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Abstract

When a robot moves about a 2D world such as a planar surface, it is important
that obstacles to the robot's motions be detected. This classical problem of \obstacle
detection" has proven to be di�cult. Many researchers have formulated this problem
as being the process of determining where a robot cannot move due to the presence
of obstacles. An alternative approach presented here is to determine where an robot
can go by identifying 
oor regions for which the planar 
oor assumption can be veri-
�ed. A stereo vision system is developed for Floor Anomaly Detection (FAD), and its
relationship to existing stereo obstacle detection algorithms is described.

1 Introduction

When an agent moves about its environment it is important that the agent is sure that
the surface over which it is to move is safe. In robotic applications this safety is usually
expressed in terms of the robot being able to detect obstacles to its motion. Here we are
concerned with the development of a stereo vision system capable of identifying safe places
to move on a 
oor plane. Previous work [3, 1, 12] on this problem has taken the goal to
be to identify obstacles on the 2D plane over which the robot is to move. What is tacitly
assumed in the literature is that the 
oor plane itself is safe and can be traversed (for an
exception, see [2]). This is an important issue in many robotics environments as the 
oor
may not be particularly safe for the robot to navigate.

As a concrete example, the ARK (Autonomous Robot for a Known Environment) Project
involves the development of a sensor-based mobile robot that can autonomously navigate
in a known, previously-mapped industrial environment. The environment presents many
di�culties for safe navigation, including people and forklifts moving about; oil and water
spills on the 
oor; 
oor drains (which can be uncovered); hoses, tools, and piping on the
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oor [7]. Thus although the 
oor of the ARK environment can be expected to be planar,
local regions of the 
oor can be expected to contain structure which violates the planarity
assumption. In addition, regions that violate the planarity assumption are not easily mapped
and they cannot be completely avoided.

An ideal stereo vision approach would be to use the stereo information to accurately
locate both the 
oor and any anomalies in 3D. This is still a formidable task and is beyond
the reach of moderate cost image processing hardware for real-time applications. Instead, we
consider locating regions in the image which provide evidence for being on the 
oor plane.
To do this we use a novel method for �tting an exact model of stereo disparities arising
from a 3D plane to the provided image data. This �tting method allows us to deal with
deviations from a particular 
oor model, which often arise due to the robot tilting, but can
also arise from structure in the 
oor, such as ramps, or from changes in the stereo system's
con�guration over time. Once the image correspondences for the 
oor have been determined,
and the anomalies marked, we can then map the extracted information onto a robot-centered
representation so that the robot can plan a safe motion.

2 Calibration of a Fixed Stereo Head

In order to map results from image coordinates to robot centered world coordinates, we �rst
need to calibrate the stereo system. In this paper we consider the camera model proposed
by Horn [6]. This model includes a general 3D camera position and focal length, along with
several important perturbations from an ideal pinhole camera. In particular, Horn's model
can represent defects due to a general 3D-misalignment of the sensor array with the optical
axis. The most common remaining distortions are nonlinear radial distortions of the image,
which can be signi�cant for some lenses. Such radial distortions are not modeled here and
we assume they are negligible.

In order to specify Horn's model, we de�ne ~X = (X1; X2; X3)T to be a point in a
3-dimensional global coordinate system, and let ~x = (x1; x2)T be its image. It is most

convenient to write both ~X and ~x in terms of homogeneous coordinates. That is, a given
four-vector ~W represents ~X if Xi = Wi=W4 for i = 1; 2; 3. Similarly, a three vector ~w
represents the image point ~x whenever xi = wi=w3 for i = 1; 2. Now, following [6], we de�ne

the transformation from an arbitrary point ~W in a global coordinate system to an image
point ~w as

~w = T ~W; (1)

where T is a 3x4 matrix of coe�cients which specify the transformation.
It is straightforward to calibrate a camera using this model along with a known 3D

calibration object. In particular, points on the calibration object are identi�ed by hand in
each image. Linear least squares is then used to compute the transformation matrix, T , in
equation (1), separately for each camera. We denote the resulting matrices for the left and
right cameras simply as L and R. These matrices cleanly capture all the required information
about the �xed stereo system.
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3 Image Warping for a Plane

