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ABSTRACT 

Fast and accurate access to keys for text entry remains an 

open question for miniature screens. Existing works 

typically use a cumbersome two-step selection process, first 

to zero-in on a particular zone and second to make the key 

selection. We introduce DualKey, a miniature screen text 

entry technique with a single selection step that relies on 

finger identification. We report on the results of a 10 day 

longitudinal study with 10 participants that evaluated speed, 

accuracy, and learning. DualKey outperformed the existing 

techniques on long-term performance with a speed of 19.6 

WPM. We then optimized the keyboard layout for reducing 

finger switching time based on the study data. A second 10 

day study with eight participants showed that the new 

sweqty layout improved upon DualKey even further to 

21.59 WPM for long-term speed, was comparable to 

existing techniques on novice speed and outperformed 

existing techniques on novice accuracy rate. 
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INTRODUCTION 
As wearable devices such as smartwatches, fitness bands 

and smart bracelets become ubiquitous, their miniature 

screens pose a challenge for interface designers for even 

common tasks like text entry. When the keys are in a full 

qwerty layout, the extremely small keys coupled with the 

fat-finger problem makes efficient text entry difficult. 

Prior work [4,16,23] has tackled this by making the text-

entry interaction a two-step process. In the first step, the 

user typically zooms in or scrolls to a particular zone on the 

keyboard which reduces the number of keys on the screen, 

followed by key selection in the second step. While the 

techniques show impressive improvement over standard 

qwerty, the two-step interaction is cumbersome. Further, the 

best performing techniques [4,16] use swipe gestures as a 

way of discerning user intent on the miniature screen. 

Swipe or slide gestures are also used for shape writing [30] 

on regular soft keyboards. It is common to see people use 

both character-by-character entry and shape writing in 

conjunction, often in the same phrase. However, the use of 

swipe gestures for character-by-character entry precludes 

the possibility of shape writing on the proposed keyboards.  

The question we explore is how to make the keys 

effectively bigger without expanding upon the number of 

steps or gestures beyond finger tapping? One potential 

solution to both is to make the touchscreen sensitive to 

finger identity when the tap hits the screen. Although there 

are no market-ready technical solutions, multiple promising 

threads of research [2,15,21] have demonstrated the 

feasibility of finger identification in larger scale systems 

like the tabletop. It is reasonable to expect that techniques 

for finger identification will eventually become viable for 

smaller screen devices, and hence it is worth exploring now 

if it is worthwhile using finger identification to improve the 

text input experience on small screens. 

We propose DualKey – a solution to efficient text-entry on 

miniature screen devices using finger identification. 

DualKey eliminates the need for a two-step selection 

process, plus it does not require any swipe gestures for 

character-by-character entry. DualKey has a qwerty layout, 

but with half the keys of a full layout (Figure 1). Every key 
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Figure 1: DualKey (a) Index finger types ‘ty’ key’s left letter 

‘t’ (b) Middle finger types ‘ty’ key’s right letter ‘y’ 
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corresponds to two characters, each character associated 

with a different finger. The left character on a key 

associates with the index finger, and the right associates 

with the middle finger. Typing ‘the’, for instance, would 

require the user to tap the keys ‘ty’, ‘gh’, and ‘er’ with the 

index, middle, and index finger respectively. Prior research 

on single finger tapping [6] has shown that users are more 

comfortable, fast, and accurate when using their index or 

middle fingers as compared to the other fingers. We built a 

finger identification prototype for evaluation that has an 

accuracy of 99.5% on smartwatch scale touchscreens, 

implemented the DualKey technique using it, and ran two 

studies to evaluate its effectiveness. 

RELATED WORK 
Finger Identification 

Prior work on finger identification either tackles the 

technical problem of identifying fingers or the potential 

interactions that result from identifying fingers. Sensing 

methods for finger identification on touchscreens include 

muscle sensing [2], gloves with fiduciary tags [21], and 

color markers [11]. Further, user touch authentication 

technologies use optical fingerprinting [15], capacitive 

coupling [8] or capacitive fingerprinting [13]. Most of these 

techniques are demonstrated for tabletops. Some, notably, 

fingerprinting and muscle sensing, hold promise for future 

miniaturization. Recent efforts by Apple and others [27,29] 

on embedding fingerprinting into displays show 

commercial interest in this space. Other techniques use a 

fixed orientation of the hand on the touchscreen to initialize 

a finger mapping [1,28], or use vision [10]. However, these 

techniques do not actually identify fingers and only work 

with multitouch gestures where the relative position of the 

fingers makes it known which finger is which.  

