

DualKey: Miniature Screen Text Entry via Finger
Identification

Aakar Gupta

University of Toronto

Toronto, Canada

aakar@dgp.toronto.edu

Ravin Balakrishnan

University of Toronto

Toronto, Canada

ravin@dgp.toronto.edu

ABSTRACT

Fast and accurate access to keys for text entry remains an

open question for miniature screens. Existing works

typically use a cumbersome two-step selection process, first

to zero-in on a particular zone and second to make the key

selection. We introduce DualKey, a miniature screen text

entry technique with a single selection step that relies on

finger identification. We report on the results of a 10 day

longitudinal study with 10 participants that evaluated speed,

accuracy, and learning. DualKey outperformed the existing

techniques on long-term performance with a speed of 19.6

WPM. We then optimized the keyboard layout for reducing

finger switching time based on the study data. A second 10

day study with eight participants showed that the new

sweqty layout improved upon DualKey even further to

21.59 WPM for long-term speed, was comparable to

existing techniques on novice speed and outperformed

existing techniques on novice accuracy rate.

Author Keywords

Text entry; wearable; smartwatch; finger identification.

ACM Classification Keywords

H.5.2 Information interfaces and presentation: User

Interfaces – Input Devices and Strategies.

INTRODUCTION
As wearable devices such as smartwatches, fitness bands

and smart bracelets become ubiquitous, their miniature

screens pose a challenge for interface designers for even

common tasks like text entry. When the keys are in a full

qwerty layout, the extremely small keys coupled with the

fat-finger problem makes efficient text entry difficult.

Prior work [4,16,23] has tackled this by making the text-

entry interaction a two-step process. In the first step, the

user typically zooms in or scrolls to a particular zone on the

keyboard which reduces the number of keys on the screen,

followed by key selection in the second step. While the

techniques show impressive improvement over standard

qwerty, the two-step interaction is cumbersome. Further, the

best performing techniques [4,16] use swipe gestures as a

way of discerning user intent on the miniature screen.

Swipe or slide gestures are also used for shape writing [30]

on regular soft keyboards. It is common to see people use

both character-by-character entry and shape writing in

conjunction, often in the same phrase. However, the use of

swipe gestures for character-by-character entry precludes

the possibility of shape writing on the proposed keyboards.

The question we explore is how to make the keys

effectively bigger without expanding upon the number of

steps or gestures beyond finger tapping? One potential

solution to both is to make the touchscreen sensitive to

finger identity when the tap hits the screen. Although there

are no market-ready technical solutions, multiple promising

threads of research [2,15,21] have demonstrated the

feasibility of finger identification in larger scale systems

like the tabletop. It is reasonable to expect that techniques

for finger identification will eventually become viable for

smaller screen devices, and hence it is worth exploring now

if it is worthwhile using finger identification to improve the

text input experience on small screens.

We propose DualKey – a solution to efficient text-entry on

miniature screen devices using finger identification.

DualKey eliminates the need for a two-step selection

process, plus it does not require any swipe gestures for

character-by-character entry. DualKey has a qwerty layout,

but with half the keys of a full layout (Figure 1). Every key

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. Copyrights for components of this work owned by
others than the author(s) must be honored. Abstracting with credit
is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
CHI'16, May 07 - 12, 2016, San Jose, CA, USA
Copyright is held by the owner/author(s). Publication rights licensed
to ACM.
ACM 978-1-4503-3362-7/16/05…$15.00
DOI: http://dx.doi.org/10.1145/2858036.2858052

Figure 1: DualKey (a) Index finger types ‘ty’ key’s left letter

‘t’ (b) Middle finger types ‘ty’ key’s right letter ‘y’

http://dx.doi.org/10.1145/2858036.2858052

corresponds to two characters, each character associated

with a different finger. The left character on a key

associates with the index finger, and the right associates

with the middle finger. Typing ‘the’, for instance, would

require the user to tap the keys ‘ty’, ‘gh’, and ‘er’ with the

index, middle, and index finger respectively. Prior research

on single finger tapping [6] has shown that users are more

comfortable, fast, and accurate when using their index or

middle fingers as compared to the other fingers. We built a

finger identification prototype for evaluation that has an

accuracy of 99.5% on smartwatch scale touchscreens,

implemented the DualKey technique using it, and ran two

studies to evaluate its effectiveness.

RELATED WORK
Finger Identification

Prior work on finger identification either tackles the

technical problem of identifying fingers or the potential

interactions that result from identifying fingers. Sensing

methods for finger identification on touchscreens include

muscle sensing [2], gloves with fiduciary tags [21], and

color markers [11]. Further, user touch authentication

technologies use optical fingerprinting [15], capacitive

coupling [8] or capacitive fingerprinting [13]. Most of these

techniques are demonstrated for tabletops. Some, notably,

fingerprinting and muscle sensing, hold promise for future

miniaturization. Recent efforts by Apple and others [27,29]

on embedding fingerprinting into displays show

commercial interest in this space. Other techniques use a

fixed orientation of the hand on the touchscreen to initialize

a finger mapping [1,28], or use vision [10]. However, these

techniques do not actually identify fingers and only work

with multitouch gestures where the relative position of the

fingers makes it known which finger is which.

Multiple works enrich finger input on smaller touch screens

by detecting nuanced attributes like finger pressure [24],

shear force [12], thumb touch size [3], nails and knuckles

[14], and areas of the finger pad [17]. The exploration of

interactions utilizing finger identification, however, is

limited [2,7,10,11,21,26]. A popular use case is using

different fingers to signal different modes or buttons –

cut/copy/paste, menu shortcuts etc. [2,25,26]. Also

suggested, is using fingers as containers for URLs [26],

copied items [2], and brush colors [21]. Finger-specific

chording has been used for multi-step commands [11],

mixing brush colors [21], and a virtual mouse [10].

The above described works either explore finger detection,

or propose interactions that use finger identification, or in

some instances do both. However, there are no end-to-end

applications based on robust finger identification that have

been evaluated for performance using a working prototype.

There is a lack of compelling investigation into how these

interactions can be uniquely ingrained in applications, and

how their performance can show improvements over basic

finger interactions, if any. DualKey fills this gap and hopes

to fuel the conversation on finger identification interactions.

Miniature Screen Text-Entry

A lot of work has been done in text-entry for smartphones.

These techniques, however, do not translate well for

miniature devices like smartwatches whose size makes it

impossible to have 26 unambiguously accessible keys.

Text-entry for this form factor has recently been addressed

in multiple works [4,5,9,16,18,23]. They study typing

performance in terms of speed (words-per-minute WPM),

uncorrected error rate (UER), and total error rate (TER)

which includes corrected and uncorrected errors. GPC

refers to gestures-per-character – which indicates how

many gestures (or taps) it takes, on average, to type a

character. GPC includes space bar and has been estimated

for all techniques [16] using the 500 phrase-set [20].

