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Abstract: We propose an extension of classical predicate calculus, called
Transaction Logic, which provides a logical foundation for the phenomenon
of state changes in logic programs and databases. Transaction Logic comes
with a natural model theory and a sound and complete proof theory. The proof
theory not only veri�es programs, but also executes them, which makes this
logic an ideal tool for declarative programming of database transactions and
state-modifying logic programs. The semantics of Transaction Logic leads nat-
urally to features whose amalgamation in a single logic has proved elusive in
the past. These features include hypothetical and committed updates, dynamic
constraints on transaction execution, non-determinism, and bulk updates. Fi-
nally, Transaction Logic holds promise as a logical model of hitherto non-logical
phenomena, including so-called procedural knowledge in AI, and the behavior of
object-oriented databases, especially methods with side e�ects. This paper
presents the semantics of Transaction Logic and a sound and complete SLD-
style proof theory for a Horn-like subset of the logic.
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1.1 INTRODUCTION

Updates are a crucial component of any database programming language. Even
the simplest database transactions, such as withdrawal from a bank account,
require updates. Unfortunately, updates are not accounted for by the classi-
cal Horn semantics of logic programs and deductive databases, which limits
their usefulness in real-world applications. As a short-term practical solution,
logic programming languages have resorted to handling updates with ad hoc
operators without a logical semantics. To address this problem, this paper
provides the theoretical foundations for logic programming with updates. This
is accomplished in three ways: (i) we develop a general logic of state change,
called Transaction Logic, including a natural model theory; (ii) we show that
this logic has a \Horn" fragment, with both a procedural and a declarative
semantics; and (iii) we show that programs in the logic can be executed by an
SLD-style proof procedure in the logic-programming tradition. The result is a
rule-based language with a purely logical semantics (and a sound-and-complete
proof theory) in which users can program and execute database transactions.
Moreover, in the absence of updates, this language reduces to classical Horn
logic. It therefore represents a conservative extension of the logic programming
paradigm.

Transaction Logic (or T R for short) is a general logic of state change that
accounts for database updates and transactions and for important related phe-
nomena, such as the order of update operations, transaction abort and rollback,
savepoints, and dynamic constraints [BK95; Bon97c]. T R has applications in
many areas, including databases, logic programming, work
ow management,
and arti�cial intelligence. These applications, both practical and theoretical,
are discussed in detail in [BK95; Bon97c]. For instance, in logic programming,
T R provides a clean, logical alternative to the assert and retract operators of
Prolog. In relational databases, T R provides a logical language for program-
ming transactions, for updating database views, and for specifying active rules.
In object-oriented databases, T R can be combined with object-oriented logics,
such as F-logic [KLW95], to provide a logical account of methods|procedures
hidden inside objects that manipulate these objects' internal states [Kif95]. In
AI, T R suggests a logical account of procedural knowledge and planning, and
of subjunctive queries and counterfactuals.

Other Logics. On the surface, there would seem to be many other logics
available for specifying database transactions, since many logics reason about
updates or about the related phenomena of time and action. However, despite
a plethora of action logics, researchers continue to complain that there is no
clear declarative semantics for updates either in databases or in logic program-
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ming [Bee92; Ban86; PDR91]. In particular, database transaction languages
are not founded on action logics, the way that query languages are founded
on classical logic. The main reason, we believe, is that reasoning about action
is not the same thing as declarative programming, especially in a database
context. This di�erence manifests itself it several ways:

(i) Most logics of action were not designed for database programming. In-
stead, they were intended for specifying properties of actions or relationships
between actions, and for reasoning about them. For instance, one might specify
that event A comes before event B, and that B comes before C, and then infer
that A comes before C. Moreover, many such logics are propositional, many
have no notion of database state or query, and many have no notion of named
procedures (such as views and subroutines). Such logics are poor candidates
for the job of formalizing database programming languages.

(ii) Many logics of action were designed for reasoning about programs. Such
logics typically have two separate languages: a procedural language for repre-
senting programs, and a logical language for reasoning about their properties.
The programs themselves are not declarative or logical at all, but are more
akin to Algol. Moreover, logic is not used inside programs to specify database
queries, but is used outside programs to specify program properties. This is the
exact opposite of database languages and logic programs. Here, the goal is to
make programming as declarative as possible, and often logic itself is the pro-
gramming language, or a signi�cant part of it. The result is that it is di�cult
to integrate action logics with database query languages and logic programs,
since there is an unnatural \impedance mismatch" between them.

(iii) Logics of action cannot execute programs and update the database.
Instead, the logics are hypothetical. At best, they can infer what would be
true if a program were executed; the database itself is unchanged by such
inferences. To actually execute a program and update the database, a separate
runtime system is needed outside of the logic. This is contrary to the idea
of logic programming, in which the logical proof theory acts as the runtime
system, so that programs are executed by proving theorems.

(iv) Many logics of action get bogged down by the so-called frame prob-
lem [MH69; Rei91], the problem of logically specifying what an action does not
do. For instance, when a robot picks up a block, many things do not change,
such as the color of the block, the weight of the block, the number of blocks,
etc. Of course, a great many unrelated facts also do not change, such as the
mass of the Earth, the number of planets in the solar system, etc. If one is
to reason about actions, then these invariants must all be speci�ed as logical
axioms (known as frame axioms). A great deal of research has been invested
into how to do this concisely. Fortunately, frame axioms are not needed if one
simply wants to program and execute transactions. For instance, C program-
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mers do not need to specify frame axioms, and the run-time system does not
reason with frame axioms when executing C programs. We show that the same
applies to database transactions, if they are expressed in an appropriate logic.
In this way, since there are no frame axioms, the frame problem is not an issue.

Prolog. Database transactions can be de�ned in Prolog via the operators
assert and retract. When these two operators are used to perform updates,1

Prolog addresses many of the problems listed above, and has many of the
properties we wish to model: (i) it is a programming language based on a
Horn subset of a full logic, (ii) programs are executed by an SLD-style proof
procedure|not via a separate run-time system, (iii) updates are real, not
hypothetical, (iv) in the absence of updates, it reduces to classical Horn logic,
(v) the frame problem is not an issue. Unfortunately, updates in Prolog are
non-logical operations; so each time a programmer uses assert or retract, he
moves further away from declarative programming. Moreover, Prolog does
not support some important features of database transactions, such as abort
and rollback. For these reasons, state-changing procedures are often the most
awkward of Prolog programs, and the most di�cult to understand, debug, and
maintain.

In addition, updates in Prolog are not integrated into the host logical sys-
tem (i.e., the subset or predicate calculus used in Prolog). It is not clear how
assert and retract should interact with other logical operators such as disjunc-
tion and negation. For instance, what does assert(X) _ assert(Y ) mean? or
:assert(X)? or assert(X) retract(Y )? Also, how does one logically account
for the fact that the order of updates is important? None of these questions is
addressed by Prolog's operational semantics, or by the classical theory of logic
programming.

Transaction Logic. T R provides a general solution to the aforementioned
limitations, both of Prolog and of action logics. The solution actually consists
of two parts: (i) a general logic of state change, and (ii) a Horn-like fragment
that supports logic programming. In the Horn fragment, users specify and ex-
ecute transaction programs; and in the full logic, users can express properties
of programs and reason about them [BK]. This paper �rst develops the syntax
and semantics of the full logic. The rest of the paper then develops the Horn
fragment, and shows that it provides a logic-programming language with up-
dates. A central feature of this development is an SLD-style proof procedure
based on uni�cation, a key requirement for any practical logic-programming
language. This proof procedure, which is sound and complete, executes logic
programs and updates the database as it proves theorems.
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The Horn fragment of T R allows users to combine elementary database
operations into complex logic programs. Unlike many logics of action, Horn T R
is not concerned with the axiomatization of elementary operations, but with
their logical combination into programs. A logical axiomatization of elementary
operations is needed only for reasoning about the properties of actions, not for
programming and executing them. Such axiomatizations can be carried out
in full T R [BK], but are not considered in this paper because they are not
needed for logic programming. In logic programming and databases (as in
C and Pascal), application programmers spend little if any time specifying
elementary operations; instead, they devote a great deal of time to combining
them into complex transactions and programs. Using logic to build programs
from simple operations is thus the main focus of this paper.

Despite our focus on combining operations, the underlying set of elemen-
tary operations is an important feature of a programming language, as it de-
termines the domain of application. In practice, elementary operations can
vary widely. For example, in C and Pascal, changing the value of a variable
is an elementary operation. In Prolog, asserting or retracting a clause is el-
ementary. In database applications, SQL statements are the basic building
blocks. In scienti�c and engineering programs, basic operations include Fourier
transforms, matrix inversion, least-squares �tting, and operations on DNA se-
quences [GRS94; MBDH83]. In work
ow management systems, elementary
operations can include any number of application programs and legacy sys-
tems [BSR96]. In all cases, the elementary operations are building blocks from
which larger programs and software systems are built.

Although elementary operations can vary dramatically, the logic for com-
bining them does not. In fact, the same control features arise over-and-over
again. These features include sequential composition, iterative loops, condi-
tionals, subroutines and recursion. T R provides a logical framework in which
these and similar control features can be expressed. This framework is orthog-
onal to the elementary operations. T R can therefore be used with any set of
elementary database operations, including destructive updates. To achieve this

exibility, T R treats a database as a collection of abstract data types, each
with its own special-purpose access methods. These methods are provided to
T R as elementary operations, and they are combined by T R programs into
complex transactions. This approach separates the speci�cation of elementary
operations from the logic of combining them. As we shall see, this separation
has two main bene�ts: (i) it allows us to develop a logic programming lan-
guage for state-changing procedures without committing to a particular theory
of elementary updates; and (ii) it allows T R to accommodate a wide variety
of database semantics, from classical to non-monotonic to various other non-
standard logics. In this way, T R provides the logical foundations for extending
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the logic-programming paradigm to a host of new applications in which a given
set of operations must be combined into larger programs or software systems.

Due to lack of space, many interesting applications cannot be described here.
Likewise, that part of the logic that deals with hypothetical actions is omitted,
together with the corresponding applications, such as counterfactuals. The in-
terested reader is referred to [BK95; BKC94] for a development of these aspects
of T R. Extensions of T R for dealing with concurrency and communication are
described in [BK96; Bon97c], and complexity results are given in [Bon].2

1.2 OVERVIEW AND INTRODUCTORY EXAMPLES

Specifying and executing T R programs is similar to using Prolog. To spec-
ify programs, the user writes a set of logical formulas. These formulas de�ne
transactions, including queries, updates, or a combination of both. To execute
programs, the user submits a logical formula to a theorem-proving system,
which also acts as a run-time system. This system executes transactions, up-
dates the database, and generates query answers, all as a result of proving
theorems. Other transactional features such as abort, rollback, and savepoints
are also handled by the theorem prover [Bon97c]. This section provides simple
examples showing how this kind of behavior can be carried out within a com-
pletely logical framework. The examples also illustrate several dimensions of
T R's capabilities.

One of these capabilities should be mentioned at the outset: non-
deterministic transactions. Non-determinism is useful in many areas, but it
is especially well-suited for advanced applications, such as those found in Ar-
ti�cial Intelligence. For instance, the user of a robot simulator might instruct
the robot to build a stack of three blocks, but he may not say (or care) which
blocks to use. Likewise, the user of a CAD system might request the system to
run an electrical line from one point to another, without �xing the exact route,
except in the form of loose constraints (e.g., do not run the line too close to wet
or exposed areas). In such transactions, the �nal state of the database is inde-
terminate, i.e., it cannot be predicted at the outset, as it depends on choices
made by the system at run time. T R enables users to say what choices are
allowed. When a user issues a non-deterministic transaction, the system makes
particular choices. These choices may be implementation-dependent, but since
the whole process is guided by a sound and complete inference system, the
database ends up in one of the allowed new states.

