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Abstract

In this paper, we provide a systematic study of the task of sensor planning for object search.
The search agent's knowledge of object location is encoded as a discrete probability density which
is updated whenever a sensing action occurs. Each sensing action of the agent is de�ned by a
viewpoint, a viewing direction, a �eld-of-view, and the application of a recognition algorithm.
The formulation casts sensor planning as an optimization problem: the goal is to maximize the
probability of detecting the target with minimum cost. This problem is proved to be NP-Complete,
thus a heuristic strategy is favored. To port the theoretical framework to a real working system, we
propose a sensor planning strategy for a robot equipped with a camera that can pan, tilt, and zoom.
In order topan.cigen
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1 Introduction

The research described in this paper addresses the task of e�ciently searching for a given 3D object
in a given 3D environment by a mobile platform equipped with a camera and, if the environment
con�guration is not known, a method of calculating depth, like a stereo or laser range �nder. It
is clear that exhaustive, brute-force blind search will su�ce for its solution; however, our goal
is the design of e�cient strategies for search because exhaustive search is computationally and
mechanically prohibitive for non-trivial situations. In general, this task consists of three subtasks.
The �rst subtask is the selection of the sensing parameters so as to bring the target into the
�eld of view of the sensor with su�cient image quality that it can be detected by the recognition
algorithms. This is called the sensor planning problem for object search, and it is the main concern
of this paper. The second subtask is the manipulation of the hardware so that the sensing operators
can reach the state speci�ed by the planner. The recent availability of sophisticated hardware for
sensor/platform control and real-time image processing makes this task feasible. The third subtask
involves searching for the target within the image. This is the object recognition and localization
problem, which attracts considerable attention within the computer vision community.

Sensor planning for object search is very important if a robot is to interact intelligently and
e�ectively with its environment. For example, a robot often needs to use sensory information to
determine the position of the objects in its workspace in order to manipulate them. It is generally
impractical to determine the location of the object before it is needed. Because of the camera's
limited �eld of view, occlusion, the limited depth of �eld of lenses, the lighting conditions and
other factors, it is often necessary to obtain many images using many camera con�gurations and
viewpoints (see [58] for further discussion). Also, a robot navigating in an industrial environment
often needs to search the environment for known landmarks in order to estimate its own position.
The above two examples illustrate the critical requirement for e�cient directing of the sensor.

Object search has been examined in a variety of ways by the computer vision community ([51],
[60], [19], [39], [44]). Garvey [19] proposes the idea of indirect search for the target: �rst the sensor is
directed to search for an \intermediate" object that commonly participates in a spatial relationship
with the target, and then the sensor is directed to examine the restricted region speci�ed by this
relationship. Wixson and Ballard [59] [60] present a mathematical model of search e�ciency and
analyze the e�ciency of indirect search over a wide range of situations that vary the spatial structure
of the domain as well as recognition performances. They conclude that indirect search can improve
e�ciency in many situations. Connell et al. [14] construct a robot that roams an area searching
for and collecting soda cans. The robot is designed to follow the walls of the room and the sensor
only searches the area immediately in front of the robot. This may not be very e�cient since the
likelihood target presence is not considered. It is interesting to note that the operational research
community has extensively studied the problem of optimal search [31]. Their approach, however,
is very general and sensor planning is not involved.

Object search is a task that is particularly well suited to the active vision approach. Thus
the study of object search may produce results that will improve our understanding of certain
aspects of an active vision system. For example, it may elucidate the role of a sensor planning
component in a task oriented system and its relationship to the vision component. The active
vision approach argues that rather than simply analyze a set of pre-recorded images, the observer
should actively control its image acquisition process so that the acquired images be relevant and
useful for the task at hand. Considering the e�ciency of action selection, there are two extremes.
At one end is Brooks's theory on reactive planning [12], in which no time is spent on calculating the
action sequence. At the other end is the strategy of reconstructing every detail of the environment
and then selecting an action sequence that is best according to given criteria. The goal of the
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sensor planning system is to �nd a balance between these extremes such that the task can be best
performed within given limits on e�ort.

Previous research has generally placed much more emphasis on image analysis than on sensor
planning. The sensor planning problem, however, is very important, since it is the sensor's state
parameters which for the most part determine the quality of the resulting image. For some task
oriented vision systems, e.g., object search, sensor planning is de�nitely required. Recently, more
and more work on sensor planning for computer vision has appeared. For example, Krotkov[33][34]
considers the problem of how to determine the focus motor position providing the sharpest focus
on an object point at an unknown distance and how to compute the distance to a sharply focused
object point. Cowan et al. [15] and Tarabanis et al. [47] present approaches to automatically
generate the possible camera locations, orientations, and optical settings for observing an object.

There is also work on sensor planning with respect to task oriented systems. For example,
Rimey and Brown [44] use composite Bayes net and utility decision rules to plan the sensor in their
task-oriented system TEA. Grimson [55] proposes an optimal sensing strategy for disambiguat-
ing among alternative interpretations of scenes containing multiple polyhedral objects (multiple
objects in known poses or a single object with several consistent poses). Hutchinson and Kak
[24] implement a system that reasons about high-level operational goals, geometric goals, and
uncertainty-reduction goals to create task plans for an assembly robot. Maver and Bajcsy [39]
develop a strategy to determine the sequence of di�erent views to check hidden regions by using
a laser scanning system. Jensen, Christensen, and Nielsen [26] show how causal probabilistic net-
works together with Bayesian methods can be used for modeling contexts and for interpretation
of image processing �ndings. Levitt, Agosta, and Binford [36] demonstrate an approach to auto-
mated control of vision systems through inuence diagrams. Dickinson, Christensen, Tsotsos, and
Olofesson [18] combine an attention mechanism and a viewpoint control strategy to perform active
object recognition.

This paper provides the �rst formalization of the sensor planning task for object search and
proposes a practical sensor planning strategy. Instead of examining di�erent aspects of object search
separately, our formulation emphasizes the relationship between action and image processing and
integrates the two into a complete system. During sensor planning we decompose the huge space of
possible sensing actions into a �nite set of actions that must be considered. This greatly simpli�es
the sensor planning task. Simulation experiments and real experiments are presented to support
the concept.

2 Overview

At �rst glance object search seems easy. But when we study the task more deeply, we �nd it is not
so easy at all. In this section, we analyze the factors that inuence the object search task and give
an overview of our strategy.

The model of the search agent is based on the ARK robot (Figure 1(b)) [42], which is a mobile
platform equipped with a special sensor: the Laser Eye [25] (Figure 1(a)). The Laser Eye is
mounted on a robotic head with pan and tilt capabilities. It consists of a camera with controllable
focal length (zoom), a laser range-�nder and a mirror. The height of the camera is �xed. The mirror
is used to ensure collinearity of e�ective optical axes of the camera lens and the range �nder. With
this mirror, the laser range �nder can measure the distance from the center of the camera to the
object along the camera viewing axis. The camera's image plane is assumed to be always coincident
with its focal plane.

The task is to search for a target, such as a baseball, within an environment, such as the one
described in Figure (13). The goal is to design an e�cient strategy to �nd the target. Throughout
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(a) (b)

Figure 1: The hardware used in the paper

(a) The Laser Eye. At the top is the Optech laser range �nder, at the bottom is
the zoom and focus controlled lens. The two mirrors are used to ensure collinearity
of e�ective optical axes of the camera lens and the range �nder. The pan-tilt unit is
operated by two DC servocontrolled motors from Micromo Electronics, equipped with
gearboxes and optical encoders. (b) The ARK mobile platform, which is a 3 wheeled
Cybermotion K2A platform equipped with a small number of sonar transducers.

the paper, we assume that the target is not allowed to move and that the oor of the environment
is at. We assume that recognition algorithms for the given target only are available, and further,
to simplify the discussion, that there is just one recognition algorithm.

Perhaps the most obvious search strategy that comes to mind is to perform a 360o pan using
only wide-angle settings. This might work in some situations, but not others. For example, this
strategy might be e�ective when searching for a soccer ball within the environment depicted in
Figure (13), but not when searching for a small battery. At the wide-angle setting the image of the
battery might be too small to detect. Even when the wide-angle setting is appropriate for checking
the environment, we still need to select the camera's viewing directions to perform the 360o pan.

Thus, the �rst task is to decide upon the camera angle sizes which su�ce for examining the
environment. For a given camera angle size, the target can be detected only when it is within
a certain range of distance (e�ective range) from the camera center (Figure 5). Our strategy, as
described in Section 6.1, is to select a group of camera angle sizes such that no matter where the
target is in the environment, one of them can make the image of the target good enough to be
detected.

Each selected angle size can successfully examine a layer of the sphere surrounding the camera
center (Figure 8). Therefore, the second task is to decide how to select the corresponding viewing
directions to examine the given layer. In Section 6.2, we present an algorithm that selects a set of
viewing directions that su�ce to cover the corresponding layer. For each viewing direction we can
successfully examine a portion of the spherical layer (called the e�ective volume) corresponding to
the intersection of the layer and the wedge-shaped viewing volume associated with the camera's
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viewing direction.
For each camera angle size, we can select a group of viewing directions. The union of the camera

parameter settings (determined by direction and angle size) of all the selected viewing angle sizes
gives the total camera parameter settings that are needed to examine the whole environment. To
search for the target, we only need to try these camera settings one by one. We call this strategy
the \Non Planning" strategy. Suppose we have m settings, then the expected number of settings
that need to be tried in order to �nd the target is:

1

m
� 1 + [(1�

1

m
)]

1

m� 1
� 2 + � � �+ [(1�

1

m
) � � �(1�

1

1� (m� 2)
)]

1

m� 1
�m =

m+ 1

2
(1)

When m is large or the amount of time needed to analyze the image taken by the camera is
large, the \Non Planning" strategy is not e�cient for target detection. To reduce the number of
images to be analyzed, we need to plan the order in which camera settings are applied. By applying
the most promising settings �rst we can increase the probability of detecting the target at an early
stage.

