
Multitask Learning for Bayesian Neural Networks

by

Krunoslav Kovač

A thesis submitted in conformity with the requirements
for the degree of Master of Science

Graduate Department of Computer Science
University of Toronto

Copyright c© 2005 by Krunoslav Kovač

Abstract

Multitask Learning for Bayesian Neural Networks

Krunoslav Kovač

Master of Science

Graduate Department of Computer Science

University of Toronto

2005

This thesis introduces a new multitask learning model for Bayesian neural networks based

on ideas borrowed from statistics: random regression coefficient models. The output of

the model is a combination of a common hidden layer and a task specific hidden layer,

one for each task. If the tasks are related, the goal is to capture as much structure as

possible in the common layer, while the task specific layers reflect the fine differences

between the tasks. This can be achieved by giving different priors for different model

parameters.

The experiments show that the model is capable of exploiting the relatedness of the

tasks to improve its generalisation accuracy. As for other multitask learning models,

it is particularly effective when the training data is scarce. The feasibility of applying

the introduced multitask learning model to Brain Computer Interface problems is also

investigated.

ii

Mojim roditeljima.

iii

Acknowledgements

Thanks go first to my supervisor Radford Neal for introducing me to Bayesian neural

networks. His guidance as the research progressed, many questions, interpretations and

suggestions made this thesis possible.

I would also like to thank my second reader Geoffrey Hinton for his time and valuable

comments on the thesis. Thanks also go to all the other members of the machine learning

group at the University of Toronto who have helped me in some way.

Special thanks go to my parents. Although being far away from me, they were a

constant source of help and comfort.

At the end, I would also like to thank Dane Jurčić and his family for helping me out

in the first days in an unknown country, as well as later on.

iv

Contents

1 Introduction 1

2 Knowledge transfer in machine learning 4

2.1 Human learning . 4

2.2 Machine approaches to knowledge transfer 5

2.3 Lifelong learning . 7

2.4 Theoretical work on knowledge transfer and task relatedness 11

2.5 Multitask learning . 13

2.6 Some refinements of MTL with backpropagation networks 17

2.7 Random Coefficient Models . 20

3 Brain Computer Interfaces 23

3.1 BCI data sources . 23

3.2 EEG features . 25

4 A new scheme for neural network multitask learning 31

4.1 Bayesian neural networks . 31

4.2 Description of the new model . 35

5 Experiments to test the multitask learning scheme 42

5.1 Linear data . 42

5.2 Sine waves regression . 57

v

5.3 Approximately concentric ellipses classification 62

6 Experiments with MTL for BCI 67

7 Conclusions 79

7.1 Summary . 79

7.2 Future work . 80

Bibliography 82

vi

List of Tables

5.1 Average squared error on two-task linear regression problem 46

5.2 Average squared error on four-task linear regression, dataset 1. 51

5.3 Average squared error on four-task linear regression with six and three

data points per task, dataset 2. 52

5.4 Average squared error on four-task linear regression with six data points

per task, dataset 3. 56

6.1 Accuracy rates for the four-subject EEG problem 71

6.2 Accuracy rates for the nine-subject EEG problem 75

6.3 Accuracy rates for the five-subject EEG problem 76

vii

List of Figures

2.1 Single Task Learning approach . 14

2.2 Multitask Learning approach . 15

3.1 Extended International 10-20 System of Electrode Positions 25

4.1 Backpropagation neural network . 32

4.2 The MTL model . 37

4.3 The MTL model with two hidden layers per task 40

5.1 The MTL model for a simple two-task linear regression problem. 43

5.2 Histogram of the distributions of deviations σu for different prior specifi-

cations. 45

5.3 The STL model used for a simple two-task regression problem. 45

5.4 The new MTL model for a simple two-task regression problem. 48

5.5 The functions used to generate the training data, dataset 1. 49

5.6 The MTL model for a simple four-task linear regression problem. 50

5.7 The functions used to generate the training data, dataset 2. 52

5.8 The MTL model with vague priors for the biases. 53

5.9 The functions used to generate the “unrelated” training data, dataset 3. . 54

5.10 MTL model with vague priors for all the weights. 55

5.11 MTL network sampled from a model with vague priors. 56

5.12 Generator functions for the sine waves learning data. 58

viii

5.13 An example of a sine wave training data for one of the tasks. 58

5.14 The MTL model for the sine waves learning problem 59

5.15 Average squared error on ten-task sine wave regression 61

5.16 Two training sets for the approximately concentric ellipses classification

problem. 63

5.17 Two test data sets for the approximately concentric ellipses classification

problem . 63

5.18 The complete training data for a single trial. 64

5.19 The MTL model for the approximately concentric ellipses classification

problem. 65

5.20 Error rates on the eight-task classification problem. 65

6.1 EEG signal for the C3 channel for all four subjects 69

6.2 The MTL network for the four-subject EEG classification problem. . . . 70

6.3 Filtered C3 channel for the left and the right hand movement 72

6.4 The MTL network for the nine-subject EEG classification 74

6.5 The new MTL network for the five-subject EEG classification 76

6.6 Distribution of one input feature for the two hand movements 77

ix

Chapter 1

Introduction

The traditional approach in machine learning is to train a separate learner for each

problem. There are a number of learning methods that have proven to be very successful

in such a setup. However, the success of these methods largely depends on the abundance

of training data, which is in contrast with the way that humans learn. Studies have shown

that we are able to learn a concept with only a single datum [2, 34], which certainly implies

that people must learn using something more than just the training data. It seems that

the answer lies in a massive reuse of previously learned knowledge from related tasks. As

a consequence, recently, there has been a growing interest in machine learning methods

that can exploit knowledge from such other tasks to improve accuracy either generally

or in situations when the training data is scarce. There are quite a few ways to transfer

knowledge from task to task. The multitask learning approach trains multiple tasks in

parallel. Chapter 2 reviews the techniques of knowledge transfer with special attention

given to multitask learning.

A Brain-Computer Interface (BCI) is a communication system that transforms human

brain activity into signals that can control mechanical devices. The idea of such a system

isn’t new. In 1967 Edmond Dewan, who worked at the Data Sciences Laboratory of

the Air Force Cambridge Research Laboratories in Bedford, managed to train subjects

1

Chapter 1. Introduction 2

to control the alpha rhythms of their brain waves and then used them to send Morse

code of the word ‘cybernetics’ to a computer (mentioned in ACM SIGART Newsletter,

No. 19, December, 1969). A few years later Jacques Vidal published a paper “Toward

Direct Brain-Computer Communication” [89] in which he described the first BCI project.

The research was part of a large scale project in biocybernetics and human-computer

interaction and sponsored by the US government, who had a keen interest in the matter

during the seventies. Today, dozens of research groups focus their efforts on BCI.

Human brain activity for the purposes of BCI systems is usually collected in the form

of EEG recordings due to the low cost of the equipment involved and the noninvasive

nature of recording. However, other electrophysiological measures like Functional Mag-

netic Resonance Imaging (fMRI), Magnetoencephalographic (MEG) measurements, and

electrocorticograms (ECoG) are being studied as well. Features are extracted from the

measurements, and then processed (usually by computer software) and transformed into

a form suitable to operate a device. As can be seen, BCI research is a multidisciplinary

field involving neuroscience, psychology, machine learning, computer science in general,

mathematics, clinical rehabilitation and so on.

The main motivation for the work on BCI is to provide a means of communication

and control functions (e.g. basic web browsing and word processing, neuroprosthesis

control etc.) to so-called “locked-in” patients. Locked-in patients can make no voluntary

movements other than those with their eyes, but are fully conscious and aware of the

environment, and their intellectual capabilities are often intact. Although current BCIs

cannot achieve information transfer rates of more than about 20-30 bits/min, even this

limited throughput can allow rudimentary interfaces that can improve the quality of life

for such people. BCI is the subject of chapter 3, with an emphasis on its machine learning

aspect.

Chapter 4 introduces a novel approach to multitask learning. It is inspired by ran-

dom regression coefficients models and builds upon Bayesian neural networks. For each

Chapter 1. Introduction 3

datum, the output of the network is a linear combination of a task specific hidden layer

associated with the given datum and a special common hidden layer. We want the com-

mon part to have the biggest impact on the final output, while the task specific hidden

layers are to account for the variation between the tasks, which should be small, if the

tasks are sufficiently related. This corresponds to the weights in the common part being

significantly bigger than the weights associated with the task specific layers. This can be

achieved by specifying different priors for hyperparameters of different groups of model

parameters. Besides the description of the model itself, a short introduction to Bayesian

neural networks and to Markov chain Monte Carlo methods of sampling the posterior

distribution of the network parameters is also given in this chapter.

The new model is tested on artificial data in chapter 5. We show that the model is

capable of exploiting task relatedness and gain insight into the behaviour of the sampled

neural networks.

Chapter 6 investigates the application of multitask learning to BCI problems. The

results and contributions of the thesis are summarised in the final chapter.

Chapter 2

Knowledge transfer in machine

learning

2.1 Human learning

Most research in machine learning so far has used a “tabula rasa” approach: the goal was

to improve methods that did the learning on separate, individual tasks, and the learning

was started from scratch, with no previous knowledge reused from other learning sessions.

For some problems, such algorithms produced very good results. However, if we compare

the learning abilities of humans and animals with that of today’s machines, we find

dissimilarities. Humans are able to learn from a remarkably small number of training

examples, despite the immense complexity of the real world where the learning occurs.

Current machine learning approaches don’t scale very well to such complex domains due

to the huge number of training examples that would be required to have some success.

A number of psychological studies have touched this aspect of human learning. It has

been suggested and empirically proved that a person’s prior knowledge affects the rate

or the accuracy of learning [49, 50, 65]. Pazzani in [56] further explored the influence

of prior causal knowledge on the number of trials needed to learn a concept. He gave

4

Chapter 2. Knowledge transfer in machine learning 5

experimental evidence that the prior knowledge of the learner may be as influential as

the informational structure of the environment in concept learning. Trying to explain

his results, he hypothesizes that the ability to generalise quickly comes from the ability

to apply relevant background knowledge to the learning task and the ability to fall back

on weaker methods in the absence of background knowledge. There are other ways of

knowledge transfer besides directly applying experience in some form. People often use

analogies and metaphors (see e.g. [28]) to reuse previous knowledge even in the domains

they are not familiar with. But although it is generally accepted that humans benefit

by transferring knowledge they have already acquired, and use it to learn a new task

better or faster, there are examples when transferring knowledge from other domains

can have negative effects. Luchins and Luchins ([40]) performed experiments with water

jug problems which showed that prior experience can sometimes hurt performance on

learning related tasks.

2.2 Machine approaches to knowledge transfer

In computer science, the research field of “knowledge transfer” is trying to diminish these

differences between human and machine learning abilities. Some authors use different

terms for essentially the same concept, like “inductive bias shifts” ([32, 68, 86]). Several

frameworks and approaches to knowledge transfer have been developed like “lifelong

learning”, “metalearning”, “learning to learn”, “bias learning”. All of them focus on the

idea of transferring knowledge in some form in the learning process.

One of the first approaches that employs transfer of knowledge is the VBMS (Variable

Bias Management System) [66] which contains a set of conventional learning methods and

chooses the most appropriate one based on previous, related tasks. In [48] an approach

is described where previous training data is used to tune the learning parameters in a

new experiment (e.g. the learning rate in neural networks).

Chapter 2. Knowledge transfer in machine learning 6

Knowledge based approaches that hand-code prior knowledge into the learning process

have also been investigated (see e.g. [57, 91]). Neural network methods of this kind

([26, 43, 85]) use domain knowledge acquired in previous learning sessions to initialise

neural network weights and/or other network parameters, and then train the network

using the traditional training algorithms for the current problem.

A representative example of such an approach is the “Knowledge-Based Artificial

Neural Networks” (KBANN) described in [85], a hybrid learning system built on top of

conventional neural network techniques. KBANN learns in two independent phases. In

the first phase, knowledge about the problem domain is stated in the form of acyclic

propositional Horn clauses, and these rules are then mappped to an artificial neural

network. The idea is to create a hierarchical rule structure, where some rules/clauses

would operate directly on inputs, and higher level clauses would operate on both inputs

and lower level clauses. The topmost clause is the quantity we are learning; the other

clauses are referred to as intermediate conclusions. These intermediate conclusions would

be mapped to the hidden units (or even layers), and the topmost clause to the output.

The links in the neural network are added in a way that directly corresponds to the rule

hierarchy graph. In the second phase, the weights are initialised to small random values

and a backpropagation learning algorithm is used to refine the network. Their tests

showed that these nets generalise better than plain-vanilla nets when such rules about

the problem domain can be given. Finally, a third phase might be added to the KBANN

system. In this phase, the resulting trained network could be used to extract new rules

about this particular problem and/or domain. Despite some attempts ([69, 77, 84]), not

much progress has been made in this direction.

The chief problem of KBANN, as well as other knowledge based approaches, is that

an initial domain theory must be available, which usually has to be provided by a human

expert, who is often not available in practice. KBANN in particular has two additional,

and rather severe, limitations. First, all inputs must be binary values, and second, our

Chapter 2. Knowledge transfer in machine learning 7

knowledge about the domain must be expressed with propositional clauses.

It may be worthwhile to mention that early studies ([44, 79]) showed that literal

transfer of neural network weights from previous learning sessions, i.e. copying them

without modification and using them as the initial state for the target task, was usually

more harmful than using random values. Even some refinements of this idea ([23, 62, 90])

produced very little or no performance boost at all.

2.3 Lifelong learning

Sebastian Thrun uses the framework of “lifelong learning” for the study of the transfer

of knowledge [82]. In his framework a learner is faced with a stream of learning problems

over its entire lifetime, which provides the opportunity for the transfer of knowledge. For

each new problem we can use the experience gathered while learning previous problems

to improve learning performance. He presented several algorithms which extend tradi-

tional approaches to lifelong learning ones, demonstrating that when learning in a lifelong

context, one can learn more complex tasks with less training data, independent of the

particular learning approach. Most of these algorithms are based on re-representing data

and can be modified to work with a variety of learning methods. We will consider three

of them, two being memory based, and one neural network based.

Memory based learning algorithms typically don’t have a learning session before we

use them with test data. Instead, they remember all the training data available and

explicitly use them to generate the output for the test data. One of the best known

algorithms of this kind is K-nearest neighbour ([25, 19]). If x is an input for which we want

to know the output y, K-nearest neighbour (KNN) locates K training examples 〈xi, yi〉

whose input patterns xi are nearest to x using some distance metric (most commonly the

Euclidean distance if the inputs are in Rm). KNN then uses the mean value of the yi’s as

the output value y. Other statistical quantities like mode, median etc. can also be used.

Chapter 2. Knowledge transfer in machine learning 8

A similar method was introduced by Shepard in [72]. Instead of looking at some number

of the nearest inputs, we use them all, but we weight each training example according to

the inverse distance to the query point x:

out(x) =

∑

〈xi,yi〉∈Xn

yi
|x− xi|+ ε

 ·

∑

〈xi,yi〉∈Xn

1

|x− xi|+ ε

−1

(2.1)

Xn here denotes the set of training examples for task n, and ε is a small positive constant

to prevent numerical overflows.