For all but the most elementary applications, transaction execution is char-
acterized not just by an initial and a �nal state, but by a sequence of intermedi-
ate states that the database passes through. For example, as a robot simulator
piles block upon block upon block, the transaction execution will pass from
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state to state to state. Like the �nal state, intermediate states may not be
uniquely determined at the start of the execution. For example, the robot may
have some (non-deterministic) choice as to which block to grasp next. We call
such a sequence of database states the execution path of the transaction. T R
represents execution paths explicitly. By doing so, it can express a wide range
of constraints on transaction execution. For example, a user may require every
intermediate state to satisfy some condition, or he may forbid certain sequences
of states.

Execution of transactions is formally described using statements, called ex-
ecutional entailment , that express a form of logical entailment in T R:

P;D0; : : : ;Dn j=  (1.1)

Here,  is a formula in T R, the Di are database states, and P is a set of T R
formulas (called the transaction base). Intuitively, P is a set of transaction
de�nitions,  is a transaction invocation, and D0; : : : ;Dn is a sequence of
database states, representing all the states of transaction execution. In the
formal semantics, statement (1.1) means that formula  is true with respect
to the sequence D0; : : : ;Dn. Informally, this means that that the sequence is
an execution path of transaction  . That is, if the current database state is
D0, and if the user issues the transaction  (by typing ?�  , as in Prolog),
then the database may go from state D0 to state D1, to state D2, etc., until it
�nally reaches state Dn, after which the transaction terminates. We emphasize
the word \may" because  can be a non-deterministic transaction. As such, it
can have many execution paths beginning at D0. The proof theory for T R can
derive each of these paths, but only one of them will be (non-deterministically)
selected as the actual execution path; the �nal state, Dn, of that path then
becomes the new database.

Unlike many other formalisms, Transaction Logic is neutral on the question
of whether queries and updates should be syntactically distinct. T R is perfectly
compatible with such distinctions, but it does not force them upon the user.
Formally, all transaction programs in T R are represented by logical formulas,
and there is no built-in class of query formulas or update formulas. In fact,
any T R formula, �, that does not cause a state change can be viewed as a
query. This state of a�airs is formally expressed by the statement P;D0 j= �,
a special case of statement (1.1) in which n = 0. In this case, D0 is a sequence
of databases of length 1.

This approach provides a 
exible framework within which users can make
many kinds of distinctions, if they wish. For instance, a uniform treat-
ment of queries and updates is needed in the object-oriented domain, because
object-oriented systems do not sharply distinguish between state-changing and
information-retrieving methods [Kif95]. On the other hand, if a syntactic dis-
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tinction is desired, then two sorts of predicates could be used, one for queries,
and one for updating transactions. This philosophy is quite di�erent from the
situation calculus [MH69] and from approaches based on dynamic and process
logics [Har79; HKP82], where queries and updates are represented by di�er-
ent classes of syntactic objects (e.g., predicates vs. function terms vs. modal
operators).

The rest of this section illustrates our notation and the capabilities of T R
through a number of simple examples. The examples illustrate how T R uses
logical operators to combine simple actions into complex ones. For simplic-
ity, most of the examples are based on Horn T R, and on the insertion and
deletion of individual tuples from relational databases. We represent relational
databases in the usual way as sets of ground atomic formulas. It should be
noted, however, that T R is restricted neither to relational databases, nor to
update operations based on single tuples. For instance, databases could be de-
ductive, object-oriented, disjunctive, or a collection of scienti�c objects, such as
matrices or DNA sequences. Likewise, database operations could include SQL-
style bulk updates [BK95], or the insertion and deletion of rules, or complex
scienti�c calculations, such as the Fourier transform and matrix inversion.

1.2.1 Simple Transactions

In T R, all transactions are a combination of queries and updates. Queries do
not change the database, and can be expressed in classical logic. In contrast,
updates do change the database, and are expressed in an extension of classical
logic.

We call the simplest kind of updates elementary updates or elementary state
transitions, and we represent them by atomic formulas. These formulas have
both a truth value and a side e�ect on the database. Formally, we write:

P;D1;D2 j= u

This executional entailment says that the atomic formula u is (the name of)
an update that changes the database from state D1 to state D2. Although
any atomic formula can be an update, it is a good programming practice to
reserve a special set of predicate symbols for this purpose. For example, in this
paper, for each predicate symbol p, we use another predicate symbol, p.ins,
to represent insertions into p. Likewise, we use the predicate symbol p.del to
represent deletions from p.

Example 1.2.1 (Elementary Updates)
Suppose that president is a binary predicate symbol. Then the
atoms president.del(usa; bush) and president.ins(usa; clinton) are elemen-
tary updates. Intuitively, president.del(usa; bush) means, \delete the
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atom president(usa; bush) from the database." Likewise, the atom
president.ins(usa; clinton) means, \insert president(usa; clinton) into the
database." From the user's perspective, typing ?� president.del(usa; bush) to
the interpreter changes the database from D to D� fpresident(usa; bush)g.
Likewise, typing ?� president.ins(usa; clinton) changes the database from D
to D+ fpresident(usa; clinton)g.3 We express this behavior formally by the
following two statements, which are true for any transaction base P:

P;D;D� fpresident(usa; bush)g j= president.del(usa; bush)

P;D;D+ fpresident(usa; clinton)g j= president.ins(usa; clinton)
2

Here we use \+" and \�" to denote set union and di�erence, respectively. This
is su�cient for relational databases, which are sets of ground atomic formulas.
For more complex databases, insertion and deletion are more complex oper-
ations [KM92]. Note, however, that insertion and deletion are not built into
the semantics of T R. In fact, T R is not committed to any particular set of
elementary updates. Thus, there is no intrinsic connection between the names
p, p.ins and p.del. Our use of these names is merely a convention for purposes
of illustration. In fact, p, p.ins and p.del are ordinary predicates of T R, and
the connection between them is established via the so-called transition oracle,
as explained later.

A basic way of combining transactions is to sequence them, i.e., to exe-
cute them one after another. For example, we may take money out of one
account and then, if the withdrawal succeeds, deposit the money into another
account. To combine transactions sequentially, we extend classical logic with a
new binary connective, 
, called serial conjunction. The formula  
� denotes
the composite transaction consisting of transaction  followed by transaction
�. Unlike elementary updates, sequential transactions often have intermediate
states, as well as initial and �nal states. We express this behavior formally by
statements like the following:

P;D0;D1;D2 j=  
 �

This means that executing the transaction ?� 
� changes the database from
D0 to D1 to D2. Here, D0 is the initial state, D1 is an intermediate state, and
D2 is the �nal state.

Example 1.2.2 (Serial Conjunction)
The expression came 
 saw.ins
 conquered.ins, where came, saw, and
conquered are ground atomic formulas, denotes a sequence of two insertions
preceded by a test. This transaction means, \First check that came is true;
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then insert saw into the database; and then insert conquered." Thus, if
the initial database is D, and if the user issues a transaction by typing
?� came 
 saw.ins
 conquered.ins, then during execution, the database will
change from D to D+ fsawg to D+ fsaw; conqueredg, provided that came
was initially true in D. We express this behavior formally by the following
statement, which holds for any transaction base, P, for which P;D j= came is
true:

P;D;D+ fsawg;D+ fsaw; conqueredg j= came 
 saw.ins
 conquered.ins

This example illustrates the use of preconditions. T R can express post-
conditions and tests on intermediate database states just as naturally. 2

1.2.2 Rules and Non-deterministic Transactions

Rules are formulas of the form p �, where p is an atomic formula and � is any
T R formula. As in classical logic, this formula is just a convenient abbreviation
for p _ :�. This is the formal, declarative interpretation of rules. Operationally,
the formula p � means, \to execute p, it is su�cient to execute �." This
interpretation is important because it provides T R with a subroutine facility
and makes logic programming possible. For instance, in the rule p(X) �, the
predicate symbol p acts as the name of a procedure, the variable X acts as an
input parameter, and the formula � acts as the procedure body or de�nition
(exactly as in Horn-clause logic programming). Although the rule-body may be
any T R formula, in this paper, it will frequently be a serial conjunction. In this
case, the rule has the form a0  a1 
 a2 
 :::
 an, where each ai is an atom.
With such rules, users can de�ne transaction subroutines and write transaction
logic programs. Note that this facility is possible because transactions are
represented by predicates, which distinguishes T R from other logics of action,
such as those in which actions are modal operators or function terms. In
such logics, subroutines are awkward, if not impossible, to express. Finally, for
notational convenience, we assume that all free variables in a rule are universally
quanti�ed outside the rule. Thus, the rule p(X)  � is simply an abbreviation
for 8X[p(X) �].

Example 1.2.3 (Tossing Coins)
Let up(coin; head) mean that coin is lying face up. Likewise, up(coin; tail)
means that its tail is facing up. The following transaction base P de�nes the
action of 
ipping a coin:

toss(Coin)  up(Coin; Face)
 up:del(Coin; Face)
 up:ins(Coin; head)

toss(Coin)  up(Coin; Face)
 up:del(Coin; Face)
 up:ins(Coin; tail)

toss(Coin)  
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Given a coin, say dime1, these rules say that there are three ways to toss dime1:
one can �rst determine what side of dime1 is facing up; then delete this fact
from the database; then either insert up(dime1; head) or insert up(dime1; tail).
The third possibility is to do nothing at all to the coin. Thus, ?� toss(dime1)
is a non-deterministic transaction. Formally, if dime1 initially has its head side
up, then tossing dime1 is represented by the following three statements:

P; fup(dime1; head)g; fg;fup(dime1; head)g j= toss(dime1)

P; fup(dime1; head)g; fg;fup(dime1; tail)g j= toss(dime1)

P; fup(dime1; head)g j= toss(dime1)

This means that we cannot know in advance what the exact outcome of this
action will be. 2

1.2.3 Transaction Bases

This section gives simple but realistic examples of transaction bases comprised
of �nite sets of rules. The examples show how updates can be combined with
queries to de�ne complex transactions.

Example 1.2.4 (Financial Transactions)
Suppose the balance of a bank account, Act, is given by the relation
balance(Act;Amt). To modify this relation, we are provided with a pair of el-
ementary update operations: balance.del(Act;Amt) to delete a tuple from the
relation, and balance.ins(Act;Amt) to insert a tuple into the relation. Using
these two updates, we de�ne four transactions: balance.change(Act;Bal; Bal0),
to change the balance of an account; withdraw(Amt;Act), to withdraw an
amount from an account; deposit(Amt;Act), to deposit an amount into an ac-
count; and transfer(Amt;Act; Act0), to transfer an amount from one account
to another. These transactions are de�ned by the following four rules:

transfer(Amt;Act; Act0)  withdraw(Amt;Act)
 deposit(Amt;Act0)

withdraw(Amt;Act)  
balance(Act;B) 
B � Amt 
 balance.change(Act;B;B �Amt)

deposit(Amt;Act)  
balance(Act;B) 
 balance.change(Act;B;B +Amt)

balance.change(Act;B;B0)  balance.del(Act;B)
 balance.ins(Act;B0)

In the second and third rule, the atom balance(Act;B) acts as a query that
retrieves the balance of the speci�ed account. All other atoms are updates. 2
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The next example uses robot actions to illustrate non-deterministic rules.
Planning of robot actions is discussed in detail in [BK95].