What information should be considered when selecting the best camera settings? Maybe it is
helpful to examine how people perform the search task. 3D visual search is a task that is very
common in our everyday life. Almost every search process is guided by our knowledge | we
always search those regions that we believe most likely to contain the target. This illustrates that
knowledge about possible positions of the target is a very important during the search process and
it should be used to guide the search.

In order to use this knowledge, we encode it as a target probability distribution. In addition,
we propose a concept called the detection function to capture the statistical regularity linking
object recognition algorithm, target object, and viewpoint parameters. By combining the target
distribution and detection function, we are able to calculate the probability of detecting the target
for a given camera setting. This information allows us to select those imaging geometries which
have the best potential for yielding useful results. We call this strategy the \planning strategy".

So far, there is a very important factor that has not been considered | occlusion. The number
of camera settings to be tried can be further reduced by considering only those settings whose
e�ective volumes are not fully occluded or are not outside of the environment. This is easy to do
if the geometry of the environment is known. When the geometry is not known, we use the Laser
Eye to ping the laser around and construct the \sensed sphere" (Figure 16) which gives the region
that is not occluded with respect to the camera center. This sensed sphere is then used to further
restrict the camera settings to be considered.

The above completes the description of our search strategy when the robot position is �xed. We
call this the \where to look next" strategy. The next task is how to move the robot when it seems
that the current position is not likely to �nd the target. For each possible next position, there is a
region that can be checked without occlusion. Our strategy, as described in Section 7.1, is to move
to a position whose unoccluded region has the highest probability of presence of the target (Figure
10 (d)(e)(f)). As a result, the robot tends to move to a high probability region during the search
process.

As a summary, there are two characteristics of our approach. The �rst is the decomposition of
the huge number of camera parameter settings allowed by the hardware into limited settings that
must be considered. This greatly reduces the complexity of the \where to look next" task. The
second is the emphasis on guidance through the agent's knowledge. The advantage of this is that for
relatively good knowledge, the most promising actions tend to be selected �rst, as shown in Figure
15. The drawback is that when the agent's knowledge is too far from reality, the performance will
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decrease greatly as shown in Table 3. There are many ways to perform object search other than the
one we propose. For example, if there exist recognition algorithms that can detect other objects in
addition to the target, then the indirect search strategy can greatly increase the search e�ciency
as illustrated by Wixson and Ballard [59].

3 Problem Formulation

In order to reveal basic insights into the structure of object search task and delimit the space of
permissible solutions, we formulate the task and study it in a formal and theoretical fashion. We
�rst de�ne some basic concepts used in the discussion, then pinpoint the complexity of the task
and propose a practical strategy to perform the task.

The search region 
 can be of any form, and it is assumed that we know the boundary of 

exactly, although we do not know its internal con�guration. In practice, we tessellate the region

 into a series of elements ci, 
 =

Sn
i=1 ci and ci

T
cj = 0 for i 6= j. In the rest of the paper, we

assume the search region is an o�ce-like environment, and we tessellate the space into little cubes
of equal size.

The model of the search agent, as described in Section 2, is a robot equipped with a pan, tilt,
and zoom camera. There are three coordinate systems used to describe the geometric con�guration
of the search agent (Figure 2): the world coordinate system (WCS), the robot coordinate system
(RCS) and the camera coordinate system (CCS). The WCS is �xed and corresponds to the search
region 
. The RCS is attached to the robot head with its origin at the center of the robot head.
The direction of the RCS is the same as that of the WCS. The CCS corresponds to the camera
and has its origin at the nodal point of the camera. Here we assume the origin of the CCS and
the origin of the RCS are the same. The direction of the Z axis of the CCS is the same as the
direction of the view axis of the camera. The direction of the X axis of the CCS is parallel to the
horizontal direction of the image plane. The direction of the Y axis of the CCS is parallel to the
vertical direction of the image plane. The direction of the camera viewing axis Z can be speci�ed
by the pan and tilt (p; t) with respect to the RCS. The pan p is the amount of counterclockwise
rotation needed to bring the viewing axis of the camera into the XZ plane of the RCS; tilt t is the
angle between the viewing axis of the camera and the Z axis of the RCS. The range for p and t are
0 � p < 2� and 0 � t < �.

The state of the search agent is uniquely determined by 7 parameters (xc; yc; zc; w; h; p; t), where
(xc; yc; zc) is the position of the camera center in WCS, w and h are the solid angle width and solid
angle height of the solid viewing angle of the camera. The position (xc; yc; zc) can be adjusted by
moving the mobile platform. The viewing angle size <w; h> can be adjusted by the zoom lens of
the camera. Pan and tilt (p; t) can be adjusted by the motors on the robotics head.

An operation f = f(xc; yc; zc; p; t; w; h; a) is an action of the searcher within the region 
, where
a is the recognition algorithm used to detect the target. An operation f entails two steps: (1) take
a perspective projection image according to the camera con�guration of f , and then (2) search
the image using the recognition algorithm a.

The target distribution can be speci�ed by a probability distribution function p. The term
p(ci; �) gives the probability that the center of the target is within cube ci at time � . Usually this
distribution is assumed to be known at the beginning of the search process, and it is determined
by our knowledge of the world. If we know nothing about the target probability distribution, then
we can assume a uniform distribution at the beginning. Note, we use p(co; �) to represent the
probability that the target is outside the search region at time � . The following constraint holds
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Figure 2: (a) The world coordinate system and the robot coordinate system; (b) The robot coor-
dinate system and the camera viewing volume; (c) The robot coordinate system and the camera
viewing axis direction (p; t). (d) The camera coordinate system and the image plane.

throughout the search process:

p(co; �) +
nX
i=1

p(ci; �) = 1 (2)

The detection function on 
 is a function b, such that b(ci; f) gives the conditional probability
of detecting the target given that the center of the target is located within ci, and the operation
is f . This function is further simpli�ed as the conditional probability of detecting the target when
the target center is located at the center of ci. For any operation, if the projection of the center
of the cube ci is outside the image, we assume b(ci; f) = 0; if the cube is occluded or too far from
the camera or too near, we also have b(ci; f) = 0. In general [61] [62], b(ci; f) is determined by
various factors, such as intensity, occlusion, and orientation, etc. It is obvious that the probability
of detecting the target by applying action f is given by

P (f) =
nX
i=1

p(ci; �f )b(ci; f) (3)

where �f is the time just before f is applied. Let 	 be the set of all the cubes that are within
the �eld of view of f and that are not occluded, then we have

P (f) =
X
c2	

p(c; �f)b(c; f) (4)

The reason that the term �f is introduced in the calculation of P (f) is that the probability
distribution needs to be updated whenever an action fails. Here we use Bayes' formula. Let �i be
the event that the center of the target is in cube ci, and �o be the event that the center of the target is
outside the search region. Let � be the event that after applying a recognition action, the recognizer
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successfully detects the target. Then P (:� j �i) = 1� b(ci; f) and P (�i j :�) = p(ci; �f+), where
�f+ is the time after f is applied. Since the above events �1; : : : ; �n; �o are mutually complementary
and exclusive, we get the following update rule

p(ci; �f+) =
p(ci; �f )(1� b(ci; f))

p(co; �f) +
Pn

j=1 p(cj ; �f )(1� b(cj ; f))
(5)

where i = 1; : : : ; n; o.
The cost to(f) gives the total time needed to (1)manipulate the hardware to the status spec-

i�ed by f ; (2)take a picture; (3)update the environment and register the space; and (4) run the
recognition algorithm. We assume that: (2) and (3) are same for all the actions; (4) is known for
any recognition algorithm and is constant for a given recognition algorithm.

Let O
 be the set of all possible operations that can be applied. The e�ort allocation F =
ff1; : : : ; fkg gives the ordered set of operations applied in the search, where fi 2 O
. P (f1) gives the
probability that the �rst action detects the target. [1� P (f1)]P (f2) gives the probability that the
�rst action does not detect the target, but the second action detects the target. Similar analysis
can be applied to other actions in F. Finally, f

Qk�1
i=1 [1 � P (fi)]gP (fk) gives the probability that

f1, : : :, fk�1 failed to detect the target, but fk detects the target. It is clear that the probability of
detecting the target by e�ort allocation F is given by:

P [F] = P (f1) + [1� P (f1)]P (f2) + : : :+ f
k�1Y
i=1

[1� P (fi)]gP (fk) (6)

The total cost for applying this allocation is (following [52]):

T [F] =
kX
i=1

to(fi) (7)

Suppose K is the total time that can be allowed in the search, then the task of sensor planning
for object search can be de�ned as �nding an allocation F � O
, which satis�es T (F) � K and
maximizes P [F].

After some analyzes and manipulations, we have obtained many interesting properties and
proved that sensor planning task for object search is NP complete (refer to Appendix A for prop-
erties).