Zoomboard [23] uses a two-step tapping technique, to first

zoom into the desired region, followed by selecting the key.

With two taps for every character, besides space,

Zoomboard had a GPC of 1.85. Zoomboard’s speed after

~15 minutes of use on a smartwatch was 9.8 WPM with a

TER of 7.1% [16]. As a baseline, standard qwerty achieved

13.7 WPM with a whopping 21.2% TER. Zoomboard was

the first text-entry technique dedicated to miniature screens,

but its performance was surpassed by later techniques.

Splitboard [16] splits the keyboard into left and right

sections and shows one of these sections on the display at a

time, with the user required to swipe left or right to get the

desired section. With two columns of keys common to both

sections, Splitboard has a GPC of 1.28. After ~15 minutes

of use, Splitboard reported a speed of 15.3 WPM and a

TER of 7.35%. Splitboard did not report a significant effect

of blocks on speed and was not evaluated long-term beyond

initial use. Given the simplicity of the technique, there

doesn’t seem to be an argument that performance might

improve significantly over long term use.

Swipeboard [4] has a GPC of 2 and is based on zooming-in

where the first swipe leads to 1 of 9 designated regions and

the second swipe selects the key. It relies on a training

protocol to maximize learning and reports a text entry speed

of 19.5 WPM after ~2 hours of training, with an error rate

of 17.48% for the whole experiment (including hard and

soft errors [4]). While the keyboard size is smaller than the

smartwatch form factor, it does not account for the errors as

the technique is not based on precise key selection, but on

memorization and performing gesture-pairs on the layout.

The reported speed of text-entry accommodates this error

rate by allowing for corrections. However, the high error

rate is still a significant cause of concern because, in

practice, this effectively means that 1 in 5 characters is

typed wrong. This changes the dynamic of the text-input

task: instead of a user typing relatively fluently with

occasional glances at the output text area, here, she has to

constantly focus at the output text and intermittently keep

correcting the input. Further, Swipeboard did not use the

standard experimental protocol of phrase entry. Instead, a

single four letter word drawn from a limited word-set made

up of only five characters E, T, A, N, and S, and no others

was entered. The authors acknowledge that these deviations

from standard protocol artificially accelerate novice-expert

performance growth. However, this does not provide an

accurate representation of the expert performance of the

technique. The results could vary on a longitudinal text-

entry study with phrases derived from common language.

Considering the highly reduced word-set, the initial

performance of Swipeboard at the end of ~15 minutes of

practice was low at 9.09 WPM. This is due to the emphasis

on memorization of two-step gestures for every letter.

Other proposed techniques [5,9,18] are either slower or less

accurate than the aforementioned or are not evaluated for

performance. Flick input is used in Japanese keyboards to

select different characters on the same key based on the

flick gesture. Hong et al. [16] evaluated a form of flick

input called Slideboard and found that Splitboard

outperformed Slideboard. A potential direction of work in

this space is related to keyboards that allow ambiguous

input and rely on a language model and a miss model for

predicting the word [19]. However, our work is focused on

per-character entry, which is not supported by such key-

boards. No reports have been published on the performance

of such keyboards on small screens. While language models

are an important part of today’s text entry systems, per-

character entry is supported by all popular soft keyboards. It

allows entering words not in the lexicon, an ability which is

routinely used by users not just for English conversations,

but also conversations in other languages that are typed in

English. For instance, Hindi speakers simply type Hindi

words in English which are not present in the dictionaries.

In summary, while existing works have advanced the topic

of smartwatch text-entry, there are multiple issues: Firstly,

all techniques follow a two-step selection process, with a

GPC > 1. Secondly, besides Zoomboard which has a slower

performance, all techniques utilize swipes which precludes

shape writing on the keyboards. Thirdly, the best

performing techniques either have low peak performance or

have high entry barriers. Splitboard was not evaluated

beyond initial use and the data suggests that its performance

plateaus quickly at 15 WPM. Swipeboard has a high error

rate, low initial speed, and a very high entry barrier due to

the memorization requirements.

DUALKEY

DualKey has a GPC of exactly 1, relying solely on single

finger taps. It requires no swipe gestures, only taps, thus

allowing for the possibility of simultaneous shape writing

on the layout. The current prototype is built for a

smartwatch scale touchscreen. DualKey leverages the

distinction between the index and middle fingers to enable a

single finger tap for a character. Instinctively, simply

tapping the two fingers interchangeably on a smartwatch

feels comfortable. We developed a prototype that identifies

the finger touching the screen using an optical sensor, and

sends it to the keyboard app on the watch via Bluetooth.

Finger Identification Prototype

The finger tap is detected by the touchscreen. The prototype

then needs to identify the finger whose tap was registered.

We explored multiple techniques to identify index and

middle fingers distinctly – tracking individual finger

movement with optical markers, color markers, and leap

motion; capturing differences in finger motion with ringed

inertial motion unit (IMU) rings; and muscle sensing.

However, none of these approaches worked proficiently

within the constraints of our application requirements – a

high precision accuracy for miniature screens, minimum

instances of failure, low communication latency to the

watch, and unobtrusive instrumentation. After multiple

rounds of experimentation, we settled on our final working

design that uses a combined miniature photo-transistor and

optical detector sensor mounted on the index finger.

As shown in Figure 2, the sensor is connected to an

Arduino, which processes the sensor data and sends it to an

Android LG G smartwatch via a Bluetooth chip. The sensor

detects its distance from the touchscreen. It is mounted and

calibrated such that when the index finger touches the

screen, the distance value is noticeably lower than when the

index finger hovers over the screen. When the touchscreen

registers a touch, the system checks if the distance value is

low enough for the index finger to be touching. If not, the

system determines that the touch was made by the middle

finger. The single sensor performed well enough to discard

the option of a sensor on the middle finger as well. This

minimized instrumentation. An initial pilot with three users

showed that upon individual calibration, ~99.5% accuracy

was achieved. Each user typed in 25 phrases from 500

phrase-set [20]. However, the high accuracy is achieved at

the cost of certain usability constraints. Since the sensor is

mounted just below the finger pad, the users can only tap

the screen using their fingertips. This somewhat constrains

typing as the users cannot tap laterally with their finger

pads. Also, even the tiny sensor adds to screen occlusion.