We can see that both of these methods act directly on the training set Xn. Hence, it

is not obvious how to incorporate other training sets, since their examples have the wrong

class labels. Thrun proposes two ideas. The first one involves learning the representation

of the data. This can be done by transforming the data by a function g : I → I ′, which

maps inputs from I to a new space I ′. The memory based algorithms then work on this

new input space I ′. Function g is chosen in a way in which multiple examples of the same

class are mapped to similar representations, whereas examples of different classes should

get mapped further from each other in the new space. This property can be directly

expressed as an “energy function” for g, which is determined by the training data for the

n− 1 previous problems:

E =
n−1
∑

k=1

∑

〈x,y〉∈Xk

∑

〈x̂,ŷ〉∈Xk,ŷ=y

|g(x)− g(x̂)| −
∑

〈x̂,ŷ〉∈Xk,ŷ 6=y

|g(x)− g(x̂)|

 (2.2)

Minimising the energy function E will force the distance between pairs of examples of

the same concept to be small (the first term inside brackets), and the distance between

examples from different concepts to be large (the second term inside the brackets). To

obtain g, Thrun used an artificial neural network (ANN) trained using the backpropa-

gation algorithm ([67]) with the energy function given above as the error function. The

memory based algorithm for the nth problem will work with the re-represented training

data set {〈g(x), y〉} given Xn = {〈x, y〉}. In a parallel approach we would use the data

for all n tasks to obtain g.

Chapter 2. Knowledge transfer in machine learning 9

The second way of exploiting other problem’s training data sets with memory based

learning algorithms is to learn the distance function. To this end, Thrun introduces a

comparator function d : I × I → [0, 1] ([81]). It should be noted that d is not a distance

metric. Its usage was shown on the concept learning problem, which is nothing but a

noise-free pattern classification task with only two classes, 0 and 1. A pattern is a member

of the concept if its class label is 1. Training examples for d are pairs of examples 〈x, y〉

and 〈x̂, ŷ〉, both elements of the same Xk for all k = 1, . . . , n − 1 for which d is defined

as:

d(x, x̂) =

1 if y = ŷ = 1

0 otherwise
(2.3)

The value of d is 1 for inputs that both belong to the concept, and 0 otherwise. Therefore,

once d is trained, the output of d(x, x̂) can be interpreted as the conditional probability

that x belongs to the concept fn given that 〈x̂, ŷ〉 belongs to the concept. Since the

training examples for d don’t carry any concept specific information, all the training sets

from all the tasks can be used to train d. We can combine the votes of multiple examples

in Xn, assuming they are (conditionally) independent, using Bayes’ Rule, which gives:

Bel(fn(x) = 1) = 1− 1

1 +
∏

〈x̂,ŷ=1〉∈Xn

d(x, x̂)

1− d(x, x̂)

(2.4)

Bel(fn(x) = 1) represents the belief that x belongs to the concept f n.

Again, d can be realized by an artificial neural network.

These two ideas for extending memory based learning algorithms to fit into the lifelong

learning framework can be applied to neural network approaches as well. The idea of

re-representing the learning data has been carried out in a variety of ways. They are all

based on the fact that the networks to re-represent the training data and to learn on it

afterward, can be realised with a single neural network. Some authors do the training

sequentially ([63, 70]), while others do it in parallel ([8, 16, 75]). One of these approaches

is multitask learning ([17]) which is discussed in more detail in 2.5. The advantage of

Chapter 2. Knowledge transfer in machine learning 10

sequential learning is that we don’t need all the training data for all the tasks available

all the time. But sequential training with backpropagation can suffer from catastrophic

interference or “forgetting”: the inability of an ANN to learn a second set of information

without forgetting what it previously learned ([71]).

The approach with the comparator function was used for explanation-based neural

network (EBNN) learning in [80]. It is based on the Tangent-Prop algorithm developed

in [74], which uses training examples of the form 〈x, f(x),∇xf(x)〉, that is, in addition

to the target values, the slopes are also being estimated. The problem is to get the slope

information, and this is where the comparator function d comes into the game. For a fixed

positive example 〈x̂, ŷ = 1〉 and t ∈ I, d(t, x̂) measures the probability that t belongs to

the concept, according to d and given the training example 〈x̂, ŷ〉. Hence, if 〈x̂, ŷ〉 ∈ Xn

is a positive example of a concept fn (i.e. ŷ = 1), then the function dx̂ : I → [0, 1] defined

as:

dx̂(t) = d(t, x̂) (2.5)

can be thought of as an approximation of the target function f n at t. Since EBNN

estimates d by a neural network, d is differentiable. dx̂ is then also differentiable and the

gradient

∂dx̂(t)

∂t

is used as an estimate of the slope of fn at t. ∇xf
n(x) is defined by substituting t = x.

The network is then trained using the Tangent-Prop algorithm.

If there is more than one positive example of a concept, the slope is defined as the

average of all of them. The comparator function d is learned from all the previous tasks

and can therefore transfer knowledge to the new task.

All of the methods in this section, according to Thrun, generalise noticeably better

than their traditional counterparts when the data are scarce, and when the tasks are

in fact related. As the number of training examples increases, conventional techniques

rapidly approach the methods involving knowledge transfer in performance.

Chapter 2. Knowledge transfer in machine learning 11

It is crucial that the tasks be related, as blindly reusing knowledge from tasks that

are irrelevant to the target task will very likely hurt the overall performance. All the

approaches described so far give equal importance to all the tasks. The Task Clustering

(TC) algorithm ([83]) incorporates an additional step in the learning process in which

tasks are grouped into clusters. When learning a new task, the most appropriate cluster

is determined, and only the tasks from that cluster are used to bias the learning of the

new task. This kind of selective knowledge transfer is particularly useful when there are

a number of tasks from some domain, but only a small subset of them may be related to

a specific target task.

2.4 Theoretical work on knowledge transfer and task

relatedness

Perhaps the most significant work on theoretical treatment of knowledge transfer, espe-

cially in multitask learning, was done by J. Baxter. His work is based on the fact that in

order to generalise well, a learner must be biased in some way. That might be done by

a human expert, but this has many limitations. He introduces two formal models which

are capable of automatic bias learning. The underlying assumption for both of them is

that the learner is embedded within an environment of related problems, and the goal is

to learn all of them, and not just a single one. The first is the Empirical Process (EP)

model ([11]), which is built upon the PAC model of machine learning ([87, 88]). The

second model is based on Bayesian inference and information theory ([10]).

The EP approach consists of:

• an input space X and an output space Y ,

• a loss function l : Y × Y → R,

• an environment (P , Q) where P is the set of all probability distributions on X ×Y

Chapter 2. Knowledge transfer in machine learning 12

and Q is a distribution on P

• a hypothesis space family H = {H} where each H is a set of functions h : X → Y .

P is interpreted as the set of all possible learning problems, while Q tells us which learning

problems are more likely to be seen. The goal is to find a hypothesis space minimizing

the loss erQ over all learning problems, which depends on Q. Since we don’t generally

know Q, the loss is being estimated from the training examples z to get erz. z contains an

equal number of examples from some number of learning problems. Baxter in [11] gives

some bounds on the number of tasks and the number of samples from each task needed

to get erz to be within at most ε from erQ, with a probability of 1 − δ for arbitrarily

small and positive ε and δ.

Baxter’s bounds are formulated using the average error on all the tasks. It was shown

in [12] that this can be strengthened to obtain similar bounds for a particular task. The

same work also introduces a formal definition of task relatedness.

The Bayes bias learning model consists of:

• an input space X and an output space Y ,

• a set of probability distributions Pθ on X × Y , parameterised by θ ∈ Θ,

• a set of prior distributions Pπ on Θ, parameterised by π ∈ Π,

• a prior distribution Pπ∗ where π∗ ∈ Π.

• a learner also has a subjective hyper-prior distribution PΠ on Π.

Pθ can be viewed as a subset of P from the EP model with Q as the underlying dis-

tribution. The goal is to find the right prior distribution Q which is chosen from a set

of possible distributions {Pπ : π ∈ Π}. The idea is that we start with a hyper-prior

distribution PΠ, then based on the training examples that are obtained by using the

environmental prior distribution Pπ∗ , we update the hyper-prior to a hyper-posterior.

Chapter 2. Knowledge transfer in machine learning 13

This hyper-posterior is then used as the prior distribution when learning new tasks. This

model, having two levels, is an example of a hierarchical Bayesian model. Baxter in [10]

gave bounds similar to those for the EP model.

2.5 Multitask learning

Multitask learning (MTL) is an approach to knowledge transfer whose main characteristic

is that it learns multiple tasks in parallel and uses a shared representation. MTL is not

a single learning algorithm. The MTL backpropagation implementation is perhaps the

most widely known, but there are other examples, some of which are discussed later in

this section. All of them are based on some conventional learning algorithm.

We are usually focused on a single task, which is called the main task. All the other

tasks, called the extra tasks, have the sole purpose of improving the performance on the

main task, and we do not care about the performance on them.

The easiest way to explain MTL with backpropagation networks is to use a simple

example. Let’s assume that we have four tasks from the same domain, i.e. they all

have the same set of inputs. The single task learning (STL) approach, illustrated on

figure 2.1, is to have four separate neural networks, each with one output (the case where

tasks have more than a single output doesn’t bring anything conceptually new into the

picture). The learning is done by training each network individually on the training cases

for its task only. Since there is nothing that connects the networks, nor the process of

learning, what one network learns has no effect on other networks.

The MTL approach with backpropagation networks is shown on figure 2.2. It is a

single network with the same inputs as the STL ones, and with four output units, one

for each task. Caruana in his thesis ([18]) restricts himself to domains where all tasks

are defined on a common set of input features. An example is the 1D-DOORS problem.

The task was to locate doorknobs and recognise door type (single or double) in images of

Chapter 2. Knowledge transfer in machine learning 14

Task 1 Task 2 Task 3 Task 4

Figure 2.1: Single Task Learning approach

doors. Besides these two tasks, additional tasks were added: location of the door center,

width of doorway, locations of left door jamb, location of right door jamb, width of left

door jamb, width of right door jamb, location of left edge of door, location of right edge of

door. For this problem, each training case has outputs defined for all tasks. In contrast,

the method introduced in chapter 4 uses separate training data sets for each task.

Some particular tasks may in essence use only a subset of input features. However,

if the tasks are related, there should be a significant intersection of the sets of input

features for different tasks. MTL also works better when this is true.

In the architecture in figure 2.2 all the tasks share the input to hidden weights and

the hidden layer units, and this is the shared representation that the MTL methodology

requires, and which allows knowledge transfer between tasks.

The general conclusion is that MTL, as well as all the other knowledge transfer ap-

proaches, work better when the tasks are related. However, task relatedness is a rather

vague concept. For instance, Caruana illustrates with a simple example that related

tasks, although correlated at the representation level, are not necessarily correlated at

the output level. Caruana lists some task relationships that the MTL approach to back-

propagation networks can exploit:

• Data amplification: an effective increase in sample size through the extra informa-

Chapter 2. Knowledge transfer in machine learning 15

Task 2Task 1 Task 3 Task 4

Figure 2.2: Multitask Learning approach

tion in the training data of related tasks. Effective means the extra information

from the extra training examples, not the extra training examples themselves.

• Eavesdropping: a situation where some feature is useful for two tasks, and one of

them can learn it easily, while the other uses it in a more complex fashion. The

other task eavesdrops on the internal representation from the first task to learn that

feature better. The simplest case when the first task is the feature itself was used

by Abu-Mostafa in [1], who called such helper features “catalytic hints”.

• Attribute selection: when a subfeature shared by several tasks uses only a fraction

of inputs to the net. With a small amount of data and/or significant noise, MTL

nets will be able to better select the attributes (inputs) relevant to the common

subfeature.

• Representation bias. It is believed that backpropagation (BP) networks work better

if they can better represent the domain’s regularities. A particular regularity is

usually learned differently even by one task in two different training sessions, due

Chapter 2. Knowledge transfer in machine learning 16

to the stochastic nature of BP search (the weights are initialised to random values).

If two tasks are trained on one network, search will be biased toward the intersection

of the representations each of the tasks would learn on its own. The conjecture is

that representations of the regularity near this intersection better capture the true

regularity, since they satisfy more than one task from the domain.

• Overfitting prevention. Caruana describes two situations where a task T ′ can help

some other task T not to overfit some feature F , assuming that they both use it.

In the first situation T is about to begin overfitting, while T ′ is still not at that

point. T ′ will then provide a gradient component that will steer T from overfitting

F . In the second situation, both T and T ′ depend on F , but on slightly different

ways. The conjecture is that there are fewer changes that will lower error on both

tasks and overfit F for one of the tasks at the same time.

Caruana empirically demonstrated that MTL with backprop networks is indeed capable

of taking advantage of these types of task relationships.

The MTL approach also exhibits a somewhat peculiar behaviour: some inputs work

better when used as extra outputs. This also allows MTL nets to be used in wider

number of situations, since we don’t necessarily need ‘true’ multiple tasks. This idea has

been shown to work on real-world problems such as the DNA splice-junction problem.

Unfortunately, deciding which features are better used as inputs and which as extra

outputs can be difficult.

Caruana also showed that the MTL approach can be combined with other learning

approaches as well, even if the choice of the shared representation is not immediately

obvious. Two such examples are K-nearest neighbour and locally weighted averaging

(also known as kernel regression). For these methods, the exact distance metric used is

important for the optimal performance. There are ways to learn the distance metric, and

this distance metric is what is shared between the tasks. Caruana also gave the sketch

Chapter 2. Knowledge transfer in machine learning 17

of an algorithm for multitask learning in decision trees. MTL can also be applied to the

same algorithm in more than one way.

A new alternative algorithm for MTL with backprop networks is introduced in chapter

4.

2.6 Some refinements of MTL with backpropagation

networks

Ghosn and Bengio in [29] conducted a number of experiments with backpropagation

networks where different sets of shared parameters were used. The experiments included

sharing only input to hidden weights, sharing only hidden to output weights, sharing

all weights, and sharing no weights. They applied the methods on a stock selection

problem, with stocks from 35 companies treated as different tasks. The inputs were five

explanatory variables: two macro-economic variables known to influence business cycles,

and three variables obtained from the previous price changes of the stock. The output

was the expected future return. On that particular problem they reported that sharing

all parameters displayed a marked drop in performance compared to sharing some or

sometimes even no parameters at all. Although the difference among the other three

models wasn’t very significant, the best and the most consistent results were obtained

while sharing only input to hidden weights.

In the ordinary MTL networks all tasks learn at the same learn learning rate. The

ηMTL method introduced in [73] uses a separate learning rate ηk for each task. The

primary task uses the base learning rate η, while all the other tasks define their learning

rates ηk as a product of η and a measurement of relatedness Rk between the task k and

the primary task. The range of Rk is [0, 1]. If all Rk’s are 0, we have an STL network,

and if Rk = 1 for all k, we have a standard MTL network. Hence, ηMTL can be thought

of as a generalisation of STL and MTL.

Chapter 2. Knowledge transfer in machine learning 18

Rk is defined as:

Rk = tanh

(

ak
d2k + ψ

× 1

RELMIN

)

(2.6)

The tanh function is here simply for the purpose of converting the expression to the [0, 1]

range. dk is the distance in weight space between the kth and the primary task. The

belief is that the weights for similar tasks tend to stay close to each other. ak measures

the accuracy of the kth task hypothesis, and is defined simply as inverse of the sum of

squared errors over the training set for the task k. RELMIN controls the decay of tanh

from 1. Its value was experimentally set based on the size of the training set, number

of hidden nodes etc. ψ is a small positive constant to prevent division by zero and/or

numerical overflows.