We are interested in the exact form of image warp which can be used to map the images
of points on the ground plane in one stereo image to the corresponding image points in the
second view. Suppose the ground plane (or an arbitrary plane, for that matter) is described

in normal-distance form as ~n � ~X = d. Here ~n = (n1; n2; n3)T is a unit normal to the plane,
and d measures the perpendicular distance of the plane from the origin of the 3D coordinate
frame. Then, for pinhole camera models, Faugeras [3] has shown that the mapping from a
point, ~w r, in the right image to the corresponding point, ~w l, in the left image is given by

~w l = K(~n; d)~w r; (2)

where K(~n; d) is a 3� 3 matrix. We have shown [9] that the same form of equation su�ces
for the more general camera models described in the previous section, and we have derived
a closed-form expression for K in terms of L, R, ~n and d.

It turns out that K(~n; d) is a linear function of (~n; d). That is, using the slightly unusual
notation

K(~n; d) =

0
B@ k1 k2 k3
k4 k5 k6
k7 k8 k9

1
CA ; (3)

we �nd the vector ~k = (k1; . . . ; k9)T is given by

~k(~n; d) = M(L;R)

 
~n

�d
!
: (4)

HereM(L;R) is a 9�4 matrix which depends only on the left and right calibration matrices
L and R. This makes it a relatively simplematter, using least squares, to convert a coe�cient
vector ~k to the corresponding parameters ~n, d for the ground plane in 3D [9].

Note that we can rewrite equation (2) in terms of the more familiar image coordinates
~x l and ~x r as

xl
1 = m1(~x

r; ~k) = (k1x
r
1 + k2x

r
2 + k3)=(k7x

r
1 + k8x

r
2 + k9);

xl
2 = m2(~x r; ~k) = (k4xr

1 + k5x
r
2 + k6)=(k7xr

1 + k8x
r
2 + k9);

(5)

which is obtained by dividing through by the third coordinate of ~w l.

4 Disparity Measurement

Once the left and right views have been brought into a rough alignment, perhaps by using the
warp speci�ed by (5) along with a rough guess for the 
oor parameters (~n; d), we need to be

able to do two things. First, we must re�ne the coe�cients ~k of the mapping to accommodate
imperfections in the slope of the 
oor and/or small tilts of the robot. Secondly, once an
accurate estimate of the image warp has been obtained, we need to estimate the probability
that various image points correspond to the 
oor, rather than 
oor anomalies. Both of these
steps require the measurement of the local relative shifts, that is, the disparity between the
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two images.
Many di�erent disparity measurement techniques can be used (see [8] for a survey). Here

we consider so called gradient-based methods which rely on a constancy assumption of the
form

Bl(~x+ ~d(~x);~k) = Br(~x); (6)

where Bl and Br are �ltered and possibly warped versions of the original left and right
images, respectively. The constancy assumption (6) provides a constraint on the disparity
~d(~x) which, in gradient-based approaches, is approximated by linearizing about some initial

guess ~d0(~x). This leads to the linear disparity constraint equation

(c1(~x); c2(~x)) � (~d(~x)� ~d0(~x)) + c3(~x) = 0; (7)

where (c1; c2) involve the gradient of Bl at ~x+ ~d0, and c3 involves the di�erence between Bl

and Br.
For our test cases reported below we have chosen a phase-based disparity scheme [4]. In

