, and the
second phase uses β to help estimate values for the ini.
The two methods differ in the optimization criteria they
use to fit the model to the data. The third method is dif-
ferent from the first two in that it has only one learning
phase, in which all parameters are estimated simulta-
neously. In this way, we hope to get a better fit to the
data, since the estimate of β is now affected by how
well the estimates of ini fit the data, something that is
impossible in the two-phase approach.

The linear model is given by equations of the form

yij = ini · (xij • β)(3.4)

where the parameter vector β and all the ini are un-
known and must be learned. Of course, these equations
are not exact, and provide at best an approximate de-
scription of the data. The goal is to see how closely they
fit the data, and to estimate values for β and ini in the
process. As discussed above, we know it is only possible
to estimate relative values for these quantities. This ef-
fectively means we can determine the direction of β but
not its magnitude. In fact, in the absence of calibra-
tion data, the magnitude of β is meaningless. For this
reason, the methods described in this section all impose
constraints on the magnitude of β in order to obtain a
unique solution.

3.1.1 LIN1: Two-Phase Learning. This approach
factors out protein abundance, ini, from the set of
Equations 3.4. The result is a set of linear eigenvector
equations for the parameter vector β, which we can solve
using standard eigenvector methods.

From Equations 3.4, we see that protein i gives
rise to the following equations, one equation for each
peptide:

yi1 = ini · (xi1 • β)
yi2 = ini · (xi2 • β)

· · ·
yini = ini · (xini • β)

(3.5)

Note that the unknown value ini is the same in each
equation. Thus, by dividing each equation by the pre-
vious one, we can eliminate this unknown value, leav-
ing the parameter vector β as the only unknown quan-
tity. That is, yij/yi,j−1 = (xij • β)/(xi,j−1 • β), for j
from 2 to ni. Cross multiplying gives yij(xi,j−1 • β) =
yi,j−1(xij • β), and rearranging terms gives the follow-
ing:2

zij • β = 0(3.6)

where zij = yijxi,j−1 − yi,j−1xij , for j from 2 to ni, and
i from 1 to N . Thus, for each value of i, we have elim-
inated a single unknown, ini, and reduced the number
of equations by 1. Geometrically, these equations mean
that the parameter vector β is orthogonal to each of
the derived vectors zij . Note that this is a constraint
on the direction of β but not its magnitude, which is
to be expected. Equation 3.6 is a restatement of Equa-
tion 3.4 with the unknown values ini removed. Like

2Of course, we could generate many more equations of this
form by cross multiplying all possible pairs of equations from 3.5,
instead of just the successive ones. However, only ni − 1 of the
resulting equations would be linearly independent.

Equation 3.4, it is an approximation, and our goal is to
see how closely we can fit it to the data.

A simple approach is to choose β so that the values
of zij • β are as close to 0 as possible. That is, we can
try to minimize the sum of their squares,

∑
i,j(zij •β)2.

Of course, this sum can be trivially minimized to 0 by
setting β = 0. But, as described above, the magnitude
of β is meaningless, and only its direction is important.
So, without loss of generality, we minimize the sum of
squares subject to the constraint that the magnitude of
β is 1. To do this, we use Lagrange multipliers. That
is, we minimize the following function:

F (β, λ) =
∑

i,j

(zij • β)2 − λ(‖β‖2 − 1)(3.7)

Taking partial derivatives with respect to β and setting
the result to 0, we get the equation

∑

ij

zij(zij • β) = λβ(3.8)

Taking the inner product of both sides with β
gives

∑
ij(zij • β)2 = λβ •β = λ‖β‖2 = λ, where

the last equation follows from the constraint ‖β‖ = 1.
We have therefore derived the following two equations:

∑

ij

zijzT
ij β = λβ λ =

∑

ij

(zij • β)2

In the left equation, all multiplications are matrix
multiplications, with all vectors interpreted as column
vectors. The left equation says that β is an eigenvector
of the matrix

∑
ij zijzT

ij , and the right equation says
that its eigenvalue is just the sum of squares we want to
minimize. We should therefore choose the eigenvector
with the smallest eigenvalue. This provides an estimate
of the parameter vector β, and completes the first phase
of learning.

In the second phase, we use β to estimate the
abundance of each protein, ini. This can be done in
a number of ways, such as using Equation 2.2. Another
possibility is suggested by Equations 3.5. Letting
vij = xij • β, we get yij = inivij , for j from 1 to ni.
Thus, for each value of i, we get a system of ni linear
equations involving ini, and we can estimate the value
of ini using univariate linear regression. The values of
in1, · · · , inN can then be estimated by carrying out N
such regressions.

3.1.2 LIN2: Improving the Optimization Cri-
terion. The method developed above uses the equation
‖β‖ = 1 to constrain the magnitude of the parameter
vector β. However, the choice of this particular equation
was arbitrary, since any equation of the form ‖Mβ‖ = 1

also constrains the magnitude of β, for any non-singular
matrix M . Above, we implicitly chose M = I, the iden-
tify matrix. Here, we use M = X, where each row of
matrix X is one of the feature vectors xT

ij . We still try
to minimize the sum of squares

∑
ij(zij • β)2, but sub-

ject to the new constraint ‖Xβ‖ = 1. Note that this
constraint is equivalent to

∑
ij(xij • β)2 = 1.