Since the sensor planning problem is NP-complete and usually the number of the available
candidate actions is large, it is necessary to simplify the original problem. Instead of looking for
an algorithm that always generates an optimal solution, we simply use heuristics that will generate
a feasible solution for the original problem. Here, we use a greedy strategy. The greedy method
suggests that one can devise an algorithm which works in stages, considering one input at a time.
At each stage, based on some optimization measure, the next candidate is selected and is included
into the partial solution developed so far. Suppose we have already executed q (q � 1) actions
Fq = ff1; : : : ; fqg. We now want to �nd the next action fq+1 to execute, with the hope that our
strategy of �nding the next action may lead to an approximate solution for the object search
task.

When we execute a next action f , the e�ort allocation becomes Fq+1 = ff1; : : : ; fq; fg. The
expected probability of detecting the target is P [Fq+1] = P [Fq]+�P (f), where �P (f) = f

Qq
j=1[1�Pn

i=1 p(ci; �fj)b(ci; fj)]g� [
Pn

i=1 p(ci; �f)b(ci; f)] (Note: �fk , 1 � k � q refers to the time just before
the application of fk). The total cost becomes T [Fq+1] = T [Fq] + �T (f), where �T (f) = to(f).
Our strategy for selecting the next action is as follows: the next action fq+1 should be selected that

maximizes the term �P (f)
�T (f)

. Since the term f
Qq

j=1[1�
Pn

i=1 p(ci; �fj)b(ci; fj)] g is �xed no matter
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what next action f is selected, our strategy becomes to select the next action that maximizes the
term

E(f) =

Pn
i=1 p(ci; �f )b(ci; f)

to(f)
(8)

Intuitively, this approach is similar to the greedy strategy for solving KNAPSACK problem
[22]. It is interesting to note that the simple greedy strategy may even generate optimal answers
in certain situations (please refer to Appendix B for detail).

For the model of search agent discussed in this paper, the cost of moving the robot is much
higher than the cost of changing the camera direction and visual angle size. Thus, we further
simplify the \one step look ahead" problem into two separate phases: the \where to look next"
phase and the \where to move next" phase. The \where to look next" task selects the parameters
p; t; w; h; a for the next action to be executed when the robot position is �xed. The \where to move
next" task selects the next robot position when the bene�t of simply adjusting the state parameters
of the camera is too low.

4 Detection Function

From Section 3 and Appendix A, we can see that the detection function b(c; f) is frequently used
in calculating the probability of detecting the target and in updating the environment probability
distributions. Obviously we cannot generate the value of b(c; f) at run time, so we should obtain
the detection function values before the search process and retrieve these values whenever needed.

The standard detection function b0((�; �; l); <a; w; h>) gives a measure of the detecting ability
of the recognition algorithm a when no previous action has been applied. In this formula, <w; h>
is the viewing angle size of the camera; (�; �; l) is the relative position of the center of the target
to the camera; � = arctan(x

z
), � = arctan(y

z
) and l = z, where (x; y; z) are the coordinates of the

target center in CCS. We assume that the target is within the �eld of view of the camera, thus
�w

2 � � � w
2 , �

h
2 � � � h

2 , and l > 0. The value of b0((�; �; l);<a; w; h>) can be obtained by
experiment. We can �rst put the target at (�; �; l) and then perform experiments under various
conditions, such as light intensity, background situation, and the relative orientation of the target
with respect to the camera center. The �nal value will be the total number of successful recognitions
divided by the total number of experiments. Usually, we tessellate the space of �; �; l into grids
and record the approximate detection function value for each grid. These values can be stored in a
look up table indexed by �; �; l and retrieved when needed. Sometimes we may approximate these
values by analytic formulas.

It is not necessary to record the detection function values of all the di�erent sizes of the solid
viewing angles. We only need the detection values of one camera angle size (we call it the reference
angle), and those of the other camera angle sizes can be obtained approximately by transforming
them into those of the known camera angle size.

Suppose we know the detection function values for viewing angle size <w0; h0>. We want to �nd
the detection function values for viewing angle size <w; h>. To get the value of b(<�; �; l>;<w; h>)
for a given <�; �; l>, we need to �nd the values of (�0, �0, l0) for angle size <w0; h0> that make
the following approximation true:

b(< �; �; l >;< w; h >) � b(< �0; �0; l0 >;< w0; h0 >) (9)

The approximation relation (Formula 9) means that when we use the recognition algorithm to
analyze the picture taken with parameters (<�; �; l>;<w; h>) and the picture taken with parameters
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(<�0; �0; l0>;<w0; h0>), we should get almost the same result. To guarantee this, the images of
the target object should be almost the same for both imaging parameters, i.e., they must be
approximately equal in at least two geometric factors, namely the scale factor and the position
factor (Note, here we omit the inuence of the perspective distortion). The scale factor refers to
the size of the projection of the target object on the image plane. The position factor refers to the
position on the image plane of the projection of the center of the target object.

We use the scale factor to �nd the value of l0 when l is given. The sizes of the projection of the
target object on the image planes for (<�; �; l>;<w; h>) and (<�0; �0; l0>;<w0; h0>) are approxi-
mately determined by l and l0, respectively. The scale factor tells us that for a target patch that
is parallel to the image plane, the area of its projection on the image plane for (<�; �; l>;<w; h>)
should be same as the area of its projection on the image plane for (<�0; �0; l0>;<w0; h0>). Sup-
pose that the width of the image plane is W and the height of the image plane is H . Since the
size of the image plane remains constant for di�erent focal lengths, W and H will be same for any
focal length.

Suppose the area of the target patch is S; the area of the projected target image for (<�; �; l>;<w; h>)
is S

0

; and the area of the projected target image for (<�0; �0; l0>;<w0; h0>) is S
0

0. From the simi-
larity relation between the target patch and its projected image, it is easy to show that

S
0

=
f2

l2
S (10)

Since

tan(
w

2
) =

W
2

f

and

tan(
h

2
) =

H
2

f

we have

S
0

=
f2

l2
S =

WH

4l2 tan (w2 )tan (
h
2 )
S (11)

Similarly,

S
0

0 =
WH

4l20 tan (
w0
2 )tan (

h0
2 )

S (12)

To guarantee S
0

= S
0

0, we get:

l0 = l

vuut tan(w2 ) tan(
h
2 )

tan(w0
2 ) tan(

h0
2 )

(13)

We use the position factor to �nd the values of �0; �0 when � and � are given. Suppose D is
the center of target patch with respect to (<�; �; l>;<w; h>); D

0

(x
0

; y
0

; z
0

) is the image of D on the
image plane with respect to (<�; �; l>;<w; h>); D0 is the center of target patch with respect to
(<�0; �0; l0>;<w0; h0>); and D

0

0(x
0

0; y
0

0; z
0

0) is the the image of D0



Similarly,

y
0

=
H

2

tan(�)

tan(h2 )
(15)

x
0

0 =
W

2

tan(�0)

tan(w0
2 )

(16)

y
0

0 =
H

2

tan(�0)

tan(h02 )
(17)

To guarantee x
0

= x
0

0 and y
0

= y
0

0, we get

�0 = arctan[tan(�)
tan(w0

2 )

tan(w2 )
] (18)

and

�0 = arctan[tan(�)
tan(h02 )

tan(h2 )
] (19)

So, when we want to �nd the detection function value for parameters <�; �; l> with respect to
the camera angle size <w; h>, we can �rst �nd the corresponding <�0; �0; l0>, then retrieve the
detection function value for b(<�0; �0; l0>;<w0; h0>) from the look up table or from the analytical
formula.

It is interesting to note that the above calculations are consistent with respect to the misfocus
property of the two visual angle sizes: the area of the blur circle for (<�; �; l>;<w; h>) is the same
as the area of the blur circle for (<�0; �0; l0>;<w0; h0>). Suppose the diameter of the blur circle
produced by (<�; �; l>;<w; h>) is c, the focus distance for l is v, and the diameter of aperture is
a. We have

c

a
=
v � f

v
(20)

1

l
+
1

v
=

1

f
(21)

Thus, c = af
l
. Similarly, we have c0 =

af0
l0
, where c0 is the diameter of the blur circle produced

by (<�0; �0; l0>;<w0; h0>).
Since

l0 = l

vuut tan(w2 ) tan(
h
2 )

tan(w0
2 ) tan(

h0
2 )

= l
f0

f
; (22)

we have

c0 =
af0

l0
=
af0

l f0
f

=
af

l
= c (23)

It is also interesting to note that when the con�gurations of two operations are very similar,
they might be correlated with each other |{ the detection function values of the second operation
are inuenced by the previous applied actions. For example, if we apply the same operation f two
times, and the �rst application fails, then the detection function value for f in its second application
is 0, instead of that calculated from the above described method. The reason is that the camera
con�gurations and the surrounding environment for the two applications are same. Since this
situation makes the �rst application of f fail, it will certainly make the second application of f
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fail. In order to reduce the error caused by the action correlation, we should only select those
actions whose con�gurations are not similar. Later in this paper, we will introduce the concept
of a layered sensed sphere. The actions to be selected are based on the layered sensed sphere and
the con�gurations of these actions are quite di�erent. Thus, the error caused by the correlation
between actions can be reduced.