Example 1.2.5 (Non-deterministic, Recursive Robot Actions)
The following transaction base simulates the movements of a robot arm in a
world of toy blocks. States of this world are de�ned in terms of three database
predicates: on(x; y), which says that block x is on top of block y; isclear(x),
which says that nothing is on top of block x; and wider(x; y), which says that
x is strictly wider than y. The rules below de�ne four actions that change the
state of the world. Each action evaluates its premises in the order given, and
the action fails if any of its premises fails (in which case the database is left in
its original state).

stack(N;X)  N > 0
move(Y;X) 
 stack(N � 1; Y )

stack(0; X)  

move(X;Y )  pickup(X) 
 putdown(X;Y )

pickup(X)  
isclear(X) 
 on(X;Y )
 on.del(X;Y ) 
 isclear.ins(Y )

putdown(X;Y )  
wider(Y;X) 
 isclear(Y )
 on.ins(X;Y ) 
 isclear.del(Y )

(1.2)

The actions pickup(X) and putdown(X;Y ) mean: \pick up block X" and \put
down block X on top of block Y , where Y must be wider than X," respectively.
Both are de�ned in terms of elementary inserts and deletes to database rela-
tions. The remaining rules combine simple actions into more complex ones.
For instance, move(X;Y ) means, \move block X to the top of block Y ," and
stack(N;X) means, \stack N arbitrary blocks on top of block X." The actions
pickup and putdown are deterministic, since each set of argument bindings
speci�es only one robot action.4

In contrast, the action stack is non-deterministic. To perform this action,
the inference system searches the database for blocks that can be stacked (rep-
resented by variable Y ). If, at any step, several such blocks can be placed on
top of the stack, the system arbitrarily chooses one of them. 2

Observe that rules (1.2) can easily be rewritten in Prolog form, by replacing
\
" with \," and by replacing the elementary state transitions with assert and
retract. However, the resulting, seemingly innocuous, Prolog program does not
execute correctly! The problem is that Prolog updates are not undone during
backtracking. For instance, suppose that during a move action, the robot
picked up blkA, the widest block on the table. The move action would then
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fail, since the robot cannot put blkA down on the stack, since blkA is too wide.
In T R, the inference system simply backtracks and then tries to �nd another
block to pick up. Prolog, too, will backtrack, but it will leave the database
in an incorrect state, since it will not undo the pickup action. Thus, if blkA
was previously on top of blkB, then on(blkA; blkB) would remain deleted and
isclear(blkB) would stay in the database.

1.2.4 Constraints

Classical conjunction constrains the non-determinism of transactions. That is,
in general, the transaction  ^ � is more deterministic than either � or  by
themselves, because any execution of  ^ � must be an allowed execution of  
and an allowed execution of �. To illustrate, consider the following conjunction
of two robot actions:

\Go to the kitchen" ^ \Do not pass through the bedroom"

Here, each conjunct is a non-deterministic action, as there are many ways in
which it can be carried out. The composite action, however, is more constrained
than either of the two conjuncts alone. In this way, conjunction reduces non-
determinism and allows a user to specify what is not to be done. (A T R
formulation of this example is given in formula (1.6) of Section 1.6.)

Note that classical conjunction does not cause the conjuncts to be executed
as two separate transactions. Instead, it combines them into a single, more
tightly constrained transaction; \^" thus constrains the entire execution of
a transaction, not just the �nal state. In general, \^" constrains transac-
tions in two ways: (i) by causing transactions to fail, and (ii) by forcing non-
deterministic transactions to execute in certain ways.

Example 1.2.6 (Transaction Failure)
Consider a pair of sequential transactions, ?� bought.ins
 wanted.ins and
?�wanted.ins
 bought.ins. Both these transactions transform the database
from state D to state D+ fbought; wantedg. However, they pass through dif-
ferent intermediate states: the former passes through the state D+ fboughtg,
while the latter passes through the state D+ fwantedg. The conjunction
(bought.ins
wanted.ins) ^ (wanted.ins
 bought.ins) therefore fails, since
there is no single sequence of states that is a valid execution path of both
conjuncts. Formally, the following two statements are both true:

P;D;D+ fboughtg;D+ fbought; wantedg j= bought.ins
wanted.ins

P;D;D+ fwantedg;D+ fbought; wantedg j= wanted.ins
 bought.ins



14 LOGICS FOR DATABASES AND INFORMATION SYSTEMS

but the following statement is false for any sequence of databases
D;D1; : : : ;Dn:5

P;D;D1; : : : ;Dn j= (bought.ins
wanted.ins) ^ (wanted.ins
 bought.ins)

2

Example 1.2.7 (Reducing Non-Determinism)
Consider a pair of non-deterministic transactions, ?� lost.ins _ found.ins and
?� lost.ins _won.ins. Starting from database D, they can both follow the
same path to terminate at D + flostg. In fact, this is the only database that
can be reached by both transactions.6 Hence, following the execution of the
transaction ?� (lost.ins _ found.ins) ^ (lost.ins _won.ins) the �nal database
state would be D+ flostg. Formally, the following is true:7

P;D;D0 j= (lost.ins _ found.ins) ^ (lost.ins _won.ins)

i� D0 =D+ flostg

In this way, classical conjunction reduces non-determinism and, in this partic-
ular example, yields a completely deterministic transaction. 2

In [BK95], we explore the potential of T R for expressing constraints. Much
of this expressiveness comes from serial conjunction, especially when combined
with negation. For example, each of the following formulas has a natural mean-
ing as a constraint:

:(a
 b
 c) means that the sequence a
 b
 c is not allowed.

�
: means transaction  must not immediately follow transaction �.

:(�
: ) means transaction  must immediately follow transaction �.

These formulas can often be simpli�ed by using the dual operator �, called
serial disjunction. For example, the last formula can be rewritten as :��  .
The repertoire of executional constraints expressible in T R is very large. It
is easy to specify that transactions must overlap, start or end simultaneously,
one should terminate after the other, etc. In [BK95] we show that the full set
of temporal relationships of Allen's logic of time intervals [All84] has a simple
and natural representation in T R.

Besides its T R-speci�c role in expressing constraints, \^" has the traditional
role in forming logic programs: in T R, as in classical logic, any �nite set of
rules is equivalent to a conjunction of all the rules in the set.
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1.3 SYNTAX

This section begins the formal development of T R.
We de�ne the alphabet of a language of T R to consist of the following

symbols:

V: a countably-in�nite set of variables.

F : a countably-in�nite set of function symbols. Each symbol f 2 F has a
non-negative arity indicating the number of arguments f can take. There
are in�nitely many symbols of each arity. Constants are treated as 0-ary
function symbols.

P: a countably-in�nite set of predicate symbols. Like functions, predicate
symbols have arity, and P has in�nitely many predicate symbols for each
arity. 0-ary predicate symbols are viewed as propositional constants.

Logical connectives _, ^ (classical disjunction and conjunction), 
 (se-
rial conjunction), : (classical negation). Additional connectives will be
de�ned in terms of these later.

Quanti�ers 8, 9.

Auxiliary symbols, such as \(", \)", and \,".

Terms are de�ned as usual in �rst-order logic: A variable is a term; if f is an n-
ary function symbol and t1; : : : ; tn are terms, then f(t1; : : : ; tn) is a term. When
n = 0, we write f instead of f(). In this paper, we adopt the Prolog convention
that variables begin in upper case, and function and constant symbols begin in
lower case.

Transaction Formulas T R extends the syntax of �rst-order predicate logic
with one new binary connective, 
, called serial conjunction. The resulting
logical formulas are called transaction formulas.

Formally, transaction formulas are de�ned recursively as follows. First, an
atomic transaction formula is an expression of the form p(t1; : : : ; tn), where
p 2 P is a predicate symbol, and t1; : : : ; tn are terms. Second, if � and  are
transaction formulas, then so are the following expressions:

� _  , � ^  , �
  , and :�.

(8X)� and (9X)�, where X is a variable.

The following are two examples of transaction formulas:

b(X) 
 c(X;Y )
 d(Y ) 8X[a(X) _ :b(X)
 :c(X;Y )]
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Informally, the formula �
  means, \Do � and then do  ," or slightly more
formally, \at some point in time, � �nishes and  starts." Note that the
classical �rst-order formulas are transaction formulas that do not use 
.

As in classical logic, we introduce convenient abbreviations for complex for-
mulas. For instance, �  is an abbreviation for � _ : , for all transaction
formulas � and  . It is also useful to de�ne �, called serial disjunction, the
logical dual of 
: ��  = :(:�
: ). Informally, ��  means, \At every
point in time, � �nishes or  starts."

1.4 ELEMENTARY OPERATIONS

Classical logic theories always come with a parameter: a language for construct-
ing well-formed formulas. This language is not �xed, since almost any set of
constants, variables and predicate symbols can be \plugged into" it. Likewise,
T R theories are also parameterized by a language. In addition, they have an-
other, semantic parameter: a pair of oracles, called the data oracle and the
transition oracle, which specify elementary database operations. The data or-
acle speci�es a set of primitive database queries, i:e:, the static semantics of
states; and the transition oracle speci�es a set of primitive database updates,
i:e:, the dynamic semantics of states. These two oracles encapsulate elementary
database operations. Like the language of the logic, the oracles are not �xed
and almost any pair of oracles can be \plugged into" a T R theory.

1.4.1 State Data Oracles

One of the goals underlying the design of T R is to make it general enough
to deal with any kind of database state, including relational databases and
more general deductive databases. One may therefore be tempted to de�ne a
state as an arbitrary �rst-order formula and close the issue. However, things
turn out to be more involved. For one thing, stating that a database state
is a �rst-order formula does not determine the set of truths about that state.
This is because in databases and logic programming, one usually assigns a
non-standard semantics to database states, e.g., Clark's completion, a perfect-
model, or a well-founded model semantics [Llo87; VRS91; GL88]. Because of
this, we have chosen to insulate the dynamic aspects of transaction execution
from the static aspects pertaining to the truth at database states. Not only
does this allow Transaction Logic to work with di�erent database semantics,
but it also enables us to study the dynamics and statics of databases separately.

Another problem is that logically equivalent �rst-order formulas may repre-
sent di�erent database states. For instance, in databases and logic program-
ming, fp :qg is viewed as a di�erent state than fq :pg, even though
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the two formulas are classically equivalent. In the �rst database, p is considered
as true and q as false; in the second state, it is just the opposite.

To achieve the needed generality, the semantics of states is speci�ed by a
state data oracle. We assume a countable set of symbols, called state identi�ers,
which the oracles use to refer to database states. Note, these symbols are not
part of the language of T R, just as the oracles are not part of it. Indeed,
transaction formulas in T R never address database states or oracles directly.
However, state identi�ers and oracles are used to de�ne the semantics and the
proof theory of T R.

De�nition 1.4.1 (State Data Oracle) A state data oracle is a mapping,
Od, from the set of state identi�ers to sets of closed �rst-order formulas. 2

Intuitively, if i is a state identi�er, then Od(i) is the set of formulas considered
to be all the truths known about the state. In practice, it is not necessary to
materialize all these truths. Instead, given a logical formulas � and a state
identi�er i, the proof theory for T R only needs to know whether � 2 Od(D).
Thus, to do inference in T R, an enumeration of Od(i) is all that is needed.

Since the state id uniquely identi�es a state, we shall use the terms \state"
and \state id" interchangeably. To connote the right intuition, the examples
in this paper use �rst-order formulas (in fact, relational databases) as state
identi�ers. This is appropriate because many useful oracles can be conveniently
described in terms of such formulas. However, our results and de�nitions do
not depend on this representation and, in general, any construct can be a state
identi�er.

To get a better grasp of the idea of an oracle-as-database-state, Section 1.4.3
provides some typical examples.

1.4.2 State Transition Oracles

The next step is to specify elementary changes to the database. One way to
de�ne such changes is to build them into the semantics, as in [MW88; NK88;
Bon97b; Bon97a; Che91; AV90; McC83]. The problem with this approach is
that adding new kinds of elementary transitions requires rede�ning the very
notion of a model and, hence, entails a revamping of the entire theory, including
the need to reprove soundness and completeness results. In other words, such
theories are not extensible.

The problem is aggravated by the fact that, for arbitrary logical databases,
the semantics of elementary updates is not clear, not even for relatively simple
updates like insert and delete. For example, what does it mean to insert an atom
b into a database that entails :b, especially if :b itself is not explicitly present in
the database? Or, is insertion of fqg into fp :qg the same as the insertion
into fq  :pg? There is no \one true answer" to this question, and many
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solutions have been proposed (see [KM92] for a comprehensive discussion).
Furthermore, Katsuno and Mendelzon [KM92] pointed out that, generally, state
transitions belong to two major categories|updates and revisions|and, even
within each category, several di�erent 
avours of such transitions are worth
looking at. Thus, there appears to be no small, single set of elementary state
transitions that is best for all purposes.