particular, given a stereo pair we have the option of prewarping these images according to an
initial guess, ~k0, for ~k. This prewarping is done using bilinear interpolation on the grey levels.
The resulting images are then bandpass �ltered using complex 15� 15 kernels based on the
steerable quadrature pair G2 and H2 developed in [5]. This pair has been scaled so that the
peak frequency occurs at wavelength � = 8 pixels, and four spatial orientations separated
by 45 degrees are used. The convolution responses are subsampled every second pixel both
horizontally and vertically, and then quantized to 8 bits. Phase gradients are computed
using the technique described in [4]. To reduce the number of noisy disparity constraints we
discarded �lter responses with too low an amplitude (i.e. below the response obtained from
a grating having a half-amplitude of 3 grey levels), or too close to a phase singularity (i.e.
we used � = 1:5 for the singularity neighbourhood detection in [4]). The phase constancy
assumption between the left and right images then provided disparity constraints of the
form (7), for each of the four �lter orientations. The error in the linearization used in the
derivation of this constraint equation was kept as small as possible by using discrete shifts
in the subsampled grid, according to the current guess for the disparity at each pixel.

From the results of the previous section, we know the disparity �eld for the 
oor plane is

~d(~x) = ~m(~x;~k)� ~m(~x;~k0); (8)

where ~k0 are is related to any prewarping used. Substitution of equation (8) into the disparity
constraint equation (7) provides

(c1(~x); c2(~x)) �
h
~m(~x;~k)� ~m(~x;~k0)

i
+ c3(~x) = 0: (9)

We get one constraint of this form for each disparity constraint vector ~c(~x) that we measure
during the image matching stage. One might consider solving the resulting set of equations
for ~k using nonlinear least squares. The trouble is that such a straight forward approach
cannot be expected to work when there are signi�cant outliers in these regression equations
due to 
oor anomalies. A successful solution strategy must be robust to the presence of such
outliers.
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5 Mixture Model for Disparity

For a robust solution we follow the mixture model approach described in [11, 10]. The

idea is to consider the disparity ~d(~x) as arising from one of several simple distributions. In
particular, the disparity may arise from a point on the 
oor, in which case we assume its
value is distributed according to the simple Gaussian model

pf (~d
0j~x;~k) = N(~d0j~d(~x;~k); C): (10)

Here N(~d0j~d;C) is given by

N(~d0j~m;C) = 1q
2�jCj

exp(�1

2
(~d0 � ~d)TC�1(~d0 � ~d)): (11)

with ~d(~x;~k) the mean and C the covariance of the distribution. Note that we have taken

the mean to be the disparity provided by the warp parameters ~k. Also, the covariance
C represents both a tolerance for imperfections in the 
oor and errors in the disparity
measurements themselves. In our experiments below we take

C = �2I; � = �=16: (12)

For � = 8, then, the standard deviation of the disparity is thus just a half a pixel in any
direction.

In addition to points on the 
oor, the actual disparity may arise from anomalies close to
the 
oor. The phase-based method can produce constraints within a disparity range of ��=2
of the initial guess. Disparities outside of this range will produce false targets and outlier
measurements (see below). The stereo con�guration speci�es that the true disparities must
lie along particular epipolar lines, which can be easily computed from L, R and the current
image position ~x [9]. To model this set of disparities we use the anisotropic Gaussian

pe(~d
0j~x;~k) = N(~d0j~d(~x;~k); C(~x)): (13)

Again the mean of the distribution is just our current disparity estimate, ~d(~x;~k). The
covariance C(~x) is taken to have a principle axis directed along the epipolar line at ~x, with
the second axis perpendicular to the epipolar line. We take the standard deviation along the
epipolar line to be �=2, which is roughly the range of disparities that can be measured with
the phase-based approach. In the perpendicular direction we use the standard deviation,
� = �=16, which is the same as the one used for pf above.