The advantage of this constraint is that it leads to
estimates of ionization efficiency and protein abundance
that do not depend on arbitrary choices in data repre-
sentation. For example, the estimates do not depend
on whether we represent peptide mass in milligrams or
micrograms. More generally, the estimates are invari-
ant under any one-to-one linear transformation of the
feature vectors. That is, suppose we let x′ij = Axij ,
where A is a non-singular matrix. Then our estimates
of protein abundance and ionization efficiency will not
depend on whether we use xij or x′ij to represent the
peptides. This is how things should be. After all, the
vectors xij and x′ij contain exactly the same informa-
tion, since each can be derived from the other. In fact,
any change in the estimates would imply that the esti-
mates are somewhat arbitrary, since they depend on ar-
bitrary choices in data representation. In other words,
if using xij leads to one set of estimates, while using
x′ij leads to another, then which estimates are correct?
The estimation method developed here does not have
this problem.

Before developing the method, we first show that its
estimates will indeed be invariant under linear transfor-
mation. By Equation 3.4, it is enough to show that the
values of xij •β are invariant. To do this, first note that
if x′ij = Axij and β′ = A−T β, then x′ij •β′ = xij •β.
Thus, it is enough to show that if each feature vector,
xij , is replaced by Axij , then the estimated parame-
ter vector changes from β̂ to A−T β̂. To show that
the method behaves this way, first recall from Equa-
tion 3.6 that zij = yijxi,j−1 − yi,j−1xij . Also note that
yijx′i,j−1 − yi,j−1x′ij = A−T (yijxi,j−1 − yi,j−1xij). In
other words, z′ij = A−T zij . Thus, if β′ = A−T β, and
x′ij = Axij for all i and j, then z′ij • β′ = zij • β for all
i and j. Hence,

β = β̂ minimizes
∑

ij(zij • β)2

subject to
∑

ij(xij • β)2 = 1

if and only if

β = A−T β̂ minimizes
∑

ij(z
′
ij • β)2

subject to
∑

ij(x
′
ij • β)2 = 1

since none of the dot products changes value. Thus,
all our estimates of ionization efficiency and protein
abundance will remain unchanged under a one-to-one

linear transformation of the feature vectors. In fact,
this is true for any method that solves this constrained
minimization problem.

As in Section 3.1.1, the method developed here is
based on Lagrange multipliers. That is, we minimize
the following function, which is the new version of
function (3.7):

F (β, λ) =
∑

i,j

(zij • β)2 − λ(
∑

ij

(xij • β)2 − 1)

Taking partial derivatives with respect to β and setting
the result to 0, we now get

∑

ij

zij(zij • β) = λ
∑

ij

xij(xij • β)(3.9)

Taking the inner product of both sides with
β, we get

∑
ij(zij • β)2 = λ

∑
ij(xij • β)2 = λ,

where the last equation comes from the con-
straint

∑
ij(xij • β)2 = 1. Thus, expressing Equa-

tion (3.9) in matrix notation, we have the following two
equations:

∑

ij

zijzT
ijβ = λ

∑

ij

xijxT
ijβ λ =

∑

ij

(zij • β)2

The left equation is a generalized eigenvector equation,
that is, an equation of the form Aβ = λBβ, where A
and B are square matrices. In this case, since A and
B are symmetric, the eigenvectors and eigenvalues are
guaranteed to be real. There is therefore a smallest
eigenvalue. As before, the right equation says that
the eigenvalue is the sum of squares we are trying
to minimize. We therefore choose the generalized
eigenvector with the smallest eigenvalue. Estimating
β in this way (the first phase of learning), we then use
it to estimate values for the ini (the second phase of
learning), as in LIN1.

3.1.3 LIN3: Simultaneous Learning. Here, we
outline a single-phase approach to learning, one that
estimates values for β and all the ini simultaneously.
Since the estimate for one parameter takes into account
the estimates for all the other parameters, we hope to
get a better overall fit to the data.

In order to do this, we first transform Equation 3.4.
Observe that the right-hand side of this equation con-
tains a product of two unknowns, ini and β. To elimi-
nate this non-linear term, we divide both sides by ini,
to obtain a model that is linear in all the unknowns:
yijαi = xij • β, where αi = 1/ini. Since both sides of
this equation contain unknown parameters, we cannot
simply minimize the error between them, since by set-
ting αi = 0 and β = 0 the error is trivially minimized

to 0, which is clearly incorrect. Instead, we minimize
the angle between two vectors, the vector of values on
the right-hand side of the equation, and the vector of
values on the left-hand side. Moreover, we do this by
maximizing the cosine of the angle between them. In
general, the cosine of the angle between two vectors, v
and w, is given by the formula v •w/‖v‖ · ‖w‖. We
must therefore maximize the following expression:

∑
ij(yijαi) · (xij • β)√∑

ij(yijαi)2
√∑

ij(xij • β)2
(3.10)

Note that this measure of error is insensitive to the
absolute magnitude of the parameters, αi and β, which
can all be scaled up or down by the same amount
without affecting the angle between the two vectors.

In [3], we develop a method to efficiently carry out
this maximization. It is based on Theorem 1 below,
which is also proved in [3]. In this theorem, Yi is the
column vector (yi1, yi2, ..., yik)T , and Xi is the matrix
(xi1,xi2, ...,xini)

T , where each xij is viewed as a column
vector. They represent, respectively, the spectral counts
and peptide property vectors for protein i.