For this reason, rather than committing T R to a �xed set of elementary
transitions, we have chosen to treat elementary state transitions as a parameter
of T R. Each set of elementary transitions, thus, gives rise to a di�erent version
of the logic. To achieve this, elementary state transitions are speci�ed outside
T R, using the notion of a state transition oracle. In this way, elementary
transitions are separated from the issue of specifying complex transactions.
T R can thus work with any procedural or declarative language for specifying
elementary transitions.

De�nition 1.4.2 (State Transition Oracle) A state transition oracle, Ot,
is a mapping from ordered pairs of state identi�ers to sets of ground atomic
formulas. We refer to these ground atoms as elementary transitions. 2

Intuitively, if i1 and i2 are state identi�ers, then Ot(i1; i2) is the set of elemen-
tary updates that can transform state i1 into state i2. An elementary update
can thus be non-deterministic, since for each update, the transition oracle de-
�nes a binary relation on states. In practice, this relation does not have to
be materialized. Instead, for a given update u, and a given state i1, the proof
theory of T R only needs an enumeration of the possible successor states, i2.

Because the transition oracle returns ground atoms only, the elementary
updates are completely speci�ed. To see this, suppose that Ot(i1; i2) contained
the formula a _ b. Intuitively, this would mean that one of a or b transforms
the database from state i1 to state i2, but we do not know which one.8

Finally, the names of elementary transitions, such as b.ins and b.del in Sec-
tion 1.2, have no special status in T R. That is, they are ordinary atomic
formulas that just happen to be mentioned by the oracle. In principle, nothing
prevents the user from putting the rules for b.ins into the transaction base.9

Even the fancy names of these predicates is nothing but a convention adopted
in this paper for illustrative purposes.

1.4.3 Examples

This section gives examples of data and transition oracles. In the examples,
a database state is a set of data items, which can be any persistent object,
such as a tuple, a disk page, a �le, or a logical formula. Formally, however, a
database state has no structure, and our only access to it is through the two
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oracles. Some of the oracles below can be combined to yield more powerful
oracles. Typically, such combinations are possible when oracles operate on
disjoint domains of data items.

Relational Oracles. A state identi�er D is a set of ground atomic formu-
las. The data oracle simply returns all these formulas. Thus, Od(D) = D.
Moreover, for each predicate symbol p in D, the transition oracle de�nes two
new predicates, p.ins and p.del, representing the insertion and deletion of single
atoms, respectively. Formally, p.ins(x) 2 Ot(D1;D2) i� D2 = D1 + fp(x)g.
Likewise, p.del(x) 2 Ot(D1;D2) i� D2 = D1 � fp(x)g. SQL-style bulk up-
dates can also be de�ned by the transition oracle [BK95; BKC94], as can prim-
itives for creating new constant symbols.

Scienti�c Oracles. A state is a set of square matrices. For each matrix,
B, in a state, the data oracle de�nes two ternary relations, b and b:dft, rep-
resenting the matrix itself and its two-dimensional discrete Fourier transform,
dft(B), respectively. Formally, b(i; j; v) 2 Od(D) i� B(i; j) = v in D. Like-
wise, b:dft(i; j; v) 2 Od(D) i� dft(B)(i; j) = v. In this way, the data or-
acle provides two built-in views of each matrix.10 The transition oracle de-
�nes three predicates, b:set, b:rswap and b:cswap, which update matrix b.
The �rst predicate sets the value of an element of the matrix. Formally,
b:set(i; j; v) 2 Ot(D1;D2) i�D1 is just likeD2, except that B(i; j) = v in state
D2. Likewise, b:rswap(i; j) swaps rows i and j of the matrix, while b:cswap(i; j)
swaps columns i and j. Note that for main-memory systems, these updates can
be implemented with an e�ciency comparable to that of variable assignment,
i:e:, much more e�ciently than assert and retract in Prolog.

Classical Oracles. A state D is a consistent set of variable-free, classical
�rst-order formulas. The data oracle de�nes all the logical implications of these
formulas. Thus Od(D) = f jD j=c  g, where j=c denotes classical entail-
ment. The transition oracle de�nes primitives for adding and removing formulas
from the database, resolving any con
icts between the new formulas and ex-
isting formulas. Such con
icts can be resolved in numerous ways, as shown by
Katsuno and Mendelzon [KM92]. For instance, for each �rst-order formula, �,
the transition oracle could de�ne four predicates, update[�], erase[�], revise[�]
and contract[�] for doing updates, erasure, revision, and contraction as de�ned
in [KM92].

Well-Founded Oracle. A state id D is a set of generalized-Horn rules,11

and Od(D) is the set of literals (both positive and negative) in the well-founded
model of D [VRS91]. Such oracles can represent any rule-base with well-
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founded semantics, which includes Horn rule-bases, strati�ed rule-bases, and
locally-strati�ed rule-bases. For advanced applications, one may want to aug-
ment Od(D) with the rules in D. The transition oracle provides primitives for
adding and deleting clauses to/from states.

Generalized-Horn Oracles. A state idD is a set of generalized-Horn rules
and Od(D) is a classical Herbrand model of D. Such oracles can represent
Horn rule-bases, strati�ed rule-bases, locally-strati�ed rule-bases, rule-bases
with stable-model semantics [GL88], and any rule-base whose meaning is given
by a classical Herbrand model. Again, one may want to augment Od(D) with
the rules inD. The transition oracle provides primitives for adding and deleting
clauses from states.

1.4.4 The Pragmatics of Oracles

Unlike the formulas in a transaction base, we do not expect the oracles to be
coded by casual users. Although the oracles allow for many di�erent semantics
of states and state changes, we envision that any logic programming system
based on T R will likely have a carefully selected repertoire of built-in database
semantics and a tightly controlled mechanism for adding new ones. This latter
mechanism would not be available to ordinary programmers. For this reason,
we assume in this paper that the data and transition oracles are �xed.

Unfortunately, there is no general solution to the practical problem of
how oracles can best be implemented. For the classical oracle described
above, the problem has been partly solved by Grahne, Mendelzon, and
Winslett [GM95; Win88]. Winslett showed that, in general, the problem of up-
dating propositional formulas is NP-hard. Subsequently, though, Grahne and
Mendelzon proved that updating sets of ground atoms with arbitrary propo-
sitional formulas can be done in polynomial time. More importantly, this re-
sult carries over to deductive databases, in which only the extensional part
is updated. In this case, as with relational databases, updates are fast and
straightforward.

By design, the issue of specifying and implementing elementary operations
is orthogonal to our work. In T R, the data and transition oracles are external
parameters, and all that matters practically is the existence of an algorithm to
compute the outcome of an operation, or to enumerate the possible outcomes if
the operation is non-deterministic. Finally, we note that transaction de�nitions
are independent of the oracles. This latter point contributes to making T R a
lucid and 
exible language for de�ning transaction programs.
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1.5 MODEL THEORY

Just as the syntax is based on two basic ideas|serial conjunction and elemen-
tary transitions|the semantics is also based on a few fundamental ideas:

Transaction Execution Paths

Database States

Executional Entailment

Transaction Execution Paths. When the user executes a transaction, the
database may change, going from the initial state to some other state. In doing
so, the execution may pass through any number of intermediate states. For
example, execution of ?� a.ins
 b.ins
 c.ins takes a relational database from
an initial state, D, through the intermediate states D+ fag and D+ fa; bg, to
the �nal state D+ fa; b; cg. This idea of a sequence of states is central to our
semantics. It also allows us to model a wide range of constraints. For example,
we may require that every intermediate state satis�es some condition, or we
may forbid certain sequences of states.

To model transactions, we start with a modal-like semantics, where each
state represents a database, and each elementary update causes a transition
from one state to another, thereby changing the database. At this point, how-
ever, modal logic and Transaction Logic begin to part company. The �rst major
di�erence is that truth in T R structures does not hinge on a set of arcs between
states. Instead, we focus on paths, that is, on sequences of states. Because of
the emphasis on paths, we refer to semantic structures in T R as path structures.
Second, truth in path structures is de�ned on paths, not states. For example,
we would say that the path hfg; fag; fa; bgi satis�es the formula a.ins
 b.ins.
Intuitively, the formula represents a transaction that �rst inserts a and then
inserts b, and the path represents a complete execution of this transaction. In
contrast, the shorter paths hfg; fagi and hfag; fa; bgi do not satisfy this
formula, because they do not represent complete executions of the transaction.
This example illustrates a general property of T R: a formula may be true on
a path, but false on all its proper subpaths.

The kind of transaction that a formula represents depends on the paths that
satisfy it. If the paths are of length 1 (i.e., consist of a single state), then
the transaction is a query; if the paths are of length 2, then the transaction is
(usually) an elementary update; and if the paths are of length greater than 2,
then the transaction is a composite update. If the paths are of various lengths,
then di�erent executions of the transaction program correspond to di�erent
kinds of transaction. In this way, one model-theoretic device, paths, accounts
for queries, updates, and more general transactions.
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Database States. Another di�erence between modal logic and Transaction
Logic is in the nature of states. In modal logic, a state is basically a �rst-order
semantic structure, since each state speci�es the truth of a set of ground atomic
formulas. Such structures are adequate for representing relational databases,
but not for representing more general theories, like inde�nite databases or gen-
eral logic programs. We therefore take a more general approach. Unlike modal
logic, where the set of states may vary from semantic structure to semantic
structure, in T R the set of states is determined by the data oracle. Changing
the oracles can change the set of states, and thus the set of semantic structures.
This is one way in which di�erent oracles give rise to di�erent versions of T R.

Executional Entailment. In most logics of action, the notion of \truth"
is associated with properties of actions, and formulas are evaluated at states.
For instance, in Dynamic Logic, [�]� is true in the current state if � is true
in the state that results from executing the update �. In T R, the notion of
truth is associated with execution, and formulas are evaluated on paths, i.e.,
at sequences of states. The notion of executional entailment provides a logical
account of execution, and is described in more detail in Section 1.6.2.

1.5.1 Path Structures and Models

This section makes the preceding discussion precise.
The formal de�nition of path structures relies on the familiar notion of classi-

cal �rst-order semantic structures [End72]. The symbol j=c denotes satisfaction
in these structures, i:e:, classical satisfaction. For our purposes, it is convenient
to augment these classical structures with a special, abstract structure, denoted
>. We de�ne > to satisfy every �rst-order formula. Even though > is not a
classical structure, we shall call it \classical" because adding it to classical logic
does not change the logic in any essential way|it simply adds one more model
to every formula (and some notions, such as satis�ability and consistency, re-
quire minor adjustments). Having > is convenient because it provides a degree
of tolerance to inconsistency that may exist between database states and views
over them.12 It is also a simple adaptation of techniques used in paraconsistent
logics (e:g:, [KL92]), which analyze the knowledge contained in inconsistent
states. The reader is referred to [BK95; BK94] for further discussion.

As described in Section 1.3, T R comes with a language, L (which determines
the syntax of formulas), and with a pair of oracles, Od and Ot (which determine
the semantics of databases), and these oracles come with a set of database state
identi�ers (or states). We de�ne a path of length k (or k-path) to be a �nite
sequence of k states, hD1; : : : ;Dki, where k � 1. In the rest of this paper, the
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language L, the oracles, the set of database states, and the corresponding set
of paths are implicit.

In the following de�nition, each path structure has a domain of objects and
an interpretation for all function symbols. These are used to interpret formulas
on every path in the structure.

De�nition 1.5.1 (Path Structures) Let L be a �rst-order language with
function symbols in F and predicate symbols in P. A path structure M over
L is a quadruple hU; IF ; Ipathi, where

U is the domain of M.

IF is an interpretation of function symbols in L. It assigns a function
Un 7�! U to every n-ary function symbol in F .