The two distributions pe and pf are used to de�ne the likelihoods of measuring a con-
straint, ~c, given that the disparity arises from that distributions. For example, the likelihood
that ~c arises from the distribution pf is

p1(~cj~x;~k) = a0
1

�
+ a1

Z
~c�(~d0;1)=0

pf (~d
0j~x;~k)ds: (14)

Here ds in the integral represents arclength along the speci�ed line. We have also included a
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at distribution in this expression for p1 in order to account for outliers in the measurement
process which arise when the phase constancy assumption fails. In all the experiments we set
the proportion of measurement outliers, a0, at 0:25. This allows for 25% of the constraints
measured o� of the 
oor to be outliers. The above expression for p1 can be simpli�ed to

p1(~cj~x;~k) = a0
1

�
+

a1p
2��

exp(� [~c � (~d T (~x;~k); 1)]2

2�2
); (15)

which is just a mixture of a uniform distribution and a Gaussian distribution having standard
deviation �. A similar approach provides a closed form expression for p2(~cj~x;~k), which is
the likelihood of observing constraint ~c from the distribution ~pf .

Finally, `outlier' disparities beyond the range of the phase-based method can also occur,
as well as bogus constraints from regions which are only visible in one of the images. The
distribution of these outlier constraints is taken to be a uniform distribution

p0(~cj~d) = 1

�
(16)

in the disparity range of ��=2 about the current estimate ~d(~x;~k). This range is again the
limit imposed by phase-based methods. Note that we are using four separate orientation
channels and therefore we can model each outlier distribution as e�ectively one dimensional.

Given the three likelihood functions, p0, p1 and p2, the mixture model for the distribution
of a constraint vector ~c(~x) at image location ~x is then taken to be

p(~cj~x; ~m;~k) = m0p0(~cj~x;~k) +m1p1(~cj~x;~k) +m2p2(~cj~x;~k): (17)

We refer to pn as the nth component probability distribution of this mixture model. The
corresponding mixture proportion, mn, gives the prior probability that a constraint arises
from this component of the distribution. Of course, the mixture proportions mn, n = 0; 1; 2
must sum to one.

6 The EM-Algorithm

Given a set of disparity constraint vectors, f~cj(~xj)gJj=1, we seek parameter values ~k and mix-
ture probabilities fm0;m1;m2g which provide a maximum likelihood �t to this data set. In
particular, assuming that the observations are independently distributed, the log likelihood
of generating this set of observations from a speci�c mixture model of the form (17) is

logL(~m;~k) =
JX

j=1

log p(~cjj~m; ~d(~xj; ~k)): (18)
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At a local extrema, it can be shown that the parameters ~m and ~k must satisfy

JX
j=1

qnj = 
mn;

JX
j=1

qnj
@

@~k
log pn(~cjj~d(~xj; ~k)) = 0;

(19)

for n = 0; 1; 2. Here 
 arises as a Lagrange multiplier in imposing the constraint that the
mixture probabilities sum to one. The quantity qnj satis�es

qnj =
mnpn(~cjj~xj; ~k)P2

n=0mnpn(~cjj~xj; ~k)
: (20)

and is called an ownership probability. It is the probability that the jth constraint belongs
to the nth component. These equations for a maximum likelihood �t have been derived by
a number of authors; for further details see [13].

These equations suggest an iterative algorithm, known as the EM-algorithm [13], for ob-

taining a maximum likelihood �t for the parameters ~m and ~k. Given an initial guess for these
parameters, we �rst estimate the ownership probabilities qnj for each constraint belonging to
each component. This expectation step, or \E-step", simply involves evaluating (20). Next,
the maximization step, or \M-step", maximizes L with these ownerships held �xed. The
result is a simple iterative algorithm which is guaranteed to increase the log likelihood of
its �t each iteration [13]. In the experiments discussed below we do not accurately locate

a maximum value for ~k during the M-step; instead we use only one iteration of Newton's
method applied to equation (19b).

It is important to understand precisely what is being modeled by the mixture model
given in equation (17). Note that the mixture proportion mn is independent of the image
location, and thus represents a spatial average across the entire image of the occurrence of
the nth mode. Clearly, for a stereo pair which includes some 
oor anomalies (see Figure
1) the mixture proportions should depend on image location. In any region consisting of a

oor anomaly we would expect m0 and m2 to account for most of the constraints, while in
a region containing only the 
oor, we expect m1 to dominate. This spatial variation is not
being modeled here.