5 Sensed Sphere

A representation of the non-occluded space around the camera is needed. Any lines emanating
from the center of the camera will hit a solid object in the environment. The environment around
the camera can thus be represented by the union of all these lines. This representation can be made
discrete by dividing the space around the camera with a series of solid angles. Each solid angle
is associated with a radius which is the length of the line from the camera center in the direction
of the central axis of the solid angle. The environment can thus be represented by the union of
these solid angles. This representation is called the sensed sphere [51]. The sensed sphere can be
constructed either by a laser or by a stereo approach. To use a stereo approach to construct the
sensed sphere, we can �rst construct a sparse depth sampling of the environment by existing stereo
algorithms [32][38][48][54] and then transform this into the representation of a sensed sphere.

In this paper, we used a laser range �nder to construct the sensed sphere. In order to do this,
we need to tessellate the surface of the unit sphere so as to get a series of uniform or near uniform
patches which partition the surface. Then we can ping the laser at the center of each patch to
construct the sensed sphere. There are many ways to tessellate the surface. However, in order to
make the tessellation as uniform as possible and to make the number of mechanical operations as
small as possible, we use the following method. First, we tessellate the range [0; �] of tilt uniformly
by a factor 2m, where m is integer. This tessellation in general depends on the complexity of the
environment. Thus, the tilt ranges are [0; �); : : : ; [(i� 1)�; i�); : : : ; [���; �), where � = �

2m . Each

tilt range [tbi ; tei) corresponds to a horizontal circular surface slice. The range of pan corresponding
to each slice is [0; 2�). Then, for each tilt range [tbi ; tei) except [0; �) and [� � �; �), we tessellate
the range [0; 2�) of pan. Each pan range [pbi;j ; pei;j) and its corresponding tilt range [tbi ; tei) de�nes
a surface patch whose pan and tilt is con�ned by tbi � tilt < tei and pbi;j � pan < pei;j . The goal
of our tessellation is to make the areas of the resulting surface patches approximately equal.

At the equator, the change of pan is �, which is the same as the change of tilt. The area of
patches at the equator is approximately �2. However, the area of each surface patch for other
tilts will di�er with this tessellation scheme. In order to keep patch areas approximately equal,
we adjust the amount of pan for every di�erent tilt. Figure 4(a) shows a surface patch on the
equator and a surface patch that is not on the equator. Our strategy is to select the pan such that
j CD j=j AB j. We then obtain that the change of pan �i for tilt range [(i� 1)�; i�) is

�i =

8<: 2 arcsin(
sin �

2
sin(i�)); if i� � �

2

2 arcsin(
sin �

2
sin[(i�1)�]); if (i� 1)� � �

2

(24)

So, for tilt range [(i�1)�; i�), the pan ranges are [0;�i), [�i; 2�i), : : :, [ni�i; 2�). The length of
each pan range is �i except for the last range [ni�i; 2�). When constructing the sensed sphere, we
only need to change the value of pan to cover the tilt slice corresponding to tilt range [(i� 1)�; i�).
After this slice is covered, we change both the values of pan and tilt to move the laser to the �rst
position of the next tilt slice and repeat the covering process. Figure 4(b) shows a side view of
a tessellation with m = 10. The sensed sphere constructed with the tessellation scheme described
above can be concisely represented as the union of all solid angles
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A

O
Figure 3: Solidity Property.

The illustration of the solidity property. The shaded region are assumed to be solid.

[
[tbi ;tei)=[(i�1)�;i�);i=1;:::;2m

( [
[pbi;j ;pei;j )=[0;�i);[�i;2�i);:::;[ni�i;2�)

Aij(tbi ; tei ; pbi;j ; pei;j ; rij)

)
; (25)

where rij is the length of the radius along the direction tilt =
tbi+tei

2 , pan =
pbi;j+pei;j

2 . The solid
angle Aij is bounded by tbi � tilt < tei ; pbi;j � pan < pei;j , and rij .

The resolution of the sensed sphere is controlled by 2m, the number of division we use to divide
[0; �]. A large value of 2m results in a dense sensed sphere, whereas a small value results in a crude
sensed sphere. If we de�ne the complexity of the sensed sphere to be the total number of solid
angles used in the tessellation, then the complexity of the sensed sphere is less than 2m�4m = 8m2.
When the construction of a dense sensed sphere takes too much time, we can simply construct a
crude sensed sphere during the search process.

As a by-product of sensed sphere construction, some solidity information of the environment
can be obtained. When we ping the laser along a given direction, the laser will hit the environment.
In real applications, we assume that a small region surrounding the point hit by laser is occupied
by solid object. This information is useful when we perform the \where to move next task". In
order to encode this information, each cube is associated with a solidity property. A cube is solid
if we believe that it is occupied by solid object, in other words, if it is near a point hit by a laser.
For each cube c, its center belongs one and only one solid angle Ac. Suppose the radius of Ac is
rAc and the point hit by the laser beam along the central axis of Ac is PAc . Suppose the camera
center is O. Let j c�O j represent the distance between the center of c and the camera center, and
j c�PAc j represent the distance between c and PAc . Then for each cube c within the environment,
we register its solidity property as follows. If j c�O j� �1 (the region within the layer in Figure 3)
and j c�PAc j� �2 (the region within the circle in Figure 3), then the solidity of cube c is registered
as solid, otherwise it is registered as unknown. Constants �1 and �2 are determined before the
search process. The solid cubes can be maintained as a list during the search process. Suppose the
maximum number of cubes that can be enclosed within the region determined by �1 and �2 is N�1�2 ,
then the complexity of updating the solid cube list is: (2m) � (4m) �N�1�2 . Usually the maximum
number of solid cubes is much less than the total number of cubes n within the environment.
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Figure 4: Tessellation of the unit sphere.

(a) The change of pan for a given tilt. (b) The side view of a tessellated sphere with
�0 = 0:157 (9 degrees).

6 Where to Look Next

We need to select w; h; p; t; a such that E(f) de�ned in Equation 8 is maximized. We �rst consider
the situation where only one recognition algorithm is available. Since the cost for any operation with
the same recognition algorithm is the same (see assumptions in Appendix A), our task becomes
the selection of w; h; p; t such that P(f) is maximized. This task is time consuming because of the
huge number of possible actions, as determined by the total number of camera con�gurations that
can be achieved by the hardware. In our case, the number of con�gurations is the product of: (1)
the number of di�erent viewing angle sizes; (2) the number of di�erent pan values; and (3) the
number of di�erent tilt values. To make the problem tractable, we must decompose this huge space
of possible sensing actions into a small set of actions to be tried and select the next action among
the resulting limited set of actions.

6.1 Determine the Necessary Viewing Angle Size

We �rst select the necessary camera angle sizes. For a given robot position and a given recognition
algorithm, there are many possible viewing angle sizes. However, the whole search region can be
examined with high probability of detection using only a small number of them. The ability of the
recognition algorithm and the value of the detection function are inuenced by the image size of
the target. Usually the recognizer can successfully recognize the target only when the image size
of the target is within a certain range such that the whole target can be brought into the �eld of
view of the camera and the features can be detected with the required precision. For an operation
with a given recognition algorithm and a �xed viewing angle size, the probability of successfully
recognizing the target is high only when the target's distance is within a certain range. Therefore,
di�erent sizes of the viewing angle < w; h > will be associated with di�erent e�ective ranges

of distance. Our purpose here is to select those angles whose e�ective ranges will cover the entire
depth D of the search region, and at the same time there will be no overlap of their e�ective ranges.
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(a) (b)

Figure 5: 2D illustration of the selection of the camera's angle size.

(a) The e�ective range of a given angle size. (b) The viewing angle size should be
selected such that their e�ective range can cover the whole distance of the depth D and
at the same time there will be no overlap of their e�ective ranges.

Suppose that the biggest viewing angle for the camera is < w0� h0 >, and its e�ective range is
[N0; F0]. Here N refers to \Near" and F refers to \Far". We can use geometric constraint to �nd
other required viewing angles <w1�h1>; : : : ;< wn0�hn0> and their corresponding e�ective ranges
[N1; F1]; : : : ; [Nn0 ; Fn0 ], such that [N0; F0]

S
: : :
S
[Nn0 ; Fn0 ] � [N0; D] and [Ni; Fi)

T
[Nj; Fj) = ; if

i 6= j. These n0 + 1 angle sizes are enough to examine the whole depth of the search space with
high probability. Figure 5 gives a 2D illustration of the above idea.

Since the e�ective range [Ni+1; Fi+1] of the next viewing angle < wi+1 � hi+1 > should be
adjacent to the e�ective range of the current viewing angle < wi � hi >, we have Ni+1 = Fi. To
guarantee that the areas of the images of the target patch of < wi � hi > at Ni and Fi are equal
to the areas of the images of the target patch of < wi+1 � hi+1 > at Ni+1 and Fi+1, respectively,
we obtain (using Equations (13)):

wi = 2 arctan[(
N0

F0
)i tan(

w0

2
)] (26)

hi = 2 arctan[(
N0

F0
)i tan(

h0

2
)] (27)

Ni = F0(
F0

N0
)i�1;Fi = F0(

F0

N0
)i (28)

Since Ni � D, we obtain i �
ln( D

F0
)

ln(
F0
N0

)
� 1. Let n0 = b

ln( D
F0

)

ln(
F0
N0

)
� 1c, then the angles to be considered

by the sensing actions are < w0 � h0 >;< w1 � h1 >; : : : ; < wn0 � hn0 >.
Figure 6(a) shows that for large ratio F0

N0
, the beginning of the e�ective range will increase

very quickly as the index of the e�ective camera angle increases (if the hardware can provide the
corresponding angle size). Figure 6(b) shows that the total e�ective volume (the 3D space within
the e�ective range and the viewing volume) will increase as the index of the e�ective camera angle
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Figure 6: The Inuence of the Ratio F0
N0
.