Theorem 1: Expression (3.10) is maximized when
the parameter vector β is a solution of the following
generalized eigenvector equation:

ρ2
∑

ij

XT
i Xi β = [

∑

i

XT
i YiY

T
i Xi/‖Yi‖2] β

Moreover, it is the eigenvector corresponding to the
largest eigenvalue, ρ2. In addition,

αi = YT
i XT

i β/ρ‖Yi‖2

Finally, ρ is the maximum value of Expression (3.10).
(So the minimum angle, θ, between the two vectors is
given by ρ = cos(θ)).

3.2 Inverse Models. All of the methods developed
above for fitting the linear model to data are easily
adapted to fitting the inverse model. Recall that in
the inverse model, yij = ini/(x • β). By inverting
both sides of the equation, we get, y′ij = in′ij · (x • β)
where y′ij = 1/yij and in′ij = 1/inij . This is
precisely the linear model. In addition, y′ij is known
and in′ij is unknown, which is precisely the condition
for applying the linear fitting methods developed above.
When the linear methods LIN1, LIN2 and LIN3 are
adapted in this way to the inverse model, we refer to
them as INV1, INV2 and INV3.

3.3 Exponential Models. In this section, we de-
velop two methods for fitting the exponential model

to the data. Recall that in the exponential model,
yij = ini · exij•β . Taking logs of both sides converts
this to a linear model:

log yij = log ini + xij • β(3.11)

The two methods described below differ in their treat-
ment of the latent variables ini. As with the linear
methods developed above, one method is a two-phase
learner, and the other is single-phase. Unlike the lin-
ear methods, the workhorse of these methods is linear
regression, not eigenvector decomposition.

3.3.1 EXP1: Two-Phase Learning. As in the
development of LIN1, we subtract successive instances
Equation 3.11 in order to eliminate the unknown value
ini. This gives equations of the form log yi,j−1 − log yi,j

= (xi,j−1 − xi,j) • β for j from 2 to ni.3 Equivalently,
Yij = Xij • β, where Yij = log yi,j−1 − log yi,j and
Xij = xi,j−1 − xi,j . β can thus be estimated from the
new variables Xij and Yij using linear regression. This
is the first phase of learning. Once β is known, its value
can be used to help estimate values for the remaining
unknowns, in1, ..., inN . This is the second phase of
learning. Equation 3.11 suggests a natural approach.
Letting vij = log yij − xij • β, we get vij = log ini,
for j from 1 to ni. Like Equation 3.11, this equation is
only approximate. The value of log ini that minimizes
the mean squared error is just the mean of the vij . We
therefore use log ini = (vi1 + · · ·+ vini)/ni.

Although it is straightforward, a potential problem
with this method is in the error that it minimizes. We
would like to minimize (the sum of squares of) the errors
εij = log yij − log ini − xij • β. Instead, the method
minimizes (the sum of squares of) εij − εi,j−1, which is
not the same thing. The method developed next solves
this problem.

3.3.2 EXP2: Simultaneous Learning. In order to
minimize the errors εij directly, we treat the unknown
values log ini in Equation (3.11) as regression param-
eters. To this end, we define β′ to be the extended
parameter vector (β1, ..., βp, b1, ..., bN)T . Here, bi is a
parameter representing log ini, and (β1, ..., βp)T is the
original parameter vector, β, used above. Values for all
the parameters in β′ will be estimated simultaneously
in a single act of linear regression. To do this, we define
a number of matrices. First, we define OT to be the

3Of course, we could generate many more equations by sub-
tracting different pairs of equations, instead of just the successive
ones. However, as with LIN1, only ni − 1 of the resulting equa-
tions would be linearly independent.

following sparse matrix:



1 · · · 1 0 · · · 0 · · · 0 · · · 0
0 · · · 0 1 · · · 1 · · · 0 · · · 0
...

...
...

...
. . .

...
0 · · · 0 0 · · · 0 · · · 0 · · · 0
0 · · · 0 0 · · · 0 · · · 1 · · · 1




where the ith vertical block has ni columns. In
this matrix, each row corresponds to a protein, and
each column to a peptide. A 1 in the matrix
means that the peptide belongs to the protein. In
addition, we define X to be the matrix of pre-
dictors (x11, ...,x1,n1 ,x21, ...,x2n2 , ...,xN1, ...,xNnN

)T ,
and Y to be the column vector of responses
(Y11, ..., Y1,n1 , Y21, ..., Y2n2 , ..., YN1, ..., YNnN)T , where
Yij = log yij . With this notation, it is not hard to see
that the set of linear Equations (3.11) becomes the sin-
gle matrix equation Y = Vβ′ where V is the extended
predictor matrix (X,O). Thus, the problem again re-
duces to linear regression, though with a far larger set
of parameters. The solution is

β′ = (VT V)−1VT Y(3.12)

Observe that X is a M × p matrix, where
M =

∑
i ni is the total number of peptides, and p is

the number of features in the vectors xij . Likewise, O is
a M ×N matrix, where N is the number of proteins.
Consequently, V has dimensions M × (p + N), and
VT V has dimensions (p + N)× (p + N). Although p
is relatively small in our datasets, N is large, so the
matrix VT V is extremely large, and inverting it is com-
putationally very expensive.