This fact that the mixture proportions represent averages over the entire image is im-
portant when we come to display ownership results at speci�c pixels. For the purposes
of display it is convenient to show ownership likelihoods for the various components of the
mixture model at each pixel. These likelihoods avoid the global averaging process discussed
above, and clearly exhibit the information available at each pixel separately. The ownership
likelihoods are computed simply by clamping the mixture proportions at uniform probability
levels, that is, for a three component mixture mn = 1=3 for each n, and then evaluating qnj
according to equation (20).

One �nal implementation detail, which is important for inaccurate initial guesses, is that
it is often convenient to use a coarse to �ne strategy. In particular, by decimating the
original images by a factor of 2, 4, or 8, we obtain disparity measurements corresponding
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Figure 1: A calibrated stereo image pair.

to wavelengths 16, 32, and 64, respectively. These longer wavelengths increase the range
of disparities that a single constraint vector ~c(~xj) can measure. In addition to using longer
wavelengths, we have also found it useful to begin with the standard deviation, �, of the
disparity model at �=8 and decrease it slowly to the value �=16. This provides a form of
graduated non-convexity which helps avoid local minima.

7 Experimental Results

The calibrated image pair shown in Figure 1 was obtained using a camera separation of
56cm, with the distance to the 
oor near the middle of the image about 180cm and the
angle of the center ray with the 
oor about 45 degrees. The 
oor anomalies consisted of
books, which have thicknesses of of 0cm (top row, a piece of paper), 5.0cm (second row),
0.5cm, 4.3cm, 1.0cm (third row, left to right), and 1.2cm, 1.7cm, 1.8cm (bottom row). The
mixture model procedure described in the previous section was used to �t the rational warp
parameters ~k. The convergence behaviour was found to be excellent in that the initial guess
could be inaccurate, and the method converged with 5 to and 10 iterations. The �tted warp
parameters were observed to bring points on the 
oor into a nearly perfect correspondence.
Similar results have been observed on many other image pairs.

The ownership likelihoods for the three components of our mixture model are shown in
Figure 2. Note that in regions with little texture, no disparity constraints were obtained, and
thus the likelihood is left at the intermediate level of 1=3 for all three components. Also, for
regions in which the texture of the 
oor (or an object) is roughly horizontal, we see that the
likelihoods for mixture components p1 and p2 are roughly equal. This is as expected, since
gradients which are nearly perpendicular to the epipolar lines provide no information about
depth, and are thus equally likely to arise from either process p1 of p2. In the remaining
places on the 
oor, the likelihood maps show strong evidence for the 
oor model, while the
objects out of the 
oor plane are identi�ed as outliers. The book on the left end of the
second row from the bottom, which is 0.5cm high, appears to be close to the resolution limit

8



Figure 2: Log likelihood ownership maps for outliers (left), the 
oor model (middle), and for
objects near the 
oor (right), consistent with the epipolar geometry (right), for the stereo
pair in Figure 1. Here white corresponds to high likelihood, and the uniform grey background
represents equal likelihood.

of our system in that its top surface and left edge are not clearly identi�ed as an anomaly.
We have used the recovered warp parameters ~k to compute the postion of the 
oor

plane to within the accuracy of our \ground truth" measurements. In fact, during a �rst
pass at running the system we found that our recovered warp parameters were not well
modeled by equation (4) for any values of ~n and d. It turned out that the problem was
due to an inaccurate calibration of L and R, and a satisfactory solution was found after
recalibrating the system. This raises the possibility that the calibration of the FAD system
can be monitored on-line.

In summary, we have demonstrated a simple approach for �tting planar models to stereo
data which is robust in the presence of a signi�cant number (eg 50%) of outliers. The model
involves �tting eight parameters for a rational image warp, which we have shown is exact
for planar surfaces and for cameras free from radial distortion. Moreover the results of the
�tting procedure can be used to verify which portions of the 
oor are safe for transit.
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