The Inuence of the Ratio F0
N0

when N0 = 1:7, w0 = h0 = 1:046 radian (60o)

(a) (b)

Figure 7: 2D illustration of the layered sensed sphere.

(a) A single layer corresponding to a given e�ective range. (b) The layered sensed
sphere.

increases. This demonstrates that when there is no occlusion, it is better to remain in one place
and search the space as far as the camera can see, rather than drive the robot near the unsearched
space.

The sensed sphere can be further divided into several layers according to the e�ective viewing
angle sizes derived above (see Figure 7 for a 2D illustration). This layered sensed sphere LSS can
be represented as

LSS =
[

<wk ;hk>;k=0;:::;n0

LSS<wk;hk>; (29)

where LSS<wk ;hk> is the layer corresponding to viewing angle size < wk; hk >,
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(a) (b)

Figure 8: The surface patch cut by the view volume.

(a) The camera's viewing volume and the sphere. KABCD is the camera's viewing
volume, where K is the center of the camera, dAB, dBC, dCD and dDA are the big circle
arcs cut by the bounding plane of the viewing volume. dHF is the big circle arc which
is cut by the vertical plane of the viewing volume (YZ plane in Camera Coordinate
System). H is at the middle of big circle arc dBC , F is at the middle of big circle arc
AD. dNFM is part of the locus of points on the sphere whose tilt is t + �

2 , and
dLHG

is part of the locus of points on the sphere whose tilt is t� �
2 .

dLHG and dBC only have

one common point H. dNFM and dAD only have one common point F . (b) A detailed
view of the surface patch ABCD that is contained within the camera's viewing volume.

LSS<wk;hk> =
[
i;j

LA
<wk ;hk>
ij : (30)

The layered solid angle slice LA<wk ;hk>
ij is the intersection of the solid angle Aij of the sensed

sphere and the current layer LSS<wk;hk>. There is a probability p
<wk;hk>
ij associated with LA<wk ;hk>

ij ,

which gives the sum of the probabilities of all the cubes that belong to LA<wk ;hk>
ij . In other words,

p
<wk ;hk>
ij is the sum of the probability for each cube which satis�es the following: (1) it is within
Aij ; (2) the distance to the camera center is less than rij ; and (3) the distance to the camera center
is within the e�ective range of < wk; hk >, which means that the distance should be greater than
N<wk;hk> and less than F<wk ;hk>.

6.2 Determining the Necessary Viewing Directions for a Given Angle Size

For a given e�ective angle size < w; h > selected by the above method, there are a huge number
of viewing directions that can be considered. Each direction (p; t) corresponds to a rectangular
pyramid which is the viewing volume determined by parameters < w; h; p; t >. Within this viewing
volume, only a slice of the pyramid can be examined with high detection probability by the given
recognition algorithm, i.e. those parts that are within LSS<w;h>. We call this slice of pyramid
the e�ective volume for parameter < w; h; p; t >. The union of the e�ective volumes of all the
possible < p; t > with respect to the given < w; h > will cover the given layer LSS<w;h>. But
to examine LSS<w;h>, it is not necessary to try every possible (p; t) one by one, we only need
to consider those directions such that the union of their e�ective volumes cover the whole layer
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LSS<w;h> with little overlap.
The selection of the candidate directions is similar to the tessellation of the sensed sphere, but

not identical. The surface patterns cut by the camera's viewing volume are di�erent from the
surface patterns obtained from our previous tessellation method. Let � = minfw; hg. We study
in the following how to select the necessary camera viewing directions for angle size < �; � > such
that the selected actions can cover the whole sphere.

Suppose the viewing direction of the camera (pan and tilt) is < p; t >. We want to determine
the range of surface patch on the sphere that can be covered by the viewing volume of the camera.
This covered surface patch should be speci�ed by a tilt range tb � tilt � te and a pan range
pb � pan � pe. Our purpose in the following is to �nd the values of tb, te, pb, and pe such that the
corresponding surface patch can be covered by the camera viewing volume with direction (p; t).

First, we need to �nd the range of pan �pan = pe � pb for the given viewing direction of the

camera. From Figure 8, we can see that any point J on arc dAB has a corresponding point E on
arc dCD such that they have the same value of tilt. The smallest di�erence of pan for a point ondAB and its corresponding point on dCD occurs at point A and point D. We take the di�erence of
the range of pan for points A and D as the value of �pan. After a detailed calculation, we obtain

�pan = 2 arctanf
sin(�2 )

sin(t+ �
2 )
g: (31)

But for this change of pan, the viewing volume cannot cover all the surface patch whose tilt
value is between t� �

2 and t+
�
2 . From Figure 8(b), we can see that the big circle arc dHB gradually

goes down (decreases in Z value) as the point moves from H to B. So, there is a part between big
circle arc dCHB and arc dLHG that can not be covered by the camera's viewing volume when the
intended pan range is �pan. We need to determine the tilt value of a point as it approaches B from

H along the big circle arc dHB with the change of pan equal to
�pan

2 . After some calculations, we
obtain the tilt value

arccosf
cos(t� �

2 )r
1 +

sin2(�
2 ) sin

2(t��
2 )

sin2(t+�
2 )

g:

From above calculations, it is easy to show that the following sphere surface patch can be
covered by the viewing volume with direction (p; t),

p� arctanf
sin(�2 )

sin(t+ �
2 )
g � pan � p+ arctanf

sin(�2 )

sin(t+ �
2 )
g (32)

arccosf
cos(t� �

2 )r
1 +

sin2(�2 ) sin
2(t��

2 )

sin2(t+�
2 )

g � tilt � t+
�

2
(33)

Suppose the �nal viewing direction set is Scandidate. According to the above calculations, we
can get the following algorithm for enumerating the viewing directions to cover the whole sphere.

1. Scandidate = ;

2. p � 0, t  � 0, Scandidate = Scandidate
S
< p; t >.

3. te  �
�
2
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4. tb  � arccosf
cos((te�

�
2
)��

2
)r

1+
sin2(�2 ) sin2((te�

�
2 )��

2 )

sin2((te�
�
2 )+�

2 )

g

5. Cover the slice on the sphere whose tilt is within the range of [tb; te] and the slice on the
sphere whose tilt is within the range of [� � te; � � tb].

(a) Let t � te �
�
2 .

(b) let �pan  � 2 arctanf
sin(�

2 )

sin((t��
2 )+

�
2 )
g

(c) Use �pan to divide [0; 2�] for the given slide. So, we can get a series of [pb; pe]. They are
[0;�pan], [�pan; 2�pan], : : :, [k�pan; 2�]. Note: the length of the last interval may not
be �pan.

(d) For each division, let p  � pb+pe
2 . Then perform Scandidate = Scandidate

S
< p; t > and

Scandidate = Scandidate
S
< p; � � t >.

6. Let te  � tb

7. If te � �, stop the process. Otherwise Goto 4.

(a) (b) (c) (d) (e) (f) (g)

Figure 9: An example to illustrate the enumeration algorithm.

(a) We �rst cover the slice near the equator. The tilt interval of the slice is selected
by Step 3 and Step 4. (b) After the �rst slice is covered, we cover the second slice. The
tilt interval of the slice is selected by Step 6 and Step 4. (c), (d), (e), (f) are similar
to (b). (g) An illustration on how to cover a given slice. The change of pan �pan is
determined by Step 5(b). Step 5(c) tessellate the slice using �pan, resulting a series of
blocks constrained by the tilt range and pan range as shown in (g). For each block, there
is another block that is on the lower half of the sphere and is covered by Step 5(d).

6.3 Selecting the Next Action

For a given recognition algorithm a, we can �nd a list of candidate viewing angle sizes w0�h0; w1�
h1; : : : ; wn0 � hn0 . For each candidate angle size < wk; hk > (0 � k � n0), we can �nd a series
of camera viewing directions that must be considered. To select the best directions among these
candidate directions, we need to use P(f) to compare them. The region that is the intersection
of the sensed sphere, the corresponding layer of the given viewing angle size < wk; hk >, and
the viewing volume determined by < p; t > is the e�ective volume for < wk; hk; p; t >, denoted
as V (< wk; hk; p; t >). Since only those cubes that belong to the e�ective volume make major
contribution to P(f), we need only take these cubes into consideration when calculating P(f). In
practice, we may use the probability of the presence of the target object within the e�ective volume[

LA
<wk;hk>

ij
2V (<wk;hk;p;t>)

p
<wk ;hk>
ij
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to compare among candidate directions.
For each candidate angle size < wk; hk > (0 � k � n0), we �nd a best direction < pk; tk >.

Thus, we obtain n0 + 1 candidate actions f0 = f(p0; t0; w0; h0; a), f1 = f(p1; t1; w1; h1; a), : : :,
fn0 = f(pn0 ; tn0 ; wn0 ; hn0 ; a). Then we calculate the probability of detection for each fk, 0 � k � n0
according to P(f) and select the one with highest value as the best candidate action with respect
to the recognition algorithm a.

For any recognition algorithm a, we obtain a best candidate action fa. Suppose a1, a2, : : :, am
are the recognition algorithms available for the search task, then we obtain m candidate actions
fa1 ; : : : ; fam . For each candidate action, we calculate its utility function value according to E(f).
Then the action with the highest utility value will be taken as the next action to be executed.