Keyboard

Figure 1 shows the keyboard layout. The qwerty layout was

used to retain familiarity. Every key is associated with two

letters, with the left letter corresponding to the index finger

and the right letter corresponding to the middle finger. The

‘**’ key is a swap key which enables the user to swap the

letter just typed with its same-key counterpart. For example,

on the ‘er’ key, if a user intends to type ‘r’, but mistakenly

uses the index finger and types ‘e’, she can immediately

Figure 2: (a) Sensor mounted on finger (b) Hardware Setup

swap it to ‘r’ by using the swap key, instead of using

backspace and typing the character again. Swap key was the

result of an observation during pilot experimentation

wherein almost half the user errors were due to using the

incorrect finger on the correct key. The enter, space, and

backspace keys are at the bottom of the screen. Enter and

Space keys can be pressed with any finger. A middle finger

touch on the ‘Back’ key changes the keyboard layout to

enable access to numbers and special characters.

PERFORMANCE EVALUATION: DUALKEY QWERTY

A 10-day study was conducted to investigate the long-term

performance and learning curve of the technique. Since

using finger identification is an entirely new interaction

experience for the user, it is expected that initial

performance will start slow, and will improve over time

based upon how good the interaction technique is and how

easy the learning curve is, in the absence of any explicit

training. This makes it imperative to study this technique

longitudinally. Further, there is no prior work that informs

our understanding of input performance for finger

identification, which makes it all the more important to

investigate the learning curve of such interactions.

Participants

10 participants (9 male, mean age = 25.3) took part in the

study. Eight did the study for 10 sessions, one per day,

while two did the study for 15 sessions. Only one

participant was a native English speaker, while others

studied or worked in an English-speaking environment. All

participants were regular smartphone users. None of them

had experience with a smartwatch. All participants were

right-handed and wore the watch on their non-dominant left

hand. We did not account for left-handedness in the study.

Design

The study consisted of a series of sessions, one session per

day. In each session, participants typed 25 random phrases

sourced from Mackenzie et al’s phrase sets [20]. No phrases

were repeated, even across different sessions. The 25

phrases were divided up into five blocks with five phrases

each, with an optional break between blocks. Each session

lasted 6-15 minutes, depending on the participants’ speed.

Since speed improved over sessions, each participant went

through ~90 minutes of typing by the end of 10 sessions. To

explore if and when the performance plateaus, we extended

the run for two randomly selected participants to 15

sessions. The sessions ran on consecutive days, with breaks

during weekends. No breaks exceeded 2 days. Text-entry

speed in WPM, and error rates UER, TER were recorded.

As is standard, participants were instructed to correct their

mistakes as they went. If they did not detect the mistake

until several characters later, they were asked to ignore it

and continue. They were also asked to ignore system errors

caused by occasional incorrect finger detections. The exp-

eriment started after a calibration phrase. In total, ((8

participants x 10 sessions) + (2 participants x 15 sessions))

x 5 blocks x 5 phrases resulted in 2750 phrases entered.

Apparatus

The sensor was mounted on the right hand index finger pad

at a distance of ~10 mm from the fingertip. The experiment

ran on an LG G android watch with a 29.6 x 29.6 mm

touchscreen. Size of letter keys was 5.6 x 6.5 mm. The

presented phrase and the typed phrase were shown above

the keyboard area. Aside from the longitudinal aspect, our

study adhered closely to the study design and keyboard lay-

out used by Hong et al in their five-smartwatch-keyboard-

study [16], in order to aide in cross-study comparisons.

RESULTS
Text-Entry Speed

Figure 3 shows the mean WPM by day (including error

correction time). The steep curve over the first six days

(sessions) shows a substantial performance improvement,

followed by a slower improvement until the 10th day.

Figure 3: DualKey’s Mean Speed WPM by Day

Figure 4 shows the curve for the 2 participants who did 15

sessions. Their performance continued to improve even

after 10 days, with an average of 22.42 on the 15th day. This

is notable given that DualKey is not designed as an expert

technique which requires explicit training. The maximum

speed reached was 24.7 WPM at the last session for P1.

When considering speed of individual blocks, the maximum

speed reached was 26.6 WPM. Interestingly, P2’s curve

appears to plateau during days 6-11, but then starts

climbing again. This might suggest that DualKey’s expert

performance could potentially be even higher.

Figure 4: Speed of two participants P1 and P2 over 15 days

Error Rate

Figure 5 shows UER and TER by day. UER was low and

remained relatively constant throughout, in the 1-2% range.

This includes detection errors made by the system, which

are approximately 0.5%. For a perfect finger detection

system, UER, and consequently TER would be even lower.

Figure 5: DualKey’s TER, UER by Day

TER started out at 7.54%, eventually dropping to 5.26% on

the last day. Participants made more errors on the first day

and then stabilized for the rest of the days.

Comparison with Existing Techniques

Aside from GPC and swipe gesture use, we look at four

performance metrics: novice speed, long-term speed, novice

TER%, and long-term TER%. Novice performance refers to

performance for the last block in the first session which

equates to performance after ~15 minutes of practice. Long-

term performance refers to the performance at the end of

~90 minutes of practice. Even though we have mirrored the

smartwatch keyboards [16], it is not viable to compare these

metrics across studies with statistical techniques due to the

slight implementation differences between studies.

However, for comparisons where the difference is visibly

large, we can infer which techniques will potentially

perform better. We compare DualKey with Splitboard and

Swipeboard as they reported the best novice and long-term

speeds respectively, and with Zoomboard since it does not

require swipe gestures.

DualKey’s novice speed is 12.3 WPM. This exceeds the

equivalent speeds for Zoomboard (9.8 WPM) and

Swipeboard (9.1 WPM). It is lower than Splitboard’s 15.3

WPM. However, as mentioned earlier, Splitboard does not

suggest a learning effect and reaches its peak performance

early. No long-term study was conducted for Splitboard.

Swipeboard, on the other hand, recorded a long-term speed

of 19.58 WPM. Zoomboard was at 17.08 under the same

conditions. However, these speeds were achieved after

artificially accelerated learning. DualKey achieved a

comparable speed of 19.61 WPM after ~90 minutes of

practice under standard evaluation design. DualKey showed

even more improvement with 5 more days (~2 hours of

practice). Further, TERs of Swipeboard at both novice and

long-term stages are prohibitively high at >17%. DualKey’s

TER was 6.29% at the novice stage. This is comparable to

Splitboard’s 7.35%. Table 1 lays out these comparisons for

easy perusal. We’ll discuss the last row in the next section.

DualKey’s novice performance exceeds every other

technique barring Splitboard. Since finger identification

interactions are completely new for the user, an initial

inertia is to be expected. As we see in Figure 3, the

performance jumps sharply from Day 1 to Day 2, showing

that the first day inertia is quickly overcome. However, it is

important to understand what cause the initial inertia. We,

therefore analyzed the data in more detail to understand the

variables that negatively impact accuracy and speed.