Let Struct(U; IF ) denote the set of all classical �rst-order semantic
structures over L of the form hU; IF ; IPi, where IP is a mapping that
interprets predicate symbols in P by relations on U . In accordance with
our earlier remark, we also assume that Struct(U; IF ) contains the special
\classical" structure >.

Ipath is a total mapping that assigns to every path a �rst-order semantic
structure in Struct(U; IF ), subject to the following restrictions:

{ Compliance with the data oracle:
Ipath(hDi) j=c � for every formula � 2 Od(D).

{ Compliance with the transition oracle:
Ipath(hD1;D2i) j=

c b for every atom b 2 Ot(D1;D2). 2

The mapping Ipath serves as the semantic link between transactions and paths:
Given a path and a transaction formula, Ipath determines whether the formula
is true on the path (De�nition 1.5.2, below). Intuitively, the �rst compliance
restriction says that path hDi provides a \window" onto database D, since any
formula that is true of D is also true of path hDi. The second compliance
restriction says that elementary updates do what the transition oracle claims
they do.

Two points about path structures are worth noting. Both points re
ect a

exibility built into path structires that allows them to model the knowledge
encoded in a transaction base:

1. Compliance with the oracles is one way. Thus, the formulas in Od(D)
are not the only formulas that can be true on path hDi. Likewise, the
formulas in Ot(D1;D2) are not the only formulas that can be true on
path hD1;D2i. This is because the oracles are not the only source of
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formulas. In particular, the transaction base also supplies formulas, and
these formulas are true on all paths, as we shall see.

2. For an arbitrary path �, the semantic structure Ipath(�) is independent
of the subpaths of �. Intuitively, this means that we know nothing about
the relationship between transactions and their subtransactions. Such
knowledge, when it exists, is encoded in the transaction base. Therefore,
it is the de�nition of satisfaction that relates paths with their subpaths,
as we shall see.

Before de�ning satisfaction, it is convenient to de�ne path splits. Given a
path, hs1; :::; sni, any state, si, on the path de�nes a split of the path into two
parts, hs1; :::; sii and hsi; :::; sni. If path � is split into parts 
 and �, then we
write � = 
 � �.

As in classical logic, we use variable assignments to de�ne the semantics
of open and quanti�ed formulas. A variable assignment � is a mapping,
V 7�! U , that takes a variable as input, and returns a domain element as
output. This mapping extends from variables to terms in the usual way, i.e.,
�(f(t1; : : : ; tn)) = IF (f)(�(t1); : : : ; �(tn)).

De�nition 1.5.2 (Satisfaction) Let M = hU; IF ; Ipathi be a path struc-
ture, let � be a path in M, and let � be a variable assignment. Then,

1. M; � j=� b if and only if Ipath(�) j=
c
� b, where b is an atomic formula.

2. M; � j=� :� if and only if M; � 6j=� �.

3. M; � j=� � ^  if and only if M; � j=� � and M; � j=�  .

4. As usual, the meaning of \_" is dual to that of \^":
M; � j=� � _  if and only if M; � j=� � or M; � j=�  .

5. M; � j=� �
  if and only if M; 
 j=� � and M; � j=�  for some
split 
 � � of path �.

6. The meaning of \�" is dual to that of \
":
M; � j=� ��  if and only if M; 
 j=� � or M; � j=�  for every
split 
 � � of path �.

7. M; � j=� (8X)� if and only if M; � j=� � for every variable assignment,
�, that agrees with � on all variables except X.

8. The meaning of \9" is dual to that of \8":
M; � j=� (9X)� if and only if M; � j=� � for some variable assignment,
�, that agrees with � on all variables except X.
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As in classical logic, the variable assignment � can be omitted for sentences,
i.e., for formulas with no free variables. From now on, we will deal only with
sentences, unless explicitly stated otherwise. 2

Many of the items in De�nition 1.5.2 can be interpreted in terms of program-
ming languages. For instance, item 5 establishes a relationship between a path
and its subpaths. This corresponds to the relationship between a program and
its components. Intuitively, the formula �
  is a program, and it can execute
on a path if the path corresponds to an execution of � followed by an execution
of  . As another example, item 1 allows atoms to be true on arbitrary paths.
In Horn T R, these atoms play the role of subroutine calling sequences. Intu-
itively, if p(t1; : : : ; tn) is an atom, then p is the subroutine name, and t1; : : : ; tn
are its arguments, exactly as in classical logic programming. Executing this
subroutine corresponds to �nding a path on which p(t1; : : : ; tn) is true.

De�nition 1.5.3 (Models of Transaction Formulas) A path structure
M is a model of a T R-formula �, denoted M j= �, if and only if M; � j= � for
every path � inM. A path structure is a model of a set of formulas if and only
if it is a model of every formula in the set. 2

As usual in �rst-order logic, we de�ne �   and  ! � to mean � _ : ,
resp., and �$  to mean (�   ) ^ (� !  ). By replacing _ with �, we
obtain another interesting pair of serial connectives: the left serial implication,
 ( �, which stands for  � :�, and the right serial implication, � )  ,
which denotes :��  . Intuitively, these formulas say that, \action � must be
immediately preceded (resp., followed) by action  ." Unlike \ " and \!",
these connectives are not identical, i.e., � (  is not equivalent to  ) �;
rather, � (  is equivalent to :� ) : . It is easy to verify that every
path structure is a model of the following formulas, which are analogous to De
Morgan's laws:

(� _  ) 
 � $ (�
 �) _ ( 
 �)
(� ^  ) � � $ (�� �) ^ ( � �)
(� _  ) � �  (�� �) _ ( � �)
(� ^  ) 
 � ! (�
 �) ^ ( 
 �)

(1.3)

The following three dualities are also easy to verify:

� _  $ :(:� ^: ) ��  $ :(:�
: ) 9X�$ :8X:�

1.5.2 Execution as Entailment

We now de�ne executional entailment , a concept that connects model theory
with transaction execution. Recall that a program in T R consists of two dis-
tinct parts: a transaction base P and an initial database state D. Of these
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parts, only the database is updatable. The transaction base contains logical
rules that de�ne complex queries and transactions; normally, it will be com-
posed of formulas containing the serial connectives 
 or �, though classical
�rst-order formulas are also allowed. In contrast, the database (or, more pre-
cisely, what the data oracle tells T R about it) consists entirely of classical
formulas.

De�nition 1.5.4 (Executional Entailment) Let P be a transaction base,
� be a transaction formula, and let D0;D1; : : : ;Dn be a sequence of databases
(�rst-order formulas). Then, the following statement

P;D0;D1; : : : ;Dn j= � (1.4)

is true if and only ifM; hD0;D1; : : : ;Dni j= � for every modelM ofP. Related
to this is the following statement:

P;D0--- j= � (1.5)

which is true i� there is a database sequence D1; : : : ;Dn that makes (1.4) true.
2

Intuitively, statement (1.4) means that a successful execution of transaction
� can change the database from state D0 to D1 : : : to Dn. Formally, it means
that every model of P satis�es � on the path hD0;D1; : : : ;Dni.

Normally, users issuing transactions know only the initial database state D0;
they do not know the execution path in advance, and, in most cases, they just
want to reach a �nal state in the execution. To account for this situation,
the version of entailment in (1.5) allows us to omit the intermediate and the
�nal database states. Intuitively, statement (1.5) means that transaction � can
execute successfully starting from database D0. When the context is clear, we
simply say that transaction � succeeds. Likewise, when statement (1.5) is not
true, we say that transaction � fails. In Section 1.6, we present an inference
system that allows us to compute a database sequence D1; : : : ;Dn that satis�es
statement (1.4) whenever a transaction succeeds.

Example 1.5.5 (Executional Entailment) Suppose P contains the follow-
ing rules:

q r q s r  a.ins
 b.ins s a.del
 b.del

Using the relational oracle described in Section 1.4.3, the following statements
are all true:
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P; fg; fag; fa; bg j= a.ins
 b.ins P; fa; bg; fbg;fg j= a.del
 b.del

P; fg; fag; fa; bg j= r P; fa; bg; fbg;fg j= s

P; fg; fag; fa; bg j= q P; fa; bg; fbg;fg j= q

P; fg; fag; fa; bg; fbg; fg j= r 
 s

P; fg; fag; fa; bg;fbg;fg j= q 
 q

Hence, the following statements are true as well:

P; fg--- j= a.ins
 b.ins P; fa; bg--- j= a.del
 b.del

P; fg--- j= r P; fa; bg--- j= s

P; fg--- j= q P; fa; bg--- j= q

P; fg--- j= r 
 s P; fg--- j= q 
 q

2

Lemma 1.5.6 (Basic Properties of Executional Entailment) For any
transaction base P, any database sequence D0; : : : ;Dn, and any closed
transaction formulas � and �, the following statements are all true:

1. If P;D0; : : : ;Dn j= � and P;D0; : : : ;Dn j= �
then P;D0; : : : ;Dn j= � ^ �.

2. If P;D0; : : : ;Di j= � and P;Di; : : : ;Dn j= �
then P;D0; : : : ;Dn j= �
 �.

3. If � � is in P and P;D0; : : : ;Dn j= � then P;D0; : : : ;Dn j= �.

4. If Ot(D0;D1) j=c � then P;D0;D1 j= �.

5. If Od(D0) j=c � then P;D0 j= �.

In the last two items, � is a �rst-order formula and j=c denotes classical en-
tailment.

Note that Lemma 1.5.6 suggests a simple inference system, in which items 4
and 5 are axioms, and items 1{3 are inference rules. Also, n = 0 corresponds
to the special case in which a transaction does not update the database, i.e.,
in which it acts as a query. In this case, classical and serial conjunction are
identical:

Lemma 1.5.7 (Conjunctive Queries) For any transaction base P, any
database state D, and any transaction formulas � and �,

P;D j= � ^ � if and only if P;D j= �
 �
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Intuitively, this lemma says that the result of evaluating a conjunctive query
is the same whether the conjuncts are evaluated sequentially or in classical
fashion. In fact, we can prove a stronger result to show that in the absence of
updates, serial conjunction reduces to classical conjunction, serial disjunction
reduces to classical disjunction, and executional entailment reduces to classical
entailment:

Lemma 1.5.8 (Relationship to Classical Logic) Let P be a transaction
base, and let Pc be a set of �rst-order formulas derived from P be replacing
each occurrence of 
 by ^, and each occurrence of � by _. Then, for any
�rst-order formula �, and any database D,

P;D j= � if and only if Pc [Od(D) j=c �

Moreover, in the special case of classical oracles,

P;D j= � if and only if Pc [D j=c �

1.6 PROOF THEORY

Like classical logic, T R has a Horn subset, called serial-Horn T R, which has
a simple SLD-style proof theory that gives serial-Horn programs a procedural
semantics. It is this property that allows a user to program transactions within
the logic. This section de�nes the serial-Horn subset of T R and develops its
proof theory. Unlike classical logic programming, the proof procedure presented
in this section computes new database states as well as query answers. A
detailed development along with a proof of soundness and completeness can be
found in [BK95].

Serial-Horn programs are based on the idea of a serial goal. A serial goal is
a transaction formula of the form a1
 a2
 :::
 an, where each ai is an atomic
formula and n � 0. When n = 0, we often write (), which denotes the empty
goal. A serial-Horn rule has the form b a1 
 a2 
 :::
 an, where the body,
a1 
 a2 
 :::
 an, is a serial goal and the head, b, is an atom. All the rules in
Section 1.2.3 are serial-Horn. Finally, a serial-Horn transaction base is simply a
�nite set of serial-Horn rules. Observe that a serial-Horn transaction base can
be transformed into a classical Horn rulebase, by replacing each occurrence of

by ^. This transformation changes the serial-Horn rule b a1 
 :::
 an into
the classical Horn rule b a1 ^ :::^ an. Lemma 1.5.8 thus implies that, in the
absence of updates, executional entailment in Horn T R reduces to ordinary
entailment in classical Horn logic. Classical Horn logic is thus a special case of
serial-Horn T R.