Multiple works enrich finger input on smaller touch screens 

by detecting nuanced attributes like finger pressure [24], 

shear force [12], thumb touch size [3], nails and knuckles 

[14], and areas of the finger pad [17]. The exploration of 

interactions utilizing finger identification, however, is 

limited [2,7,10,11,21,26]. A popular use case is using 

different fingers to signal different modes or buttons – 

cut/copy/paste, menu shortcuts etc. [2,25,26]. Also 

suggested, is using fingers as containers for URLs [26], 

copied items [2], and brush colors [21]. Finger-specific 

chording has been used for multi-step commands [11], 

mixing brush colors [21], and a virtual mouse [10]. 

The above described works either explore finger detection, 

or propose interactions that use finger identification, or in 

some instances do both. However, there are no end-to-end 

applications based on robust finger identification that have 

been evaluated for performance using a working prototype. 

There is a lack of compelling investigation into how these 

interactions can be uniquely ingrained in applications, and 

how their performance can show improvements over basic 

finger interactions, if any. DualKey fills this gap and hopes 

to fuel the conversation on finger identification interactions. 

Miniature Screen Text-Entry 

A lot of work has been done in text-entry for smartphones. 

These techniques, however, do not translate well for 

miniature devices like smartwatches whose size makes it 

impossible to have 26 unambiguously accessible keys. 

Text-entry for this form factor has recently been addressed 

in multiple works [4,5,9,16,18,23]. They study typing 

performance in terms of speed (words-per-minute WPM), 

uncorrected error rate (UER), and total error rate (TER) 

which includes corrected and uncorrected errors. GPC 

refers to gestures-per-character – which indicates how 

many gestures (or taps) it takes, on average, to type a 

character. GPC includes space bar and has been estimated 

for all techniques [16] using the 500 phrase-set [20]. 

Zoomboard [23] uses a two-step tapping technique, to first 

zoom into the desired region, followed by selecting the key. 

With two taps for every character, besides space, 

Zoomboard had a GPC of 1.85. Zoomboard’s speed after 

~15 minutes of use on a smartwatch was 9.8 WPM with a 

TER of 7.1% [16]. As a baseline, standard qwerty achieved 

13.7 WPM with a whopping 21.2% TER. Zoomboard was 

the first text-entry technique dedicated to miniature screens, 

but its performance was surpassed by later techniques. 

Splitboard [16] splits the keyboard into left and right 

sections and shows one of these sections on the display at a 

time, with the user required to swipe left or right to get the 

desired section. With two columns of keys common to both 

sections, Splitboard has a GPC of 1.28. After ~15 minutes 

of use, Splitboard reported a speed of 15.3 WPM and a 

TER of 7.35%. Splitboard did not report a significant effect 

of blocks on speed and was not evaluated long-term beyond 

initial use. Given the simplicity of the technique, there 

doesn’t seem to be an argument that performance might 

improve significantly over long term use. 

Swipeboard [4] has a GPC of 2 and is based on zooming-in 

where the first swipe leads to 1 of 9 designated regions and 

the second swipe selects the key. It relies on a training 

protocol to maximize learning and reports a text entry speed 

of 19.5 WPM after ~2 hours of training, with an error rate 

of 17.48% for the whole experiment (including hard and 

soft errors [4]). While the keyboard size is smaller than the 

smartwatch form factor, it does not account for the errors as 

the technique is not based on precise key selection, but on 

memorization and performing gesture-pairs on the layout. 

The reported speed of text-entry accommodates this error 

rate by allowing for corrections. However, the high error 

rate is still a significant cause of concern because, in 

practice, this effectively means that 1 in 5 characters is 

typed wrong. This changes the dynamic of the text-input 

task: instead of a user typing relatively fluently with 

occasional glances at the output text area, here, she has to 

constantly focus at the output text and intermittently keep 

correcting the input. Further, Swipeboard did not use the 

standard experimental protocol of phrase entry. Instead, a 

single four letter word drawn from a limited word-set made 



 

up of only five characters E, T, A, N, and S, and no others 

was entered. The authors acknowledge that these deviations 

from standard protocol artificially accelerate novice-expert 

performance growth. However, this does not provide an 

accurate representation of the expert performance of the 

technique. The results could vary on a longitudinal text-

entry study with phrases derived from common language. 