One additional possibility for the use of ηMTL is in problems involving multiple

outputs considered as a single task. It may be beneficial to allow different learning rates

for different outputs.

Section 2.4 presented Baxter’s Bayes bias learning model [9]. A functional imple-

mentation of that model was the goal of Tom Heskes in his Empirical Bayes model [33].

Bakker and Heskes in [7] further augmented that model to include clustering and gating

of multiple tasks. Suppose that Di = {xµi , yµi } is the data set for task i, µ = 1, . . . , ni,

the number of training examples for task i. The assumption of their model is that the

response yµi (for simplicity taken to be one dimensional) is the output of a multi-layered

perceptron with additional Gaussian noise of standard deviation σ. Putting the input

to hidden weights into an nhidden × (ninput + 1) matrix W (bias included) and hidden to

output weights into an N × (nhidden + 1) matrix A, where N is the number of tasks, we

have:

yµi =

nhidden
∑

j=1

Aijh
µ
ij + Ai0 + noise, hµij = g

(ninput
∑

k=1

Wjkx
µ
ik +Wj0

)

(2.7)

The complete data set will be denoted as D = {Di}, with i = 1, . . . , N , the number

of tasks. The hidden to output weights in A are specific for each task; all the other

parameters are shared. Assuming the tasks are IID given the hyperparameters, a prior

Chapter 2. Knowledge transfer in machine learning 19

distribution is defined for the task specific parameters as:

Ai ∼ N (m,Σ) (2.8)

with hyperparameters Λ = {W,m,Σ, σ}.

The joint distribution of data and model parameters is then:

P (D,A|Λ) =
N
∏

i=1

P (Di|Ai,W, σ)P (Ai|m,Σ) (2.9)

Integrating over A, Bakker and Heskes obtain:

P (D|Λ) =
N
∏

i=1

P (Di|Λ) (2.10)

where

P (Di|Λ) ∝
(

|Σ|σ2ni |Qi|
)− 1

2 exp

[

1

2
(RT

i Q
−1
i Ri − Si)

]

(2.11)

Qi,Ri and Si are functions of Di and Λ defined as follows:

Qi = σ−2
ni
∑

µ=1

hµi h
µT
i +Σ−1, Ri = σ−2

ni
∑

µ=1

yµi h
µ
i +Σ−1m, Si = σ−2

ni
∑

µ=1

yµi
2+mTΣ−1m

(2.12)

The likelihood (2.10) is maximised to obtain the optimal parameters Λ∗. After that

P (Ai|Di,Λ
∗) can be easily computed.

In the above model the prior (2.8) is the same for all tasks, which is sensible if

all tasks are “equally similar”. By introducing “features” fi of the task that will vary

among different tasks, but not within a single task, we can have mi = Mfi with an

(nhidden + 1) × nfeature matrix M , and replace m in (2.8) with mi to get task dependent

prior means.

We could also assume that there are several clusters of similar tasks, instead of a

single cluster. We could then take the prior for Ai to be:

Ai ∼
ncluster
∑

α=1

qαN (mα,Σα) (2.13)

where qα represents the a priori probability for any task to be assigned to cluster α.

Chapter 2. Knowledge transfer in machine learning 20

Finally, we could combine the above two ideas: let’s give each task its own a priori

probability to be assigned to some cluster α:

qiα =
eU

T
α fi

∑

α′ e
UT
α′
fi

(2.14)

with Uα an nfeature-dimensional vector. fi’s are the features for the task dependent means

above.

To optimise the likelihood of Λ, the EM algorithm was used for both this and the

plain clustering model. The M-step for Uα is more complicated and was solved using an

iterative reweighted least-squares (IRLS) algorithm.

The task gating model is similar to the mixture of experts model ([35]), but instead

of using individual inputs to gate tasks, Bakker and Heskes use a separate set of higher

level features fi.

2.7 Random Coefficient Models

As was concluded earlier, the MTL approach offers an advantage over the STL approach

when we have data for several tasks that are related. Data sets with observations that

can be grouped into such clusters have been analysed by statisticians much prior to the

work presented in previous sections. They are routinely handled by various variance

component methods. The most common ones are analysis of variance (ANOVA) and

analysis of covariance (ANCOVA).

At the heart of the variance component methods is the fact that variance can be

partitioned into within-cluster variation and between-cluster variation. Let’s assume

that some city has three hospitals and we have collected data on blood pressures for

heart-failure patients for all three of them. The ANOVA model for this situation is:

yij =M + µj + εij (2.15)

where yij is the measured blood pressure value for the ith patient in the jth hospital,

Chapter 2. Knowledge transfer in machine learning 21

M is the overall mean, µj is the variation due to the influence of the jth hospital, and

εij is the random variation of a particular patient. In the fixed-effects ANOVA model,

µj are unknown constants. This is a natural interpretation if the number of clusters is

fixed and we are not interested in other clusters (hospitals). But suppose that we are

interested in all hospitals in some country. It is then natural to think of the selected

hospitals as a random sample of possible hospitals and interpret µj as the cluster-level

effect drawn from some population of effects. In the random-effects ANOVA (RANOVA)

µj are not fixed, but have a normal distributionN (0, T 2) just as εij. Which interpretation

is more suitable depends on the context. A Bayesian ANOVA model will not really have

a distinction, since we would have a prior in any case.

The ANCOVA/RANCOVA methods extend the above model by incorporating the

covariates that may influence the observations. For instance, in the above example co-

variates might be age, gender, body mass etc. The model is:

yij =M +Xijβ + µj + εij (2.16)

where yj is the i
th outcome for the jth hospital, M is the overall mean, Xij is the vector

of the explanatory variables for the ith patient from the jth hospital, β is the vector

of regression coefficients, µj is the effect of hospital j variation and εij is again the

variation of a particular patient. {εij} are mutually independent samples from N (0, σ2).

As in ANOVA/RANOVA, the only difference between ANCOVA and RANCOVA is in

the interpretation of the cluster effects {µj}. The former treats them as a set of fixed,

unknown parameters, while the latter treats them as a random sample from N (0, τ 2).

The ANOVA/ANCOVA models are not without their problems; the maximum like-

lihood estimates of variance components they give are generally biased. If this is not

desirable, one can use the Restricted Maximum Likelihood (REML) model. The method

is due to Patterson and Thompson ([55]), and the REML estimates of variances and

covariances are known to be unbiased.

Longford in [39] introduces random coefficient models, which extend the above model

Chapter 2. Knowledge transfer in machine learning 22

to allow for cluster to cluster variation in β as well.

The random coefficient model is given by

yij =M +Xijβj + µj + εij (2.17)

The factors are the same as in the random-effects ANCOVA, but now {βj} is assumed

to be a random sample from a multivariate distribution:

βj ∼ N (β,Σ∗) (2.18)

independent of {εij} and µj. The model can be rewritten as

yij = (M + µj) +Xij(β + γj) + εij (2.19)

where γj = βj − β is the vector of deviation of the regression coefficients from their

expectation, so that γj ∼ N (0,Σ∗). This form of the model can be seen as a simple,

linear form of the model introduced in chapter 4.

Chapter 3

Brain Computer Interfaces

BCI research has gained a considerable momentum over the last decade. Cheap and

powerful computers, low cost equipment for neurophysiological recording, and a deeper

understanding of brain function are the chief reasons that BCI devices have become

feasible. The research aims to benefit people with severe muscular disabilities, who may

use BCIs for basic communication capabilities or even to control a neuroprosthesis ([78]).

3.1 BCI data sources

The dominant neural activity measurements used in current BCI approaches are EEG

recordings. They offer very good temporal resolution, the cost of equipment is as low as

a few thousand US dollars, and, finally, gathering EEG data is noninvasive.

Several other neurophysiological measurements are being used in BCI as well. Elec-

trocorticogram (ECoG) is not really much different from EEG; it also measures the

electrical activity of the brain, but the electrodes are in a direct contact with the brain

cortex surface. The advantage of ECoG over EEG is a lower level of background noise,

and a better spatial resolution, since in scalp-recorded EEG the signals from close sources

mix up before they reach the scalp surface. Due to its invasive nature, it’s much less

practical for the intended use of a BCI. Some authors use the term direct brain interface

23

Chapter 3. Brain Computer Interfaces 24

(DBI) instead of BCI when using ECoG (e.g. [30]). Some studies use even more invasive

procedures involving the electrical activities of individual cortical neurons, for example

[37]. This study used human subjects suffering from ALS (Amyotrophic Lateral Sclero-

sis). As an illustrative example, one of the patients was able to spell words at a rate of

3 letters per minute.

BCI based on functional magnetic resonance imaging (fMRI) has also been studied

([27, 31, 47, 92]). fMRI measures the blood oxygen level-dependent (BOLD) signal. It has

a spatial resolution of about 1mm, which is much better than EEG (about 30mm). Al-

though fMRI devices can take images every 100-200 ms, the intrinsic inertia of changes in

blood vessels limits its time resolution to about one second. The cost is also considerably

higher than EEG. During image generation, a patient is exposed to a high static mag-

netic field and a small alternating radio-frequency field, and although, to date, no health

hazards are known, it is considered weakly invasive. However, unlike PET (Positron

Emission Tomography), it doesn’t use radioactive isotopes or any other chemicals in the

patient’s body. The feasibility of a BCI based on fMRI has been established even in the

case of a single fMRI image (e.g. [47])

MEG (Magnetoencephalography) is a relatively new technology that measures the

very faint magnetic fields that emanate from the head as a result of brain activity. It

has a temporal resolution of 1 ms and a spatial resolution of 2 mm; so it combines the

best of EEG and fMRI. Unfortunately, this literally comes with a price, as current MEG

devices cost millions of dollars. Another shortcoming is that a typical current MEG

device weights about 8 tons. So, despite being a potentially outstanding source of BCI

data, the current BCI approaches seldom use it.

Chapter 3. Brain Computer Interfaces 25

Figure 3.1: Extended International 10-20 System of Electrode Positions

3.2 EEG features

Figure 3.1 shows the extended international 10-20 system of electrode locations on the

human scalp. Most EEG studies don’t use all of them, but only some subset of interesting

locations (also called channels).

In addition to EEG, EMG (electromyogram) of some relevant muscles and EOG (elec-

troculogram) signals are commonly recorded. They are almost exclusively used to discard

recording trials that are too contaminated by artifacts like eye blinks or limb movement.

Unfortunately, such artifacts can have a substantial impact on the EEG recording, and

Chapter 3. Brain Computer Interfaces 26

their removal is generally hard, since EEG affects EOG and EMG. Therefore, plain re-

moval of their impact might also remove parts of EEG not caused by artifacts. EOG

mainly affects slow brain potentials, while the EMG primarily affects the oscillatory EEG

components. The use of EOG and EMG themselves would be contrary to the very defini-

tion of BCI set forth in 1999 on the first international BCI workshop: A brain-computer

interface is a communication system that does not depend on the brain’s normal output

pathways of peripheral nerves and muscles.

After the EEG data is collected, a preprocessing phase is usually necessary. It has

profound repercussions on performance in terms of accuracy and suitability of different

algorithms for classification. There is a trade-off between losing too much information and

suffering from the “curse of dimensionality”. E.g., a single one second EEG recording

sampled at 1000 Hz from all 61 channels from figure 3.1 will have 61000 data points,

and that will present a challenge for virtually all machine learning methods. Even with

some downsampling, using such raw EEG signals yields noticeably lower classification

accuracy; see [14] for example.

The results of preprocessing are a number of EEG “features” that are usually based

on known neural characteristics of EEG and are obtained by signal processing methods.

Current approaches can be divided into two categories: (i) those using evoked responses,

i.e. EEG signals induced by specific external stimuli and (ii) those using spontaneous EEG

activities that occur as a result of normal brain function, and are not strongly linked to

a particular physical stimulus. The “evoked” approaches are more easily detected and

processed, but require that the user’s attention be wholly or in part devoted to a stimulus.

They fall into three main classes: Evoked Potentials (EP), Event Related Potentials

(ERP) and Event Related Desynchronisations (ERD). ERDs are AC changes, while EPs

and ERPs are DC changes 1 which occur in response to events. The spontaneous approach

uses endogenous signals and are more convenient for the user. Typical examples used in

1AC signals change their amplitude as a function of time; DC signals are not oscillatory

Chapter 3. Brain Computer Interfaces 27

BCI are µ and central β rhythms, and Movement Related Potentials (MRPs).

Visual Evoked Potential (VEP) is a typical evoked potential: different visual stimuli

will elicit changes in the EEG signal over the visual cortex. One common type of visual

stimulus is a pattern reversing image. For example, in [38] two phase reversing black-

and-white checkerboards are displayed on each side of the screen. The frequencies at

which the patterns are reversed are different for the two sides (the authors used 17 and

20 Hz), and were preselected in an off-line analysis. The user shifts his gaze direction to

one of the sides and the steady state visual evoked potentials (SSVEPs) are measured

and used to control a character. SSVEP is a periodic response caused by the repetitive

presentation of a visual stimulus at a rate of 6-8 Hz or more, and has already been

successfully used in BCI (e.g. [46, 76]). VEPs are universally exhibited among humans

and are easily detected, since the visual cortex lies close to the scalp.

Event Related Potentials (ERPs) occur in response to, or in advance of a particular

event, but do not need a physical stimulus as EPs. The most commonly used ERP

potential in BCI is P300. It is a late positive brain wave that occurs about one third of

a second after a meaningful stimulus that a subject is instructed to detect. Examples

of P300-based BCI are [20, 24]. In [20] the BCI presents a user with a 6 × 6 matrix of

alphabet letters. Rows and columns are intensified one after another. The user focuses his

attention on the cell containing the desired letter, so only intensifying the corresponding

rows and columns will educe a P300 response. An accuracy of 80% in the offline version

has been obtained.

Event Related Sychronisations or Desychronisations (ERS/ERD) are among the most

commonly used EEG features in BCI. The frequency analysis of EEG defines five basic

frequency bands: delta (< 4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz),

and gamma (> 30 Hz). Humans at rest exhibit a strong signal component in the alpha

band over the sensorimotor cortex, called the µ–rhythm, and in the central part of the

beta band (18–22 Hz), called the central β–rhythm. Actual or imagined movement will

Chapter 3. Brain Computer Interfaces 28

cause the amplitudes of these rhythms to decrease, or desynchronise, and that is what

the ERD-based BCI approaches exploit. The advantage of ERD over some other EEG

features like slow cortical potentials discussed later in this section, is that they do not

require training on the subject’s part; they are always present. The paper by Wolpaw et

al. ([93]) was among the first ERD-based approaches. The authors used the changes in

the µ–rhythm during movement planning and execution, both imagined and actual, to

control a cursor on a screen. Penny and Roberts in [58] performed similar experiments

achieving 75% accuracy and an information transfer rate of one bit per eight seconds,

basing the BCI solely on the µ–rhythm. Pfurtscheller also uses ERDs in his BCI work

([61, 59]). Besides the µ and the central β rhythms, he discovered that other frequency

bands might also be useful ([60]), as well as the use of autoregressive models, which also

pick up oscillatory features. The µ and the central β rhythms occur without stimulus,

and belong to the endogenous signals. ERDs are put in the evoked responses group,

because they detect the absence of these rhythms during motor processes.

