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The Problem to be Solved

We wish to sample from some distribution
over states, so that we can make a Monte
Carlo estimate of the expectation of some
function of state.

We have an ergodic Markov Chain whose
equilibrium distribution is the one of interest.
If we run it for long enough, the final state will
be from a distribution close to what we want.

But how long is long enough? We can:

1. Run it until is seems like it's reached
equilibrium, and pray that we're right.
This is the most common approach.

2. Prove that after M steps, the distribution
will be close (to a given tolerance) to the
right one. This is usually very difficult.

Can we somehow obtain a sample from the
exact distribution of interest?

Exact Sampling Using
Coupling From the Past

Propp, J. G. and Wilson, D. B. (1996) “Exact
sampling with coupled Markov chains and
applications to statistical mechanics”,
Random Structures and Algorithms, vol. 9,

pp. 223-252.

Standard Forward Simulation of a
Markov Chain
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We start at t = 0 with a state drawn from
some initial distribution (perhaps degenerate).

We hope that by t = M the state comes from
close to the right distribution, but we aren’t
too sure about this.

Note that we keep track of only a single state,
so it may work even when the number of
possible states is huge.

Tracking Mappings From Past States

Heading back from ¢t = 0, we generate random
mappings from each state to its successor:
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Is This Useful?

To find these random mappings, we need to
keep track of a mapping from every state to a
state at ¢t = 0. This will be infeasible if the
number of states is large.

Hence, this isn’t practical for most problems in
statistics or statistical physics.

Neither will it be useful when the number of
states is small, if we can feasibly compute the
relative state probabilities — easier to just
sample or compute expectations directly.

It might be useful for a system that has a
small number of states, but whose state
transitions are defined by a complex simulation
with a huge number of intermediate states.

Forward Simulation From the Past

Instead of tracking these mappings, we go

forwards from some time, t = —M, in the past:
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We keep track of the set of successors of every
state we might have started from at t = — M.

If the set of successor states coalesces to a
single state at ¢t = 0, we know that starting
the chain from the equilibrium distribution at
t = —oo would, with these random numbers,
have lead to that unique state at t = 0.

If we don't see coalescence at t = 0, we try
again from further back, using the same
random numbers at times already simulated.

Letting the Chains be Dependent

To maintain validity, random mappings at
different times must be independent, but it is
not necessary for transitions from different
states at the same time to be independent.

Introducing dependencies may help the chain
coalesce faster, or make it easier to keep track
of sets of states.

We express possible dependencies as follows:

e Let U; be the entire set of random
numbers used at time t.

e Let the state that 7z goes to at time ¢ be
given by ¢(i,Uy).
The ¢ function must give the right transition

probabilities, but may introduce dependencies.

When simulating forward from further and
further back in the past, we need to save the
U for times we’ve already simulated.

Tracking Sets of States with
Monotone Markov Chains

For forward simulation from the past to be
practical when the number of states is huge,
we must be able to keep track of a huge set of
states with a small amount of work.

This can be done if the Markov chain is
monotone with respect to a partial order <.
That is, if

i < j implies ¢(i,U) < ¢(J,Up)

We also assume that there are states 0 and 1
such that 0 < < 1 for all states i.

For such a chain, we can keep track of a set
of states through the transitions by keeping
track of just two “upper” and “lower” states:

upper <—j

lower «+ 0O

fort=-M to -1

upper + ¢(upper, u)
lower + ¢(lower, u;)
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The Heatbath (Gibbs Sampling)
Method for the Ising Model

In the Ising model, a state is a collection of
“spins”, o, arranged in an n-dimensional array,
with o; = +1.

The probability of a state at temperature T is

1
(o) = 7 exp( > Jaiaj/T)
% and j
neighbors

The heathbath (aka, Gibbs Sampling) method
updates single spins (randomly or in a scan)
by drawing from the spin’s conditional
distribution given other spins:

m(o; = +1 | {oj}j£:)
= [1 + exp (—2 > Jaj/T)rl

% and j
neighbors

Applying Propp & Wilson’'s Method
to the Ising Model

We can define a partial order on spin states by
o<t iff foralli o;<T;

If J > 0, we can introduce dependencies to
make the heatbath method monotone with
respect to this order. We update o; to ag
using a random number u; € [0, 1):

[ ifu <m(op =41 | {oj}2)

B { =1 ifu 2> 7(o; =41 | {oj};%:)
This works because the system is “attractive”.
That is, if 7 has some spins of +1 where o
has spins of —1, but not vice versa, then the

probability of an update setting TZ{ to 4+1 can't
be less than that of setting o—; to +1.

