Monte Carlo Decoding of LDPC Codes

Radford M. Neal

Dept. of Statistics and Dept. of Computer Science
University of Toronto

http://www.cs.utoronto.ca/~radford/
radford@stat.utoronto.ca

May 2001

Decoding as a Sampling Problem

We can view decoding as the problem of
sampling from the distribution for codewords
given received data.

A codeword, x, is a vector of N bits.

Codewords satisfy Hx = 0 (modulo 2), where
H is the M x N parity check matrix.

The received data, r, has probability P(r|x),
determined by the channel characteristics.

Assuming codewords are equally likely a priori,
the distribution for codewords given data is

P(x|r) « I{Hx =0} P(r|x)

Sampling from this distribution for x would tell
us which codewords are likely.

Usually, we expect/hope that this distribution
IS highly concentrated on a single value for x.

Markov Chain Sampling

A difficult distribution, w(x), can sometimes
be sampled using an ergodic Markov chain
that has =« as its equilibrium distribution.

We define transition probabilities T'(x,x’) for
the chain to move to x’ if it is currently at x.

These transitions must leave & invariant:

r(x') = Y 7(x)T(x,x"), forall x’
X
We can construct T' by applying in sequence
several transitions, Ty,...,71, that all leave =«
invariant.

We also need for T' to produce an ergodic
chain, which cannot be trapped in a subset of
the state space.

For the method to be practical, the chain
must converge to « reasonably quickly.

Gibbs Sampling / Heatbath Method

If the state is a vector, x = [z1,...,zn], We
can consider using the Gibbs sampling (aka,
heatbath) method.

Let T'"="1T7...T5, where transition T; updates
only x;, leaving other components unchanged.

T; randomly picks a new value for x; from its
conditional distribution (under 7) given the
current values of all other components. This
IS easily seen to leave =« invariant.

If all the conditional distributions give
non-zero probability to all possible values for
x;, the method will be ergodic — we could
move from any x to any x’ in one scan.

For the decoding problem, Gibbs sampling
alone won't work — typically all the conditional
distributions concentrate on a single value.
Changing any single bit causes a parity error.

Auxiliary Variable Methods

Another approach is to introduce auxiliary
variables, as in the Swendsen-Wang algorithm
for the Ising system (generalized by Edwards
and Sokal, 1988).

For a memoryless channel (eg, BSC or AWGN
channel), we can write the distribution as a
product of factors as follows:

N
P(x|r) « I{(Hx = 0} H P(Tj|$j)
j=1
We now introduce a real-valued vector u and
define a joint distribution for (x,u) that
produces the above distribution for x:

N
P(x,u|r) o« I{(Hx=0} |] I{0< u; < P(rj|z;)}
j=1

We now construct a Markov chain sampler
that alternately samples for u given the
current x and for x given the current u. Both
distributions will be uniform over some set.

Implementing Subcode Sampling

I call this auxiliary variable scheme “subcode
sampling”, because of how it is implemented.

Sampling for u given the current x is easy.
Just independently pick each u; uniformly
from the interval (O, P(r;|z;)).

To sample for x given u, we first note that bit
T will be free to take on any value if

u; < min [P('rj |£Uj = 0), P(’r’j|:l?j = 1)}

Note that z; will always be free if its previous
value was the one with lower likelihood given
r;j, and will otherwise be free with probability
equal to the inverse likelihood ratio.

Once we know which bits are free, we sample
uniformly from the set of all x that match the
bits that aren’t free and that satisfy the parity
checks. This is done with matrix operations
analogous to those used for encoding.

The Need for Annealing

As noted, Gibbs sampling for the decoding
problem is not ergodic.

Subcode sampling is ergodic, since there is a
positive probability that all bits will be free at
once, allowing any codeword to be chosen.

But in practice, subcode sampling converges
very slowly for interesting codes, since the

number of free bits tends to be less than the
number of parity checks, usually producing a
degenerate subcode with only one codeword.

One way to try to get around this problem is
via annealing — we approach the desired
distribution in small steps, starting with a
distribution that's easier to sample from.

Annealing the Likelihood

We can make subcode sampling easier by
weakening the influence of the likelihood.
This increases the number of free bits.