Slow cortical potentials (SCP) are non-oscillatory EEG features, i.e. potentials hav-

ing very low frequencies of 0.1–0.5 Hz. Birbaumer et al. showed in [13] that healthy

subjects and locked-in patients can learn to control the cortical positivity or negativity,

i.e. whether the SCP amplitude shifts in an electrically positive or negative direction.

This method requires a feedback of the course of subject’s SCP and training usually takes

a long time before a decent level of accuracy is obtained. In [13] Birbaumer described

a system he called a Thought Translation Device (TTD). TTD received a considerable

public attention after it was successfully used with ALS patients, and to date remains

one of the few practical applications of BCI research.

Movement Related Potential (MRP) is a variant of a slow brain potential specifically

related to the preparation and the execution of a motor command. It is a well known fact

that motor processes involve several highly localised brain areas, the sensorimotor cortex

(EEG channels C3 and C4 in the international 10–20 system of electrode positioning).

Chapter 3. Brain Computer Interfaces 29

Of particular interest for BCI is Bereitschaftspotential (BP) or “readiness potential”: a

negative EEG potential over the sensorimotor cortex, which slowly increases and reaches

a maximum just before the voluntary limb movement. For BCI it is important that this

phenomenon occurs for imagined movements as well, although with smaller amplitudes.

Blankertz et al. in [14] used this approach to develop a highly accurate (> 96%) binary

decision BCI system that didn’t need trained users and had short response times. The

task subjects performed was self–paced key typing, and the goal was to output whether

it was the left or the right hand that pressed a key. The information transmission rate

reported was 23 bits per minute, which is at the limit of what is currently possible. They

used several classification algorithms, the ones that produced the best results were the

Regularised Fischer Discriminant and the Support Vector Machine. However, it should

be noted that they worked with healthy subjects who performed actual movements, not

imagined movements, which have less expressed BP.

Babiloni et al. in [6] showed evidence that MRP and ERD of the µ–rhythm reflect

different aspects of motor cortical processes, and may provide complementary information

for BCI. The idea of combining these two features was studied in [21], which further

supports this hypothesis. On the same problem of self-paced key typing, but here with

imagined movements, they managed to reduce the average error rate for three subjects

from 13.7% to 9%.

Except for the Birbaumer’s TTD, most studies have worked with healthy subjects.

The data sets IA and IB of the BCI 2003 competition ([64]) indicate possible problems

of applying such approaches to locked-in patients. Both data sets involved experiments

having two possible outcomes. Data set IA was taken from a healthy subject and the

winning submission achieved an error rate of 11.3%. Data set IB was taken from a locked-

in patient with Amyotrophic Lateral Sclerosis’s (ALS) and the best submission achieved

an error rate of 45.6%, which is close to chance level, i.e. 50%.

In the early days of BCI, classification methods were almost strictly linear. Nowadays,

Chapter 3. Brain Computer Interfaces 30

with more powerful computers, neural networks are commonly used, and other more

advanced machine learning methods can be found as well. However, several authors

have reported that neural networks and other nonlinear classifiers did not manage to

outperform linear classifiers, which suggests that nonlinearities in the EEG data are

removed in the feature extraction phase, before the classifiers get to do their work.

Chapter 4

A new scheme for neural network

multitask learning

4.1 Bayesian neural networks

In this chapter, I will introduce a new learning architecture. Like other multitask learning

algorithms, in a situation with some number of related tasks, it will try to improve the

accuracy and/or speed of training of some or all of the tasks. Like the approaches

considered in section 2.5, it will do that by learning them in parallel. The algorithm is

in part based on the idea of the random coefficient models covered in chapter 2.

As for Caruana’s MTL algorithm for a feedforward backpropagation neural network

(MLP - from Multilayer perceptron), the new algorithm will also be based on a MLP,

but it will use the Bayesian approach to learning for neural networks developed in [53].

Figure 4.1 shows a typical MLP with one hidden layer, having three inputs, four units

in the hidden layer and a single output unit.

The output of such a network on input (x1, x2, x3) is then:

o = a+
∑

j

vjhj (4.1)

31

Chapter 4. A new scheme for neural network multitask learning 32

Figure 4.1: Backpropagation neural network

hj = f(bj +
∑

i

wi,jxi) (4.2)

where a and bj’s are biases for the output and the jth hidden unit respectively, wi,j is the

weight from the ith input to the jth unit in the hidden layer, vj is the weight from the

jth unit in the hidden layer to the output and f is an activation functions.

Such MLPs can be used to define probabilistic learning models by using the network

outputs to define a conditional distribution for a target y, given the input vector x.

If we are using a neural network for a regression task, we can define this conditional

distribution to be Gaussian with mean ok(x) (the kth network output) and a standard

deviation σk. The different outputs ok are taken to be independent given the input, so

the distribution is given by:

P (y|x) =
∏

k

1√
2πσk

exp

(−(ok(x)− yk)
2

2σ2k

)

(4.3)

The parameters σk might be fixed, or might be regarded as hyperparameters.

In a classification task, where the target y is a single value specifying one of the K

possible classes that the associated input x belongs to, a common choice is to use the

softmax model. In this model, the conditional probabilities of each of the K classes,

Chapter 4. A new scheme for neural network multitask learning 33

given input x, and using a neural network with K outputs, is defined as:

P (y = k|x) = exp(ok(x))
∑

k′ exp(ok′(x))
(4.4)

The neural network parameters (weights and biases) are learned given a training set

{(x(1), y(1)), (x(2), y(2)), . . . , (x(n), y(n))} of inputs x(i) and corresponding targets y(i). The

conventional learning methods are based on an error function defined on the network

output for the training cases; usually it is the sum of the squared differences between the

network outputs and the targets, or minus the log probability of the target values. Next,

a training procedure, usually gradient based, is used to adjust the weights and biases, so

as to minimise this error function. To reduce overfitting, a penalty term proportional to

the sum of squares of the weights and biases is often included in the error function. This

term, known as weight decay, makes the learning procedure favour models with smaller

weights and biases.

The objective in the Bayesian approach is to find the predictive distribution for the

target values for a new test case, given the input for that case, as well as the targets and

the inputs for the training cases. This distribution is obtained by integrating the predic-

tions of the model with respect to the posterior distribution of the network parameters:

P (y(n+1)|x(n+1), (x(1), y(1)), . . . , (x(n), y(n)))

=

∫

P (y(n+1)|x(n+1), θ)P (θ|(x(1), y(1)), . . . , (x(n), y(n)))dθ (4.5)

In the above expression, θ represents the neural network parameters: weights and biases.

The posterior distribution for these parameters is proportional to the product of a prior

and the likelihood function given by:

L(θ|(x(1), y(1)), . . . , (x(n), y(n)))) =
n
∏

i=1

P (y(i)|x(i), θ) (4.6)

This predictive distribution can then be used for various purposes. If we want to

guess a single component of y(n+1) and we have a squared loss, we would use the mean

Chapter 4. A new scheme for neural network multitask learning 34

of the predictive distribution. In a regression model, this is given by:

ŷ
(n+1)
k =

∫

ok(x
(n+1), θ)P (θ|(x(1), y(1)), . . . , (x(n), y(n)))dθ (4.7)

The computation of the predictive distribution (4.5) is often analytically intractable.

Even the common approximation methods will be in trouble with such high dimensional

integrals. A practical method using Markov chain Monte Carlo techniques was intro-

duced by Neal [53, 51], and the MTL model described in this chapter is based on that

implementation. Instead of a direct computation, the posterior distribution is estimated

using a sample of values for the network parameters taken from that same distribution.

Ideally, the values would be independent, but with complicated distributions that arise

with neural networks, this is often infeasible. However, dependent values still give an

unbiased estimate. Such a series of dependent values can be generated using a Markov

chain that has the true distribution as its stationary distribution.

One simple Markov chain Monte Carlo method is Gibbs sampling, also known as the

heatbath method. It generates the next value component by component, each one being

chosen from the conditional distribution given all the other components. Gibbs sampling

isn’t directly applicable to Bayesian neural networks, as the posterior distribution is

usually complex, and sampling from these conditional distributions is infeasible.

The Metropolis algorithm [45] is another well-known Markov chain Monte Carlo

method. The next value is obtained by generating a candidate from a proposal dis-

tribution that may depend on a current value. The candidate is then accepted with some

probability.

Neal’s flexible Bayesian modeling software 1 uses the hybrid Monte Carlo algorithm

[22] that combines the stochastic dynamics method [4] with the Metropolis algorithm.

The problem is defined in terms of potential energy E(x), and the parameter distribution

P (x) is proportional to exp(−E(x)). The total energy is a sum of “potential” energy

1available online at http://www.cs.toronto.edu/∼radford/fbm.software.html

Chapter 4. A new scheme for neural network multitask learning 35

and “kinetic” energy due to the momentum, which allows the use of dynamical methods.

The Markov chain is obtained by performing deterministic dynamical transitions and

stochastic Gibbs sampling updates of the momentum. However, stochastic dynamics

methods suffer from a systematic error. By combining it with the Metropolis algorithm,

this error can be eliminated.

Hybrid Monte Carlo is used for updating the network parameters. Hyperparameters

are updated separately using Gibbs sampling. It usually takes some time before the chain

converges to its stationary distribution. This can be visually verified and we discard these

burn-in iterations in the Monte Carlo estimate of the network parameters.

The first step in Bayesian inference is to select a prior for the model parameters, which

is supposed to embody our prior knowledge about them. This may seem a problem, since

the parameters of an MLP do not have a meaningful interpretation. However, past work

shows that suitable priors can be found nevertheless ([15, 41, 42, 53]). Furthermore, Neal

in [52] showed that priors over hidden units can be scaled according to the number of

parameters, so that priors over computed functions reach reasonable limits as we increase

the number of hidden units. This avoids overfitting, so the correct approach is to use as

many hidden units as is computationally feasible.

4.2 Description of the new model

As we saw in Chapter 2, the classical MTL learning approach for MLPs is to add an

additional output unit for each additional task, together with the corresponding hidden

to output weights. The shared representation in this case is the input to hidden weights.

One shortcoming of this approach is that it works better if the number of tasks we are

learning is not small. This is also true for methods that also try to couple the hidden to

output weights such as that of Bakker and Heskes [7]. They work best when the number

of tasks is much bigger than the number of hyperparameters used to define the connection

Chapter 4. A new scheme for neural network multitask learning 36

among the hidden to output weights. The more elaborate the algorithm, the bigger the

number of hyperparameters required – the tests Bakker and Heskes used typically had

the tasks numbering in hundreds.

The new model is also an extension of the ordinary MLP. Let’s suppose that we have

k tasks and that in a single task learning approach we would train an MLP with one

hidden layer having N inputs and H units in the hidden layer for each task. For now, I

will assume only one output as more outputs do not present a conceptual difficulty. If

the tasks really are sufficiently related, the number of units in the hidden layer should

be close enough so that we could agree on a common one. In the Bayesian model which

I adopt, this is not an issue. If some care is taken while specifying the prior ([52]), the

proper approach is to use as many units in the hidden layer as is computationally feasible

since there is no danger of overfitting. The number of input units (and the meaning of

the inputs themselves) does not have to be the same for all the tasks, but just as in

Caruana’s approach, if there are no common input features, there will be no benefits

using the model I’m about to describe. The tests I did in later chapters all use the same

number of inputs with the same meaning, which is probably the most typical situation

if the tasks are substantially related.

Figure 4.2 shows the situation in a simple case. For each of the k tasks we have a

layer with H units connected to the input layer and to the output unit. For a particular

data point only the layer corresponding to the task to which the data point belongs will

be used to compute the forward and the backward information. At this point there is

nothing that links different layers – this is the purpose of the common layer, which will

do that by “overlaying” other layers.

We will distinguish between overlaying the input to hidden and hidden to output

connections. To say that a common layer C overlays the input to hidden connections of

a task n specific layer will mean the following:

- For a particular training case and a given activation function f , the values of the

Chapter 4. A new scheme for neural network multitask learning 37

. . .

. . .

. . .

. . .

. . .

Common layer "C"

task 1 specific layer

task 2 specific layer

task k specific layer

Figure 4.2: The MTL model

units in the common layer C will be computed by the usual MLP rules:

hCj (x) = f(bC +
∑

iw
C
i,jxi)

- The values of the units in the task n specific layer will be computed by:

hnj (x) = f(bC + bn +
∑

i (w
C
i,j + wn

i,j)xi)

To say that a common layer C overlays the hidden to output connections of a task n

specific layer will, in a similar fashion, mean that the contribution of the layer C to the

output will be computed by the ordinary MLP rules, and the contribution of the task n

specific layer will be:

∑

i (w
C
i,out + wn

i,out)h
n
i

This was intentionally worded as a contribution instead of giving a formula for the

output value. The reason is that the values of the layer C might be discarded or not

Chapter 4. A new scheme for neural network multitask learning 38

computed at all; its impact on the output value might be solely through the effects of

overlaying the task specific layers. We can however choose to use the common layer

directly as well.

Let’s look at the case with a single unit in all the hidden layers and identity activa-

tion functions. Furthermore, let’s assume we have one common hidden layer with input

to hidden weights W and a bias b, and n task-specific hidden layers with input to hid-

den weights Wj and biases bj, j = 1, . . . , n. The output of a unit in the hidden layer

corresponding to the jth task with an input vector X for that task will be:

hj(X) = b+ bj +X(W +Wj) (4.8)

This value would be multiplied by the hidden to the output weight vj and the output

bias would be added to form the final result. Let’s suppose that we keep the vj’s fixed

at 1, and the output bias at 0. Then the above output would be the final output for the

task j on the input vector X.

Let’s recall the random regression coefficients model from section 2.7:

yij = (M + µj) +Xij(β + γj) + εij (4.9)

We have been defining the behaviour of the model on a generic input vector X in this

chapter. The index i in Xij in the above formula indicates the ith input vector from some

set of training data for the task j, which we can omit here. By taking M = b, µj = bj,

β = W and γj = Wj, we can think of the simple model (4.8) as a neural network based

method for finding the parameters of the random regression model. The bigger potential

power and flexibility of the new neural network based model lies in the use of nonlinear

activation functions.

More than one common layer can be used. For example, if we had 15 related tasks

that could further be grouped into 3 categories, we might use a model with one common

layer which would overlay all the task specific layers, and 3 additional layers which would

overlay only the layers associated with the task of a particular category. An example of

Chapter 4. A new scheme for neural network multitask learning 39

such a data set would be collecting blood pressure measurements from 3 countries, each of

which was represented with 5 hospitals. Additionally, common layers can be themselves

overlaid by other layers, allowing a nested design. These categories or clusters must be

known beforehand.

Although a one-hidden-layer MLP can learn the same set of functions as MLPs with

more hidden layers (provided it has enough units in its single hidden layer), sometimes

it is advantageous to use MLPs with more than one hidden layer. In such a situation

we may want to overlay the hidden to hidden connections as well. Figure 4.3 shows a

situation where this could be done. It is a direct generalisation of a MLP with two hidden

layers: both the common part and all the task specific parts will have two hidden layers.

Let’s order the layers so that for each pair of layers that are connected, the index of the

source layer is smaller by one than the index of the target layer of the hidden to hidden

connections. The output of the ith unit in the lth layer, assuming l is the index of a layer

that has input connections from the other hidden layer is defined as:

hli = fl

A+

Nl−1
∑

k=1

W l−1,l
k,i hl−1k +

|Γl|
∑

j=1

W
Γlj−1,Γlj
k,i hl−1k

 (4.10)

where:

- fl is the activation function of the lth hidden layer.