After applying each action, we will update the probability of any cubes within the search space.
Since the updating process might take time, we can select several operations under the current
world state, and update the state after these operations are applied. The probability of presence
within the current sensed sphere SS is ProbSS =

P
ci2SS

p(ci). This probability will be decreased
each time an operation is applied. When the ratio of ProbSS and the probability of presence within
the search space ProbSS

1�p(co)
is less than a certain threshold, or when the probability of detecting the

target by the selected action is too small, we will want the robot to change position.

7 Where to Move Next

7.1 Selecting the Next Robot Position

The goal of the \where to move next" algorithm is to select the next camera position such that,
at the new position, the camera can examine those parts of the region that have high probability
of presence of the target but are occluded if viewed from the previous positions. A related, but
di�erent work is done by Maver and Bajcsy [39]. Their goal is to achieve a description of a random
arrangement of unknown objects in a scene by moving the sensor to see a portion of the visual �eld
that is hidden. Compared with randomly selecting viewing point, their approach can signi�cantly
save the computational cost by minimizing the number of views taken. For object search task,
in order to select the next robot position, �rst we need to decide which candidate positions the
camera can reach. Then we need to know which one is themost bene�cial among these reachable
positions. The strategy with respect to this task is greatly inuenced by the hardware that controls
the camera. With respect to the hardware used in this paper, the goal becomes to select the robot's
next position such that the sensed sphere at the new position has the highest probability presence
of the target, with the constraint that the movement of the robot from the current position to the
next position is on a straight line.

In general, the robot can be at any position where there is no solid object within the volume
occupied by the robot. Many of the possible positions are not necessary, however. If we know the
geometric con�guration of the search space, then we can select a set of candidate positions such
that the robot can examine the whole search region without occlusion. If we have no knowledge
of the geometric con�guration of the search space, then we can tessellate the horizontal plane of
the search region into squares and take the centers of the squares as the candidate positions to be
considered. The side length of the square should be carefully designed so as to get a reasonable
number of candidate positions.

The candidate positions discussed above can be further reduced by considering whether the
robot can reach these positions from its current position. When the robot moves from its current
position to a candidate position, there will be a volume of space that is traversed by the robot.
According to the current registration of the space, if there are no solid cubes presen



volume, then we assume the robot can reach this candidate position; otherwise, we assume the
robot cannot reach this candidate position. We only consider those candidate positions that the
robot can reach by the above criteria.

Now we will select the next robot position among these reachable candidate positions. To do
this, we need to know the approximate un-occluded region that can be seen by the camera with
respect to each reachable candidate position. We call this region the expected sensed sphere SSe. If
we know the geometric con�guration of the search space, we can directly calculate the SSe as shown
in Figure 10(a)(b)(c). If we do not know the geometric con�guration, we can estimate SSe by using
th5.0001 0 2000(c)-0ndarly of the searc



sphere has the maximum probability of presence of the target as our next position.
After we �nd the next position, we drive the robot to this position and begin our new search.

Since the solidity property of the cube obtained so far may not correctly represent the real situation,
the robot may stop in the middle of the journey. If it cannot reach the next position, then it will
begin the \where to look next" phase at the place it has stopped.

At this point we must consider the inaccuracy of robot movement, since we need to know the
robot position with respect to the world coordinate system after each movement. In general, we
cannot solely depend on dead reckoning approaches, because they are not su�ciently reliable over
long distances and the position error is compounded over sequences of movements as the robot
traverses the environment. Here we use the method of external referencing. That is, we assume
there are �xed, easily detectable landmarks or beacons in the environment. The locations of these
beacons or landmarks, in the form of coordinates in the world coordinate system, serve as the
reference for computing the robot position. This approach has the advantage that the position
errors are bounded. Since position errors apply only to the horizontal direction (the robot height is
�xed and the oor is horizontal) and are bounded, we can incorporate the associated uncertainty
into the probability distribution as a blurring or convolution operation performed on the probability
distribution of the cubes on each horizontal layer. For example, if we assume the robot position
uncertainty is uniform and within a bounded error range, the following method can be used to
incorporate this uncertainty into the probability distribution. When we move to a new place, the
probability of presence of each cube will be the sum of the probabilities of presence for the cubes
in the same layer within the uncertainty range centered at the corresponding cube divided by the
number of these cubes. Note, this operation does not change the total sum of the probabilities of
the cubes, and thus there is no need for normalization.

Please note that the \where to move next" strategy is local planning in the sense that it restricts
the movement of the robot from current position to next position to be straight line. Thus, the next
position selected by our strategy may not be the best position in a global sense. Please also note
that our strategy implicitly assumes that the cost of adjusting the camera is much cheaper than
that of moving the robot. If the two costs are comparable, then a strategy that selecting robot
position and camera viewing direction and viewing angle size at the same time might perform
better. For example, when the geometry structure of the environment is known, we can �nd a
robot position such that the highest probability region can be viewed without occlusion. After
the camera is directed to check this region, we then move the robot to another position such that
the next highest regions can be checked without occlusion. This process can be repeated until the
target is found.

7.2 The Solidity Property

During the search process, the robot must acquire information about the solidity property of the
cube. This solidity property is used to calculate the radius of the expected sensed sphere. Since the
movement uncertainty is bounded, the error of the calculated radius of the expected sensed sphere
is also bounded. As a result, the calculated probability of presence of the expected sensed sphere
with respect to each candidate position is not inuenced too much by the uncertainty of the robot
movement. Therefore, we ignore movement uncertainty when updating the solidity of the cubes.

After the robot drives to a new position, we use the laser to construct the sensed sphere again.
After the construction, we register the space according to this new sensed sphere. We combine the
new and old registration to update the registration �le as shown in Table 1.
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Figure 11: Simulation 1.

(a) The D(l) for detection function; (b) The environment for simulation 1. The size
of the room is length� width� height = 50� 50 � 25. There is an obstacle with size
5�37�19 in the environment. The robot (represented by the white blob in the �gure) is
at position (45; 10). The height of the robot is 15. (c) Top 7 actions selected at (45; 10).
The short and long lines correspond to the viewing axis of actions with angle size �

4 �
�
4 ,

and 0:316� 0:316 respectively. (d) The next robot position (36; 1) selected by the sensor
planning system.

within the room is uniform at the beginning. Figure 11(c) shows that the actions selected by our
algorithm are used only to examine the un-occluded region. Figure 11(d) shows that the next
robot position is selected to examine the region that is occluded.

The second simulation experiment is used to compare the e�ciency of our strategy with the brute
force strategy. The environment, the robot position and the sensor model for this simulation are
the same as those of the �rst, except that there is no obstacle in the room. The target distribution
satis�es a 3-variate normal distribution N(�;�), where the mean vector � = (25; 25; 15)T, and
the covariance matrix � = diag(�2; �2; (�2)

2). Three di�erent values for �, � = 5, � = 15, and
� = 50 are used in the experiment. The higher the value of �, the higher the degree of uncertainty.
The initial probability distribution is truncated to �t within the search region and is given by the
following formula

p(x; y; z) =
1

(2�)
3
2 � 25� 25� 15

e
� 1

2 [
(x�25)2

�2
+ (y�25)2

�2
+ (z�15)2

(�2 )2
]

(34)

We use P [F] to compare the e�ects of our sensor planning strategy with the e�ects of the
Non-Planning strategy. The Non-Planning strategy means that the action application sequence
is not inuenced by the agent's initial knowledge of the target probability distribution. Here, the
Non-Planning strategy refers to the strategy of �rst selecting the actions belonging to the �rst
layer, then selecting the actions belong to the second layer, and �nally, selecting the actions belong
to the third layer. Figure 12 gives the e�ects of the two strategies for di�erent initial probability
distributions. Notice that the number of actions needed to reach the detection limit for our strategy
is much smaller than that for Non-planning strategy. This illustrates that the planning strategy is
more e�cient.
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Figure 12: The detection probability.

The detection probabilities P [F] of the planning strategy (Plan) and those of the
Non-planning strategy (NoPlan).

(a)� = 5. (b)� = 15. (c)� = 50.

8.2 Real Environments

Real experiments are performed using the Laser Eye and the ARK robot. The search region (Figure
13) is a part of the Vision Lab of Department of Computer Science at University of Toronto. The
task is to search for a white baseball within this region. This task contains three subtasks: sensor
planning, hardware manipulation and object recognition. The sensor planning component is inu-
enced by the object recognition component |{ di�erent object recognition algorithms correspond
to di�erent sensor sequences. Since our intention here is to test the sensor planning strategy rather
than solving the object recognition problem, we use a simple recognition algorithm to locate the
baseball within an image. Four threshold criteria are used in the recognition algorithm: intensity
I0, blob size Bmin; Bmax, and roundness percentage R0. The steps of the recognition algorithm are
as follows:

1. Generate a binary image from the camera's grey image using a threshold. Pixels with intensity
value bigger than I0 receive intensity value 255. Pixels with intensity value less than or equal
to I0 receive intensity value 0.

2. Perform morphological operations on the image resulting from Step 1: �rst erosion then
dilation.

3. Perform region growing on the output image from Step 2 and label white blobs.

4. Calculate the center and size (number of pixels) of each blob.

5. According to the center and size from Step 4, calculate the corresponding circle with respect
to each blob (i.e., the circle that has the same center as the blob and contains the same
number of pixels as the blob), and calculate the percentage of the blob that falls into the
circle.

6. If a blob size is between Bmin and Bmax, and more than R0 percent of its pixels fall within
the calculated circle, then this blob is taken as an image of the ball.