FURTHER ANALYSIS OF ACCURACY AND SPEED
Analyzing DualKey Errors

To understand if it was too confusing for users to switch

fingers, we analyzed all corrected errors to see how many

were caused as a result of using the incorrect finger on the

correct key. Figure 6 shows this finger-switching error rate

(FER) besides the corrected error rate (CER). FER hovers

around 2.5%. Essentially, close to half of the corrected

errors were the result of the use of incorrect finger on the

correct key. Again, FER is highest on the first day.

Figure 6: Mean Corrected Error Rate (CER), Finger Error

Rate (FER), Swap-Correction Rate (SCR) over 10 days

Technique Uses Swipe GPC Novice WPM Long-term WPM Novice TER Long-term TER

Zoomboard No 1.85 9.80 17.08 ~27.5% 19.64%

Splitboard Yes 1.28 15.30 NA 7.35% NA

Swipeboard Yes 2 9.09 19.58 ~19.5% 17.48%

DualKey QWERTY No 1 12.31 19.61 6.29% 5.25%

DualKey SWEQTY No 1 14.69 21.59 5.67% 3.27%

Table 1: DualKey’s comparison with existing techniques. Swipeboard is italicized to indicate its accelerated evaluation design.

We further analyze how often the participants used the

swap key ‘**’ to correct these finger switching errors.

SCR% is the % of swap corrected errors. SCR tells us how

helpful the swap key was based on how frequently

participants used it to correct finger errors as opposed to

backspace and correction. Figure 6 shows that in initial

days, the swap key was infrequently used even when finger

switching errors were high. Less than a quarter of finger

switching errors were corrected using the swap key. This

usage considerably improves over time. Participants use the

swap key for more than half of the corrected finger errors

after the fourth day. We asked participants about this at the

end. Their responses indicate that initially they found it

difficult to give up their habit of using backspace. As they

used the swap key more, they found it easier to use.

However, even at the end, the swap key is still not used for

all finger switching errors. One participant commented that

it depended on the flow of corrections – if the previous

error was not a finger switching error, they would use

backspace corrections and so even on a finger-switching

error they would habitually go for the backspace key.

Analyzing DualKey Speed: Finger-Switching Time

In addition to movement and tapping time, the time taken to

type a character relies on the user’s swiftness in deciding if

the finger needs to be switched for the character, and then

in optionally switching the fingers if required:

𝑇 = 𝑇𝑑𝑒𝑐𝑖𝑑𝑖𝑛𝑔 + [𝑇𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔] + 𝑇𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 + 𝑇𝑡𝑎𝑝𝑝𝑖𝑛𝑔

In certain situations, switching + movement time could

actually be faster than when there is no switching – for

instance, when typing ‘k’ after ‘a’, the middle finger will

naturally be positioned close to ‘k’ after ‘a’ has been typed,

and the user simply needs to tap ‘k’ with minimal

movement. Depending on the deciding time, such a

situation could be faster than one where there is no

switching involved – to type ‘x’ after ‘i’, the user needs to

decide and then move to the other diagonal end of the

layout.

Consequently, we analyzed the time duration between two

characters with respect to their finger configurations. There

are four possible finger configurations for the index (I) and

middle (M) fingers – II, IM, MI, and MM. For instance,

typing ‘k’ after ‘a’, requires a switch from the index finger

to the middle finger, and therefore is in IM. The analysis

ignores the data points where space is involved because it

can be typed with any finger. It also ignores the first

character of the phrases.

Figure 7 shows the time duration between characters in

seconds for the four finger configurations. The finger

configuration has a significant effect on the time between

characters (F(3,297)=257.725, p<.001). Pairwise

comparisons found the difference in means between all

finger combinations to be significant (p<.001).

The participants were fastest in the II configuration, taking

the least amount of time by a large margin. Interestingly,

MM takes the maximum time, even without the need to

switch fingers. Further, IM takes longer than MI. In

summary:

𝑇𝐼𝐼 < 𝑇𝑀𝐼 < 𝑇𝐼𝑀 < 𝑇𝑀𝑀

While 𝑇𝐼𝐼 < 𝑇𝑀𝐼 is expected since 𝑇𝑀𝐼 involves switching

fingers, the reasons for 𝑇𝑀𝐼 < 𝑇𝐼𝑀 and 𝑇𝐼𝑀 < 𝑇𝑀𝑀 are not

immediately obvious. We examine them in more detail.

Figure 7: Mean time duration between characters for each of

the 4 finger configurations over 10 days. I - Index, M - Middle

𝑇𝑀𝐼 < 𝑇𝐼𝑀: The data effectively says that regardless of the

prior finger, it takes longer to type with the middle finger

than the index finger. This can be explained by the fact that

the middle finger is bigger, used less, and users have less

precise control over its movements which causes them to

spend more time to correctly position it over the right key.

𝑇𝐼𝑀 < 𝑇𝑀𝑀 : Even though switching is not involved, typing

with a middle finger when it follows another middle finger

takes longer. One explanation is found in the frequency of

occurrence of the MM finger configuration data points in

the complete data. Among the four configurations, MM’s

frequency of occurrence is half of the others: II: 30.5%, IM:

27.6%, MI: 27.8%, and MM: 14.1%. Participants

encountered the MM configuration less frequently than

others and so were less used to MM than IM which causes

the MM speed to be low. This hypothesis is confirmed by a

closer look at Figure 7. Initially, when the users had no

practice, both IM and MM start off at the same time

duration. As the users get more experience, they encounter

MM less frequently than IM, and the curves eventually

diverge after the second session.

While the finger configuration analysis is instructive and

promises to be useful for later optimizations, it admittedly

does not capture all aspects of user latency. As we stated

earlier, positioning of fingers with respect to the next

character has a bearing on movement time. We did a coarse

position-based analysis where we added another variable in

addition to the finger configuration: left and right halves of

the screen, assuming that moving to the other half of the

screen takes up time for the same finger. However, the

analysis did not yield significant results beyond what we

already knew from the finger configuration analysis.

The increasing order of time for finger configurations

indicates that if we maximize the instances of lower

duration finger configurations and minimize higher ones,

we can get an overall increment in speed. This will change

the keyboard layout from qwerty. The optimal layout will

assign the 26 letters to the index and middle fingers such

that the average time between characters is reduced to a

minimum. However, such a new assignment will mean that

we deviate from the familiarity of the qwerty layout for a

novice user. We perform an optimization of the keyboard

layout that accounts for both the optimal assignment of

letters to fingers and the closeness to qwerty, and results in

a final finger-optimal near-qwerty layout.

OPTIMIZATION

The optimization is performed in two steps:

I Optimizing the assignment of fingers to letters such

that the average time between characters is minimum.

II Optimizing the keyboard layout to be as close to

qwerty as possible for the optimized assignment of

fingers we get in Step I.