- A is the contribution of the input to hidden connections. They could also be overlaid

and the contribution would then be computed as in the input-to-hidden weights

overlaying case. Typically, there are no input to hidden weights to the second-level

hidden layer, as is the situation in the figure 4.3, in which case A is 0.

- Nl−1 is the number of units in the hidden layer with index l − 1

- W t,s
k,i is the weight from the kth unit in the hidden layer t to the ith unit in the

hidden layer s. With the ordering convention above, we will always have t = s− 1.

Chapter 4. A new scheme for neural network multitask learning 40

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

.

task 1 layers

task k layers

task 2 layers

common layers

Figure 4.3: The MTL model with two hidden layers per task

- hlk is the output value of the kth unit in the lth hidden layer.

- Γl = {Γl1, . . . ,Γ|Γl|} is the set of indices of layers that have hidden to hidden con-

nections that overlay hidden to hidden connections of the layer l.

The biases are omitted from the formula. They usually exist, and are overlaid in the

same way as all other weights. The formula can be generalised to any number of hidden

layers per task.

If the tasks are significantly related, it would be expected that the between cluster

Chapter 4. A new scheme for neural network multitask learning 41

variation is small. In our model this corresponds to the weights and biases in the task

specific layers being significantly smaller than the weights and biases in the common

layer(s). This can be achieved by selecting different priors for different model parameters.

Priors in Neal’s approach are specified with hyperparameters which are organized into a

hierarchical model. This allows us to control a whole group of parameters (such as the

input to hidden weights in the common layer) with a single hyperparameter. By making

these hyperparameters themselves be variable, with moderately vague priors, the model

can determine itself how related tasks are.

The new model was implemented as an extension of flexible Bayesian modeling soft-

ware mentioned in section 4.1. It bears some resemblance with the Bakker and Heskes’

Bayesian multitask learning model [7] from section 2.6. Their simplest model uses the

same prior for all hidden to output weights, which is a typical situation for our model too

if we restrict ourselves to the task specific weights. More complex models that include

clustering of tasks and task dependent prior means are specified with explicit formulas.

Since we are specifying priors for each group of weights individually, we could adjust the

priors to produce a similar effect. They use normal distributions, while we use gamma

distributions for specifying priors, so we can’t directly use the formulas. A key difference

between the models is that Bakker and Heskes share the input to hidden weights among

tasks and treat them as a hyperparameter, while we have a separate hidden layer for

each task that share an extra, common hidden layer. Also, we have one layer for each

task and a single, shared output unit, while they have a single shared hidden layer and

an output for each task.

The empirical studies show that training the model takes time comparable to training

all the tasks individually.

Chapter 5

Experiments to test the multitask

learning scheme

This chapter will demonstrate that the multitask learning method introduced in Chapter

4 is able to exploit task relatedness to improve its learning performance. All the data in

this chapter were artificially generated.

5.1 Linear data

The first few examples are kept simple to make it is easier to gain insight into the

behaviour of the method. In the first example we have two tasks, each having one

hundred training data points. The inputs are real numbers drawn randomly from [0, 10].

The outputs for the tasks are generated from the following formulas:

y1 = 1.40x+ 2.30 + (1/2)ε (5.1)

y2 = 1.34x+ 2.80 + (1/2)ε (5.2)

where ε is drawn from a normal distribution with mean zero and standard deviation one.

A natural single task learning network for this problem would have no hidden layers.

However, we cannot extend such a network to our multitask learning model, as there

42

Chapter 5. Experiments to test the multitask learning scheme 43

5:10

1:10

5:10

5:10

5:10
1:10

1:10

0.1:10

1:10

common layer

task 1 layer

task 2 layer

0.1:10

Figure 5.1: The MTL model for a simple two-task linear regression problem.

are no weights to be overlaid. This is because all the tasks share the same inputs and

outputs, and no multiple input to output weights are allowed. Instead, we will be using

the model shown in figure 5.1

The model has three hidden layers, each with a single unit. The topmost layer/unit

is the common layer; its input to hidden and hidden to output weights overlay the

corresponding weights of the two other, task specific, layers. Both hidden units and the

output unit use the identity activation function. Only one task specific layer is active for

a particular data point. The common layer does not contribute to the output, other than

through the effect of overlaying. This is indicated by the two horizontal lines over the

arrow representing its hidden to output weights. Since we are using a Bayesian approach

to neural networks, we need to specify priors. The numbers above the links indicate

the specification for the priors of the associated weights in the same syntax as used

by R. Neal in his flexible Bayesian modeling software1. These models use a hierarchy

of hyperparameters to control the prior distributions of individual network parameters.

Full details on how the hyperparameters are handled are given in [53]; here, I will only

explain what is needed to understand the neural network in figure 5.1.

Priors for the parameters in a particular group {u1, u2, . . . , uk} are taken to be inde-

1available online at http://www.cs.toronto.edu/∼radford/fbm.software.html

Chapter 5. Experiments to test the multitask learning scheme 44

pendent, conditional on the value of the associated hyperparameter, and have a Gaussian

distribution with mean zero and standard deviation σu. For convenience, σu is represented

in terms of the corresponding precision τu = σ−2u . The distribution of {u1, u2, . . . , uk} is

hence given by:

P (u1, u2, . . . , uk|τu) = (2π)−
k
2 τ

k
2
u exp(−τu

∑

i

u2i
2
) (5.3)

The prior for the common precision is a Gamma distribution with some mean ωu and

shape parameter αu:

P (τu) =
(αu/2ωu)

αu
2

Γ(αu
2
)

τ
αu
2
−1

u exp(−τu
αu
2ωu

) (5.4)

In figure 5.1, the precision for the hyperparameters for a group (in our case all the

groups are singletons), τu, is specified in the form 1√
ωu

: αu. For illustration, figure 5.2

shows the probability distributions for some selections of means and shape parameters

used in this chapter.

Smaller values of the shape parameter αu will give more vague prior distributions, i.e.

they will be more spread around the mean, while the bigger values will give distributions

more concentrated around the mean.

To use the Bayesian approach, we need to specify the noise level σk of equation (4.3).

The noise levels are usually regarded as hyperparameters and in the above case were

specified with 0.5 : 10. This is a natural choice since we know the data was generated

by adding noise with mean zero and standard deviation 0.5, but we want to pretend we

don’t have precise knowledge of σk.

The corresponding STL neural network is shown in figure 5.3. Besides training one

such network for each task, one more neural network was trained that regarded all the

data as belonging to the same task, i.e. it did not distinguish between the tasks (from

now on I will refer to this model as the NDT model – Not Distinguishing Tasks). It

typically used the same architecture and prior specification as the STL network.

Chapter 5. Experiments to test the multitask learning scheme 45

0 5 10 15 20 25 30
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

(a) 5:10

0 1 2 3 4 5 6 7 8 9
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

(b) 1:10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

(c) 0.1:10

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

(d) 1:1

Figure 5.2: Histogram of the distributions of deviations σu for different prior specifica-

tions.

5:10
5:10

5:10 5:10

Figure 5.3: The STL model used for a simple two-task regression problem.

Chapter 5. Experiments to test the multitask learning scheme 46

Ten training data sets were generated and the MTL, STL and NDT models were

trained on each. Their performance was evaluated on a test data set with 10,000 points

(5,000 per task). The average performance is summarised in table 5.1, which gives the

average squared error of both tasks if we guess the mean of the predictive distribution.

trial MTL STL NDT

1 0.256 0.257 0.262

2 0.250 0.249 0.262

3 0.261 0.262 0.265

4 0.251 0.251 0.265

5 0.256 0.255 0.262

6 0.248 0.248 0.271

7 0.249 0.249 0.262

8 0.246 0.247 0.264

9 0.247 0.247 0.262

10 0.248 0.248 0.263

average 0.251 0.251 0.264

Table 5.1: Average squared error on two-task linear regression problem.

With such a simple task and a large training data set, it is no surprise that the STL

network performs almost optimally (0.25 being the average squared error with optimal

prediction). The difference between the MTL and STL is negligible. The NDT version,

on the other hand, performs significantly worse.

We’ll look at the first trial more closely. The Markov chain converged after a couple of

iterations, 900 of the 1000 iterations were used to produce table 5.1. The output of each

individual network is a linear function of its input, so we can calculate the expectations

for parameters of the final linear model produced by the sampled networks. The common

Chapter 5. Experiments to test the multitask learning scheme 47

part on its own computes:

yc = 1.48x+ 2.55 (5.5)

while the two task specific parts, after accounting for overlaying, compute:

y1 = 1.38 + 2.36 (5.6)

y2 = 1.35x+ 2.66 (5.7)

The difference is:

yd1 = −0.10x− 0.19 (5.8)

yd2 = −0.13x+ 0.11 (5.9)

Just as a comparison, an ordinary least square estimate for all the data is given by:

yc = 1.36x+ 2.50 (5.10)

and for the specific tasks:

y1 = 1.38x+ 2.34 (5.11)

y2 = 1.35x+ 2.66 (5.12)

We can see that the common part is doing the bulk of the job, as we would want it

in this case, when the tasks are very similar.

Let’s change the priors of the network weights to be as in figure 5.4.

The difference is that the priors for the task specific weights are now more concen-

trated on the mean (αu parameters), and the inverse square root of the mean of the

precision is now 0.1 instead of 1 for the input to hidden weights. The sampled networks

defined the function for the common part to be:

yc = 1.40x+ 2.51 (5.13)

Chapter 5. Experiments to test the multitask learning scheme 48

5:10

0.1:30

5:10

5:10

5:10
0.1:30

0.1:30

0.1:30

0.1:30

common layer

task 1 layer

task 2 layer

0.1:30

Figure 5.4: The new MTL model for a simple two-task regression problem.

and the difference of the functions generated for the task specific part from the common

part is now:

yd1 = −0.03x− 0.13 (5.14)

yd2 = −0.05x+ 0.12 (5.15)

The influence of the task specific layers is now much smaller, and we see that yc is

much closer to the OLS estimate (5.10). However, the performance also came closer to

the NDT version; the average squared error over all trials was 0.258. We can also give

vague priors for all weights and give more freedom to the model to select the weights. In

this situation the performance didn’t change much compared to MTL in table 5.1, which

is no surprise as it would be expected that the performance would be between the MTL

version with carefully chosen priors and the STL version, and these two were basically

the same.

Two tasks and/or big training data sets are not the intended scenario for the use of

the MTL methods. The following experiments still use the linear data, but now we will

have four tasks and only six training data points per task. The data for the four tasks

Chapter 5. Experiments to test the multitask learning scheme 49

0 1 2 3 4 5 6 7 8 9 10
2

4

6

8

10

12

14

16

18

20

Figure 5.5: The functions used to generate the training data, dataset 1.

were generated as follows:

y1 = 1.50x+ 4.00 + (1/2)ε (5.16)

y2 = 1.44x+ 4.40 + (1/2)ε (5.17)

y3 = 1.38x+ 5.00 + (1/2)ε (5.18)

y4 = 1.56x+ 3.50 + (1/2)ε (5.19)

where x, ε were generated exactly as in the previous example. The lines are shown in

figure 5.5.

The prior specification for the weights, as well as the network architecture, is shown

in figure 5.6. The common layer, again, does not contribute to the output on its own.

Again, an MTL network, four STL networks and one NDT network that doesn’t

distinguish the tasks were trained on 10 training sets. Table 5.2 gives the average squared

error computed by guessing the mean of the predictive distribution defined by the sampled

neural networks. The test data set had 10,000 data points.

The MTL method outperformed the STL method on eight out of the ten training

batches. Setting the priors for the weights to give more substance to the common weights

does provide a small performance boost. The best performance achieved was an average

squared error of 0.329. Giving the weights vague priors didn’t influence the performance

Chapter 5. Experiments to test the multitask learning scheme 50

5:10

1:10

5:10

5:10

5:10
0.1:10

1:10

common layer

task 1 layer

task 2 layer

1:10

1:10

1:10

1:10

1:10

1:10

task 3 layer

task 4 layer

0.
1:

10

0.1:10

0.
1:

10

Figure 5.6: The MTL model for a simple four-task linear regression problem.

Chapter 5. Experiments to test the multitask learning scheme 51

Trial 6 points per task 3 points per task

MTL STL NDT MTL STL NDT

1 0.433 0.396 0.369 0.326 0.337 0.348

2 0.389 0.432 0.433 0.310 0.291 0.332

3 0.284 0.296 0.337 0.426 0.472 0.408

4 0.294 0.317 0.347 0.366 0.361 0.360

5 0.307 0.340 0.360 0.354 0.385 0.354

6 0.299 0.307 0.351 0.581 0.744 0.537

7 0.283 0.303 0.375 0.302 0.298 0.347

8 0.425 0.426 0.350 0.328 0.361 0.376

9 0.310 0.331 0.341 0.431 0.489 0.416

10 0.321 0.300 0.392 0.340 0.343 0.345

Average 0.335 0.345 0.366 0.376 0.408 0.383

Table 5.2: Average squared error on four-task linear regression, dataset 1.

much; using a 1:1 specification for all the weights gave an average squared error of 0.338

– still noticeably better than the STL version.

Results using three training data points per task are also shown in table 5.2. The

MTL version did much better than the STL, but was only slightly better than the NDT

version.

In the next example, the training data for the tasks were generated from:

y1 = 1.52x+ 5.50 + (1/2)ε (5.20)

y2 = 1.47x+ 3.80 + (1/2)ε (5.21)

y3 = 1.51x+ 1.60 + (1/2)ε (5.22)

y4 = 1.55x+ 4.20 + (1/2)ε (5.23)

If we draw the lines (figure 5.7), or look more carefully at the above formulas, we can see

Chapter 5. Experiments to test the multitask learning scheme 52

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

Figure 5.7: The functions used to generate the training data, dataset 2.

Trial 6 points per task 3 points per task

MTL MTL2 STL NDT MTL MTL2 STL NDT

1 0.315 0.311 0.319 2.380 0.321 0.300 0.306 2.361

2 0.308 0.310 0.321 2.350 0.272 0.272 0.274 2.412

3 0.344 0.336 0.346 2.360 0.403 0.399 0.412 2.393

4 0.344 0.330 0.324 2.364 0.319 0.313 0.322 2.472

5 0.423 0.426 0.425 2.380 0.383 0.368 0.376 2.383

6 0.416 0.401 0.404 2.426 0.622 0.628 0.676 2.379

7 0.288 0.288 0.302 2.589 0.382 0.343 0.367 2.406

8 0.418 0.373 0.362 2.364 0.789 0.761 0.952 2.391

9 0.297 0.295 0.294 2.382 0.298 0.292 0.293 2.396

10 0.356 0.344 0.357 2.392 0.332 0.324 0.331 2.410

Average 0.351 0.341 0.345 2.414 0.413 0.399 0.432 2.412

Table 5.3: Average squared error on four-task linear regression with six and three data

points per task, dataset 2.

that they all have similar slopes, but the intercepts are not so close. Using the same

network and prior specification as in figure 5.6, and using six training data points per

task, the results are given in table 5.3.

Chapter 5. Experiments to test the multitask learning scheme 53

5:10

0.1:10

5:10

5:1

5:1
0.1:10

0.1:10

common layer

task 1 layer

task 2 layer

3:1

3:1

3:1

3:1

0.1:10

0.1:10

task 3 layer

task 4 layer

0.
1:

10

0.1:10

0.
1:

10

Figure 5.8: The MTL model with vague priors for the biases.