Fortunately, because of the sparse and regular struc-
ture of O, we can develop a more efficient procedure.
The first step is to partition the matrix (VT V)−1 into
blocks as follows:

(VT V)−1 =
(

A B
C D

)

Here, the submatrices have the following dimensions: A
is p× p, B is p×N , C is N × p, and D is N ×N . The
submatrix A is therefore small, while D is extremely
large. The next step is to solve for A, B, C and D, as
follows:

I = (VT V)(VT V)−1

=
(

XT

OT

)
(X,O)

(
A B
C D

)

=
(

XT XA + XT OC XT XB + XT OD
OT XA + OT OC OT XB + OT OD

)

where I is the identity matrix. We can view this as
four matrix equations in four unknowns, A, B, C, D.
Solving, we get

A = (XT X− X̂T P−1X̂)−1

B = −AX̃T

C = BT

D = P−1 − X̃AX̃T

where X̂ = OT X, P = OT O, and X̃ = P−1X̂. The
first point to notice here is that A is a small matrix, of
size p×p, so even though it requires a matrix inversion,
it is not costly. The second point is that the matrices
P and O are both exremely large, of size N × N and
M ×N , respectively. However, neither one needs to be
materialized. To see this, note that the rows of OT are
orthogonal, and P is therefore diagonal. In fact, the
ith diagonal element of P is simply ni, the number of
peptides in protein i. The ith diagonal element of P−1 is
therefore 1/ni. Multiplication by P or P−1 is therefore
a simple operation. Likewise for left multiplication by
OT . For instance, the ith row of X̂ = OT X is
simply

∑
j xT

ij . In this way, neither P , P−1 nor O
needs to be materialized.

Neither does the extremely large matrix D. In fact,
the largest matrix that needs to be materialized is the
data matrix, X. To see this, first rewrite Equation 3.12
as

(
β
b

)
=

(
A B
C D

)(
XT

OT

)
Y

=
(

AXT Y + BOT Y
CXT Y + DOT Y

)

where we have decomposed the extended parameter
vector, β′, into the original parameter vector, β =
(β1, ..., βp)T , and a vector of the new parameters, b =
(b1, ..., bN)T . Expanding the definition of D, we get two
equations:

β = AXT Y + BŶ(3.13)

and

b = CXT Y + (P−1 − X̃AX̃T)Ŷ
= CXT Y + Ỹ − X̃AX̃T Ŷ(3.14)

where Ŷ = OT Y and Ỹ = P−1Ŷ . Note that Ŷ is
a column vector whose ith component is Ŷi =

∑
j Yij .

Likewise, Ỹ is a column vector whose ith component
is Ỹi = Ŷi/ni. Thus, it is still unneccessary to
materialize the very large matrices P , P−1 and O.

Finally, observe that the largest matrix in Equa-
tions 3.13 and 3.14 is the data matrix X, which has size

M × p. The matrices X̂ and X̃ both have size N × p,
the matrix A has size p×p, and the matrices B and C
have sizes p×N and N ×p, respectively. All of these
are smaller than X since p < N < M . Moreover, if all
the matrix multiplications are carried out from right to
left, then all the intermediate results are column vectors,
not large matrices. In this way, the parameter vectors
β and b can be estimated without having to materialize
or manipulate any matrices larger than X. In fact, for
fixed p, the total cost of estimating the parameters is
linear in M , the number of peptides; i.e., the total cost
is linear in the number of data points.

4 Experimental Evaluation.

We conducted an extensive evaluation of the models
and methods developed above using both real and sim-
ulated datasets [12]. This section presents a represen-
tative sample of results based on the real data. We
describe the datasets, the experimental design, and the
evaluation methods. The main difficulty in evaluating
the methods is the distribution of the real data. As
shown below, it ranges over several orders of magnitude
and is highly skewed, with most data concentrated at
very low values. We deal with these difficulties in two
ways. First, we use the Spearman rank correlation co-
efficient to measure the goodness of fit of our estimates
to the observed values [2]. Unlike the more common
Pearson correlation coefficient, which measures linear
correlation, Spearman’s coefficient measures monotone
correlation and is insensitive to extreme data values. In
addition, we use log-log plots of observed v.s. estimated
values to provide an informative visualization of the fit.

4.1 Real-World Datasets. The experimental re-
sults in this paper are based on tables of real-world data
similar to Table 1. They consist of three datasets de-
rived from tissue samples taken from Mouse and were
provided by the Emili Laboratory at the Banting and
Best Department of Medical Research at the Univer-
sity of Toronto. We refer to these datasets as Mouse
Brain Data, Mouse Heart Data, and Mouse Kid-
ney Data. As noted at the end of Section 2.2, proteins
that produce only one observable peptide are not useful
for fitting models to data. We identified these proteins
and removed them from the data. After removal, the
Brain dataset contains 8,527 peptides and 1,664 pro-
teins, the Heart dataset contains 7,660 peptides and
1,281 proteins, and the Kidney dataset contains 7,074
peptides and 1,291 proteins. For the purposes of this pa-
per, each of these three datasets was divided randomly
into two subsets, training data and testing data, in a
2:1 ratio. The results are comparable to those in [12],
in which we use ten-fold cross validation.