Step I: Finger Assignment Optimization

Procedure

Multiple participants remarked on the first day that they

found finger switching to be difficult and it required certain

mental effort to make the decision. They subsequently

reported that it became much easier after the first day, and

they were able to type more freely. During the middle

sessions, participants mentioned that they no longer had to

consciously think and type for several words. One

participant commented:

“You develop a rhythm with the fingers after some time

and now it does not feel that different from normal typing.”

However, to make DualKey more acceptable to users

initially, we need to reduce the decision-making effort, as

well as the time taken by finger switching. The analysis

reflects this in that the average time for different finger

combinations differed starting from the first day to the last

day (aside from MI and MM initially). We, therefore,

perform optimization such that the overall time between

characters is reduced based on these differences in finger

configuration time. Our aim is to find an optimal

assignment of letters to fingers such that the more frequent

letter pairs (bigrams) are associated with finger

configurations having lower time duration. To this end, we

define the following objective cost function:

𝑪𝒐𝒔𝒕 = ∑ ∑ 𝒇𝒊𝒋 × 𝒕𝒊𝒋

𝒛

𝒋=𝒂

𝒛

𝒊=𝒂

Here 𝑓𝑖𝑗 is the frequency of a bigram ij in the English

language corpus [22]; 𝑡𝑖𝑗 is the average time duration of the

finger configuration associated with the bigram ij. In effect,

𝑡𝑖𝑗 has only four possible values, the average time

durations: 𝑇𝐼𝐼 , 𝑇𝐼𝑀 , 𝑇𝑀𝐼 , 𝑇𝑀𝑀. For instance, both ‘th’ and ‘ef’

bigrams have the same 𝑡𝑖𝑗 = 𝑇𝐼𝑀 for the qwerty layout. The

cost function effectively calculates the normalized time it

would take for a user to type the entire English corpus if she

were to type every pair of letters in the time taken by that

finger configuration on average. To minimize the overall

time, the cost function needs to be minimized. For different

keyboard layouts, the same letter could be assigned to

different fingers, and consequently the same bigram will be

allocated to different configurations, thus giving different

cost outputs. For example, if a new layout is same as

qwerty, just with key er replaced by re, then all 𝑡𝑖𝑗

associated with e and r will change – for instance, qwerty’s

𝑡𝑒𝑓 = 𝑇𝐼𝑀 will be changed to 𝑡𝑒𝑓 = 𝑇𝑀𝑀 for the new

layout. However, two layouts can have equal cost functions

if finger assignment is same for every letter.

After optimization, we need the optimal assignment of

letters divided into two sets: SI & SM, such that the cost

function is minimized. For qwerty layout, the assignment is:

SI A B C D E G J L M O Q T U Z

SM F H I K N P R S V W X Y

Notice that optimization is not affected by the specifics of

the position of the letters on the layout, only in the

assignment of a letters to one of the fingers. There will be

multiple layouts that will satisfy the final assignments.

In the current DualKey layout, two keys have special

characters (; <) for their middle finger association.

Consequently, there are 14 slots for index finger and 12

slots for middle finger. We keep the positions of the special

characters fixed, keeping the number of index and middle

finger slots constant at 14 and 12. This will retain qwerty’s

number of letters per row and simplify the analysis.

The four 𝑡𝑖𝑗values used for optimization are the individual

average values, 𝑇𝐼𝐼 , 𝑇𝐼𝑀 , 𝑇𝑀𝐼 , and 𝑇𝑀𝑀 over all 10 sessions:

.581, .765, .691, and .831 respectively. For an assignment

of 26 letters into groups of 14 and 12, there are total 26C14

possible combinations that need to be evaluated. We wrote

a matlab script that gave the optimal assignment of letters to

fingers with the least value of the cost function.

The simplification of time taken between a bigram to the

time taken by its finger combination admittedly does not

capture the individual key level times. However, finger

configuration is a significant contributor to a bigram’s time

and while the optimization’s predicted values may not

exactly replicate in practical use, it should certainly impact

the speed positively and lessen decision-making effort.

Results

The baseline value of the cost function for the qwerty layout

is .7006s. The globally optimal assignment is as follows:

SI
o A C D E H I L M N O R S T U

SM
o B F G J K P Q V W X Y Z

The corresponding optimal value of the cost function is

.6148s. This is a 12.25% improvement over qwerty’s

.7006s. This implies that theoretically this assignment

should increase the speed of DualKey by 12.25%. As a

comparison, we ran the optimization for maximizing the

cost function to get the worst possible assignment sets. The

resultant cost value was .7952. The difference between the

best and worst times is in a narrow range and qwerty lies

somewhere in the middle.

Looking closely at the assignment sets, we see that the

letters assigned to the index finger are mostly high

frequency letters, E, T, A, etc. whereas the middle finger

assignments are low frequency letters X, J, Q, Z etc. In fact,

a closer look reveals that SI
o contains the top 14 English

letters by frequency [22], and SM
o contains the bottom 12.

This fits in perfectly with the notion that with the highest

frequency letters associated with the index finger, users

would need to switch to the middle finger rarely, thus

reducing the MM, IM, and also MI configurations and

increasing II configurations. Using the frequency table

[22], we see that the optimal assignment results in 86.5% of

the taps being made by the index finger.

Our optimization algorithm was designed to minimize the

time taken between characters. To see how would an

optimization based on minimizing the number of finger

switching instances would perform, we ran another

optimization with the same cost function, but with 𝑡𝑖𝑗

replaced with 𝑏𝑖𝑗:

 𝑪𝒐𝒔𝒕𝒔𝒘𝒊𝒕𝒄𝒉𝒆𝒔 = ∑ ∑ 𝒇𝒊𝒋 × 𝒃𝒊𝒋

𝒛

𝒋=𝒂

𝒛

𝒊=𝒂

Here, 𝑏𝑖𝑗 is a binary variable with a value 1 for IM and MI

configurations and 0 for II and MM. This reduces finger

switching regardless of individual time taken. Not

surprisingly, the optimization resulted in the exact same

optimal assignment sets. The cost of switching for qwerty

was .5792, which implied that on average, to type the

English corpus, the number of finger switches required

would be .5792 per bigram or one switch for every second

bigram. The optimal cost value came out to be .2220, which

is an improvement of 61.7%. The number of finger

switches is reduced to less than one switch for every four

bigrams. This is a sizeable reduction in the number of

finger switches the user has to deal with, thus lessening the

decision-making effort. While theoretically, the speed

should improve by 12.25%, the potential reduction in

decision-making effort should also impact participants’

speed positively, improving the speed even further.

The new assignment sets mean that the layout can no longer

be qwerty. This could impact the initial performance of

users who are habituated to soft qwerty keyboards. Our

optimization, though, only results in optimal assignment

sets and not a fixed keyboard layout. Consequently, we

perform a layout optimization that resulted in a keyboard

layout which was closest to the qwerty layout amongst all

the eligible layouts for the optimal assignment set.