The �rst experiment uses the Laser Eye (the mobile platform is not involved) to test the
\where to look next" strategy. In the experiment, the parameters for the threshold are: I0 = 119,
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Figure 13: The search region.

(a) The con�guration of the search environment (size 6m � 5:5m � 2:5m). Table
surfaces are labeled A, B, C, and E. The Laser Eye is at the position F of table E. D is
a region on the oor. (b) Composite image of the region from position G of (a).

Bmin = 250 pixels, Bmax = 1375 pixels, and R0 = 91% respectively. The Laser Eye is at F on table
E (See Figure 13)(a)). We give the surface of table A, the surface of table B, and the surface of
table C high target probability distribution at the beginning. The target is on table C.

First, we select the necessary angle sizes that must be used to examine the whole depth of the
environment. We take the biggest angle size of the hardware < w0; h0 >=< 41o; 39o > as the
�rst angle size. The e�ective ranges for this angle size are obtained by experiments. The nearest
distance for which the blob size is smaller than Bmax is the value of N0. The farthest distance
for which the blob size is bigger than Bmin is the value of F0. We experimentally determined the
e�ective range for w0 � h0 as N0 = 1:47m, F0 = 3:01m. From equations (26), (27), and (28), we
obtain the next e�ective angle size as 20:7o� 19:7o, and the next e�ective ranges are N1 = 3:01m,
F1 = 6:16m. The output of the recognition algorithm is listed below in Table 2.

Blob Size Percentage Blob Size Percentage

N0 1366 pixels 93:56% N1 1332 pixels 91:14%

F0 273 pixels 91:58% F1 271 pixels 90:77%

Table 2: The output of the recognition algorithm.
From Table 2 we can see that the values of the blob size for the �rst angle at N0 and F0 are

quite close to the values of the blob size for the second angle at N1 and F1, respectively. The
process of running the recognition algorithm for angle size < w0; h0 > at distance N0 and angle
size < w1; h1 > at distance N1 are shown in Figure 14.

Figure 15 shows experimental result of our search strategy. Figure 15(a) shows the sensed
sphere constructed by the Laser Eye. Figure 15(b)(c)(d) are the top actions selected by our
algorithm. The angle size for the �rst action is 41o � 39o, and the angle size for the second and
third actions is 20:7o � 19:7o. Although the baseball appeared in the �rst image, the algorithm
failed to detect it because it is outside the e�ective range of the action. The third action detects
the target.

Note that the initial target distribution has a great inuence on the performance of our sensor
planning system. The reason is that the probability distribution is used to guide the sensor planning
process. The more accurate is our knowledge about the initial distribution, the more e�cient is our
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Figure 14: The e�ective range testing.

(1a) The image when angle size is w0 � h0. Target is 1.47m from the camera. (1b)
The resultant binary image. (1c) The image after the morphological operation. (1d)
The �nal result: target is detected. (2a) The image when angle size is w1 � h1. Target
is 3:01m from the camera. (2b), (2c), (2d) The recognition process applied to the image
in (2a).

algorithm. We have performed experiments to examine the inuence of the initial knowledge on
the e�ectiveness of our sensor planning strategy. Experimental results are listed in Table 3 as the
average number of actions needed to bring the ball into the e�ective viewing volume of the camera
for planning and non-planning strategies. For example, the data in the second column refers to
the situation when the target is on table A. Then the number of actions needed to bring the ball
into the e�ective volume of the camera is 1 when we give the table surface A a high probability
distribution. The number of actions needed to bring the target into the e�ective volume of the
camera by using Non-planning strategy is 8. The number of actions needed to bring the ball into the
e�ective volume of the camera is 7 when we give the table surface C a high probability distribution
(Note: the target is on A). Similar explanations can be applied to other columns of the table.

From the second and third row of Table 3, we can see that the planning strategy is much more
e�cient when our knowledge about the distribution is reasonable at the beginning. From the fourth
row of Table 3 we can see that the performance of the planning strategy is not very satisfactory
when we have the misleading information at the beginning.

26



(a) (b) (c)
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Figure 15: Where to look next experiment.

(a) Sensed sphere from Laser Eye. (b), (c), (d) The �rst three image sequences of
the real experiment by using our planning strategy. (e) The image of (d) after region
growing. (f) The result of the image analysis of (e), where the target is detected.

Target Pos. A B C A or B A or C A, B or C

Plan(correctknowledge) (A)1 (B)1 (C)1 (AB)1.5 (AC)1.5 (ABC)2.5

No Plan 8 9 10 8.5 9 9

Plan(incorrectknowledge) (C)7 (A)8.5 (B) 11.5 (C)6 (B)9 (C)4.3

Table 3: The comparison of planning strategy and non-planning strategy
A second experiment is used to test the whole sensor planning strategy. This time, we use the

ARK robot. The con�gurations of the camera on the robotic head is di�erent from that of the
previous camera. The recognition algorithm is the same as that of the previous experiment, except
that the threshold for the parameter values are di�erent. Here we use I0 = 110, Bmin = 170 pixels,
Bmax = 5500 pixels, and R0 = 0:91. The �rst viewing angle size is: w0 = h0 = 30o. The e�ective
range is, N0 = 1m, F0 = 5:5m. The outputs of the recognition algorithm are: Blob Size |{ 5478
pixels for N0 and 171 pixels for F0; Percentage |{ 92:37% for N0 and 94:74% for F0. Before the
search process, we give the table top B, table top C, and the oor region D high probability of
presence. The real position of the baseball is within the regionD. When the probability of detecting
the target is less then 0:0065, the robot is required to change the position.

Initially, the robot is at position (1:6m; 2:9m) (P1 of Figure 13). For this position, one angle
size is su�cient. The sensed sphere constructed by the real laser at P1 is shown in Figure 16.

Table 4 lists the actions selected by the algorithm and the corresponding detection probabilities.
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Figure 16: The sensed sphere constructed by the robot.

(a) (b) (c) (d)

Figure 17: Actions at the �rst position.

The four actions generated by the sensor planning algorithm. Images are shown for
(a) tilt = 1:801100 and pan = 0:000000. (b) tilt = 2:315700, pan = 5:655361. (c)
tilt = 2:315700, pan = 4:948441. (d) tilt = 1:286500, pan = 5:366405.

Tilt Pan Probability of Detection

1:801100 0:000000 0:037403

2:315700 5:655361 0:036140

2:315700 4:948441 0:036654

1:286500 5:366405 0:006105

Table 4: The actions selected by the algorithm and the corresponding detection probabilities.
Figure 17 shows the four images taken by the head according to the four actions listed above.

We can see that the �rst action examines table C, the second and third actions examine table
B. The fourth action simply points upward, and none of the speci�ed regions is examined. The
probability of detecting the target by the fourth action is very low, because none of the high
probability regions is brought into the e�ective volume of the camera. No action is selected to
check region D, because D is occluded by the o�ce wall.

Since the probability of detection of the last action is 0:006105, which is less than 0:0065, the
robot will quit the \where to look next" process and begin the \where to move next" process.
The candidate positions are those for which x = 0:1m, 0:6m, 1:1m, : : :, 6:1m and y = 0:1m,
0:6m, 1:1m, : : :, 5:6m. Figure 18 (a) shows the probability of the expected sensed sphere for each
reachable candidate position. Among them, the position (4:6m; 3:6m) (P2 in Figure 13(b) has the
maximum probability. Figure 18 (b) shows the expected sensed sphere for position (4:6m; 3:6m),
where the white points represent the calculated intersecting points of the emanating lines from the
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Figure 18: Where to move next.

(a) The probability of presence for each reachable candidate position, the brighter
the pixel intensity, the higher the probability. (b) The expected sensed sphere at position
(4:6m; 3:6m) by only considering the boundary of the search region. (c) The expected
sensed sphere after constraining using the solid cubes. (d) The real sensed sphere con-
structed at the position (4:6m; 3:6m).

(a) (b) (c) (d)

Figure 19: Actions at the second position.

(a) The image of the �rst action. (b) The generated binary image. (c) The image
after the morphological operation. (d) The �nal result: the target is detected (blob size
is 372, percentage is 91:40%).

camera center and the boundary of the search region. Figure 18(c) shows the sensed sphere when
constrained by the solid cubes at this position, where the white points represent the calculated
intersecting points of the emanating lines from the camera center and the environment after up-
dating the radius using solid cubes. When the robot drives to the next position (4:6m; 3:6m), it
constructs the sensed sphere and repeats the search process. Figure 18(d) shows the sensed sphere
constructed by the robot, where the white points represent the intersections of the real environment
and the laser beams emanating from the camera center.

At the new position, the robot begins the search process again. The �rst action is: tilt =
2:315700 (radian) and pan = 3:534601 (radian). This action �nd the target. Figure 19 shows the
image of this action and the image processing results.

It is interesting to note that the performance of the object recognition algorithm has a great
inuence on the sensing strategy of the search agent. Suppose we have applied an action and failed
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to detect the target. If the recognition algorithm has high detection ability, then the probabilities of
those cubes within the e�ective volume will drop greatly as a result of probability updating. Thus,
there is less tendency that the corresponding region will be examined again from other viewpoint.
If the recognition algorithm has low detection ability, then the probability updating will have less
inuence on the probabilities within the e�ective volume, and this region will have more chance to
be examined again from other viewpoint.