0 5 10 15 20 25 30 35 40 45 50
0

500

1000

1500

2000

2500

3000

3500

4000

4500

peptide peak intentisy

nu
m

be
r

histogram for the brain data

0 5 10 15 20 25 30 35 40 45 50
0

500

1000

1500

2000

2500

3000

3500

4000

4500

peptide peak intentisy

nu
m

be
r

histogram for the heart data

0 5 10 15 20 25 30 35 40 45 50
0

500

1000

1500

2000

2500

3000

3500

4000

peptide peak intentisy

nu
m

be
r

histogram for the kidney data

Figure 1: Histograms of peptide spectral count. The left histogram is for the Brain dataset, the middle is for
Heart, and the right is for Kidney.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
plot of 1/y v.s. rank(1/y) for all y for kidney dataset

0 500 1000 1500
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
plot of 1/y v.s. rank(1/y) for y ≥10 for kidney dataset

Figure 2: Probability plots of 1/y for the Kidney dataset, where y is spectral count. The left plot includes all
observed values of y, while the right plot excludes values of y less than 10.

Histograms of spectral count for the three data sets
are shown in Figure 1. These show that spectral count
is far from being uniformly or normally distributed.
Instead, spectral counts are heavily concentrated near
the minimum value of 1, and their frequency rapidly falls
off as spectral count increases. For example, although
the maximum spectral count in the Kidney dataset is
1,491, the median value is only 2! That is, half the
peptides have spectral counts of only 1 or 2, while
the remaining peptides have spectral counts from 2 to
1,491. Thus, the data values range over several orders
of magnitude, with the bulk of the data concentrated at
lower values. This distribution is likely due to a number
of factors, including the distribution of protein levels in
the tissue samples, and the distribution of ionization
efficiencies among peptides. Untangling these factors is
one of the goals of this work.

A more accurate description of the distribution
of spectral count is provided by the probability plots
in Figure 2, which display observed spectral counts
in sorted order. The two panels in Figure 2 show
probability plots for the reciprocal of spectral count;

that is, they are probability plots of 1/y, where y is
spectral count. The vertical axis is the value of 1/y,
and the horizontal axis is the rank of this value. The
plot in the left panel includes all observed spectral
counts, while the plot in the right panel excludes small
spectral counts, i.e., counts less than 10. The horizontal
line segments that make up the plots, especially at
the upper end, are due to the discrete nature of the
data (i.e., y is an integer). However, the trend in
the right hand plot is clearly a diagonal line, from
the lower left corner of the plot to the upper right
corner. This indicates that the cumulative distribution
function of 1/y is a diagonal line, which means that
1/y is uniformly distributed, which in turn means that
y has an O(1/y2) distribution [2]. The left hand plot
is the same except that it curves up slightly for large
values of 1/y, that is, for small spectral counts. Thus,
while the probability density of 1/y is flat for y ≥ 10,
it decreases for y < 10. This in turn means that, while
the distribution of spectral count is O(1/y2) for y ≥ 10,
it is less than this for y < 10. Similar results hold for
all three data sets, Kidney, Brain and Heart.

4.2 Peptide Representation. To use the models
and methods developed in this paper, each peptide must
be represented as a vector, x. This paper evaluates sev-
eral ways of doing this, using vectors with 22, 42, 62 and
232 components, respectively. The 22-component vec-
tor represents the amino-acid composition of a peptide.
The vector has 20 components, (x1, ..., x20), one for each
amino acid, where the value of xi is the number of oc-
currences of a particular amino acid in the peptide. In
addition, the vector has a 21st component whose value
is always 1, to represent a bias term, as is common in
linear regression [7]. The vector also has a 22nd com-
ponent whose value is the charge of the peptide ion, as
given in Table 1. The 232-component vector uses these
same 22 components plus an additional 210 quadratic
components of the form xixj computed from xi and xj

for 1 ≤ i, j ≤ 20.
These vectors capture the charge and amino-acid

composition of a peptide ion, but they do not contain
any sequential information. The 42-component vector
ameliorates this situation somewhat. It divides a pep-
tide sequence into two subsequences, by cutting it in
half, and represents the amino-acid composition of each
half. This requires 40 vector components. Again, we
add a 41st component to act as a bias term, and a 42nd

component to represent charge. The 62-component vec-
tor carries this idea one step further by dividing a pep-
tide into three subsequences, thereby capturing more
sequential information.

It is worth noting that these four representations
subsume many others. For instance, natural peptide
features such as mass and length are implicitly included
in our vectors. This is because all of our models are
based on a linear combination of peptide features, that
is, on the quantity β • x =

∑
i βixi, where the βi are

parameters to be learned. Thus, any peptide feature
that can be expressed as a linear combination of other
features is already accounted for. For instance, the mass
of a peptide is m =

∑
i mixi, where mi is the mass of

amino acid i, and xi is the count of amino acid i in the
peptide. If we were to add m as a new feature in our
22-component vector, then our models would be based
on the quantity βmm +

∑
i βixi, where βm and each

of the βi are parameters to be learned. However, this
quantity is equal to βm

∑
i mixi +

∑
i βixi =

∑
i β′ixi

where β′i = βmmi + βi. Thus, adding peptide mass
as an explicit feature does not increase the expressive
power of our models. In fact, including it would simply
complicate the learning process by introducing a linear
dependence that would make many matrices singular.
Likewise for peptide length and any other feature that
can be expressed as a linear combination of amino-acid
counts.