In the Horn fragment of T R, database states are represented by the Gener-
alized Horn Oracle described in Section 1.4.3. We say that the combination of



LOGIC FOR TRANSACTIONS 29

a transaction base P and a generalized Horn data oracle Od is serial-Horn if
P is a set of serial-Horn rules satisfying the following independence condition:

For every database state D, predicate symbols occurring in rule-heads in
P do not occur in rule-bodies in Od(D).

Intuitively, the independence condition means that the database does not de�ne
predicates in terms of transactions. Thus, the rule a  b cannot be in the
database if the rule b  c is in the transaction base (although the rule b  a
can be in the database).

The independence condition arises naturally in two situations: (i) when the
database is relational (a set of atomic formulas), and (ii) when a conceptual
distinction is desired between updating actions and non-updating queries. In
the former case, the database is trivially independent of P, since each database
atom has an empty premise. In the latter case, the logic would have two sorts
of predicates, query predicates and action predicates. Action predicates would
be de�ned only in the transaction base, and query predicates would be de�ned
only in the database. Action predicates could be de�ned in terms of query
predicates (e.g., to express pre-conditions and post-conditions), but not vice-
versa.

The serial-Horn conditions support the essential features of the logic pro-
gramming paradigm. For instance, like classical Horn rules, these conditions
can be viewed as a demand for complete information: serial-Horn rules im-
ply that actions are completely speci�ed, and generalized Horn oracles imply
that database states are completely speci�ed, i:e:, do not contain any inde�-
nite or disjunctive information. As described below, these conditions lead to
a simple and practical, SLD-style inference system, in the logic-programming
tradition. In addition, the serial-Horn conditions can be extended to accomo-
date negation-as-failure. This is possible because, like classical Horn rules, a
set of serial-Horn rules has a unique minimal Herbrand model. In fact, much
of the theory of negation in classical logic programs carries over to Transaction
logic programs in a straightforward way, including familiar notions like strati-
�cation [ABW88] and local strati�cation [Prz88]. However, negation is not the
subject of this paper, and the interested reader is referred to [BK94; BK95] for
details.

Although serial-Horn T R is a very expressive logic, some useful programs
are non-Horn. Programs with negated premises are just one example. Other
examples involve dynamic constraints applied to programs that are serial-Horn
(see Section 1.2.4). For instance, suppose that the predicate goto(L) is de�ned
by a serial-Horn program that intuitively means, \Go to location L." Then,
the following non-Horn formula intuitively means, \Go to the kitchen without



30 LOGICS FOR DATABASES AND INFORMATION SYSTEMS

passing through the bedroom":

goto(kitchen) ^ :(path
 at(bedroom)
 path) (1.6)

Here, path is an abbreviation for p _ :p, which is true on all paths. Observe
that in addition to serial conjunction, this formula involves classical conjunc-
tion, disjunction and negation. These kinds of dynamic constraints are de-
scribed in detail in [BK95].

1.6.1 Inference

We now describe an inference system, called =I , for checking statements of the
form P;D0--- j= (9) , i.e., that a transaction, (9) , can successfully execute
starting from state D0. The inference succeeds if and only if it �nds an exe-
cution path for the transaction  , that is, a sequence of databases D1; : : : ;Dn

such that P;D0;D1; : : : ;Dn j=  . We shall see that certain inference strate-
gies generate the execution path in a way that corresponds to the intuitive
notion of transaction execution. In particular, top-down inference corresponds
to forward execution (the normal kind), and bottom-up inference corresponds
to reverse execution (as described later).

In [BK95], we also introduce a dual system, =II , which is useful for bottom-
up transaction execution. Additionally, when hypothetical transactions are
allowed, [BK95] describes =3|a uniform inference system that amalgamates
=I and =II , and is complete even in the presence of hypothetical modal opera-
tors. These systems are all formulated as natural deduction systems. However,
it is also possible to formulate them as refutation systems.

In the serial-Horn case, the transaction  is an existential serial conjunction,
that is, a formula of the form (9X)(a1 
 a2 
 : : :
 am), where each ai is atomic.
Since all free variables in  are assumed to be existentially quanti�ed, we often
omit the X ; though as a reminder, we leave (9) in front of many transactions.
Note that this existential quanti�cation is consistent with the traditions of logic
programming and databases. The inference rules below all focus on the left end
of such transactions. To highlight this focus, we write serial conjunctions as
� 
 rest, where � is the piece of the conjunction that the inference system is
currently focussed on, and rest is the rest of the conjunction.

De�nition 1.6.1 (Inference) If P is a transaction base, then =I is the fol-
lowing system of axioms and inference rules, where D and Di are any database
state identi�ers.

Axioms: P;D--- ` ()

Inference Rules: In Rules 1{3 below, � is a substitution, a and b are atomic
formulas, and � and rest are serial goals.
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1. Applying transaction de�nitions:
Suppose a � is a rule in P whose variables have been renamed so
that the rule shares no variables with b
 rest. If a and b unify with
mgu �, then

P;D--- ` (9)(�
 rest)�

P;D--- ` (9)(b 
 rest)

2. Querying the database:
If b� and rest� share no variables, and Od(D) j=c (9)b�, then

P;D--- ` (9)rest �

P;D--- ` (9)(b 
 rest)

3. Performing elementary updates:
If b� and rest� share no variables, and Ot(D1;D2) j=c (9)b�, then

P;D2--- ` (9)rest �

P;D1--- ` (9)(b
 rest)

2

Inference system =I manipulates expressions of the form P;D--- ` (9)�,
called sequents. The informal meaning of such a sequent is that the transaction
(9)� can succeed from D, i.e., it can be executed on a path emanating from
database D. Each inference rule consists of two sequents, one above the other,
and has the following interpretation: If the upper sequent can be inferred, then
the lower sequent can also be inferred. Starting from the axiom-sequents, the
system repeatedly applies the inference rules to infer more sequents.

To understand the inference system, �rst note that the axioms describe the
empty transaction, \()". This transaction does nothing and always succeeds.
The three inference rules describe more complex transactions, capturing the
roles of the transaction base, the database, and the transition base, respectively.
We can interpret these rules as follows: Rule 1 replaces a subroutine de�nition,
�, by its calling sequence a. Rule 2 attaches a pre-condition, b, to the front of
a transaction rest. Rule 3 is the only one that can change the current database
state; it attaches an elementary update, b, to the front of a transaction, rest, so
that the resulting transaction starts from state D1 instead of D2. The uni�er,
�, makes =I a practical, SLD-style inference system, one that returns most-
general-uni�ers as answers, as Prolog does (see Section 1.6.3). As in classical
resolution, any instance of an answer-substitution is a valid answer to a query.
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De�nition 1.6.2 (General Deduction) Given an inference system, a
deduction (or proof ) of a sequent, seqn, is a series of sequents,
seq0; seq1; : : : ; seqn�1; seqn, where each seqi is an axiom or is derived from
earlier sequents by an inference rule. 2

Theorem 1 (Soundness and Completeness) Under the serial-Horn con-
ditions, the executional entailment P;D--- j= (9)� holds if and only if there
is a deduction in =I of the sequent P;D--- ` (9)�.

1.6.2 Execution as Deduction

Having developed the inference system for proving statements of the form
P;D--- j= (9)�, we come back to our original problem: proving statements
of the form P;D0; : : : ;Dn j= (9)�, where D0 is the initial database state, i:e:,
the state at the moment when transaction (9)� began executing. Note that at
this moment, the intermediate states, D1; : : : ;Dn�1, and the �nal state, Dn,
are still unknown. An important task for the inference system is to compute
these states. The general notion of deduction is not tight enough to do this
conveniently, since a general deduction may record the execution of many un-
related transactions, mixed up in a haphazard way. Since we are interested in
the execution of a particular transaction, we introduce a more specialized no-
tion of executional deduction that|without sacri�cing completeness|de�nes
a narrower range of deductions than does De�nition 1.6.2.

De�nition 1.6.3 (Executional Deduction) Let P be a transaction base.
An executional deduction of a transaction, (9)�, is a deduction, seq0; : : : ; seqn,
that satis�es the following conditions:

1. The initial sequent, seq0, is an axiom.

2. For i > 0, each sequent, seqi, is obtained from the previous sequent,
seqi�1, by one of the inference rules of system =I (i.e., seqi�1 is the
numerator of the rule, and seqi is the denominator).

3. The �nal sequent, seqn, has the form P;D--- ` (9)�, for some database
D.

2

Theorem 1 remains valid even if deductions are required to be executional.
However, because we now have a stronger form of deduction, we can prove
stronger results about it. Theorem 1, for instance, does not specify the execu-
tion path of the transaction. With executional deduction, we can.

Execution paths can easily be extracted from executional deductions. The
key observation is that system =I applies elementary transitions exactly when
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m. P;D0--- ` (9)�
� � �

j+1. P;D0--- ` (9) 1

j. if P;D1--- ` (9)�1 by inference rule 3,
� � �

i+1. P;D1--- ` (9) 2

i. if P;D2--- ` (9)�2 by inference rule 3,
� � �

0. P;Dn--- ` ()

Figure 1.1 Construction of an Executional Deduction in =I

This deduction involves m inferences and m + 1 sequents, where 0 is the
initial sequent, and m is the �nal sequent. The deduction includes n

changes of state (0 � n � m), each carried out by inference rule 3, such
as the inferences from sequent i to i+ 1, and from sequent j to j + 1.

inference rule 3 is invoked. Invoking this rule during inference is the proof-
theoretic analogue of executing an elementary transition. Thus, we need only
pick out those points in an executional deduction where inference rule 3 is
applied, as in Figure 1.1. In this �gure, we de�ne the execution path of the
deduction to be the sequence D0;D1;D2; : : : ;Dn. The next theorem provides
a model-theoretic meaning for execution paths. It also relates executional de-
duction to executional entailment (De�nition 1.5.4).

Theorem 2 (Executional Soundness and Completeness) Under the
serial-Horn conditions, the executional entailment P;D0;D1; : : : ;Dn j= (9)�
holds if and only if there is an executional deduction of (9)� whose execution
path is D0;D1; : : : ;Dn.

By constructing executional deductions, we can execute transactions. As
Figure 1.1 shows, by constructing the deduction from the top, down, the
database is systematically updated from D0 to D1 : : : to Dn. We call this
forward execution. Likewise, by constructing the deduction from the bottom,
up, the database is systematically updated fromDn toDn�1 : : : toD0. We call
this reverse execution. The process of constructing deductions and executing
transactions is developed in detail in [BK95].
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1.6.3 Example: Inference with Uni�cation

As in Prolog, our inference system returns a substitution. The substitution
speci�es values of the free variables for which the transaction succeeds. The
example here is similar to Example 1.2.5, in which a robot simulator moves
blocks around a table top. We consider a transaction base, P, containing the
following rule, which describes the e�ect of picking up a block X:

pickup(X)  isclear(X) 
 on(X;Y ) 
 on.del(X;Y )
 isclear.ins(Y )

Suppose we order the robot to pick up a block, by typing ?� pickup(X). Since
the block is left unspeci�ed, the transaction is non-deterministic. The inference
system attempts to �nd a value for X that enables the transaction to succeed,
updating the database in the process. To illustrate, suppose the initial database
represents an arrangement of three blocks, where blkA is on top of blkC, and
blkB stands alone. If the robot picks up blkA, the database changes from state
D0 to D1 to D2, where

D0 = fisclear(blkA); isclear(blkB); on(blkA; blkC)g

D1 = fisclear(blkA); isclear(blkB)g

D2 = fisclear(blkA); isclear(blkB); isclear(blkC)g

An executional deduction in which the robot picks up blkA is shown in
Figure 1.2. In this �gure, each sequent is derived from the sequent immediately
below by an inference rule, and the bottom-most sequent is an axiom. Each
inference involves unifying the leftmost atom in the transaction against either
a database fact (returned by the data oracle), a transaction name (de�ned in
the transaction base), or an elementary transition (returned by the transition
oracle). For example, in deriving sequent 4 from sequent 3, the inference system
uni�es the atom isclear(X) in the transaction against the atom isclear(blkA) in
the database, D0. In this way, the system \chooses" to pick up blkA. Likewise,
in deriving sequent 3 from sequent 2, the inference system uni�es the atom
on(blkA; Y ) in the transaction against the atom on(blkA; blkC) in the database.
In this way, the system retrieves blkC, the block on which blkA is resting. Note
that each line in the table shows three items: a numbered sequent, the inference
rule used in deriving it from the sequent below, and the unifying substitution.
The answer substitution is obtained by composing all the uni�ers, which yields
fX=blkA; Y=blkCg, and then projecting onto the substitution for X, which
yields fX=blkAg. The operational interpretation of this proof is that the robot
has picked up blkA.
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Rule Uni�er # Sequent

1 5: P;D0--- ` (9)pickup(X)

2 4: P;D0--- ` (9)[isclear(X) 
 on(X;Y ) 


on.del(X;Y )
 isclear.ins(Y )]

2 X=blkA 3: P;D0--- ` (9)[on(blkA; Y ) 


on.del(blkA; Y )
 isclear.ins(Y )]

3 Y=blkC 2: P;D0--- ` (9)[on.del(blkA; blkC)
 isclear.ins(blkC)]

3 1: P;D1--- ` isclear.ins(blkC)

0: P;D2--- ` ()

Figure 1.2 Executional Deduction of (9)pickup(X)

1.7 RELATED WORK

There is a vast amount of related research. This section examines a selec-
tion of closely related works. A more comprehensive comparison can be found
in [BK95]. For convenience, we divide the formalisms into two classes: those
aimed at specifying database transactions, and those aimed at reasoning about
programs.