Considering the highly reduced word-set, the initial 

performance of Swipeboard at the end of ~15 minutes of 

practice was low at 9.09 WPM. This is due to the emphasis 

on memorization of two-step gestures for every letter. 

Other proposed techniques [5,9,18] are either slower or less 

accurate than the aforementioned or are not evaluated for 

performance. Flick input is used in Japanese keyboards to 

select different characters on the same key based on the 

flick gesture. Hong et al. [16] evaluated a form of flick 

input called Slideboard and found that Splitboard 

outperformed Slideboard. A potential direction of work in 

this space is related to keyboards that allow ambiguous 

input and rely on a language model and a miss model for 

predicting the word [19]. However, our work is focused on 

per-character entry, which is not supported by such key-

boards. No reports have been published on the performance 

of such keyboards on small screens. While language models 

are an important part of today’s text entry systems, per-

character entry is supported by all popular soft keyboards. It 

allows entering words not in the lexicon, an ability which is 

routinely used by users not just for English conversations, 

but also conversations in other languages that are typed in 

English. For instance, Hindi speakers simply type Hindi 

words in English which are not present in the dictionaries. 

In summary, while existing works have advanced the topic 

of smartwatch text-entry, there are multiple issues: Firstly, 

all techniques follow a two-step selection process, with a 

GPC > 1. Secondly, besides Zoomboard which has a slower 

performance, all techniques utilize swipes which precludes 

shape writing on the keyboards. Thirdly, the best 

performing techniques either have low peak performance or 

have high entry barriers. Splitboard was not evaluated 

beyond initial use and the data suggests that its performance 

plateaus quickly at 15 WPM. Swipeboard has a high error 

rate, low initial speed, and a very high entry barrier due to 

the memorization requirements. 

DUALKEY  

DualKey has a GPC of exactly 1, relying solely on single 

finger taps. It requires no swipe gestures, only taps, thus 

allowing for the possibility of simultaneous shape writing 

on the layout. The current prototype is built for a 

smartwatch scale touchscreen. DualKey leverages the 

distinction between the index and middle fingers to enable a 

single finger tap for a character. Instinctively, simply 

tapping the two fingers interchangeably on a smartwatch 

feels comfortable. We developed a prototype that identifies 

the finger touching the screen using an optical sensor, and 

sends it to the keyboard app on the watch via Bluetooth. 

Finger Identification Prototype 

The finger tap is detected by the touchscreen. The prototype 

then needs to identify the finger whose tap was registered. 

We explored multiple techniques to identify index and 

middle fingers distinctly – tracking individual finger 

movement with optical markers, color markers, and leap 

motion; capturing differences in finger motion with ringed 

inertial motion unit (IMU) rings; and muscle sensing. 

However, none of these approaches worked proficiently 

within the constraints of our application requirements – a 

high precision accuracy for miniature screens, minimum 

instances of failure, low communication latency to the 

watch, and unobtrusive instrumentation. After multiple 

rounds of experimentation, we settled on our final working 

design that uses a combined miniature photo-transistor and 

optical detector sensor mounted on the index finger. 

As shown in Figure 2, the sensor is connected to an 

Arduino, which processes the sensor data and sends it to an 

Android LG G smartwatch via a Bluetooth chip. The sensor 

detects its distance from the touchscreen. It is mounted and 

calibrated such that when the index finger touches the 

screen, the distance value is noticeably lower than when the 

index finger hovers over the screen. When the touchscreen 

registers a touch, the system checks if the distance value is 

low enough for the index finger to be touching. If not, the 

system determines that the touch was made by the middle 

finger. The single sensor performed well enough to discard 

the option of a sensor on the middle finger as well. This 

minimized instrumentation. An initial pilot with three users 

showed that upon individual calibration, ~99.5% accuracy 

was achieved. Each user typed in 25 phrases from 500 

phrase-set [20]. However, the high accuracy is achieved at 

the cost of certain usability constraints. Since the sensor is 

mounted just below the finger pad, the users can only tap 

the screen using their fingertips. This somewhat constrains 

typing as the users cannot tap laterally with their finger 

pads. Also, even the tiny sensor adds to screen occlusion. 