!
0-7/

Hence we can do forward simulation starting
with all —1 and all 41 states, from further and
further back in time, until we see coalescence.

Generalizing Propp & Wilson's Method

Use of a monotone Markov chain is not
essential to the method. We require only

e A compact representation for a set of
states,

e A way of finding the set of states after a
transition (based on given random
numbers) from the set of states before.

Perfect solutions may not always be possible,
but we can use imperfect solutions that

e May not find the exact set of successor
states, only a superset guaranteed to
contain all the successors,

e Use a representation that we cannot prove
will remain compact, but which we hope
will turn out to be compact enough when
we actual run things.

Coupling From the Past in Practice

We could use Propp & Wilson’s method to
estimate an expectation in the following way:

1. Independently simulate quite a few (say
100) chains from successively further back
in time, until each has coalesced at t = 0.

2. Do standard forward simulation for some
predetermined period of time from the
t = 0 state of all chains that coalesced.

3. Estimate the expectation of a function by
its average value for states with ¢ > 0 in all
these chains.

But what if the chains don’'t coalesce in the
time allowed?
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Dealing with Lack of Coalescence

Some or all of the chains we simulate may not
coalesce when started back to some limit,
t = —L. What does that mean?

e If none of the chains (or perhaps just one)
have coalesced, the Markov chain is not
close to convergence after time L (or at
least it doesn't couple). The method tells
us this rather than giving a wrong answer.

e If some of the chains (a non-negligible
fraction) have coalesced, then convergence
is not too bad. If we go back in time a bit
further, the others will coalesce too
(unless we're plain unlucky, of course).

Still, we might not like to commit to an
unbounded amount of computation time to
get an answer.

What Happens if We Just Stop?

We might consider stopping runs that have
taken more time than we like, using only other
runs in our estimate.

This gives biased results.

We do get an unbiased estimate if we stop
after using up total time A, except that we
continue long enough to get S points
regardless of how long this takes. A and S
must be predetermined. If we stop in the
middle of a run, it is discarded.

(This is a slight generalization of a result of
Wilson and Fill, also discovered earlier in the
operations research literature.)

We still have to continue long runs, even
though they will “wastefully” have to go
through many steps to get to ¢t = 0.

An Interruptible Algorithm

Fill, J. A. (1998) “An interruptible algorithm
for perfect sampling via Markov chains”,
Annals of Applied Probability vol. 8,

pp. 131-162.

Requirements

Suppose we can simulate a Markov chain P,
converging to m, and that we can also
simulate from the reversed chain, P:

P(z,2") = P(m',m)w(m')/w(m)

We express P in terms of random numbers U,
which determine the path taken from each
starting state (for some number of iterations).

We assume that this setup has a monotonicity
property. (As with coupling from the past,
generalization is possible.)

We also assume that given a starting state and
a path produced by P, we can sample from the
conditional distribution of U given that path.
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The Algorithm

Here is the core of the algorithm, based on
running for N iterations:

1. Run P for N iterations from some state s.
Remember the path taken. Suppose it
ends in state z.

2. Look at this path as one produced by P,
starting at z.

3. Sample U from its distribution given this
path.

4. Run P from 0 and from 1 using U.

5. If these two chains coalesce (at s), then
return z as a point drawn from x. If they
don't, discard everything and try again.

Letting s = 0 saves one simulation. In
practice, one would increase N if the rejection
rate is high.

Picture of the Algorithm
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Why Does it Work?
Here's my explanation. Define:

Distribution D1: U and z are independent.
z ~m, U ~ our random number generator.

Note that under D1, the end-state s from
apply P from z using U also has distribution .

Distribution D2: Distribution D1 conditional
on U causing P to coalesce at a given s.

Note that z ~ w under D2 still, since it's
independent of T.

We can sample from D1 by running P from a
start state chosen from =, then sampling U

from its conditional distribution given this path.

To sample from D2, we (1) fix the start state
to s, (2) reject if U does not lead P to
coalesce at s. The z obtained from an
accepted point has distribution .