The NDT version was bad, as expected, since a single linear function cannot fit the

data points from four lines whose values are this different. The MTL method, on the

other hand, managed to keep up with the STL method. Six points is still quite enough

for the STL version to work very well, but when the same experiment was repeated with

three data points per task, the MTL version performed better. However, in this situation

we know that we should give more freedom to the biases for the task specific layers, while

forcing the input to hidden weights for the task specific layers to be small. Using priors as

in figure 5.8, which we refer to as MTL2, performance is slightly better with six training

points than STL, but not by much; it achieved an average squared error of 0.341. While

we can pinpoint the slope, the intercept still remained the problem as task relatedness

does not help us here. The difference is a bit more obvious with three points per task –

MTL2 achieved quite a decent average squared error of 0.399 compared to 0.432 of STL.

The NDT version was always above 2.4.

Chapter 5. Experiments to test the multitask learning scheme 54

0 1 2 3 4 5 6 7 8 9 10
−5

0

5

10

15

20

Figure 5.9: The functions used to generate the “unrelated” training data, dataset 3.

In the last example with linear data, we will have four rather unrelated tasks, whose

output values were generated by:

y1 = 1.50x+ 4.00 + (1/2)ε (5.24)

y2 = 0.68x+ 7.50 + (1/2)ε (5.25)

y3 = −0.81x+ 14.30 + (1/2)ε (5.26)

y4 = −1.62x+ 16.00 + (1/2)ε (5.27)

The graph of the generating functions is shown in figure 5.9.

Using the same priors as in figure 5.6 wasn’t a very good idea here. This is under-

standable. Forcing the weights associated with the task specific layers to be very small

means that it will only be able to account for small differences between the tasks. And

here, the differences are big. The performance is summarised in table 5.4

Using the prior specifications as shown in figure 5.10, however, yields much better

results. The average squared error was 0.387, which is even better than the STL model.

One of the training sets gave very poor results (STL:0.659, MTL:0.635), so the STL

version is noticeably worse than in the previous cases, although it shouldn’t care that

the tasks aren’t related. Without that trial, the MTL and the STL version performed

almost identically.

A typical network sampled from the posterior of the MTL model is shown in figure

Chapter 5. Experiments to test the multitask learning scheme 55

5:1

1:1

5:1

5:1
0.1:1

1:1

common layer

task 1 layer

task 2 layer

1:1

1:1

1:1

1:1

1:1

1:1

task 3 layer

task 4 layer

0.
1:

1

5:1

0.1:1

0.
1:

1

Figure 5.10: MTL model with vague priors for all the weights.

Chapter 5. Experiments to test the multitask learning scheme 56

Average squared error

MTL 0.44819

STL 0.39569

NDT 15.09064

Table 5.4: Average squared error on four-task linear regression with six data points per

task, dataset 3.

+0.25

−1.04

−0.15

+9.80
+0.13

−0.56

common layer

task 1 layer

task 2 layer

+1.30

+3.31

−2.68

−2.19

+0.25

+0.43

task 3 layer

task 4 layer

+0
.2

9

−2.08

−0.07
−0

.0
8

Figure 5.11: MTL network sampled from a model with vague priors.

5.11.

Even though we still favoured bigger weights for the common part, the weights in the

task specific parts are fairly large in the networks used in the Monte Carlo estimation.

From the simple examples so far, we can see that if the tasks are substantially related,

the MTL method will generally outperform both the STL model and the NDT model.

And if we have knowledge about the way they are related, we can use that knowledge to

tune the priors and further improve the performance of the MTL method. If the tasks

Chapter 5. Experiments to test the multitask learning scheme 57

aren’t related, using more vague priors, the MTL method will generally suffer little or no

performance loss compared to the STL method.

5.2 Sine waves regression

The next experiment uses ten tasks, and varies the number of training data points per

task. For i = 1, . . . , 10 the targets for the ith task were generated with the following

formula:

y = ai + bi sin(x
pi + di) + 0.2ε (5.28)

where:

ai ∼ N (0, 0.12), bi, pi ∼ N (1, 0.12) , di ∼ N (0.5, 1) , ε ∼ N (0, 1)

x was chosen from a uniform distribution over [0, 7]

Figure 5.12 shows the ten functions that were used to generate the training and test

data, with no noise added.

We will begin with ten points per task, giving a total of one hundred training points.

One such training set is shown in figure 5.13, together with the corresponding function

that was used to generate it.

The network architecture is shown in figure 5.14. Each hidden layer, represented as

an ellipse, had six units and used the tanh activation function. The single output unit

was just the weighted sum of its inputs. The prior specification is indicated above the

weights, as was done before, but now it applies to a group of weights. The x sign in

front of the prior specification for the hidden to output weights means that the priors

are rescaled based on the number of hidden units (in the way mentioned in section 4.1).

As in all examples in this chapter, the common layer does not contribute to the output.

The STL and NDT networks again are the same as the common part of the MTL

network. Ten sets of training data for each of the ten tasks were generated, each having

Chapter 5. Experiments to test the multitask learning scheme 58

0 1 2 3 4 5 6 7
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 5.12: Generator functions for the sine waves learning data.

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 5.13: An example of a sine wave training data for one of the tasks.

Chapter 5. Experiments to test the multitask learning scheme 59

0.5:1

0.1:1

0.5:1

0.5:1

common layer

0.1:1

x0.5:1

task 10 layer

0.1:1

0.1:1
task 1 layer

task 2 layer...

x0.1:1

0.1:1

0.1:1

x0
.1

:1
x0.1:1

Figure 5.14: The MTL model for the sine waves learning problem

Chapter 5. Experiments to test the multitask learning scheme 60

ten training data points per task. The performance of different models with different

numbers of training points per task is presented in figure 5.15. Since we added Gaussian

noise with mean zero and standard deviation 0.2, average squared error of 0.04 is the

best we can expect. Using different priors didn’t change the performance much, as long

as the weights corresponding to the common layer weren’t forced to be very small.

The results with ten points per task definitely show that our MTL scheme managed

to use the knowledge contained in other training tasks. It consistently achieved lower

errors in all trials for all tasks by a large margin.

Using only five points per task produced an even bigger difference between the MTL

and STL networks. The total average squared error for the NDT model of 0.242 was

also worse than in the ten points per task case, but it didn’t rise so steeply as the STL

version. The gap between the MTL’s and NDT’s performance continued to reduce with

further reduction of the number of points per task. With only two points per task, they

were very similar, while the STL version became hopeless. Even if I used two points for a

specific task, and 9× 10 points for the other nine tasks, and then evaluated the network

only on that specific task, the MTL and NDT networks were very similar.

On the other hand, with twenty points per task, the STL version started to catch up

with the MTL version. The overall average squared errors were 0.059 for the MTL model

and 0.084 for the STL model. The NDT model performed almost the same as with ten

points per task. With forty points per task, the MTL version had a slight advantage over

the STL version, and with even more points, they performed very similarly.

As was the case with the linear data, the biggest difference between MTL and the

other two methods was when the STL and NDT methods performed at about the same

level. The smaller the number of training points, the bigger the advantage of the MTL

method over the STL method. However, even with abundant training data, the STL

network never significantly outperformed the MTL network.

Chapter 5. Experiments to test the multitask learning scheme 61

0

0.1

0.2

0.3

0.4

0.5

5 pts/task 10 pts/task 20 pts/task

(a) MTL

0

0.1

0.2

0.3

0.4

0.5

5 pts/task 10 pts/task 20 pts/task

(b) STL

0

0.1

0.2

0.3

0.4

0.5

5 pts/task 10 pts/task 20 pts/task

(c) NDT

0

0.1

0.2

0.3

0.4

0.5

5 pts/task 10 pts/task 20 pts/task

MTL

NDT

STL

(d) The averages over all 10 trials

Figure 5.15: Average squared error on ten-task sine wave regression. The three figures

show the distribution of the error averaged over 10 training trials for individual methods

with different number of training points per task. The last figure shows the averages

over all tasks and trials for all the methods. The test data set had a total of 10,000 data

points.

Chapter 5. Experiments to test the multitask learning scheme 62

5.3 Approximately concentric ellipses classification

The next example is a classification problem with two classes. A total of eight tasks were

generated in the following way:

- the training data for the members of class A for the ith task were chosen randomly

from an elliptical ring whose center was at (0, 0), the outer semimajor axis was

ai, the outer semiminor axis was a′i, the inner semimajor axis was bi, and the

inner semiminor axis was b′i. The whole ring was then rotated by the angle φi.

Gaussian noise with standard deviation 0.25 was then added. The parameters had

the following distributions:

ai ∼ N (5, 1), a′i ∼ N (2, 0.62), bi ∼ N (3, 0.52), b′i ∼ N (1.5, 0.32)

φi was chosen from a uniform distribution over [0, π/2]

- the training data for the members of class B for the ith task were chosen randomly

from an ellipse with a semimajor axis ci, semiminor axis c′i, and rotated by the

angle ψi equal to φi plus Gaussian noise of standard deviation 0.05. The center of

the ellipse was at (mx,my). Gaussian noise with the same distribution as above

was added here too. The distributions for the parameters were:

ci ∼ N (2, 0.62)

c′i ∼ N (
2(bi−b′i)
ai−a′i

, 0.362)

mx,my were chosen from a uniform distribution over [−1.5, 1.5]

The number of points per tasks was varied, and, again, for each situation, ten training

data sets were generated. Examples for two training data sets with twenty points per

task are shown in figure 5.16, the corresponding test data sets are shown in figure 5.17.

All the training data, regardless of tasks, is shown in figure 5.18 – this is the data that

the NDT version works with.

Chapter 5. Experiments to test the multitask learning scheme 63

−4 −3 −2 −1 0 1 2 3 4
−5

−4

−3

−2

−1

0

1

2

3

4

(a)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−4

−3

−2

−1

0

1

2

3

4

(b)

Figure 5.16: Two training sets for the approximately concentric ellipses classification

problem.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−6

−4

−2

0

2

4

6

(a)

−3 −2 −1 0 1 2 3
−6

−4

−2

0

2

4

6

(b)

Figure 5.17: Two test data sets for the approximately concentric ellipses classification

problem corresponding to the tasks shown in figure 5.16.

Chapter 5. Experiments to test the multitask learning scheme 64

−4 −3 −2 −1 0 1 2 3 4
−6

−4

−2

0

2

4

6

Figure 5.18: The complete training data for a single trial.

The MTL network architecture is shown in figure 5.19 and is very similar to that

used for the sine wave regression problem. However, the output here is interpreted as

the input to the logistic function f(x) = 1/(1 + exp(−x)) which gives the probability

that the input belongs to one of the classes. The hidden layers used the tanh activation

function, and consisted of 16 units each. The common layer did not contribute to the

output.

The error rates for varying numbers of points per task, averaged over all of the ten

trials and eight tasks, are presented in figure 5.20.

I also trained a network with the same prior specification as above, and again, with

only one task specific layer active for a particular data point, but without any overlaying.

I.e. the common layer was shared among the tasks and it contributed to the output, but

the weights for each task’s layer were not overlaid. The achieved error rate was 12.0%,

which is better than the NDT (15.7%) and the STL networks (14.2%), but worse than the

MTL (9.3%) method. This was the generally observed behaviour; it never outperformed

the MTL method, although it was never far off performance-wise.

When trained with forty or more points, the STL and the MTL approaches performed

very close to each other. Even with five hundred data points per task, the error rate didn’t

go below 7.0%. So the error rate of 9.3% with only twenty training data points per task

Chapter 5. Experiments to test the multitask learning scheme 65

0.5:3

0.1:3

0.5:3

0.5:3

common layer

x0.5:3

task 8 layer

0.1:3

0.1:3
task 1 layer

task 2 layer...

x0.1:3

0.1:3

0.1:3

0.1:3

x0
.1

:3

x0.1:3

Figure 5.19: The MTL model for the approximately concentric ellipses classification

problem.

0

5

10

15

20

25

30

35

5 pts/task 10 pts/task 20 pts/task

MTL

NDT

STL

E
rr

or
 r

at
e

Figure 5.20: Error rates on the eight-task classification problem.

Chapter 5. Experiments to test the multitask learning scheme 66

is not far from the lowest error rate that could be expected, given the inherent noise in

the data.

Again, the MTL’s advantage over the STL rose as I reduced the number of training

data points per task as can be seen in figure 5.20. The NDT version had the smallest rise

in error rate, from 15.7% to 16.5%, quite expected as 80 points per trial is still enough

for a low dimensional, not overly demanding training data set. The MTL also suffered a

small rise in error rate, from 9.3% to 11.1%, but it was nowhere near as big as the STL,

whose error rate rose from 14.2% to 28.0%.

With only five points per task, the difference became even a bit bigger. The MTL

still achieved a low error rate of 14.9%, although it came closer to the NDT version

(17.4%). The STL version was much worse. Playing with the priors has rather small

effects. Varying the inverse square root of the mean of the precision between 0.01 and 1,

and shape parameter between 1 and 30, the error rate of the MTL with ten points per

task was between 11.0% and 13.6%.

Chapter 6

Experiments with MTL for BCI

This chapter explores the feasibility of using multitask learning algorithms in BCI prob-

lems. The EEG data is often collected from several subjects, which seems like a good

scenario in which to use multitask learning. On the other hand, different people have

different cranial structure, the strength and the form of the electrical signals also vary

between different persons, and the data is usually heavily preprocessed. Therefore, it is

not clear that the data from different subjects is sufficiently related for the MTL approach

to work well.

The first data set used here was recorded by Keirn and Aunon [36] and was also used

by Anderson and Sijerčić [5]. Six EEG channels: C3, C4, P3, P4, O1 and O2, as defined

by the International 10/20 system of electrode placement, were recorded at a sampling

rate of 250 Hz. A separate channel was used for the detection of eye blinks.

The experiment consisted of four subjects performing five tasks, which were chosen

to have large hemispheric asymmetry in brain activity ([54]). The five tasks are:

- the baseline task, where the subject did nothing

- the letter task, for which the subjects composed a letter without vocalising it

- the math task, which consisted of multiplying integers without vocalising or making

67

Chapter 6. Experiments with MTL for BCI 68

any other movement

- the visual counting task, for which the subjects imagined a blackboard, and were

asked to visualise numbers being written sequentially

- the geometric figure rotation task, for which the subjects were to visualise a par-

ticular three-dimensional object rotating about an axis

Each trial lasted ten seconds, giving 2500 samples per channel. Each trial was divided

into half-second segments that overlapped. Anderson and Sijerčić discarded the segments

containing the eye blinks. I used all the segments. The eye channel was not used in

classification.

Based on the results of Keirn and Aunon, as well as of Anderson and Sijerčić, I

used autoregressive (AR) coefficients of order six to represent the EEG signals. Let

ai, i = 1, . . . , 6 be the six AR coefficients. The prediction for the value of the EEG signal

x(t) at time t is given by:

x(t) =
6
∑

i=1

aix(t− i) (6.1)

The Burg method1 was used to estimate the coefficients that minimise the squared error

of the above prediction. Since we had six channels, the complete input vector was of size

36.

Figure 6.1 shows examples of the EEG signals for the C3 channel for all four subjects.

The MTL network used is shown in figure 6.2. Five classes are represented with five

output units that use identity activation function, but which are used in a ”softmax”

model: the probability of the class i is exp(oi)
∑

j exp(oj)
where oj is the value of the jth output.