Keyboard  

Figure 1 shows the keyboard layout. The qwerty layout was 

used to retain familiarity. Every key is associated with two 

letters, with the left letter corresponding to the index finger 

and the right letter corresponding to the middle finger. The 

‘**’ key is a swap key which enables the user to swap the 

letter just typed with its same-key counterpart. For example, 

on the ‘er’ key, if a user intends to type ‘r’, but mistakenly 

uses the index finger and types ‘e’, she can immediately 

Figure 2: (a) Sensor mounted on finger (b) Hardware Setup 



 

swap it to ‘r’ by using the swap key, instead of using 

backspace and typing the character again. Swap key was the 

result of an observation during pilot experimentation 

wherein almost half the user errors were due to using the 

incorrect finger on the correct key. The enter, space, and 

backspace keys are at the bottom of the screen. Enter and 

Space keys can be pressed with any finger. A middle finger 

touch on the ‘Back’ key changes the keyboard layout to 

enable access to numbers and special characters. 

PERFORMANCE EVALUATION: DUALKEY QWERTY 

A 10-day study was conducted to investigate the long-term 

performance and learning curve of the technique. Since 

using finger identification is an entirely new interaction 

experience for the user, it is expected that initial 

performance will start slow, and will improve over time 

based upon how good the interaction technique is and how 

easy the learning curve is, in the absence of any explicit 

training. This makes it imperative to study this technique 

longitudinally. Further, there is no prior work that informs 

our understanding of input performance for finger 

identification, which makes it all the more important to 

investigate the learning curve of such interactions. 

Participants 

10 participants (9 male, mean age = 25.3) took part in the 

study. Eight did the study for 10 sessions, one per day, 

while two did the study for 15 sessions. Only one 

participant was a native English speaker, while others 

studied or worked in an English-speaking environment. All 

participants were regular smartphone users. None of them 

had experience with a smartwatch. All participants were 

right-handed and wore the watch on their non-dominant left 

hand. We did not account for left-handedness in the study. 

Design 

The study consisted of a series of sessions, one session per 

day. In each session, participants typed 25 random phrases 

sourced from Mackenzie et al’s phrase sets [20]. No phrases 

were repeated, even across different sessions. The 25 

phrases were divided up into five blocks with five phrases 

each, with an optional break between blocks. Each session 

lasted 6-15 minutes, depending on the participants’ speed. 

Since speed improved over sessions, each participant went 

through ~90 minutes of typing by the end of 10 sessions. To 

explore if and when the performance plateaus, we extended 

the run for two randomly selected participants to 15 

sessions. The sessions ran on consecutive days, with breaks 

during weekends. No breaks exceeded 2 days. Text-entry 

speed in WPM, and error rates UER, TER were recorded. 

As is standard, participants were instructed to correct their 

mistakes as they went. If they did not detect the mistake 

until several characters later, they were asked to ignore it 

and continue. They were also asked to ignore system errors 

caused by occasional incorrect finger detections. The exp-

eriment started after a calibration phrase. In total, ((8 

participants x 10 sessions) + (2 participants x 15 sessions)) 

x 5 blocks x 5 phrases resulted in 2750 phrases entered. 

Apparatus 

The sensor was mounted on the right hand index finger pad 

at a distance of ~10 mm from the fingertip. The experiment 

ran on an LG G android watch with a 29.6 x 29.6 mm 

touchscreen. Size of letter keys was 5.6 x 6.5 mm. The 

presented phrase and the typed phrase were shown above 

the keyboard area. Aside from the longitudinal aspect, our 

study adhered closely to the study design and keyboard lay-

out used by Hong et al in their five-smartwatch-keyboard- 

study [16], in order to aide in cross-study comparisons. 

RESULTS 
Text-Entry Speed 

Figure 3 shows the mean WPM by day (including error 

correction time). The steep curve over the first six days 

(sessions) shows a substantial performance improvement, 

followed by a slower improvement until the 10th day. 

 

Figure 3: DualKey’s Mean Speed WPM by Day 

Figure 4 shows the curve for the 2 participants who did 15 

sessions. Their performance continued to improve even 

after 10 days, with an average of 22.42 on the 15th day. This 

is notable given that DualKey is not designed as an expert 

technique which requires explicit training. The maximum 

speed reached was 24.7 WPM at the last session for P1. 