At the outset, we should mention one feature that distinguishes T R from all
the formalisms described below: its use of state and transition oracles, which
support arbitrary notions of state and update. In contrast, many formalisms
assume that a state is a relational database, and that updates are limited to the
insertion and deletion of tuples. Thus, there is no support for inserting rules into
a deductive database, or for inserting disjunctions into a disjunctive database.
Many other formalisms are not database-oriented at all, but come from the
tradition of procedural programming languages. Typically, they assume that
a state is a set of program variables, and that an update changes a variable's
value.

1.7.1 Declarative Languages for Database Transactions

Dynamic Prolog. Manchanda andWarren [MW88] developed DynamicPro-
log, a logic programming language for database transactions. This language is
by far the most similar to T R. For instance, T R and Dynamic Prolog are the
only logic programming languages that account not just for updates, but for
transaction abort and rollback as well. However, the proof theory for Dynamic
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Prolog is impractical for carrying out updates, since one must know the �nal
database state before inference begins. This is because this proof theory is
a veri�cation system: Given an initial state, a �nal state, and a transaction
program, the proof theory veri�es whether the program causes the transition;
but, given just the initial state and the program, it cannot compute the �nal
state. In other words, the proof theory cannot execute transaction programs
as T R's proof theory does. Apparently realizing this drawback, Manchanda
and Warren developed an interpreter whose aim was to \execute" transactions.
However, this interpreter is incomplete with respect to the model theory and,
furthermore, it is not based on the proof theory. To a certain extent, it can be
said that Manchanda and Warren have managed to formalize their intuition as
a program, but not as an inference system. In addition, there are several other
di�erences between Dynamic Prolog and T R. For instance, Dynamic Prolog
assumes that databases are relational, and it does not support bulk database
updates or constraints on program execution. Furthermore, an execution path
in Dynamic Prolog consists of the initial and the �nal state only, and it does
not record the intermediate states. As a consequence, it is impossible to ex-
press constraints on transaction execution, such as those needed for advanced
applications in AI, work
ow management, etc. [BK95; DKRR97].

LDL. Naqvi and Krishnamurthy [NK88] extended Datalog with update op-
erators, which were later incorporated in the LDL language [NT89]. Since LDL
is geared towards database applications, this extension has bulk updates, for
which an operational semantics exists. Unfortunately, the model theory pre-
sented in [NK88; NT89] is somewhat limited. First, it matches the execution
model of LDL only in the propositional case, and so it does not cover bulk
updates. Second, it is only de�ned for update-programs in which commutativ-
ity of elementary updates can be assumed. For sequences of updates in which
this does not hold, the semantics turns out to be rather tricky and certainly
does not qualify as \model theoretic." Third, the de�nition of \legal" programs
in [NK88; NT89] is highly restrictive, making it di�cult to build complex trans-
actions out of simpler ones.

Chen's Calculus. Chen developed a calculus and an equivalent algebra for
constructing transactions [Che91]. Like T R, this calculus uses logical opera-
tors to construct database transactions from elementary updates. There are
several di�erences however. First, the calculus is not part of a full logic. Sec-
ond, it assumes that databases are relational. Third, it has a very di�erent
semantics for conjunction. Speci�cally, whereas T R uses ^ to express dynamic
constraints, Chen's calculus uses it to express parallel actions. The main moti-
vation here is that parallel actions make bulk updates easy to express, which is
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an important database feature. However, there are several disadvantages in the
way this is achieved. First, the calculus cannot express the kind of dynamic
constraints that T R can [BK95], while T R expresses bulk updates through
other means [BKC94; BK95]. Second, parallel actions greatly complicate the
semantics, since they require a minimality principle, which makes the algebra
non-monotonic even in the absence of negation. Third, the syntax is not closed.
For instance, negation can be applied to some formulas but not to others. In
particular, if  is an updating transaction, then rules like p   are not al-
lowed, since it is equivalent to p _ : ; indeed, this formula has no meaning in
Chen's calculus. It therefore seems unlikely that this calculus can be developed
into a full logic in a straightforward or satisfying way. Furthermore, the calcu-
lus itself is very limited as a programming language, since it has no mechanism
for de�ning recursion or subroutines.

Abiteboul-Vianu's Update Languages. Abiteboul and Vianu developed
a family of Datalog-style update languages [AV91; Abi88], including compre-
hensive results on complexity and expressibility. Unlike Transaction Logic,
these languages are not part of a full logic: arbitrary logical formulas cannot
be constructed, and although there is an operational semantics, there is no
corresponding model theory and no logical inference system. In addition, these
languages lack several features that are present in T R. First, they assume that
databases are relational. Second, they do not support subtransactions, save-
points, or partial abort and rollback. Third, there is no facility for constraining
program execution, and program output is the only concern. Fourth, there
is no support for subroutines. This can be seen most clearly in the procedu-
ral languages de�ned in [AV90]. This lack of subroutines is re
ected in the
PSPACE data complexity of some of the languages, since subroutines would
lead to alternating PSPACE, that is, EXPTIME [Bon].

1.7.2 Logics for Reasoning about Programs

Dynamic Logic and Process Logic. Dynamic Logic [Har79] and Process
Logic [HKP82] allow a user to express properties of procedural programs and to
reason about them.13 Dynamic Logic reasons about the initial and �nal states
of program execution. Thus, one can speak about the result of an execution;
e:g:, \When the program terminates, the value of X is less than 100." Process
Logic extends this with the ability to reason about intermediate states. Thus,
one can speak about what happens during execution; e:g:, \At every iteration
of the loop, the value of X is less than 100." In both Process Logic and
Dynamic Logic, as in T R, a model consists of a set of states, and actions cause
transitions from one state to another. Because of the emphasis on intermediate
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states, the semantics of T R is more closely related to that of Process Logic
than of Dynamic Logic. For instance, in both Process Logic and T R, formulas
are evaluated not at states, but on paths, which are sequences of states.

Unlike T R, however, Process Logic and Dynamic Logic are not logic pro-
gramming languages. This di�erence shows up in several ways. First, Process
Logic and Dynamic Logic represent programs procedurally, not as sets of logi-
cal rules. Second, they do not have an SLD-style proof procedure for executing
programs. In fact, they were not intended for executing programs, but for
reasoning about their properties. Third, in both Process Logic and Dynamic
Logic, the logic itself is used outside of programs to specify their properties.
In particular, the logic is used for constructing the programs themselves or for
specifying database queries. Fourth, Process Logic and Dynamic Logic were
not designed for database programming. For instance, they do not have the
notions of a database or a query, and they do not support named procedures,
such as subroutines and views.

McCarty and Van der Meyden. In [MvdM92], McCarty and Van der
Meyden develop a theory for reasoning about \inde�nite" actions. This work
is orthogonal to T R. The main similarity is that both works are concerned
with de�ning complex actions in terms of simpler ones, and in both works,
the actions may be non-deterministic (or \inde�nite"). However, unlike T R,
[MvdM92] does not address action execution or the updating of databases.
To give an idea of what [MvdM92] is about, consider a T R transaction base
consisting of exactly the following two rules:14

a c1
 c2
 c3 b c2
 c3

The main point is that a and b are complex actions de�ned in terms of the
elementary actions c1; c2; c3. In T R, the e�ects of the elementary actions
are speci�ed by an oracle, which is invoked to execute them. In contrast,
[MvdM92] has no mechanism for specifying the e�ects of elementary actions.
Instead, their work focuses on closed-world inferences of the following form:

If we are told that action a has occurred, then we infer, abductively,
that action c1 
 c2 
 c3 has occurred, so action c2 
 c3 has occurred,
so action b has occurred. Thus, an occurrence of action a implies an
occurrence of action b.

There are also technical di�erences between T R and [MvdM92]. For in-
stance, [MvdM92] does not allow function symbols in the rules that de�ne
complex actions (and even so, most of their reasoning problems are undecid-
able and/or outside of re). In addition, [MvdM92] is committed to a particular
model of states. The basic theory in [MvdM92] is also very di�erent from that
of T R, as it is based on circumscription and second-order intuitionistic logic.
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In earlier work, McCarty outlined a logic of action as part of a larger proposal
for reasoning about deontic concepts [McC83]. His proposal contains three
distinct layers, each with its own logic: �rst-order predicate logic, a logic of
action, and a logic of permission and obligation. In some ways, the �rst two
layers are similar to T R, especially since the action layer uses logical operators
to construct complex actions from elementary actions. Because of his interest
in deontic concepts, McCarty de�nes two notions of satisfaction. In one notion,
called \strict satisfaction," the conjunction ^ corresponds to parallel action, as
it does in Chen's work [Che91]. In the other notion, called \satisfaction," the
same symbol corresponds to constraints, as it does in T R. However, since
the focus of this work was on strict satisfaction, the development of dynamic
constraints was never considered. Also, there is no analogue of T R's transition
oracle, and the only elementary updates considered correspond to insertion and
deletion of atomic formulas. Unfortunately, this promising proposal was not
developed in detail. For instance, although a model theory based on sequences
of partial states is presented, there is no sound-and-complete proof theory, and
no mechanism is presented for executing actions or updating the database.

Situation Calculus. The situation calculus is a methodology for specifying
the e�ects of elementary actions in �rst-order classical logic. It was introduced
by McCarthy [McC63] and then further developed by McCarthy and Hayes
[MH69]. From a database perspective, transactions speci�ed in the situation
calculus can insert and delete atomic formulas, but not arbitrary logical formu-
las. Thus, such transactions cannot add new rules to a deductive database, nor
can they add tuples with null values to a relational database, or disjunctions to
a disjunctive database. None of these limitations apply to transactions in T R.