Step II: Nearest-qwerty Layout Optimization

Procedure

With 14 letters assigned to the index finger, and 12 to the

middle finger, there are 14!x12! = 4.1E+19 eligible layouts

for the optimal assignment set. SI
o and SM

o were optimized

individually over their 14 and 12 slots.

A keyboard is considered near to qwerty based on the

distances of the positions of all letters in the new layout

from their positions in qwerty. The coordinates were

assigned to the 26 slots in the following manner: The first

top-left slot is assigned (x, y) = (0, 0) and the x-coordinate

increases by 1 for every move to a slot on the right. The y-

coordinate similarly increases by 1 for every move to a slot

below. For instance, for the qwerty layout, q has

coordinates (0, 0), p has (9, 0), and m has (6, 2). The

distance of a letter in layout L from its position in the

qwerty layout Q is defined as:

𝒅𝑳𝑸
𝒊 = √((𝒙𝑳

𝒊 − 𝒙𝑸
𝒊)𝟐 + (𝒚𝑳

𝒊 − 𝒚𝑸
𝒊)𝟐)

Here 𝑥𝐿
𝑖 refers to the x-coordinate of the ith letter in a layout

L, and 𝑥𝑄
𝑖 refers to the x-coordinate of the ith letter in the

qwerty layout Q. Based on this distance, we define the

distance cost function for a layout L:

𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆 𝑪𝒐𝒔𝒕 = ∑ 𝒅𝑳𝑸
𝒊 × 𝒇𝒊

𝒛

𝒊=𝒂

Here 𝑓𝑖 is the frequency of the ith letter in the English

language corpus. This is a weighted distance cost function

such that more weight is given to the near-qwerty

positioning of the most frequent letters.

The globally optimal layout will minimize the weighted

distance cost function to give us the layout that is closest to

qwerty. Since the cost function involves the sum of

weighted distances, we can write it as the sum of two

independent parts: the weighted distance cost function for

letters in SI
o, and the weighted distance cost function for

letters in SM
o. Because the letters in SI

o can never occupy

the slots designated for letters in SM
o, and vice versa, these

two cost functions can be independently optimized. Thus,

we obtain the globally optimal layout by iterating through

only 14!+12! = 8.8E+10 layout permutations.

Results
Figure 8(b) shows the optimal layout that resulted from the

optimization. We term it the SWEQTY layout. The optimal

weighted distance cost value is .53. The unweighted

distance of SWEQTY from QWERTY is 16.9. As the

figure shows, the highest frequency letters in both SI
o and

SM
o have retained their qwerty positions if their finger

assignment was same as qwerty. As a comparison, the

farthest layout from qwerty had a weighted distance cost of

2.95 and an unweighted distance of 93.6.

(a) (b)

Figure 8: (a) DualKey QWERTY (b) DualKey SWEQTY

SWEQTY is the optimal layout in terms of time taken

between characters, finger switching instances, and

closeness to qwerty for any DualKey keyboard with the

same slot layout. The same process can be easily applied to

any other slot distribution for any DualKey variation.

PERFORMANCE EVALUATION: DUALKEY SWEQTY

With sweqty, the problem of initial unfamiliarity with the

keyboard is somewhat alleviated due to the closeness with

QWERTY. Combined with the potentially reduced

decision-making effort and higher speed, we hypothesize

that we will see a net improvement in the novice, as well as

the long-term speed and error rates. To validate our

hypothesis we ran another 10-day study with eight

participants with the exact same design as the first

QWERTY study. All participants were different from the

earlier study. In total, we had 8 participants x 10 sessions x

5 blocks x 5 phrases = 2000 typed phrases.

Results

The sweqty speed by days is shown in Figure 9. The effect

of days on speed was significant (F (9, 63) = 34.887,

p<.001). The mean novice speed of sweqty is 14.69 WPM,

and the long-term speed is 21.59, both of which are higher

than qwerty. SWEQTY’s curve is higher than QWERTY.

The novice speed shows a 19% improvement over qwerty.

Sweqty speeds show a higher variance than qwerty. This is

because a subset of participants texted heavily on their

smartphones every day. Consequently, they were using

qwerty soft keyboards daily, in addition to sweqty. The

performance of these users was affected as a result,

resulting in higher variance.

Figure 9: Mean Speeds of DualKey: SWEQTY vs. QWERTY

The novice and expert TERs of sweqty are 5.67% and

3.27% respectively. A mixed ANOVA on error rates for 10

days yielded a significant difference between TERs for

qwerty v/s sweqty: F(1,16 = 6.737, p<.05). Figure 10 shows

the TER %s. The novice TER improved by 10.93%, and the

long-term TER improved by 37.71%, which is a rather

large improvement. The sweqty TER% starts off close to

qwerty, but falls rapidly to values considerably lower than

qwerty. The relatively high error rates initially in both

techniques are because of the techniques being unfamiliar

to the users. The fall after first day is pronounced in sweqty

because of less finger switching and the low frequency of

middle finger taps.

Figure 10: Mean TER% of DualKey: SWEQTY v/s QWERTY

In the Q&A for sweqty, participants mentioned that they felt

they needed to switch fingers very infrequently and the

technique was easy to pick up. When asked about the non-

qwerty layout, one of the participants commented:

“It looked weird. But when I actually started typing, I did

not have to actively search for the alphabets a lot.”

Looking back at Table 1, we see that all four metrics show

improvements over DualKey QWERTY. While sweqty v/s

qwerty speeds do not show significance, there is significant

difference between their TERs. At novice stage, the speed

improves 19% and TER improves 10.9% despite a non-

qwerty layout which shows that the gains of switching to a

near-qwerty optimal layout outweigh the familiarity of a

qwerty layout for DualKey even at the starting point. The

huge improvement in error rates boosts the usability of

sweqty further, especially in the long-term.

SWEQTY further extends the improvement that DualKey

showed over existing techniques. Although novice speed

does not exceed Splitboard’s 15.30, its value of 14.69 can

be considered comparable. The novice TER, on the other

hand, at 5.67% is lower than Splitboard’s 7.35%. Both

qwerty and sweqty perform comparably or better than others

on all four metrics. To put it another way, DualKey at least

performs comparably to the best performing novice

technique while exceeding others, and performs better than

all existing techniques on long-term performance.

DISCUSSION
Performance Improvements

Even after optimization using the sweqty layout, there is

further scope for improvement in multiple areas. First, our

custom hardware limited the degree of freedom for the

user’s fingers and thus constrained the user’s ability to do

free form typing. Second, even though it was small, the

finger sensor occluded the screen by a bit, which further

impeded user’s performance. An unobtrusive finger

identification technology will further improve the

performance. In fact, aside from fingerprinting techniques,

we can imagine miniature sensor rings that the user can

wear that will reduce movement constraints or occlusion.