When considering speed of individual blocks, the maximum 

speed reached was 26.6 WPM. Interestingly, P2’s curve 

appears to plateau during days 6-11, but then starts 

climbing again. This might suggest that DualKey’s expert 

performance could potentially be even higher. 

 

Figure 4: Speed of two participants P1 and P2 over 15 days 



 

Error Rate 

Figure 5 shows UER and TER by day. UER was low and 

remained relatively constant throughout, in the 1-2% range. 

This includes detection errors made by the system, which 

are approximately 0.5%. For a perfect finger detection 

system, UER, and consequently TER would be even lower. 

 

Figure 5: DualKey’s TER, UER by Day 

TER started out at 7.54%, eventually dropping to 5.26% on 

the last day. Participants made more errors on the first day 

and then stabilized for the rest of the days. 

Comparison with Existing Techniques 

Aside from GPC and swipe gesture use, we look at four 

performance metrics: novice speed, long-term speed, novice 

TER%, and long-term TER%. Novice performance refers to 

performance for the last block in the first session which 

equates to performance after ~15 minutes of practice. Long-

term performance refers to the performance at the end of 

~90 minutes of practice. Even though we have mirrored the 

smartwatch keyboards [16], it is not viable to compare these 

metrics across studies with statistical techniques due to the 

slight implementation differences between studies. 

However, for comparisons where the difference is visibly 

large, we can infer which techniques will potentially 

perform better. We compare DualKey with Splitboard and 

Swipeboard as they reported the best novice and long-term 

speeds respectively, and with Zoomboard since it does not 

require swipe gestures. 

DualKey’s novice speed is 12.3 WPM. This exceeds the 

equivalent speeds for Zoomboard (9.8 WPM) and 

Swipeboard (9.1 WPM). It is lower than Splitboard’s 15.3 

WPM. However, as mentioned earlier, Splitboard does not 

suggest a learning effect and reaches its peak performance 

early. No long-term study was conducted for Splitboard. 

Swipeboard, on the other hand, recorded a long-term speed 

of 19.58 WPM. Zoomboard was at 17.08 under the same 

conditions. However, these speeds were achieved after 

artificially accelerated learning. DualKey achieved a 

comparable speed of 19.61 WPM after ~90 minutes of 

practice under standard evaluation design. DualKey showed 

even more improvement with 5 more days (~2 hours of 

practice). Further, TERs of Swipeboard at both novice and 

long-term stages are prohibitively high at >17%. DualKey’s 

TER was 6.29% at the novice stage. This is comparable to 

Splitboard’s 7.35%. Table 1 lays out these comparisons for 

easy perusal. We’ll discuss the last row in the next section. 

DualKey’s novice performance exceeds every other 

technique barring Splitboard. Since finger identification 

interactions are completely new for the user, an initial 

inertia is to be expected. As we see in Figure 3, the 

performance jumps sharply from Day 1 to Day 2, showing 

that the first day inertia is quickly overcome. However, it is 

important to understand what cause the initial inertia. We, 

therefore analyzed the data in more detail to understand the 

variables that negatively impact accuracy and speed. 

FURTHER ANALYSIS OF ACCURACY AND SPEED 
Analyzing DualKey Errors  

To understand if it was too confusing for users to switch 

fingers, we analyzed all corrected errors to see how many 

were caused as a result of using the incorrect finger on the 

correct key. Figure 6 shows this finger-switching error rate 

(FER) besides the corrected error rate (CER). FER hovers 

around 2.5%. Essentially, close to half of the corrected 

errors were the result of the use of incorrect finger on the 

correct key. Again, FER is highest on the first day. 

 
Figure 6: Mean Corrected Error Rate (CER), Finger Error 

Rate (FER), Swap-Correction Rate (SCR) over 10 days 

Technique Uses Swipe GPC Novice WPM  Long-term WPM Novice TER Long-term TER 

Zoomboard No 1.85 9.80 17.08 ~27.5% 19.64% 

Splitboard Yes 1.28 15.30 NA 7.35% NA 

Swipeboard  Yes 2 9.09 19.58 ~19.5% 17.48% 

DualKey QWERTY No 1 12.31 19.61 6.29% 5.25% 

DualKey SWEQTY  No 1 14.69 21.59 5.67% 3.27% 

Table 1: DualKey’s comparison with existing techniques. Swipeboard is italicized to indicate its accelerated evaluation design. 



 

We further analyze how often the participants used the 

swap key ‘**’ to correct these finger switching errors. 