9 Conclusion

An interesting phenomenon of most past computer vision research is that the purely theoretical
side of computer vision is heavily emphasized. Consequently, many theoretical results cannot be
applied to real situations, because they are obtained by making unrealistic assumptions. We think
it is bene�cial to put more emphasis on the \task oriented vision" framework as an alternative
to the classic reconstructionist paradigm. For this new framework, the vision system is just one
component of the agent embedded in the world, and it should provide only the minimum perceptual
functionality the agent needs to perform whatever it is doing at the moment.

Object search is a typical task for this new framework. For this task, the vision module involved
is object recognition. In order to �nd the target, the agent has to purposefully change the sensing
parameters so as to bring the target into the �eld of view of the camera and to make the image
of the target easily recognized by the available recognition algorithms. The study of the object
search task may generate insight into existing vision problems. For example, the problem of object
recognition may be less di�cult when the image is intelligently grabbed by a controlled camera
and the image analysis is interpreted within speci�c contexts. Research shows that the object
recognition problem can be simpler if the camera is intelligently controlled [58]. Of course, the
simplicity obtained in the image analysis phase is at the cost of the complexity encountered in the
camera controlling phase. Much work has been done on image analysis. It is now time to study
the problems related to the control of the camera. This is one reason why the sensor planning task
for object search should be studied and comprises one of the motivations of this paper.

In this paper, we study the problem of sensor planning for object search from both the aspect of
theory and that of practical implementation. By introducing the concept of a detection function for
the object recognition algorithm and the concept of a probability distribution for the target within
the search region, we formulate the sensor planning task as an optimization problem: the goal is
to maximize the probability of detecting the target within a given time constraint. By analyzing
the formulation of the problem, we obtain some important properties of this task and �nd that
this task is NP-complete in general. In order to make the problem tractable, we propose to use the
greedy strategy, and point out that under some special conditions this strategy may generate an
optimal answer. By considering the detection ability of operations, we are able to decompose the
enormous space of possible sensing actions into a limited �nite set of actions that must be tried, thus
greatly reducing the complexity in the action selection process. Various simulation experiments and
real experiments have been performed based on our strategy. Experimental results show that our
strategy is more e�cient than those strategies with �xed action sequences (non-planning). It is
interesting to note here that Wixson [60] has examined the \where to move next" problem in 2D
situations by simulation and concluded that simpler model-free methods can �nd objects without
signi�cantly more e�ort than a map-based method. His result does not contradict our result because
the probability distribution is not considered in his experiments.

Our theory has been applied using the ARK robot and the Laser Eye. Experiments so far have
been successful as a proof of concept. A future direction is the design of a search strategy when the
target is able to move. In this case, the probability updating process will be much more complex.
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Because we have to consider not only the inuence of actions on the probabilities of the region,
but also the inuence of the movement of the target on the probabilities of the region. Another
direction of research is the design of a search strategy when several robots are available.

A The Complexity of the Sensor Planning Task

Complexity level analysis of robotics and vision problems is important because it can reveal basic
insights into the structure of the problem and delimit the space of permissible solutions in a formal
and theoretical fashion. In this section, we �rst pinpoint some important properties of the task and
then outline the proof that the sensor planning task is NP-complete.

From the de�nition of the sensor planning task, we can see that the probability of detect-
ing the target by an e�ort allocation is represented by a complex formula with many interme-
diate probability distributions p(c; �). Since this distribution is updated every time an action
is applied, it is hard to see any regularities in the expression P [F] de�ned above. Suppose
p(c1; �0);p(c2; �0); : : : ;p(cn; �0);p(co; �0) represent the initial probability distribution, P (fi; �0) =Pn

j=1 p(cj; �0)b(cj; fi) represents the probability of detecting the target by applying the action fi
when no action has been applied before.

If we can obtain a general expression of the target distribution at any time during the search
process, then we are able to �gure out how the distribution changes as a result of action applications.
This might simplify the computations of the probability updating process. In Lemma 1, we give
such an expression.

Lemma 1 Suppose hf1; : : : ; fki are the ordered actions applied during the search process, then the
resulting target probability distribution is given by:

p(c; �k) = p(c; �0)
[1� b(c; f1)][1� b(c; f2)] : : : [1� b(c; fk)]

[1� P (f1)][1� P (f2)] : : : [1� P (fk)]
; (35)

where p(c; �k) gives the probability for cube c after actions hf1; : : : ; fki are applied.
When k = 1, the above gives the calculation needed to update the target distribution after

an action is applied. The cost to calculate P (fk) is at most n, because we only need to consider
those cubes that is within the �eld of view of f . The updating process for all the cubes within
the environment takes n + 1 computations. Thus at most 2n operations are needed to update the
environment.

For a given robot position, the probability updating process can be further simpli�ed by only
updating the probabilities of those cubes that is within the current sensed sphere. The probability
updating process for cubes outside current sensed sphere can be postponed until the robot has
�nished searching at the current position. The following gives the reason. For cubes outside the
current sensed sphere, since its detection function value is 0, we can get the updating rule as
following:

p(c; �k) =
p(c; �0)

[1� P (f1)][1� P (f2)] : : : [1� P (fk)]
(36)

Thus, we only need to keep a record of P (fi) for each unsuccessful action fi. When the robot
decides to move to another position, we then update the probabilities for those cubes that is outside
the current sensed sphere according to Formula 36.
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If we can represent P [F] just by the initial probability distributions, we might gain some insight
and deeper understanding of the properties of P [F]. The following lemma illustrates this idea.

Lemma 2 For a given allocation F = ff1; : : : ; fqg, we have

P [F] =
qX

i1=1

P (fi; �0)

+(�1)2+1
X

1�i1<i2�q

� X
c2
(fi1 )

T

(fi2 )

p(c; �0)b(c; fi1)b(c; fi2)
�

+ : : :

+(�1)r+1
X

1�i1<i2<:::<ir�q

� X
c2
(fi1 )

T

(fi2 )

T
:::
T


(fir )

p(c; �0)b(c; fi1)b(c; fi2) : : :b(c; fir)
�

+ : : :

+(�1)q+1
� X
c2
(f1)

T

(f2)

T
:::
T


(fq)

p(c; �0)b(c; f1) : : :b(c; fq)
�

(37)

where 
(f) = fc j b(c; f) 6= 0g is called the inuence range of action f , which gives the region such
that the detection function value of f is not zero (that is, it is possible for f to detect the target if
the target center is within the region). See [64] [61] for proofs.

From Lemma 2 it is easy to see that P [F] is not inuenced by the order of the applied ac-
tions. This result agrees with common knowledge, because for a given set of actions, the expected
probability of detecting the target should be the same regardless of the order of applications. For
example, if we have 3 actions f1, f2, f3 and the following are two orders of their application: (A)
f1 ! f2 ! f3; (B) f3 ! f1 ! f2. Suppose sequence (A) detects the target, then at least one of
them detects the target. Not losing generality, let it be f1. Suppose f1 = f(xc; yc; zc; p; t; w; h; a).
Then the event f1 of (A) detects the target implys that when the camera position is (xc; yc; zc), the
camera viewing direction is p; t, the camera angle size is w; h, and the recognition algorithm is a,
the target will be detected. This de�nitely implys that f1 of (B) also detects the target. Which
means that sequence (B) detects the target. Similarly, if sequence (A) can not detect the target, so
cannot sequence (B). Thus, sequence (A) and sequence (B) have the same chance of detecting the
target. Therefore, the expected probability of detecting the target is same regardless of the order
of applications.

As a direct result of Lemma 2, we have the following lemma which can be used to prove that
the sensor planning task is NP-complete.

Lemma 3 For an allocation F = ff1; : : : ; fqg, if we restrict the available actions such that no cube
belongs to any two inuence ranges, i.e., 
(fi)

T

(fj) = ; for i 6= j, then P [F] can be calculated

by the following:

P [F] =
qX

i=1

P (fi; �0) (38)

To prove that the sensor planning task for object search is NP-complete, we �rst change the
maximization problem into the equivalent decision problem. It is obvious that the resulting problem
belongs to NP. After restricting the resulting problem by only allowing instances in which any two
available operations do not have common inuence range, we are able to prove that the restricted
problem is equivalent to the KNAPSACK problem. Thus sensor planning for object search task
is NP-complete. Please refer to [64] [61] for detail.
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B Properties of the Greedy Strategy

In some situations, the simple greedy strategy may even generate optimal answers. By using Lemma
3, we can prove the following result.

Lemma 4: Suppose the available operations O
 = ff1; f2; : : : ; fqg satisfy:
(1) to(f i) = to(fj), 1 � i; j � q.
(2) 
(fj)

T

(fi) = ;, 1 � i; j � q; i 6= j.

Then, the above greedy strategy generates optimal answer.
It is interesting to note that the greedy strategy can sometimes minimize the expected time to

detect the target. For a given e�ort allocation F = ff1; : : : ; fkg, the expected time to detect the
target by applying F is de�ned as

�[F] = t(f1)� P (f1)

+
�
t(f1) + t(f2)

�
� [1� P (f1)]P (f2)

+ : : :

+
�
t(f1) + : : :+ t(fk)

�
� f

k�1Y
i=1

[1� P (fi)]gP (fk) (39)

For �[F] de�ned above, we have the following result.

Property 1 For a group of actions ff1; : : : ; fqg, if there is no cube belonging to any two action
ranges: 
(fj)

T

(fi) = ;, if i 6= j, then the application order of the actions selected by our strategy

minimizes the expected time of detecting the target with respect to this group.

Please refer to [61] for proofs.
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