The common weights from the hidden layer to the jth output overlay the task specific

weights from its hidden layer to that same output in the same manner as before. The

input to hidden weights are also being overlaid. The common layer does not contribute

1as implemented by the MATLAB’s function arburg

Chapter 6. Experiments with MTL for BCI 69

0 1 2 3 4 5 6 7 8 9 10
−20

−15

−10

−5

0

5

10

15

20

(a) Subject 1, baseline

0 1 2 3 4 5 6 7 8 9 10
−15

−10

−5

0

5

10

15

(b) Subject 1, geometric figure rotation

0 1 2 3 4 5 6 7 8 9 10
−25

−20

−15

−10

−5

0

5

10

15

20

25

(c) Subject 2, baseline

0 1 2 3 4 5 6 7 8 9 10
−20

−15

−10

−5

0

5

10

15

20

(d) Subject 2, geometric figure rotation

0 1 2 3 4 5 6 7 8 9 10
−30

−20

−10

0

10

20

30

40

(e) Subject 3, baseline

0 1 2 3 4 5 6 7 8 9 10
−20

−15

−10

−5

0

5

10

15

20

25

(f) Subject 3, geometric figure rotation

0 1 2 3 4 5 6 7 8 9 10
−50

−40

−30

−20

−10

0

10

20

30

(g) Subject 4, baseline

0 1 2 3 4 5 6 7 8 9 10
−30

−20

−10

0

10

20

30

40

(h) Subject 4, geometric figure rotation

Figure 6.1: EEG signal for the C3 channel. For each subject on the left is the EEG for

the baseline task, and on the right is the EEG for the geometric figure rotation task.

Chapter 6. Experiments with MTL for BCI 70

1:3

1:3

1:3

...
...

x1:3

x0.1:3

1:3
common layer

task 4 layer

0.1:3

0.1:3
task 1 layer

task 2 layer

x0.1:3

0.1:3

x0.1:3

x1:3

x0.1:3

output

output

2

5

1output

x0.1:3

x0.1:3

Figure 6.2: The MTL network for the four-subject EEG classification problem.

Chapter 6. Experiments with MTL for BCI 71

Subject 1 Subject 2 Subject 3 Subject 4

STL 65.2% 44.0% 48.2% 55.7%

MTL 34.8% 22.7% 27.3% 25.6%

MTL2 63.1% 44.1% 49.0% 48.5%

Table 6.1: Accuracy rates for the four-subject EEG problem

to the output on its own. The single prior specification in the figure over the hidden to

outputs weights means that all the groups of weights (five of them, for each of the five

outputs) have the same indicated prior specification. All the hidden layers have 20 units,

and use the tanh activation function. The STL network is identical to the common part

of the MTL network.

The STL network for the four subjects gave the results in table 6.1.

The MTL network, as specified above, performed very poorly; it was below 40% for

subject 1, and below 30% for all the other subjects. Given that with blind guessing, we

would expect the accuracy rate of 20%, it wasn’t doing a good job. Setting all the prior

specifications for the input to hidden and hidden to output weights to be x0.1:0.5, and

the priors for the bias weights to 0.1:0.5 does help tremendously. However, the MTL

method still fell a bit short of the STL. The results for this setup is given in the MTL2

row of the table 6.1

The inspection of the network weights for MTL2 shows that the task specific weights

are as big as the weights in the common part. Forcing the common part to have small

weights would give the performance of STL, but such an MTL setup is, in essence, nothing

more than training four STL networks independently, but at the same time. Still, we can

notice that the difference between the MTL2 and STL networks given in table 6.1 isn’t

very big and, given that the test data set wasn’t big (90 data points), might not even be

significant. Using less training data points, the situation for which MTL is designed for,

didn’t put MTL over STL either, somewhat confirming that if there are any similarities

Chapter 6. Experiments with MTL for BCI 72

0 20 40 60 80 100 120 140 160 180 200
−30

−25

−20

−15

−10

−5

0

5

10

15

Figure 6.3: Filtered C3 channel for the left and the right hand movement

between subjects, they are not present after we extract the AR coefficients from the raw

EEG signal.

The next data set was used at the NIPS 2001 BCI Workshop competition and was

provided by Allen Osman. A total of nine subjects completed ninety trials. Each trial

lasted for six seconds, during which a subject was instructed to imagine either a left

hand or a right hand movement. The cues were given on a screen at highly predictable

times. EEG was recorded from 59 electrodes positioned on the skull according to the

International 10/20 system and referenced to the left mastoid. The signals were sampled

at 100 Hz.

In the preprocessing phase I manually selected four channels that exhibited the highest

oscillation of the CSD (current source density) power (see [3]). These were the left and

the right motor cortex (sites C3 and C4 on figure 3.1), and the left and the right posterior

parietal cortex (sites PO7 and PO8).

The AR coefficients again didn’t seem to be the right choice, so I took a look at the

traditional MRP and ERD features. The raw EEG signal for the above four channels

was filtered with a Hamming-window based, linear-phase FIR (finite impulse response)

low-pass filter of order 35, and a cut-off frequency of 4Hz.

Figure 6.3 shows plots of the C3 channel for the left and the right hand movement,

Chapter 6. Experiments with MTL for BCI 73

after filtering. Only two seconds of the trial were used, so the above figure has 200

points. The start was 0.5 seconds before the instruction to move the left or the right

hand appeared on the screen, and the end was 1.5 seconds after that event, and 0.25

seconds after the time the subjects were supposed to actually imagine the movement.

Two time points were selected: for the C3 and C4 channels they were at 0.5 and 2

seconds in the trial (the selected interval of the original trial), and for the PO7 and PO8

channels they were at 0.6 seconds and 1.65 seconds in the trial. The differences between

the values at the corresponding time points were computed for each of the four channels.

The obtained value for the C4 channel was subtracted from the value for the C3 channel,

and the value for the PO8 channel was subtracted from the value for the PO7 channel

to obtain two input features. The third one was obtained by computing the difference

between the values of the PO8 channel at time points 0.8 and 0.95 seconds in the selected

2-second trial. Additionally, the PSD (power spectral density) was estimated via Burg’s

method for the difference between the raw C3 and C4 channel in the last 0.25 seconds.

The logarithm of the power at 14 Hz was taken as an input feature. The same procedure

was carried out for the [0.75,1.75] interval for the raw PO7 channel, and the log of the

power at 10.1 Hz was taken as the final feature. The total size of the input vector was

five.

The MTL network used is shown in figure 6.4. Again, as in the concentric ellipses

learning problem, we have two classes, and a single output is used as an argument for

the logistic function, which gives the probability that the subject performed an imagined

right hand movement. The hidden layers used tanh as the activation function and had

20 hidden units. The prior specification is indicated above the corresponding group of

weights in the same fashion as before.

The STL network architecture is, again, identical to the common part of the MTL

network. The results are shown in table 6.2. The average performance over all nine

subjects was the same, although it wasn’t the same for each individual subject. For some

Chapter 6. Experiments with MTL for BCI 74

0.5:3

0.1:3

0.5:3

0.5:3

common layer

x0.5:3

task 9 layer

0.1:3

0.1:3
task 1 layer

task 2 layer...

x0.1:3

0.1:3

0.1:3

0.1:3

x0
.1

:3
x0.1:3

Figure 6.4: The MTL network for the nine-subject EEG classification

Chapter 6. Experiments with MTL for BCI 75

Subject STL MTL

1 70.0% 70.0%

2 56.7% 60.0%

3 65.6% 65.6%

4 56.7% 55.6%

5 44.5% 52.2%

6 68.9% 66.7%

7 64.4% 62.2%

8 63.3% 58.9%

9 71.1% 70.0%

Avg. 62.4% 62.4%

Table 6.2: Accuracy rates for the nine-subject EEG problem

subjects, the results were bad. The accuracy rate for the fifth subject was even below

50%, which is the expected accuracy rate if we guess blindly.

I selected five subjects for which the STL method perfomed the best: subjects number

1, 3, 6, 7 and 9, and retrained the MTL method. The network used the same priors as

above, but now it had six hidden layers instead of ten: one common plus five task-specific

layers. The results for the five selected subjects are summarised in table 6.3.

We can see that the MTL method comes out behind the STL method. Given the

experience with the AR coefficients, and the fact that the priors above assume the tasks

to be significantly related, the new MTL model in figure 6.5 was trained, and its results

are given in the “MTL2” column of the table 6.3.

The MTL method now manages to outperform the STL, but the difference isn’t very

convincing. One of the reasons can be seen in figure 6.6 that shows the distribution of

one of the input features for subject number 1. The x-axis is the index of the data point

and the y-axis is the value of the input. There are 45 data points per class, and we

Chapter 6. Experiments with MTL for BCI 76

90 points per task 10 points per task

Subject STL MTL MTL2 STL MTL2

1 70.0% 70.0% 73.3% 67.8% 71.1%

3 65.6% 66.7% 65.6% 60.0% 60.0%

6 68.9% 66.7% 67.8% 61.1% 64.4%

7 64.4% 64.4% 67.8% 60.0% 62.2%

9 71.1% 70.0% 70.0% 62.2% 68.9%

Avg. 68.0% 67.3% 68.9% 62.2% 65.3%

Table 6.3: Accuracy rates for the five-subject EEG problem

0.5:1

0.5:1

common layer

task 5 layer

task 1 layer

task 2 layer...

x0.5:1

0.3:1

0.3:1
x0.5:1

0.5:1

0.3:1
0.3:1

0.3:1

0.3:1

x0
.5

:1

x0.5:1

Figure 6.5: The new MTL network for the five-subject EEG classification

can see that a single linear boundary would do a decent job. In this light, 90 training

data points for each task is a lot, and in situations with a lot of data, STL is generally

better than or at least as good as MTL. As was reported in chapter 2, linear methods for

Chapter 6. Experiments with MTL for BCI 77

0 5 10 15 20 25 30 35 40 45
−60

−50

−40

−30

−20

−10

0

10

20

Figure 6.6: Distribution of one input feature for the two hand movements. Each class

has 45 points

BCI have generally been as successful as nonlinear methods. One of the debates at the

2nd International BCI Workshop was titled “Linear versus Non-linear Methods in BCI

Research”. This linearity also suggests that we could use few data points and still achieve

acceptable performance. This was indeed true. STL and the second (more successful)

version of MTL were retrained with only 10 training data points per task, five per class.

The results are also given in table 6.3.

MTL does manage to achieve a meaningful advantage over STL, and does so pretty

consistently. The test data set had a total of 90 points.

One additional thing to note is that the input features were selected by hand by

looking at a few trials for one subject (the first subject in the table). Specific frequencies

where the power was taken, as well as the time points for MRP features, were tailored to

that subject. This is probably the biggest reason that the accuracy rate was the highest

for him. However, the selected input features also worked well for other subjects too.

Together with the limited success of the MTL with few points, this suggests that the

Chapter 6. Experiments with MTL for BCI 78

relatedness of EEG signals gets reduced in the preprocessing phase, or even completely

lost, as in the case with AR coefficients as input features.

Chapter 7

Conclusions

7.1 Summary

The human ability to generalise complex concepts with very few examples is in contrast

with the most common approaches to machine learning. Recently, a few approaches that

do tackle this aspect of learning have emerged. One such approach is multitask learning

(MTL). The main idea of MTL is to use data from other tasks to help learn the task

of interest more accurately and/or faster. It does that by training all tasks in parallel,

while using a shared representation.

This thesis introduces a new MTL model that combines random regression coefficients

models with powerful Bayesian neural networks. The role of the shared representation

is played by a separate hidden layer which “overlays” task-specific layers. Priors for the

network parameters play an important role here. They allow us to put an emphasis on

the common layer, which is useful if the tasks are substantially related. In this case, the

common layer does the bulk of the job, while the task specific hidden layers reflect the

fine differences between the tasks.

The model was tested on artificially generated data sets, as well as on data sets from

Brain Computer Interface problems. The focus was on generalisation accuracy of the

79

Chapter 7. Conclusions 80

learning, rather than on its speed. The experiments show that the new model succeeds in

its goal; it achieves better performance than the single task learning models in situations

with small training data sets. Moreover, even with abundant training data, the MTL

model wasn’t significantly outperformed by the STL method, provided that the priors

were given some flexibility.

The application of the MTL method to the BCI data wasn’t totally conclusive. Ex-

periments with AR coefficients derived from the EEG time series didn’t suggest that the

EEG signals from different human subjects had much in common. However, with vague

priors, the MTL method performed similarly to the STL method. With input features

taken from the frequency domain, the MTL managed to acquire a limited success com-

pared to the STL method, when the training data was scarce. This is in accord with the

reports of researchers in the BCI field, who have discovered that certain actions can be

detected in specific frequency bands of the corresponding EEG signal. A disadvantage

of the input features taken from the frequency domain for MTL, is that linear classifiers

are often sufficient. This implies that relatively small training data sets are required

for decent performance, thus limiting the potential of the MTL approach. It may also

suggest information loss during the preprocessing phase.

7.2 Future work

Since the majority of machine learning approaches are oriented toward single task learn-

ing, most of the available data sets are tailored to use with STL models. More data

suitable for the MTL approach would allow a more accurate estimate of MTL’s capabil-

ities.

Brain computer interfaces have been a red hot field in the last few years. New

preprocessing procedures may be developed that would optimise the trade-off between

the input space dimensionality and the information loss, and might also help MTL. As

Chapter 7. Conclusions 81

mentioned in the previous section, current preprocessing techniques heavily reduce the

number of input features, often producing features with a linear relationship to the class,

which is not a very good situation for multitask learning. However, it may be that this

is an inherent characteristic of the EEG signal. One could also try to find a way to have

an MTL method that would select features like frequency bands a bit differently for each

subject – in a way, pushing multitask learning into the preprocessing phase as well.

It would also be interesting to compare the non-linear neural network method to

random regression coefficient models, and to other statistical models that work with

clustered data, most of which assume that the data model is linear.

Bibliography

[1] Y.S. Abu-Mostafa. Learning from hints in neural networks. Journal of Complexity,

6(2):192–198, 1990.

[2] W.-K. Ahn and W.F. Brewer. Psychological studies of explanation-based

learning. In G. DeJong, editor, Investigating Explanation-Based Learning,

Boston/Dordrecht/London, 1993. Kluwer Academic Publishers.

[3] O. Allen and A. Robert. Time-course of cortical activition during overt and imagined

movements. In Cognitive Neuroscience Annual Meeting, New York, March 2001.

[4] H. C. Andersen. Molecular dynamics simulations at constant pressure and/or tem-

perature. Journal of Chemical Physics, 72:2384–2393, 1980.

[5] C. Anderson and Z. Sijercic. Classification of EEG signals from four subjects during

five mental tasks, 1996.

[6] C. Babiloni, F. Carducci, F. Cincotti, P. Rossini, C. Neuper, G. Pfurtscheller, and

F. Babiloni. Human movement-related potentials vs desynchronization of EEG alpha

rhythm: A high-resolution EEG study. NeuroImage, 10(6):658–665, 1999.

[7] B. Bakker and T. Heskes. Task clustering and gating for Bayesian multitask learning.

Journal of Machine Learning Research, 4(1):83–99, 2004.

[8] J. Baxter. Learning internal representations. In COLT: Proceedings of the Workshop

on Computational Learning Theory, Morgan Kaufmann Publishers, 1995.