SCR% is the % of swap corrected errors. SCR tells us how 

helpful the swap key was based on how frequently 

participants used it to correct finger errors as opposed to 

backspace and correction. Figure 6 shows that in initial 

days, the swap key was infrequently used even when finger 

switching errors were high. Less than a quarter of finger 

switching errors were corrected using the swap key. This 

usage considerably improves over time. Participants use the 

swap key for more than half of the corrected finger errors 

after the fourth day. We asked participants about this at the 

end. Their responses indicate that initially they found it 

difficult to give up their habit of using backspace. As they 

used the swap key more, they found it easier to use. 

However, even at the end, the swap key is still not used for 

all finger switching errors. One participant commented that 

it depended on the flow of corrections – if the previous 

error was not a finger switching error, they would use 

backspace corrections and so even on a finger-switching 

error they would habitually go for the backspace key. 

Analyzing DualKey Speed: Finger-Switching Time 

In addition to movement and tapping time, the time taken to 

type a character relies on the user’s swiftness in deciding if 

the finger needs to be switched for the character, and then 

in optionally switching the fingers if required:  

𝑇 = 𝑇𝑑𝑒𝑐𝑖𝑑𝑖𝑛𝑔 + [𝑇𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔] + 𝑇𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 + 𝑇𝑡𝑎𝑝𝑝𝑖𝑛𝑔 

In certain situations, switching + movement time could 

actually be faster than when there is no switching – for 

instance, when typing ‘k’ after ‘a’, the middle finger will 

naturally be positioned close to ‘k’ after ‘a’ has been typed, 

and the user simply needs to tap ‘k’ with minimal 

movement. Depending on the deciding time, such a 

situation could be faster than one where there is no 

switching involved – to type ‘x’ after ‘i’, the user needs to 

decide and then move to the other diagonal end of the 

layout. 

Consequently, we analyzed the time duration between two 

characters with respect to their finger configurations. There 

are four possible finger configurations for the index (I) and 

middle (M) fingers – II, IM, MI, and MM. For instance, 

typing ‘k’ after ‘a’, requires a switch from the index finger 

to the middle finger, and therefore is in IM. The analysis 

ignores the data points where space is involved because it 

can be typed with any finger. It also ignores the first 

character of the phrases. 

Figure 7 shows the time duration between characters in 

seconds for the four finger configurations. The finger 

configuration has a significant effect on the time between 

characters (F(3,297)=257.725, p<.001). Pairwise 

comparisons found the difference in means between all 

finger combinations to be significant (p<.001). 

The participants were fastest in the II configuration, taking 

the least amount of time by a large margin. Interestingly, 

MM takes the maximum time, even without the need to 

switch fingers. Further, IM takes longer than MI. In 

summary: 

𝑇𝐼𝐼 < 𝑇𝑀𝐼 < 𝑇𝐼𝑀 < 𝑇𝑀𝑀 

While 𝑇𝐼𝐼 < 𝑇𝑀𝐼 is expected since 𝑇𝑀𝐼  involves switching 

fingers, the reasons for 𝑇𝑀𝐼 < 𝑇𝐼𝑀  and 𝑇𝐼𝑀 < 𝑇𝑀𝑀  are not 

immediately obvious. We examine them in more detail. 

 
Figure 7: Mean time duration between characters for each of 

the 4 finger configurations over 10 days. I - Index, M - Middle 

𝑇𝑀𝐼 < 𝑇𝐼𝑀: The data effectively says that regardless of the 

prior finger, it takes longer to type with the middle finger 

than the index finger. This can be explained by the fact that 

the middle finger is bigger, used less, and users have less 

precise control over its movements which causes them to 

spend more time to correctly position it over the right key. 

𝑇𝐼𝑀 < 𝑇𝑀𝑀 : Even though switching is not involved, typing 

with a middle finger when it follows another middle finger 

takes longer. One explanation is found in the frequency of 

occurrence of the MM finger configuration data points in 

the complete data. Among the four configurations, MM’s 

frequency of occurrence is half of the others: II: 30.5%, IM: 

27.6%, MI: 27.8%, and MM: 14.1%. Participants 

encountered the MM configuration less frequently than 

others and so were less used to MM than IM which causes 

the MM speed to be low. This hypothesis is confirmed by a 

closer look at Figure 7. Initially, when the users had no 

practice, both IM and MM start off at the same time 

duration. As the users get more experience, they encounter 

MM less frequently than IM, and the curves eventually 

diverge after the second session. 