We vary a likelihood annealing parameter, A\,

between O and 1 according to some schedule
(ending at A = 1). The distribution of x for a
given A is

N
PAx) o I{Hx =0} [] L}(z;)
=1

Two possibilities for the functions L?‘ are a
simple power modification:

A
L?‘(:c) = [P(frj |z = a:)}
and a modification derived by inserting a

“virtual BSC"” with error probability (1—X)/2
before the actual channel:

L;‘(:z:) = (1 — 12;>‘) P(rj|z; =)
+ 1%’\P('rﬂxj =1—x)

Annealing Parity Check Constraints

Annealing the likelihood doesn’'t help Gibbs
sampling, and doesn’'t help subcode sampling
enough. We need to anneal the parity check
constraints too.

We vary a parity check annealing parameter,
p, between 0 and 1, along with X, according to
some joint schedule. The distribution of x for
given X and p is

M N
PM(x) o« [] R([Hx])][] L;\(xj)
i=1 j=1

where the function RP is defined as

RP(y) = (1-y)p + (1—p)/2

Subcode sampling now uses an additional
vector of auxiliary variables, v, for the RFP
factors. When sampling for x given u and v,
only the subset of parity checks for which

v; > RP(1) are active, allowing more movement.

Parallel Tempering

Annealing doesn't produce the exact answer,
even asymptotically.

The parallel tempering method of Geyer
(1991) fixes this, by sampling from the joint
distribution for independent values of x at all
values of the annealing parameters.

The Markov chain updating this joint state
combines two sorts of updates:

1. Separate Gibbs sampling or subcode
sampling updates of x for each value of
the annealing parameters.

2. Proposals to swap the x vectors for nearby
values of the annealing parameters, which
we accept or reject in “Metropolis’ fashion.

We can obtain a “phase diagram’” of the state
at all values of the annealing parameters.
Both 1D and 2D tempering are possible.

Results of a Full 2D Tempering Run

The following pictures show variation in some
quantities as a function of the two annealing
parameters, when decoding a single block.

Code: 2000 bits, 1000 checks, 3 checks/bit.
Channel: AWGN, ¢ = 0.8, E;/Ng = 1.94db.

Tempering: Parity annealing and likelihood
annealing (virtual BSC), all combinations of
101 levels of each, spaced from 0.00 to 1.00.

Operations: For each level combination,
swaps with three earlier levels were considered,
followed by 100 Gibbs sampling updates, and
10 subcode sampling updates.

Run length: The initial annealing run was
followed by 10 tempering scans. The values
shown are averages over the last 7 scans.

Result: Correct decoding found. Other
aspects seem correct, but it’s hard to be sure.

parity annealing parameter

1.0

0.8

0.6

0.4

0.2

0.0

Number of Bits Altered by the
100 Gibbs Sampling Updates

likelihood annealing parameter

parity annealing parameter

1.0

0.8

0.6

0.4

0.2

0.0

Number of Bits Altered by the
10 Subcode Sampling Updates

likelihood annealing parameter

parity annealing parameter

1.0

0.8

0.6

0.4

0.2

0.0

Number of Parity Check Errors

B NI St PN N SN RPN U S T S

| | | | | | | | | | |
0.0 0.2 0.4 0.6 0.8 1.0

likelihood annealing parameter

parity annealing parameter

1.0

0.8

0.6

0.4

0.2

0.0

[Log Likelihood

likelihood annealing parameter

The log likelihood of the correct decoding is -461.

parity annealing parameter

1.0

0.8

0.6

0.4

0.2

0.0

Number of Bits Differing from the
Simple Bit-by-Bit Decoding

likelihood annealing parameter

The correct decoding differs in 208 bits.

Number of Bits Free to Vary in a

Subcode Sampling Update

Ja1aweled bBuleauue Alred

1.0

0.8

0.6

0.4

0.2

0.0

likelihood annealing parameter

parity annealing parameter

Number of Active Parity Checks in a

1.0

0.8

0.6

0.4

0.2

0.0

Subcode Sampling Update

31009

_ ;..9002_

600 -

likelihood annealing parameter

parity annealing parameter

1.0

0.8

0.6

0.4

0.2

0.0

Number of Parity Checks Used in a
Subcode Sampling Update

likelihood annealing parameter

parity annealing parameter

1.0

0.8

0.6

0.4

0.2

0.0

Number of Bits Set Randomly in a
Subcode Sampling Update

likelihood annealing parameter

Tests on a Rate 1/2 Code, BSC

Gibbs sampling alone with annealing or
tempering for parity check constraints only
was tried on a BSC with varying noise level.