Third, incorporating auto-correction into the keyboard will

allow the user to make more imprecise taps which will

increase the overall typing speed. However, auto-correction

is not applicable in every situation, as people routinely type

words that are not in the dictionary. Further, DualKey can

be adapted for other languages that do not work as well

with dictionary corrections.

Finger identification leads to huge number of possibilities

for simplifying and augmenting interactions. Therefore, as

and when the technology gets mature, we will potentially

see such applications on the rise and slowly become a part

of the natural interaction ecosystem. In an ecosystem where

finger identification interactions are a norm, the users’

novice performance will certainly be superior.

Limitations and Future Work

Our study does not account for left handedness. There is an

added wrinkle when DualKey is implemented for the left

hand. Since the index finger is on the right of the middle

finger, the characters corresponding to the index finger

should be on the right part of a key. This will change the

layout from qwerty/sweqty to something that is farther from

qwerty. While the process will remain the same, left handed

DualKey needs to be studied independently.

DualKey has been designed and optimized for a smartwatch

form factor. However, there are even smaller screens where

DualKey’s efficacy needs to be evaluated. As an extension,

a TriKey model can be studied where a single key

corresponds to three letters associated with three fingers (or

2 fingers + thumb), reducing the space requirements even

further. The insights we have gained from DualKey can be

helpful in designing the optimized versions of such TriKey

keyboards. As we have seen, the optimal finger assignment

results in allocating the highest frequency letters to the

index finger. We can apply the same principle for TriKey,

where the highest frequency letters are allocated to the

index finger, followed by the middle finger, and finally the

ring finger or the thumb.

Designing Finger Identification Interactions

Our analysis provided us some insights on designing

interactions that use finger identification. First, reducing

finger switching even at the cost of impacting familiarity of

an interface is an inquiry worth undertaking for any new

application. Second, middle finger taps expectedly take

longer and should be assigned low frequency keys. Third,

such interactions will be prone to incorrect finger usage

mistakes, and providing a quick Swap or Undo method will

be useful. It also reduces the cost of an incorrect-finger tap

in the user’s mind, thus relaxing the interaction without the

user having to worry about making finger errors. Text-entry

has a latent implication that it can be undone easily.

However, keys like Send cannot be undone. It is

recommended that buttons that trigger commands that

cannot be undone easily should not be associated with

multiple fingers.

The space of interactions using finger identifications is

starting to grow out of its infancy. What is needed is not

just listing a library of interactions, but also end-to-end

applications and in-depth analyses that provide a

compelling argument for these interactions and how they

improve and augment our current interactions. DualKey

hopes to be a progressive step in that direction.

CONCLUSION

We presented DualKey, a novel technique for miniature

screen text entry via finger identification. We built a custom

hardware that performed finger identification with a 99.5%

accuracy which involved detecting subtle finger

movements. We conducted a comprehensive long-term

study of the technique and do an in-depth analysis of the

speed and error rates. The error analysis showed the

usefulness of having the swap button. Based on the speed

analysis, we optimize the assignment of letters to fingers to

reduce the finger switching time. Based on the new

assignments, we optimize the layout to get a nearest-to-

qwerty layout as close to familiar as possible. We conduct

another long-term study with eight participants for the new

sweqty layout to validate the theoretical premise. Despite

being a non-qwerty layout, Sweqty improves upon DualKey

in all respects, including improved novice and long-term

speeds & error rates, as well as reduced initial decision-

making effort.

DualKey (qwerty/sweqty) beats the existing techniques in

multiple respects: (1) Using single step selection, instead of

the prevalent two-step selection, it has a GPC of 1 in

contrast to a minimum GPC of 1.28 among existing

techniques. (2) In contrast to the best performing

techniques, DualKey does not require swipe gestures, thus

allowing for parallel shape writing on the layout. (3)

DualKey’s long-term performance, both in terms of speed

and error rate is better than the reported long-term speeds of

other techniques, even while not being a typical expert

technique. (4) DualKey qwerty’s novice performance

exceeds all others barring Splitboard. DualKey sweqty

improves upon this novice performance and is comparable

to Splitboard in terms of novice speed and betters

Splitboard in terms of error rate.

REFERENCES

1. Oscar Kin-Chung Au and Chiew-Lan Tai. 2010.

Multitouch finger registration and its applications.

Proceedings of the 22nd Conference of the Computer-

Human Interaction Special Interest Group of Australia

on Computer-Human Interaction - OZCHI ’10, ACM

Press, 41. http://doi.org/10.1145/1952222.1952233

2. Hrvoje Benko, T. Scott Saponas, Dan Morris, and

Desney Tan. 2009. Enhancing input on and above the

interactive surface with muscle sensing. Proceedings of

the ACM International Conference on Interactive

Tabletops and Surfaces - ITS ’09, ACM Press, 93.

http://doi.org/10.1145/1731903.1731924

3. Sebastian Boring, David Ledo, Xiang “Anthony” Chen,

Nicolai Marquardt, Anthony Tang, and Saul

Greenberg. 2012. The fat thumb. Proceedings of the

14th international conference on Human-computer

interaction with mobile devices and services -

MobileHCI ’12, ACM Press, 39.

http://doi.org/10.1145/2371574.2371582

4. Xiang “Anthony” Chen, Tovi Grossman, and George

Fitzmaurice. 2014. Swipeboard. Proceedings of the

27th annual ACM symposium on User interface

software and technology - UIST ’14, ACM Press, 615–

620. http://doi.org/10.1145/2642918.2647354

5. Hyeonjoong Cho, Miso Kim, and Kyeongeun Seo.

2014. A text entry technique for wrist-worn watches

with tiny touchscreens. Proceedings of the adjunct

publication of the 27th annual ACM symposium on

User interface software and technology - UIST’14

Adjunct, ACM Press, 79–80.

http://doi.org/10.1145/2658779.2658785

6. Ashley Colley and Jonna Häkkilä. 2014. Exploring

finger specific touch screen interaction for mobile

phone user interfaces. Proceedings of the 26th

Australian Computer-Human Interaction Conference

on Designing Futures the Future of Design - OzCHI

’14, ACM Press, 539–548.

http://doi.org/10.1145/2686612.2686699

7. Ashley Colley, Jani Väyrynen, and Jonna Häkkilä.

2015. In-Car Touch Screen Interaction: Comparing

Standard, Finger-Specific and Multi-Finger Interaction.

Proceedings of the 4th International Symposium on

Pervasive Displays - PerDis ’15: 131–137.