82

Bibliography 83

[9] J. Baxter. A Bayesian/information theoretic model of learning to learn via multiple

task sampling. Machine Learning, 28(1):7–39, 1997.

[10] J. Baxter. Theoretical models of learning to learn. In T. Mitchell and S. Thrun,

editors, Learning to Learn. Kluwer, Boston, 1997.

[11] J. Baxter. A model of inductive bias learning. Journal of Artificial Intelligence

Research, 12:149–198, 2000.

[12] S. Ben-David and R. Schuller. Exploiting task relatedness for multiple task learning.

COLT 2003, 2003.

[13] N. Birbaumer, N. Ghanayim, T. Hinterberger, I. Iversen, B. Kotchoubey, A. Kübler,

J. Perelmouter, E. Taub, and H. Flor. A spelling device for the paralysed. Nature,

398(6725):297–298, 1999.

[14] B. Blankertz, G. Curio, and K. R. Müller. Classifying single trial EEG: Towards

brain computer interfacing. In T. G. Dietterich, S. Becker, and Z. Ghahramani,

editors, Advances in Neural Information Processing Systems 14, Cambridge, MA,

2002. MIT Press.

[15] W.L. Buntine and A.S. Weigend. Bayesian back-propagation. Complex systems,

5:605–643, 1991.

[16] R. Caruana. Multitask learning: A knowledge-based source of inductive bias. In

International Conference on Machine Learning, pages 41–48, 1993.

[17] R. Caruana. Multitask learning. Machine Learning, 28(1):41–75, 1997.

[18] R. Caruana. Multitask Learning. PhD thesis, School of Computer Science, Carnegie

Mellon University, Pittsburg, PA, 1997.

[19] T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Transactions

on Information Theory, 13:21–27, 1967.

Bibliography 84

[20] E. Donchin, K. Spencer, and R. Wijesinghe. The mental prosthesis: Assessing the

speed of a P300-Based Brain-Computer Interface. IEEE Transactions on Rehabili-

tation Engineering, 8(2):174–179, 2000.

[21] G. Dornhege, B. Blankertz, G. Curio, and K. Mller. Combining features for BCI,

2003.

[22] S. Duane, A. D. Kennedy, B.J. Pendleton, and D. Roweth. Hybrid Monte Carlo.

Physics Leters, 195:216–222, 1987.

[23] S. Fahlman and C. Lebiere. The cascade-correlation learning architecture. In D.S.

Touretzky, editor, Advances in Neural Information Processing Systems, volume 2.

Morgan Kaufmann, San Mateo, CA, 1990.

[24] L.A. Farwell and E. Donchin. Talking off the top of your head: toward a mental

prosthesis utilizing event-related brain potentials. Electroenceph. Clin. Neurophys-

iol., pages 510–523, 1988.

[25] E. Fix and J.L. Hodges. Discriminatory analysis, non-parametric discrimination,

USAF School of Aviation Medicine, Randolph Field, TX, Project 21-49-004, Report

4, Contract AF41(128)-3, 1951.

[26] L.-M. Fu. Integration of neural heuristics into knowledge-based inference. In Con-

nection Science, volume 1, pages 325–339. 1992.

[27] C. Genovese. Statistical inference in functional magnetic resonance imaging, 1997.

[28] D. Gentner. The mechanisms of analogical learning. In S. Vosniadou and A. Ortony,

editors, Similarity and Analogical Reasoning, pages 199–241. Cambridge University

Press, New York, 1989.

[29] J. Ghosn and Y. Bengio. Multi-task learning for stock selection. In Advances in

Neural Information Processing Systems 9, 1997.

Bibliography 85

[30] B. Graimann, J. Huggins, S. Levine, and G. Pfurtscheller. Toward a direct brain

interface based on human subdural recordings and wavelet-packet analysis. IEEE

Transactions on Biomedical Engineering, 51(6):954–962, 2004.

[31] N. Hartvig. Parametric modelling of functional magnetic resonance imaging data,

2000.

[32] D. Haussler. Quantifying inductive bias: AI learning algorithms and Valiant’s learn-

ing framework. Artificial Intelligence, 36(2):177–221, 1988.

[33] T. Heskes. Emiprical bayes for learning to learn. In P. Langley, editor, Proceedings

of ICML, pages 367–374, San Francisco, CA, 2000. Morgan Kaufmann.

[34] T. Hume and M. Pazzani. Learning sets of related concepts: A shared task model.

In Proceedings of the Eighteenth Annual Conference of the Cognitive Science Society,

1996.

[35] M.I. Jordan and R.A. Jacobs. Hierarchical mixtures of experts and the EM algo-

rithm. Technical Report AIM-1440, 1993.

[36] Z.A. Keirn and J.I. Aunon. A new mode of communication between man and his

surroundings. IEEE Transactions on Biomedical Engineering, 37(12):1209–1214,

1990.

[37] P. Kennedy, R. Bakay, M. Moore, K. Adams, and J. Goldwaithe. Direct control

of a computer from the human central nervous system. IEEE Transactions on

Rehabilitation Engineering, 8(2):198–202, 2000.

[38] E. Lalor, S.P. Kelly, C. Finucane, R. Smith, R. Burke, R. B. Reilly, and G. Mc-

Darby. Steady-state VEP-based brain computer interface control in an immersive

3-D gaming environment. Journal of Applied Digital Signal Processing - Trends of

Brain Computer Interfaces Special Issue. In submission.

Bibliography 86

[39] N.T. Longford. Random Coefficient Models. Clarendon Press, Oxford, 1993.

[40] A.S. Luchins and E.H. Luchins. New experimental attempts at preventing mecha-

nization in problem solving. Journal of general Psychology, 42:279–297, 1950.

[41] D. MacKay. Bayesian Methods for Adaptive Models. PhD thesis, Caltech, 1992.

[42] D. J. C. MacKay. A practical Bayesian framework for backprop networks. In J. E.

Moody, S. J. Hanson, and R. P. Lippmann, editors, Advances in Neural Information

Processing Systems 4, pages 839–846, 1992.

[43] J. Mahoney and R. Mooney. Combining symbolic and neural learning to revise

probabilistic theories. In Proceedings of the 1992 Machine Learning Workshop on

Integrated Learning in Real Domains, Aberdeen, Scotland, 1992.

[44] G. Martin. The effects of old learning on new in Hopfield and backpropagation net-

works. Technical Report ACA-HI-019, Microelectronics and Computer Technology

Corporation (MCC), 1988.

[45] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller.

Equation of state calculations by fast computing machines. Journal of Chemical

Physics, 21:1087–1092, 1953.

[46] M. Middendorf, G. McMillan, G. Calhoun, and K. S. Jones. Brain-computer inter-

faces based on the steady-state visual-evoked response. Rehabilitation Engineering,

IEEE Transactions on [see also IEEE Trans. on Neural Systems and Rehabilitation],

8:211–214, 2000.

[47] T. Mitchell, R. Hutchinson, M. Just, S. Newman, R. Niculescu, F. Periera, and

X. Wang. Machine learning of fMRI virtual sensors of cognitive states. In The

16th Annual Conference on Neural Information Processing Systems, Computational

Neuroimaging: Foundations, Concepts and Methods Workshop, 2002.

Bibliography 87

[48] A.W. Moore, D.J. Hill, and M.P. Johnson. An empirical investigation of brute force

to choose features, smoothers and function approximators. In S. Hanson, S. Judd,

and T. Petsche, editors, Computational Learning Theory and Natural Learning Sys-

tems, volume 3. MIT Press, 1992.

[49] G. Murphy and D. Medin. The role of theories in conceptual coherence. Psychological

Review, 92:289–316, 1985.

[50] G.V. Nakamura. Knowledge-based classification of ill-defined categories. Memory

and Cognition, 13:377–384, 1985.

[51] R. M. Neal. Probabilistic inference using Markov chain Monte Carlo methods. Tech-

nical Report CRG-TR-93-1, University of Toronto, 1993.

[52] R. M. Neal. Priors for infinite networks. Technical Report CRG-TR-94-1, University

of Toronto, 1994.

[53] R. M. Neal. Bayesian Learning for Neural Networks. Springer-Verlag New York,

1996.

[54] M. Osaka. Peak alpha frequency of EEG during a mental task: Task difficulty and

hemispheric differences. Psychophysiology, 21:101–105, 1984.

[55] H.D. Patterson and R. Thompson. Recovery of inter-block information when block

sizes are unequal. Biometrika, 77:549–555, 1971.

[56] M. Pazzani. Influence of prior knowledge on concept acquisition: Experimental and

computational results. Journal of Experimental Psychology: Learning, Memory, and

Cognition, 17(3):416–432, 1991.

[57] M. Pazzani, C. Brunk, and G. Silverstein. A knowledge intensive approach to learn-

ing relational concepts. In Proceedings of the Eight International Workshop on Ma-

chine Learning, Ithaca, New York, 1991. Morgan Kaufmann.

Bibliography 88

[58] W. Penny and S. Roberts. Experiments with an EEG-based computer interface.

Technical report, Department of Electrical and Electronic Engineering, Imperial

College, London, 1999.

[59] G. Pfurtscheller. EEG event-related desynchronization (ERD) and synchronization

(ERS). Electroencephalography and Clinical Neurophysiology, 103(1):26–26, 1997.

[60] G. Pfurtscheller, D. Flotzinger, and C. Neuper. Differentiation between finger, toe

and tongue movement in man based on 40 hz EEG. Electroencephalography and

Clinical Neurophysiology, 90(6):456–460, 1994.

[61] G. Pfurtscheller and C. Neuper. Event-related synchronization of mu rhythm in the

EEG over the cortical hand area in man. Neuroscience Letters, 174(1):93–96, 1994.

[62] L. Pratt. Experiments in the transfer of knowledge between neural networks. In

S. Hanson, G. Drastal, and R. Rivest, editors, Computational Learning Theory and

Natural Learning Systems, Constraints and Prospects, chapter 4.1. MIT Press, 1993.

[63] L. Pratt. Transferring Previously Learned Back-Propagation Neural Networks to

New Learning Tasks. PhD thesis, Rutgers University, May 1993.

[64] Progress and Perspectives. The BCI competition 2003:.

[65] G. Collins R. Schank and L. Hunter. Transcending inductive category formation in

learning. Behavioral and Brain Sciences, 9:639–686, 1986.

[66] L. Rendell, R. Seshu, and D. Tcheng. Layered concept-learning and dynamically-

variable bias management. In Proceedings of the IJCAI-87, pages 308–314, 1987.

[67] D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning representations by back-

propagating errors. Nature, 323:533–536, 1986.

Bibliography 89

[68] J. Schmidhuber, J. Zhao, and M. Wiering. Shifting inductive bias with success-

story algorithm, adaptive levin search, and incremental self-improvement. Machine

Learning, 28(1):105–130, 1997.

[69] R. Setiono. Extracting rules from neural networks by pruning and hidden-unit

splitting. Neural Comput., 9(1):205–225, 1997.

[70] N. Sharkey and A. Sharkey. Adaptive generalization and the transfer of knowledge.

In Proceedings of the Second Irish Neural Network Conference, Belfast, 1992.

[71] N. Sharkey and A. Sharkey. An analysis of catastrophic interference. Connection

Science, 7:301–329, 1995.

[72] D. Shepard. A two-dimensional interpolation function for irregularly spaced data.

In 23rd National Conference ACM, pages 517–523, 1968.

[73] D. Silver and R. Mercer. The parallel transfer of task knowledge using dynamic

learning rates based on a measure of relatedness, 1996.

[74] P. Simard, B. Victorri, Y. LeCun, and J. Denken. Tangent prop - a formalism for

specifying selected invariances in an adaptive network. In J. E. Moody, S. J. Hanson,

and R. P. Lippmann, editors, Advances in Neural Information Processing Systems

4, pages 895–903, San Mateo, CA, 1992. Morgan Kaufmann.

[75] S. Suddarth and A. Holden. A symbolic neural systems and the use of hints for

developing complex systems. International Journal of Man-Machine Studies, 35:291–

311, 1991.

[76] E. Sutter. The brain response interface: communication through visually-induced

electrical brain responses. J. Microcomput. Appl., 15(1):31–45, 1992.

[77] I. Taha and J. Ghosh. Symbolic interpretation of artificial neural networks. Knowl-

edge and Data Engineering, 11(3):448–463, 1999.

Bibliography 90

[78] D. Taylor, S. Tillery, and A. Schwartz. Direct cortical control of 3d neuroprosthetic

devices. Science, 296(5574):1829–1832, 2002.

[79] M. Tenorio and W.-T. Lee. Self organizing neural network for optimum supervised

learning. Technical Report TR-EE 89-30, Purdue Univ. School of Elec. Eng., 1989.

[80] S. Thrun. Lifelong learning: A case study. Technical Report CMU-CS-95-208,

Carnegie Mellon University, Computer Science Department, Pittsburgh, PA, 1995.

[81] S. Thrun. Is learning the n-th thing any easier than learning the first? In David S.

Touretzky, Michael C. Mozer, and Michael E. Hasselmo, editors, Advances in Neural

Information Processing Systems, volume 8, pages 640–646. The MIT Press, 1996.

[82] S. Thrun. Lifelong learning algorithms. In S. Thrun and L.Y. Pratt, editors, Learning

to Learn, chapter 8. Kluwer Academic Publishers, Boston, MA, 1998.

[83] S. Thrun and J. O’Sullivan. Discovering structure in multiple learning tasks: The

TC algorithm. In International Conference on Machine Learning, pages 489–497,

1996.

[84] G. Towell and J. Shavlik. Extracting refined rules from knowledge-based neural

networks. Machine Learning, 13:71–101, 1993.

[85] G. Towell and J. Shavlik. Knowledge-based artificial neural networks. Artificial

Intelligence, 70(1-2):119–165, 1994.

[86] P. Utgoff. Shift of bias for inductive concept learning. In R. Michalski, J. Carbonell,

and T. Mitchell, editors, Machine Learning: An Artificial Intelligence approach,

volume 2. Morgan Kaufmann, 1986.

[87] L.G. Valiant. A theory of the learnable. Communications of ACM, 27(11):1134–1142,

1984.

Bibliography 91

[88] V.N. Vapnik. Estimation of Dependencies Based on Empirical Data. Springer-

Verlag, New York, 1982.

[89] J. Vidal. Toward direct brain-computer communication. In L.J. Mullins, editor,

Annual Review of Biophysics and Bioengineering, volume 2, pages 157–180, Palo

Alto, 1973. Annual Reviews, Inc.

[90] A. Waibel, H. Sawai, and K. Shikano. Modularity and scaling in large phonemical

neural networks. IEEE Transactions on Acoustics, Speech, and Signal Processing,

37(12):1888–1898, 1989.

[91] G. Webb, J. Wells, and Z. Zheng. An experimental evaluation of integrating machine

learning with knowledge acquisition. Machine Learning, 35(1):5–23, 1999.

[92] N. Weiskopf, K. Mathiak, S. Bock, F. Scharnowski, R. Veit, W. Grodd, R. Goebel,

and N. Birbaumer. Principles of a brain-computer interface (BCI) based on real-time

functional magnetic resonance imaging (fMRI). IEEE Transactions on Biomedical

Engineering, 51(6):966–970, 2004.

[93] J. Wolpaw, D. McFarland, G. Neat, and C. Forneris. An EEG-based brain-computer

interface for cursor control. Electroencephalography and Clinical Neurophysiology,

78:252–259, 1991.