Code: 1000 bits, 500 checks, 3 checks/bit.
Schedule: p = 0.00, 0.01, ..., 0.99, 1.00.

The table below shows the number of block
errors in 10 transmissions.

BSC ERROR PROBABILITY: 0.060 0.065 0.070 0.075 0.080
bit flipping 10 10 10 10 10
prob. propagation 1000 0 0 0 1 4
annealed gibbs 2000 0 1 1 2 6
tempered gibbs 40 50 0 0 0 2 4
annealed gibbs 10000 1 4
tempered gibbs 100 100 1 4

Annealing with 2000 Gibbs sampling scans at each level
took about 100 seconds per block; the corresponding
tempering runs took from 3 to 50 seconds per block,
more for higher noise levels.

Tests on a Rate 1/2 Code, AWGN

Code: 2000 bits, 1000 checks, 3 checks/bit.
Schedules:

S1: p=0.50, 0.51, ..., 0.99, 1.00

S2: (A, p) = (0.750,0.50), (0.755,0.51), ..., (1.00, 1.00)

The table below shows the number of block
errors in 10 transmissions.

SIGMA: 0.70 0.75 0.80 0.85
Eb/NO: 3.10db 2.50db 1.94db 1.42db
bit flipping 10 10 10 10
prob. propagation 1000 0 0 0 1
tempered gibbs 50 100 S1 0 0 0 6
tempered gibbs 50 100 S2 0 0 0 7
tempered gibbs 200 100 S1 1
tempered subcode+bitflip S2 0 1

The states in the first pass of subcode sampling were
improved by simple bit flipping, as were the final states
at A =p=1.

Subcode sampling was slow, taking 1 minute per block
at 0 = 0.70 and and 30 minutes per block at ¢ = 0.75.

Tests on a Rate 1/3 Code, AWGN
Code: 3000 bits, 2000 checks, 3 checks/bit.
Schedule: p = 0.50, 0.51, ..., 0.99, 1.00.

The table below shows the number of block
errors in 10 transmissions.

SIGMA: 1.00 1.05

Eb/NO: 1.76db 1.34db

bit flipping _;C_)_______;(_) _____________________
prob. propagation 1000 0 1

tempered gibbs 300 100 0 1

Time for the tempering runs was about 1 minute on
averge for o = 1.00 and 13 minutes on average for
c = 1.05.

Tests on a Rate 2/3 Code, AWGN
Code: 3000 bits, 1000 checks, 3 checks/bit.
Schedule: p = 0.50, 0.51, ..., 0.99, 1.00.

The table below shows the number of block
errors in 10 transmissions.

SIGMA: 0.65 0.70

Eb/NO: 2.49db 1.85db

bit flipping _;C_)_______;(_) _____________________
prob. propagation 1000 0 4

temper gibbs 300 100 0 6

The tempering runs took an average of 50 seconds per
block when o = 0.65, and an average of over an hour
per block when ¢ = 0.70.

1)

2)

3)

Questions Left to Answer

Subcode sampling seems generally slower
than Gibbs sampling, but it is better for

some values of the annealing parameters.
Does this give any advantage in practice?

What is the best annealing/tempering
schedule to use, and how closely spaced
must the levels be?

Is tempering better than just doing
multiple annealing runs, stopping when a
good decoding is found?

Can one analyse theoretically when Gibbs
and subcode sampling would be expected
to work well?

1)

2)

3)

Tentative Conclusions

Monte Carlo methods, even simple Gibbs
sampling with tempering, can correct
errors as well as probability propagation,
albeit at much greater computational cost.

Implication: Probability propagation does
not exploit “global” aspects of the problem.

Monte Carlo methods do not work better
than probability propagation.

Implication: The flaws in probability
propagation do not harm it much, and
hence fixing these flaws will not help much.

Monte Carlo methods can be used to
investigate the properties of the coding
problem, which may perhaps help us find
better decoding methods, or codes that
are more easily decoded.