8. Paul Dietz and Darren Leigh. 2001. DiamondTouch.

Proceedings of the 14th annual ACM symposium on

User interface software and technology - UIST ’01,

ACM Press, 219.

http://doi.org/10.1145/502348.502389

9. Mark D. Dunlop, Andreas Komninos, and Naveen

Durga. 2014. Towards high quality text entry on

smartwatches. Proceedings of the extended abstracts of

the 32nd annual ACM conference on Human factors in

computing systems - CHI EA ’14, ACM Press, 2365–

2370. http://doi.org/10.1145/2559206.2581319

10. Philipp Ewerling, Alexander Kulik, and Bernd

Froehlich. 2012. Finger and hand detection for multi-

touch interfaces based on maximally stable extremal

regions. Proceedings of the 2012 ACM international

conference on Interactive tabletops and surfaces - ITS

’12, ACM Press, 173.

http://doi.org/10.1145/2396636.2396663

11. Alix Goguey, Géry Casiez, Daniel Vogel, Fanny

Chevalier, Thomas Pietrzak, and Nicolas Roussel.

2014. A three-step interaction pattern for improving

discoverability in finger identification techniques.

Proceedings of the adjunct publication of the 27th

annual ACM symposium on User interface software

and technology - UIST’14 Adjunct, ACM Press, 33–34.

http://doi.org/10.1145/2658779.2659100

12. Chris Harrison and Scott Hudson. 2012. Using shear as

a supplemental two-dimensional input channel for rich

touchscreen interaction. Proceedings of the 2012 ACM

annual conference on Human Factors in Computing

Systems - CHI ’12, ACM Press, 3149.

http://doi.org/10.1145/2207676.2208730

13. Chris Harrison, Munehiko Sato, and Ivan Poupyrev.

2012. Capacitive fingerprinting. Proceedings of the

25th annual ACM symposium on User interface

software and technology - UIST ’12, ACM Press, 537.

http://doi.org/10.1145/2380116.2380183

14. Chris Harrison, Julia Schwarz, and Scott E. Hudson.

2011. TapSense. Proceedings of the 24th annual ACM

symposium on User interface software and technology

- UIST ’11, ACM Press, 627.

http://doi.org/10.1145/2047196.2047279

15. Christian Holz and Patrick Baudisch. 2013. Fiberio.

Proceedings of the 26th annual ACM symposium on

User interface software and technology - UIST ’13,

ACM Press, 41–50.

http://doi.org/10.1145/2501988.2502021

16. Jonggi Hong, Seongkook Heo, Poika Isokoski, and

Geehyuk Lee. 2015. SplitBoard. Proceedings of the

33rd Annual ACM Conference on Human Factors in

Computing Systems - CHI ’15, ACM Press, 1233–

1236. http://doi.org/10.1145/2702123.2702273

17. Da-Yuan Huang, Ming-Chang Tsai, Ying-Chao Tung,

et al. 2014. TouchSense. Proceedings of the 32nd

annual ACM conference on Human factors in

computing systems - CHI ’14, ACM Press, 189–192.

http://doi.org/10.1145/2556288.2557258

18. Luis A. Leiva, Alireza Sahami, Alejandro Catala, Niels

Henze, and Albrecht Schmidt. 2015. Text Entry on

Tiny QWERTY Soft Keyboards. Proceedings of the

33rd Annual ACM Conference on Human Factors in

Computing Systems - CHI ’15, ACM Press, 669–678.

http://doi.org/10.1145/2702123.2702388

19. Frank Chun Yat Li, Richard T. Guy, Koji Yatani, and

Khai N. Truong. 2011. The 1line keyboard.

Proceedings of the 24th annual ACM symposium on

User interface software and technology - UIST ’11,

ACM Press, 461.

http://doi.org/10.1145/2047196.2047257

20. I. Scott MacKenzie and R. William Soukoreff. 2003.

Phrase sets for evaluating text entry techniques. CHI

’03 extended abstracts on Human factors in computing

systems - CHI '03, ACM Press, 754.

http://doi.org/10.1145/765891.765971

21. Nicolai Marquardt, Johannes Kiemer, David Ledo,

Sebastian Boring, and Saul Greenberg. 2011.

Designing user-, hand-, and handpart-aware tabletop

interactions with the TouchID toolkit. Proceedings of

the ACM International Conference on Interactive

Tabletops and Surfaces - ITS ’11, ACM Press, 21.

http://doi.org/10.1145/2076354.2076358

22. Peter Norvig. 2013. English Letter Frequency Counts:

Mayzner Revisited or ETAOIN SRHLDCU.

norvig.com. Retrieved August 24, 2015 from

http://norvig.com/mayzner.html

23. Stephen Oney, Chris Harrison, Amy Ogan, and Jason

Wiese. 2013. ZoomBoard. Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems -

CHI ’13, ACM Press, 2799.

http://doi.org/10.1145/2470654.2481387

24. Graham Alasdair Wilson Phd Thesis. Using Pressure

Input and Thermal Feedback to Broaden Haptic

Interaction with Mobile Devices. Retrieved September

8, 2015 from http://theses.gla.ac.uk/4363

25. Quentin Roy, Yves Guiard, Gilles Bailly, Éric

Lecolinet, and Olivier Rioul. 2015. Glass+Skin: An

Empirical Evaluation of the Added Value of Finger

Identification to Basic Single-Touch Interaction on

Touch Screens. INTERACT: IFIP International

Conference on Human-Computer Interaction, Springer.

26. Atsushi Sugiura and Yoshiyuki Koseki. 1998. A user

interface using fingerprint recognition. Proceedings of

the 11th annual ACM symposium on User interface

software and technology - UIST ’98, ACM Press, 71–

79. http://doi.org/10.1145/288392.288575

27. Nate Swanner. 2015. Sonavation has bonded 3D

fingerprint sensors to Gorilla Glass. thenextweb.com.

Retrieved September 11, 2015 from

http://thenextweb.com/insider/2015/07/21/sonovation-

has-bonded-3d-fingerprint-sensors-to-gorilla-glass-

kiss-your-home-button-goodbye/

28. Julie Wagner, Eric Lecolinet, and Ted Selker. 2014.

Multi-finger chords for hand-held tablets. Proceedings

of the 32nd annual ACM conference on Human factors

in computing systems - CHI ’14, ACM Press, 2883–

2892. http://doi.org/10.1145/2556288.2556958

29. M Yousefpor and JM Bussat. 2014. Fingerprint Sensor

in an Electronic Device. US Patent App. 14/ ….

Retrieved September 11, 2015 from

https://www.google.com/patents/US20150036065

30. Shumin Zhai, Per Ola Kristensson, Pengjun Gong, et

al. 2009. Shapewriter on the iphone. Proceedings of the

27th international conference extended abstracts on

Human factors in computing systems - CHI EA ’09,

ACM Press, 2667.

http://doi.org/10.1145/1520340.1520380