4.3 Measuring Goodness of Fit. We used each
of the four peptide representations with each of the
eight fitting methods, LIN1, LIN2, LIN3, EXP1, EXP2,
INV1, INV2 and INV3. We applied each combination to
the training data to estimate a value for the parameter
vector, β. We then used β to predict the spectral
counts of all the peptides in the testing data, and then
compared the predictions to the observed values by
measuring the correlation between them.

To predict spectral counts, yij , we used Equa-
tion 2.1. This in turn required estimates of ionization
efficiency, ieij , and protein abundance, ini. Given the
estimate for β, ionization efficiency was computed di-
rectly from Equation 2.3, depending on the model. Es-
timating protein abundance was only sightly more com-
plicated, and also depended on the model. Recall that
in each model, the formula yij = ini · ieij is trans-
formed so that the expression X • β appears as a linear
term. The transformed models are given by the follow-
ing equations:

Linear : yij = ini · (xij • β)
Exponential : log(yij) = log(ini) + xij • β
Inverse : y−1

ij = in−1
i · (xij • β)

In each of these models, the yij and xij are known,
and β has been estimated from the training data.
Estimates of ini for proteins in the testing data were
then computed as follows. In the linear model, for
each value of i, we have a set of linear equations, from
which ini was estimated by univariate linear regression.
Likewise, in the inverse model, in−1

i was estimated by
univariate linear regression, and ini was then estimated
as 1/in−1

i . Finally, in the exponential model, log(ini)
was estimated as the mean of log(yij)− (xij • β), and
ini was then estimated by taking exponentials. In what
follows, we use ŷij , îni and îeij to denote the estimates
of yij , ini and ieij , respectively.

A common way to measure correlation is with the
Pearson correlation coefficient, which measures the lin-
ear correlation between two random variables [2]. How-
ever, because of the distribution of our data—highly
skewed and ranging over several orders of magnitude—
the Pearson correlation coefficient can be misleading,
since its value is dominated by a relatively small num-
ber of extremely large data values. In addition, be-
cause of the variety of models we use, it is not clear
whether we should compute the correlation of y v.s. ŷ,
or of log(y) v.s. log(ŷ), or of 1/y v.s. 1/ŷ. Fortunately,
all these problems are solved by using the Spearman
rank correlation coefficient [2]. This is similar to Pear-
son’s coefficient, except that instead of correlating the
data values themselves, it correlates their ranks. It is
therefore insensitive to the exact values of the data, and

in particular, to extremely large values. Moreover, in-
stead of measuring linear correlation, it measures mono-
tone correlation (i.e., the tendency of one variable to
increase or decrease with the other variable). In fact,
the value of Spearman’s coefficient is invariant under
monotonic transformations of the data, so it does not
matter whether we consider y or log(y) or 1/y.

Tables 2, 3 and 4 show experimental results for
every combination of the eight fitting methods, four
peptide representations, and three Mouse datasets. The
columns of each table represent fitting methods, and
the rows represent vector representations of peptides
(identified by the number of features in the vectors).
Each table entry is the Spearman rank correlation
coefficient of y and ŷ, that is, of observed and estimated
spectral counts, as measured on the testing portion of
the data. An entry of ****** means that the method
could not be used because a matrix turned out to be
singular.

5 Discussion.

The following observations about the fitting methods
are immediately apparent from Tables 2, 3 and 4: the
exponential methods, EXP1 and EXP2, almost always
perform the best, though INV3 is often competitive;
LIN1 and INV1 perform the worst; of the linear meth-
ods, LIN3 performs the best; of the inverse methods,
INV3 performs the best; INV3 always performs better
than LIN3.

Recall that the only difference between LIN1 and
LIN2 is the constraints on which they are based. The su-
perior performance of LIN2 suggests that its constraint
is much more appropriate than the constraint for LIN1,
as argued in Section 3.1.2. Recall also that LIN1 and
LIN2 use a two-phase approach to learning, in which the
parameter vector β is estimated first, after which pro-
tein abundance is estimated from β. In contrast, LIN3
is based on a single-phase approach to learning, in which
parameters and protein abundance are all learned simul-
taneously. The better performance of LIN3 over LIN1
and LIN2 on the real datasets suggests that the single-
phase approach is more appropriate, at least for tan-
dem mass spectrometry data, as argued in Section 3.1.3.
These conclusions are all corroborated by the perfor-
mance of INV1, INV2 and INV3, which parallels that of
LIN1, LIN2 ad LIN3, upon which they are based. That
INV3 always performs better than LIN3 suggests that
the inverse transformation upon which INV3 is based
had its intended effect, as described in Section 2.2.

The superior performance of the exponential models
suggests that the logarithmic transformation on which
they are based is the most appropriate. This is perhaps
not surprising. Logarithms remove the problem of

data ranging over several orders of magnitude, while
simultaneously compressing a sparse set of extremely
large values into a denser set of smaller values. This
effectively deals with two of the main problems in
our datasets. In addition, it is reasonable to suppose
that in estimating spectral counts, as with many other
real-world values, it is the percentage error, not the
absolute error that matters. Thus, the appropriate noise
model would appear to be multiplicative, not additive.
Logarithms conveniently convert multiplicative noise to
additive noise, thus making linear regression a natural
method to apply to the transformed data, which is
exactly what the exponential methods do. In addition,
unlike the inverse transformation, logarithms map large
values to large values, and small values to small values.
In contrast, since the inverse transformation maps large
values to small values, a small error in the estimated
value of 1/y can result in a large error in y when y is
large. This may more than compensate for the ability
of the inverse model to eliminate all skew from the data.