As a representation language, the situation calculus is strictly less powerful
than full T R. Like T R, the situation calculus can axiomatize the e�ects of ele-
mentary actions and reason about them; but unlike T R, its ability to combine
actions is very limited. For instance, it does not support loops, conditionals,
subroutines, recursion or non-deterministic choice. Formally, the situation cal-
culus is a subset of �rst-order classical logic, which is a subset of T R. The
situation calculus is therefore subsumed by full T R. On the other hand, being
a methodology within the classical logic rather than an independent logical sys-
tem, the situation calculus is orthogonal to Horn T R. This is because, Horn
T R emphasizes the combination of elementary actions into complex ones, but
not the speci�cation of elementary actions themselves. The situation calculus
does the reverse: it emphasizes the speci�cation of elementary actions, but not
their combination into complex actions. These two formalisms can therefore
work hand-in-glove. Speci�cally, through its oracle mechanism, Horn T R can
combine elementary actions speci�ed in the situation calculus.
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Another di�erence, as mentioned earlier, is that the frame problem does
not arise in Horn T R, since it is a language for programming and executing
transactions, not for reasoning about them. In fact, the frame problem has
not been an issue in any of the theory or any of the examples presented in
this paper. In contrast, the frame problem is a central issue in the situation
calculus [MH69; Rei91]. The frame problem is also an issue in full T R when
it is used to reason about the properties of actions, a context in which frame
axioms are unavoidable [BK].

Reiter's Theory of Database Evolution. Although the \main stream" of
AI was treating the situation calculus as a mere curiosity for almost 30 years,
it has recently received renewed development by Reiter. In particular, Reiter
has developed an approach to the frame problem that does not su�er from
the usual blow-up in the number of frame axioms [Rei91]. Also, unlike the
original situation calculus, which was entirely �rst-order [McC63; MH69], Re-
iter's development includes an induction axiom speci�ed in second-order logic,
for reasoning about action sequences [Rei93]. Applying this approach, Reiter
has developed a logical theory of database evolution [Rei95]. This theory is
perfectly compatible with T R. Through its oracle mechanism, T R can use
the theory to specify the semantics of database states and elementary actions.
Horn T R can then combine these actions into complex programs, and full T R
can reason about them.

However, from the perspective of database theory [AHV95; Ull88], Reiter's
theory of database evolution is quite unusual. For instance, a database state is
usually modeled as set of relations or logical formulas; but in Reiter's theory,
a state is identi�ed with a sequence of actions. Thus, di�erent transactions
always terminate at di�erent states, even if they have the same e�ect on the
database. For example, the state resulting from the action \insert a, then insert
b" is formally di�erent from the state resulting from \insert b, then insert a."

In addition, the theory adopts the view that databases are never actually
updated and transactions are never executed. Instead, the initial database
state is preserved forever, and the history of database transactions is recorded
in a kind of log. Thus, the current database state is not materialized, but
is virtual. In this framework, queries to the current state are answered by
querying the log and reasoning backwards through it to the initial state [Rei95].
Unfortunately, this means that simple operations, like retrieving a single tuple
from the database, become long and complicated reasoning processes. Since
database logs are typically large (perhaps millions of transaction records long),
reasoning backwards through them is unacceptably expensive. Recognizing
this problem, Reiter and his colleagues have looked at ways of materializing
the current database state [Rei95; LR94; LLL+94]. However, no theory has
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been presented showing how the materialization can be carried out within a
logical framework.

Finally, Reiter's theory does not apply to logic programs and deductive
databases. There are two reasons for this. First, the theory does not pro-
vide a minimal model semantics for database states. Thus, in Reiter's theory,
databases do not have the semantics of logic programs. Instead, the theory
requires databases to have a purely �rst-order classical semantics. Unfortu-
nately, this means that much of the familiar database and logic programming
methodology does not apply. For instance, although transitive closure is trivial
to express in a deductive database, it cannot be expressed by the databases
of Reiter's theory, since transitive closure is not �rst-order de�nable [AU79].
The lack of a minimal-model semantics also complicates the representation of
relational databases. Instead of representing them as sets of ground atomic
formulas in the usual way, the theory uses Clark's completion [Llo87; Rei84],
which, in the case of databases, requires very large �rst-order formulas. In AI
terminology, these complications arise because Reiter's theory is about open
worlds, whereas databases are closed worlds. Unfortunately, updating open
worlds is an intractable problem in general, since the result of an update may
not have a �nite representation in �rst-order logic [LR94].

Second, the theory does not protect deductive rules from database updates.
In particular, updates can damage and destroy rules. For example, suppose that
a deductive database consists of the single rule p(X) q(X), and suppose
that the atom q(b) is inserted into this database. If this update is formalized in
Reiter's theory, then the updated database would be equivalent to the following
two formulas:15

q(b) p(X) q(X) ^X 6= b

The point here is that the rule has changed as a result of inserting q(b). This
change is a direct result of Reiter's approach to the frame problem [Rei91],
which intuitively says that except for atoms that are explicitly inserted or
deleted, all atoms must retain their old truth values. In this case, since the
atom p(b) was not true in the initial database, it must not be true in the
�nal database; so the rule premise must be modi�ed to ensure that X 6= b. Of
course, this dictum is completely contrary to the idea of database views, in
which virtual data depends on base data and can change as an indirect e�ect
of database updates. In AI terminology, this is an example of the rami�cation
problem [Fin86; Rei95].

To account for views, Reiter treats view de�nitions as integrity constraints
that must be maintained by the transaction system. In this approach, views
are not de�ned by Horn rules. Instead, the axioms of the transaction system
are modi�ed to treat views as stored data. For instance, in the above example,
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whenever a transaction inserts (or deletes) the atom q(b) from the database,
the modi�ed axioms would insert (or delete) the atom p(b) as well [Rei95].
In this way, the system behaves as if the database contained the deductive
rule p(X) q(X) (with a minimal model semantics). Unfortunately, in this
approach, view de�nitions depend on transaction de�nitions. Thus, each time
a transaction is modi�ed or de�ned, the change must be propagated to all the
view de�nitions. In addition, the approach requires that all views be de�ned
directly in terms of base predicates. Thus, views cannot be recursive, and views
cannot be de�ned in terms of other views.

In sum, the notion of database state in Reiter's theory does not allow for
the fundamental features of deductive databases and logic programs, namely
recursion, view composition, and minimal-model semantics. Consequently, the
theory does not provide a logical account of how to query or update such
databases.

Golog. Levesque et al have recently developed Golog, a procedural language
for programming complex actions, including database transactions [LRL+97].
Syntactically, Golog is similar to the procedural database language QL de-
veloped by Chandra and Harel [CH80] extended with subroutines and non-
deterministic choice. Semantically, however, Golog is much more complex,
since the meaning of elementary actions is speci�ed in the situation calculus,
and the meaning of larger programs is speci�ed by formulas of second-order
logic. Because of this logical semantics, it is possible to express properties of
Golog programs and to reason about them (to some extent).

Unfortunately, despite the claims of its developers, Golog is not a logic pro-
gramming language. This is because having a logical semantics is not the same
thing as programming in logic. Certainly, formalizing the semantics of Fortran
in logic would not make Fortran a logic programming language (although it
would make it possible to reason about Fortran programs). In fact, in many
ways, Golog is the opposite of logic programming. Most obviously Golog pro-
grams are not de�ned by sets of Horn-like rules, but by procedural statements
in an Algol-like language. Golog also does not come with an SLD-style proof
procedure that executes programs and updates databases as it proves theorems.
Finally, unlike Horn T R, Golog does not include classical logic programming
as a special case. That is, classical logic programs and deductive databases are
not Golog programs, while they are T R programs.

In addition, Golog programs cannot be combined with classical logic pro-
grams, and they cannot query or update deductive databases. This is because
Golog is based on Reiter's theory of database evolution, which, as described
above, does not apply to logic programs and deductive databases. Even if
the initial database state is described by classical Horn rules, Golog does not
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treat these rules as a logic program. For instance, suppose the initial state is
described by the following two rules:

tr(X;Y ) r(X;Y ) tr(X;Z) r(X;Y ) ^ tr(Y; Z)

In a deductive database, these rules specify the transitive closure of relation r,
but in Golog they do not. This is because transitive closure requires the minimal
model semantics of deductive databases, which Golog lacks. In addition, Golog
does not protect these rules from database updates; so, as described above,
the rules are progressively damaged and destroyed as relation r is updated.
Transitive closure can be de�ned in Golog, but not by deductive rules. Instead,
the user must write an Algol-like procedure, as illustrated in [LRL+97]. In
this way, Golog sacri�ces the declarativeness of deductive databases for the
procedurality of Algol. For the same reason, Golog has di�culty in specifying
database views, especially recursive views [Rei95]. These di�culties all arise
because Golog abandons the logic-programming paradigm.

Golog has numerous other di�erences with T R as well. For instance, Golog
subroutines are not logical entities, but are macros speci�ed outside the logic.
Thus, one cannot refer to them in the logic, and in particular, one cannot
quantify over them or reason about them [LRL+97]. In addition, like other
logics of action, updates in Golog are hypothetical, not real. This is because
Golog uses the situation calculus to reason about what would be true if an
action took place. The actual execution of actions requires a separate run-time
system, outside of Golog. Finally, because it is based on Reiter's theory of
database evolution, there are many kinds of states that Golog cannot repre-
sent, including Prolog programs with negation-as-failure. Likewise, there are
many kinds of updates that Golog cannot represent, including the insertion of
rules into deductive databases, and the insertion of disjunctions into disjunctive
databases.

Datalog with State. A number of researchers have worked on adding a
notion of state to Datalog programs [Zan93; LHL95]. In these works, states
are represented through a special, distinct argument, which is added to each
updatable predicate. Updates are then modeled as state transitions. This
approach can be viewed as an adaptation of the situation calculus to Dat-
alog. As such, it has several important di�erences with Reiter's theory of
database evolution and with Golog. First, unlike Reiter's theory, Datalog with
state uses a form of closed-world semantics (XY-strati�cation [Zan93] or state-
strati�cation [LHL95]), which is closer to the database tradition. Moreover, un-
like Reiter's theory, Datalog with state has no problem in representing database
views, recursive or otherwise. Second, actions in Datalog with state are lim-
ited to the insertion and deletion of ground atomic formulas. Because of this



44 LOGICS FOR DATABASES AND INFORMATION SYSTEMS

restriction, the frame problem is not a serious issue, since it only needs to be
axiomatized for a small, �xed number of actions. Third, unlike Golog (and
T R), Datalog with state has no notion of subroutine. That is, transaction
programs cannot be named and used within other programs. This approach to
database updates is further discussed in Chapter ??.
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Notes

1. As opposed to using the Event Calculus to simulate updates [Kow92].

2. Additional information on TR, including a prototype implementation, a tutorial, and
benchmark tests, is available at www.cs.toronto.edu/~bonner/transaction-logic.html

3. All our examples assume the non-strict version of insert and delete, which means that
executing p.ins at a state where p is true does not change the state (and likewise when p.del

is executed at a state where p is false).

4. Assuming that only one block can be on top of another block.

5. Assuming bought and wanted are not in D.

6. Assuming found and won are not in D.

7. Assuming found and won are not in D.

8. We could allow arbitrary closed formulas like a _ b to be returned by the transition
oracle, but this would complicate the theoretical development, and it is not clear what ap-
plications this generalization would have.

9. However, preventing the user from tinkering with the de�nitions of elementary tran-
sitions may be a good policy.

10. The discrete Fourier transform and numerous other numerical operations are typically
provided as built-in operations by scienti�c software packages.

11. Generalized-Horn are rules with possibly negated premises.
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12. For example, suppose a view is de�ned by the rule p q, and suppose the current
database state contains the literal :p. Then, the insertion of q into the database would
cause inconsistency. In most logics of action, the mere possibility of this happening would
cause global inconsistency, thus rendering the entire logical system useless, even if all other
database states were consistent. The use of > prevents this kind of \global collapse" in TR
by isolating each such inconsistency to the state that causes it. Note that in the case of Horn
databases, which is the main focus of this paper, inconsistency is not possible, so > does not
make any di�erence.

13. A number of di�erent process logics have been proposed in the literature, beginning
with Pratt's original work [Pra79]. The version in [HKP82] is closer to TR than any other
incarnation of Process Logic we are aware of.

14. Here we use the syntax of TR, which can be translated into the original syntax
of [MvdM92].

15. In both the initial and �nal database, we have suppressed the so-called \situation
argument." Situation arguments identify a database state in the situation calculus, but are
unnecessary for describing the formulas that are true in a state.
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