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ABSTRACT

Acoustic modeling of dysarthric speech is complicated by its
increased intra- and inter-speaker variability. The accuracy
of speaker-dependent and speaker-adaptive models are com-
pared for this task, with the latter prevailing across varying
levels of speaker intelligibility.

Categories and Subject Descriptors

H.1 [Models and Principles]: Acoustic models; H.4.3
[Communications Applications]: Speech Recognition

General Terms

Algorithms, Experimentation

1. INTRODUCTION

Dysarthria is a set of motor disorders resulting from gen-
eral physical disabilities that limit speech intelligibility. De-
spite these difficulties, dysarthric speakers tend to prefer
spoken expression over other physical modes to increase nat-
uralness and speed [2]. Unfortunately, current automatic
speech recognition (ASR) systems for the general public are
not well-suited to dysarthric speech, rendering such software
inaccessible to those who would benefit from it the most [1].

We compare two approaches to acoustic modeling to im-
prove ASR accuracy on dysarthric speech. Speaker-dependent
(SD) models are trained solely to an individual, whereas

speaker-adaptive (SA) models are initialized by models trained

on a larger population but are later adjusted to a single
user. SD models tend to be more accurate than SA mod-
els as user-specific training increases, but are initially less
accurate since they are initialized by real speech [3].

Raghavendra, Rosengren, and Hunnicutt [7] compared what

they described as an SA phoneme recognizer and an SD word
recognizer on dysarthric speech. They concluded that SA
modeling is appropriate for mild or moderate dysarthria,
with an empirical relative error reduction (RER) of 22%,
but that severely dysarthric speakers are better served by
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speaker dependence, with 47% RER. Noyes and Frankish [6]
reported SD models attaining between 75% and 99% word-
level accuracy for impaired speakers on a small vocabulary,
where human listeners could only correctly identify between
7% and 61%. Sawhney and Wheeler [8] found pronounced
gains from SD models, with an RER of ~ 22% over in-
dependent models using an unspecified segmental phoneme
recognizer. These experiments, however, used no more than
5 test subjects each, with limited training data.

2. EXPERIMENTAL SETUP

The following experiment is designed to test the accu-
racy of ASR as one increases the precision of acoustic mod-
els and the amount of training data beyond the examples
cited above. The Nemours database provides annotated
speech data from 11 male speakers with varying degrees
of dysarthria, each producing 74 nonsense sentences of the
form The No is Ving the N1 where Nog and N7 are monosyl-
labic nouns and V' is a monosyllabic verb [5]. These target
words were randomly selected without replacement in order
to provide closed-set phonetic contrasts (e.g., place, manner,
voicing). Additionally, one non-dysarthric control speaker
repeated each sentence in the database.

We categorize each speaker according to his recognition
rate on Nemours data using a baseline acoustic model trained
on spoken transcripts of the Wall Street Journal (WSJ) [4].
The four speakers having word-level recognition rates below
10% with the baseline model are grouped as ‘severe’, the
four with rates between 11% and 30% are grouped as ‘mod-
erate’, and the three between 31% and 60% are grouped
as ‘mild’. The control speaker had a word-level recognition
rate of 84.8%. In broad terms, these initial results show a
pattern of distribution similar to that of subjective sentence-
level intelligibility scores among human listeners.

Both the dependent and adaptive models for each speaker
are triphone left-right Hidden Markov Models (HMMs) with
Gaussian mixture output densities decoded with the Viterbi
algorithm on a lexical-tree structure augmented with a context-
free grammar. For each speaker, we initialize the HMM
acoustic parameters of the dependent model randomly, and
initialize the adaptive model with the common WSJ-trained
baseline. We independently vary the number of Gaussians
and the amount of training utterances in order to measure
how precision and data coverage accommodate the variabil-
ity of dysarthric speech, and apply the iterative Baum-Welch
training algorithm on both models for each speaker. Word-
level accuracy is measured using our automated system on
test data.



80
70 A
§ 60 A
§ Peeemmr P Pmmnmmmmnnn X
N Sgermerrete
= 50 ——pe
L ‘
e ——— RS S—
AOXT e PSRN Wrerreeres »* )
.............. 0 -
Adaptive ===
Dependent ¥
30 L ) ‘ ‘ ‘
2 4 6 8 » - - !
#Gaussians
Mildly dysarthric speakers
20 |
Base =—t—
Adaptive ===
Dependent ¥
15 A
>
Q
g
3 10} |
Q
g
E3

8 10 12 14 16
#Gaussians

Severely dysarthric speakers

Figure 1: ASR accuracy measured against acoustic
model precision (i.e., number of Gaussians). Base-
lines represent models trained on the WSJ corpus.

3. RESULTS AND DISCUSSION

Increasing the amount of training data from 20 to 132
training sentences per speaker does not show any definite
improvement, with accuracy fluctuating around 3% from the
mean across trials. The fact that accuracy does not increase
suggests that there is not enough data in Nemours to rep-
resent intra-speaker variation, and that studies using fewer
test subjects may also require more data.

Figure 1 shows accuracy increasing monotonically with

the number of Gaussians for the mildly and severely dysarthric

speakers. In all cases but the most severe, the adaptive mod-
els outperform their dependent counterparts and reduce rel-
ative error by up to 23.1% in the mild group, by 4.9% in
the moderate group, and by 30.7% for the non-dysarthric
speaker. This suggests that taking advantage of pre-existing
models of the normal population may best suit dysarthric
speakers with higher intelligibility. This tends to support
the abstract conclusions of Raghavendra et al. [7], except
that they also observed a clear superiority of dependency for
severely dysarthric speakers. By contrast, we only observe
slight SD gains over the baseline as the number of Gaussians
increases, possibly due to the distribution of data.

In real-world applications, pre-training is sometimes not
possible. Phonemic substitutions are the most common phe-
nomena observed across all speakers in the baseline model,
especially /ng/ for /n/ (125), /t/ for /uw/ (87), and /ey/
for /ih/ (84). Deletions were also common with this model,
especially /b/ (118), /s/ (111), /w/ (60), /f/ (55) and /l/
(48). These observations suggest that ASR software might
be made more accessible to dysarthric speakers by increasing
robustness against consonant variations in general.

4. ONGOING WORK

Our current work involves acquiring more varied types of
data upon which to perform machine learning. In particu-
lar, we will be acquiring time-aligned acoustic and electro-
magnetic midsagittal articulographic data with dysarthric
and control speakers on more linguistically interesting texts
amenable to n-gram language modeling. Future experiments
will include alternatives to Gaussian mixtures in model-
ing HMM parameters, and more discriminative classification
mechanisms such as recurrent neural networks.
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