Finally, we should point out that of the four dif-
ferent vector representations, the 22-feature vector gen-
erally works the best, though the 42-feature and 62-
feature vectors are often competitive. The generally
poor performance of the 232-feature vector suggests that
it is overfitting, since it includes all the features of the
22-feature vector, which performs best. However, theses
comments apply only when we consider all of the fitting
methods. When we consider only EXP1, the best per-
forming method, its performance seems independent of
which vector representation is used.

5.1 Visualizing the Goodness of Fit. To help vi-
sualize the goodness of the fit provided by our meth-
ods, Figure 3 provides log-log plots of observed and es-
timated values for a training dataset. Due to space lim-
itations, we show plots only for the Kidney dataset, and
only for EXP1, INV3 and LIN3, the best methods for
each of our three models.4 For each method, we provide
two figures, a plot of y v.s. ŷ, and a plot of ie v.s. îe.
Here, ie and îe are derived from y and ŷ, respectively,
by dividing by în, the estimate of protein abundance.
ie and îe thus provide two different measures of the ion-
ization efficiency of a peptide. Note that îe is just the
estimate derived from Equation 2.3.

The first thing to notice is the strong horizontal
lines in the plots of y v.s. ŷ. These are due to the
discrete nature of the observed values, y, most of which
take on small, positive integer values. The plots have
no such vertical lines because the estimates, ŷ, are real

4The INV3 and LIN3 methods produce a very small number
of negative estimates, which we discard before taking logs.

Table 2: Spearman rank correlation coefficients on the testing portion of the Mouse Brain data

LIN1 LIN2 LIN3 INV1 INV2 INV3 EXP1 EXP2
22 0.2080 0.4342 0.4259 0.1582 0.4755 0.4755 0.4986 0.5051
42 0.2430 0.2645 0.4245 0.0065 0.4848 0.5588 0.4981 0.5049
62 0.2146 0.2365 0.4265 0.0346 0.4846 0.4840 0.5033 ******
232 0.2103 0.2058 0.4218 0.0370 0.0594 0.4785 0.5141 ******

Table 3: Spearman rank correlation coefficients on the testing portion of the Mouse Heart data

LIN1 LIN2 LIN3 INV1 INV2 INV3 EXP1 EXP2
22 0.2039 0.4965 0.4965 0.2386 0.5635 0.5635 0.5669 0.5699
42 0.1721 0.1844 0.4243 0.0106 0.5611 0.5556 0.5658 0.5656
62 0.1355 0.1691 0.4974 0.0621 0.0667 0.5605 0.5867 ******
232 0.1477 0.1399 0.3285 0.0048 0.0307 0.4713 0.5634 ******

valued. The second thing to notice is that the plots of
ie v.s. îe have no strong lines. This is because ionization
efficiency is inherently real-valued. Finally, notice that
the plot of ie v.s. îe for the EXP1 method is by far
the most Gaussian-looking of all the plots. In contrast,
the plots for LIN3 and INV3 show evidence of residual
structure that the methods were unable to fit.

6 Conclusions.

We developed and evaluated eight methods for esti-
mating protein abundance from high-throughput Tan-
dem Mass Spectrometry (MS/MS) data. Each method
is based on a simple, generative model of MS/MS
data. We evaluated the effectiveness of the methods
on MS/MS data derived from tissue samples of Mouse.
The evaluations included three different tissue types,
four different vector representations of peptides, and
two different evaluation measures (one based on corre-
lation coefficients and one based on data visualization).
Of the eight methods we developed, the two exponential
methods, EXP1 and EXP2, performed the best. This
in turn suggests that, of our three models of MS/MS
data, the exponential model is the best.

Our results suggest several directions for future
research to increase the accuracy of the estimations:

• More-sophisticated models of ionization efficiency
could be developed, such as models based on neural
nets, kernel methods or regression trees. However,
the learning methods will need to deal with the
unknown amounts of protein, perhaps by using an
EM-like algorithm.

• Although we tested several representations of pep-
tides in this paper, it is not yet clear whether the so-
lution lies in more sophisticated data-mining meth-
ods or in better peptide representations. Represen-
tations that capture more sequential information
(perhaps involving string kernels or HMMs) may
be important.

• The effect of errors in peptide sequence could be
accounted for. It is reasonable to suppose that not
all the peptides are sequenced correctly. In fact,
it is possible that for some peptides, the sequences
are completely wrong. The senstivity of a method
to this kind of error could be determined through
studies based on simulated datasets.

• The problem of a fit being dominated by a few
extremely large data values might be ameliorated
by a weighting scheme that places a large weight
on small values. We have taken some initial steps
along these lines in [3].

• More sophisticated models of spectral counts could
be developed. For instance, the spectral count of
a peptide depends on what other peptides are in
the mass spectrometer at the same time. The first
step in accounting for these dependencies is esti-
mating what peptides enter the mass spectrometer
at about the same time, perhaps along the lines
of [8]. In addition, we have recently acquired more
detailed MS/MS data that allows us to determine
that certain peptides did not enter the mass spec-
trometer at the same time.