While the finger configuration analysis is instructive and 

promises to be useful for later optimizations, it admittedly 

does not capture all aspects of user latency. As we stated 

earlier, positioning of fingers with respect to the next 

character has a bearing on movement time. We did a coarse 

position-based analysis where we added another variable in 

addition to the finger configuration: left and right halves of 

the screen, assuming that moving to the other half of the 

screen takes up time for the same finger. However, the 

analysis did not yield significant results beyond what we 

already knew from the finger configuration analysis. 



 

The increasing order of time for finger configurations 

indicates that if we maximize the instances of lower 

duration finger configurations and minimize higher ones, 

we can get an overall increment in speed. This will change 

the keyboard layout from qwerty. The optimal layout will 

assign the 26 letters to the index and middle fingers such 

that the average time between characters is reduced to a 

minimum. However, such a new assignment will mean that 

we deviate from the familiarity of the qwerty layout for a 

novice user. We perform an optimization of the keyboard 

layout that accounts for both the optimal assignment of 

letters to fingers and the closeness to qwerty, and results in 

a final finger-optimal near-qwerty layout. 

OPTIMIZATION 

The optimization is performed in two steps: 

I Optimizing the assignment of fingers to letters such 

that the average time between characters is minimum. 

II Optimizing the keyboard layout to be as close to 

qwerty as possible for the optimized assignment of 

fingers we get in Step I. 

Step I: Finger Assignment Optimization 

Procedure 

Multiple participants remarked on the first day that they 

found finger switching to be difficult and it required certain 

mental effort to make the decision. They subsequently 

reported that it became much easier after the first day, and 

they were able to type more freely. During the middle 

sessions, participants mentioned that they no longer had to 

consciously think and type for several words. One 

participant commented: 

“You develop a rhythm with the fingers after some time 

and now it does not feel that different from normal typing.”  

However, to make DualKey more acceptable to users 

initially, we need to reduce the decision-making effort, as 

well as the time taken by finger switching. The analysis 

reflects this in that the average time for different finger 

combinations differed starting from the first day to the last 

day (aside from MI and MM initially). We, therefore, 

perform optimization such that the overall time between 

characters is reduced based on these differences in finger 

configuration time. Our aim is to find an optimal 

assignment of letters to fingers such that the more frequent 

letter pairs (bigrams) are associated with finger 

configurations having lower time duration. To this end, we 

define the following objective cost function: 

𝑪𝒐𝒔𝒕 =  ∑ ∑ 𝒇𝒊𝒋 × 𝒕𝒊𝒋

𝒛

𝒋=𝒂

𝒛

𝒊=𝒂

 

Here 𝑓𝑖𝑗 is the frequency of a bigram ij in the English 

language corpus [22]; 𝑡𝑖𝑗 is the average time duration of the 

finger configuration associated with the bigram ij. In effect, 

𝑡𝑖𝑗 has only four possible values, the average time 

durations: 𝑇𝐼𝐼 , 𝑇𝐼𝑀 , 𝑇𝑀𝐼 ,  𝑇𝑀𝑀. For instance, both ‘th’ and ‘ef’ 

bigrams have the same 𝑡𝑖𝑗 =  𝑇𝐼𝑀 for the qwerty layout. The 

cost function effectively calculates the normalized time it 

would take for a user to type the entire English corpus if she 

were to type every pair of letters in the time taken by that 

finger configuration on average. To minimize the overall 

time, the cost function needs to be minimized. For different 

keyboard layouts, the same letter could be assigned to 

different fingers, and consequently the same bigram will be 

allocated to different configurations, thus giving different 

cost outputs. For example, if a new layout is same as 

qwerty, just with key er replaced by re, then all 𝑡𝑖𝑗 

associated with e and r will change – for instance, qwerty’s 

𝑡𝑒𝑓 =  𝑇𝐼𝑀 will be changed to 𝑡𝑒𝑓 =  𝑇𝑀𝑀 for the new 

layout. However, two layouts can have equal cost functions 

if finger assignment is same for every letter. 