Table 4: Spearman rank correlation coefficients on the testing portion of the Mouse Kidney data

LIN1 LIN2 LIN3 INV1 INV2 INV3 EXP1 EXP2
22 0.1655 0.4599 0.4609 0.2299 0.5250 0.5208 0.5207 0.5220
42 0.2482 0.2339 0.4662 0.0584 0.5027 0.4991 0.5089 0.5188
62 0.2024 0.2080 0.4690 0.0421 0.5033 0.5065 0.5151 ******
232 0.1818 0.2357 0.3992 0.0219 0.0124 0.4953 0.5105 ******

−3 −2 −1 0 1 2 3 4 5 6
−0.5

0

0.5

1

1.5

2

2.5

log(\hat{ie})

lo
g(

ie
)

−12 −11 −10 −9 −8 −7 −6 −5 −4 −3
−16

−14

−12

−10

−8

−6

−4

−2

log(\hat{ie})

lo
g(

ie
)

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
−1

0

1

2

3

4

5

6

7

log(\hat{ie})

lo
g(

ie
)

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

7

8

log(\hat{y})

lo
g(

y)

−8 −6 −4 −2 0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

8

log(\hat{y})

lo
g(

y)

−1 0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

log(\hat{y})

lo
g(

y)

Figure 3: Log-log plots of y v.s. ŷ (bottom row) and ie v.s. îe (top row) on the Kidney dataset. The two left
panels are the results of the EXP1 method, the two middle panels are the results of the LIN3 method, and the
two right panels are the results of the INV3 method.

• The experimental methodology used in this paper
evaluates a method in terms of its ability to pre-
dict the spectral counts of peptides, based on pep-
tide properties and predicted protein abundance.
The ability to accurately predict spectral counts in
this way would be strong evidence that a method
is correct, and would suggest that protein abun-
dance was accurately predicted. However, conclu-
sive proof would require a more direct compari-
son against some known protein amounts (e.g., as
measured by the more laboratory-intensive isotope
marker experiments [6, 13]).

Acknowledgments.

The authors would like to thank Dr. Andrew Emili for
his comments and discussions and for generous access to
his data. We would also like to thank Clement Chung
for generating and preprocessing the data. This work

was supported in part by a grant from the Natural
Sciences and Engineering Researh Council of Canada
(NSERC).

References

[1] R. Aebersold and M. Mann. Mass spectrometry-based
proteomics. Nature, 422:198–207, 2003.

[2] P. Bickel and K. Doksum. Mathematical Statistics:
Basic Ideas and Selected Topics. Holden-Day, Inc,
1977.

[3] A.J. Bonner and Han Liu. Canonical correlation, an
approximation, and the prediction of protein abun-
dance. In Proceedings of the Eighth Workshop on
Mining Scientific and Engineering Datasets (MSD’05),
pages 29–38, Newport Beach, CA, April 2005. Work-
shop affiliated with the SIAM International Conference
on Data Mining (SDM 2005).

[4] Joshua E Elias, Francis D Gibbons, Oliver D King,
Frederick P Roth, and Steven P Gygi. Intensity-
based protein identification by machine learning from a
library of tandem mass spectra. Nature Biotechnology,
22(2):214–219, 2004.

[5] S.P. Gygi and R. Aebersold. Mass spectrometry and
proteomics. Current Opinion in Chemical Biology,
4:489–494, 2000.

[6] S.P. Gygi, B. Rist, S.A. Gerber, F. Turecek, M.H.
Gelb, and R. Aebersold. Quantitative analysis of
complex protein mixtures using isotope-coded affinity
tags. Nature Biotechnology, 17(10):994–999, 1999.

[7] T. Hastie, R. Tibshirani, and J. Friedman. The Ele-
ments of Statistical Learning: Data Mining, Inference
and Prediction. Springer, 2001.

[8] Petritis K, Kangas LJ, Ferguson PL, and et al. Use of
artificial neural networks for the accurate prediction
of peptide liquid chromatography elution times in
proteome analyses. Analytical Chemistry, 75(5):1039–
1048, 2003.

[9] T. Kislinger, K. Ramin, D. Radulovic, and et al. Prism,
a generic large scale proteomics investigation strategy
for mammals. Molecular & Cellular Proteomics, 2(1),
2003.

[10] D.C. Liebler. Introduction to Proteomics: Tools for the
New Biology. Humana Press, NJ, 2002.

[11] H. Liu, R.G. Sadygov, and J.R. Yates. A model for ran-
dom sampling and estimation of relative protein abun-
dance in shotgun proteomics. Analytical Chemistry,
76:4193–4201, 2004.

[12] Han Liu. Development and evaluation of methods for
predicting protein levels from tandem mass spectrom-
etry data. Master’s thesis, Department of Computer
Science, University of Toronto, Toronto, ON, Canada,
2005.

[13] S. Ong, B. Blagoev, I. Kratchmarovat, D.B. Kris-
tensen, H. Steen, A. Pandey, and M. Mann. Stable
isotope labelling by amino acid in cell culture, silac,
as a simple and accurate approach to expression pro-
teomics. Molecular & Cellular Proteomics, 1(5), 2002.

[14] G. Siuzdak. The Expanding Role of Mass Spectrometry
in Biotechnology. Mcc Press, 2003.