After optimization, we need the optimal assignment of 

letters divided into two sets: SI & SM, such that the cost 

function is minimized. For qwerty layout, the assignment is: 

SI A B C D E G J L M O Q T U Z 

SM F H I K N P R S V W X Y  
 

Notice that optimization is not affected by the specifics of 

the position of the letters on the layout, only in the 

assignment of a letters to one of the fingers. There will be 

multiple layouts that will satisfy the final assignments. 

In the current DualKey layout, two keys have special 

characters (; <) for their middle finger association. 

Consequently, there are 14 slots for index finger and 12 

slots for middle finger. We keep the positions of the special 

characters fixed, keeping the number of index and middle 

finger slots constant at 14 and 12. This will retain qwerty’s 

number of letters per row and simplify the analysis. 

The four 𝑡𝑖𝑗values used for optimization are the individual 

average values, 𝑇𝐼𝐼 , 𝑇𝐼𝑀 , 𝑇𝑀𝐼 ,  and 𝑇𝑀𝑀 over all 10 sessions: 

.581, .765, .691, and .831 respectively. For an assignment 

of 26 letters into groups of 14 and 12, there are total 26C14 

possible combinations that need to be evaluated. We wrote 

a matlab script that gave the optimal assignment of letters to 

fingers with the least value of the cost function. 

The simplification of time taken between a bigram to the 

time taken by its finger combination admittedly does not 

capture the individual key level times. However, finger 

configuration is a significant contributor to a bigram’s time 

and while the optimization’s predicted values may not 

exactly replicate in practical use, it should certainly impact 

the speed positively and lessen decision-making effort.  

Results 

The baseline value of the cost function for the qwerty layout 

is .7006s. The globally optimal assignment is as follows:  

SI
o A C D E H I L M N O R S T U 

SM
o B F G J K P Q V W X Y Z  

 



 

The corresponding optimal value of the cost function is 

.6148s. This is a 12.25% improvement over qwerty’s 

.7006s. This implies that theoretically this assignment 

should increase the speed of DualKey by 12.25%. As a 

comparison, we ran the optimization for maximizing the 

cost function to get the worst possible assignment sets. The 

resultant cost value was .7952. The difference between the 

best and worst times is in a narrow range and qwerty lies 

somewhere in the middle. 

Looking closely at the assignment sets, we see that the 

letters assigned to the index finger are mostly high 

frequency letters, E, T, A, etc. whereas the middle finger 

assignments are low frequency letters X, J, Q, Z etc. In fact, 

a closer look reveals that SI
o contains the top 14 English 

letters by frequency [22], and SM
o contains the bottom 12. 

This fits in perfectly with the notion that with the highest 

frequency letters associated with the index finger, users 

would need to switch to the middle finger rarely, thus 

reducing the MM, IM, and also MI configurations and 

increasing II configurations. Using the frequency table  

[22], we see that the optimal assignment results in 86.5% of 

the taps being made by the index finger. 

Our optimization algorithm was designed to minimize the 

time taken between characters. To see how would an 

optimization based on minimizing the number of finger 

switching instances would perform, we ran another 

optimization with the same cost function, but with 𝑡𝑖𝑗 

replaced with 𝑏𝑖𝑗: 

 𝑪𝒐𝒔𝒕𝒔𝒘𝒊𝒕𝒄𝒉𝒆𝒔 =  ∑ ∑ 𝒇𝒊𝒋 ×  𝒃𝒊𝒋

𝒛

𝒋=𝒂

𝒛

𝒊=𝒂

 

Here, 𝑏𝑖𝑗  is a binary variable with a value 1 for IM and MI 

configurations and 0 for II and MM. This reduces finger 

switching regardless of individual time taken. Not 

surprisingly, the optimization resulted in the exact same 

optimal assignment sets. The cost of switching for qwerty 

was .5792, which implied that on average, to type the 

English corpus, the number of finger switches required 

would be .5792 per bigram or one switch for every second 

bigram. The optimal cost value came out to be .2220, which 

is an improvement of 61.7%. The number of finger 

switches is reduced to less than one switch for every four 

bigrams. This is a sizeable reduction in the number of 

finger switches the user has to deal with, thus lessening the 

decision-making effort. While theoretically, the speed 

should improve by 12.25%, the potential reduction in 

decision-making effort should also impact participants’ 

speed positively, improving the speed even further. 

The new assignment sets mean that the layout can no longer 

be qwerty. This could impact the initial performance of 

users who are habituated to soft qwerty keyboards. Our 

optimization, though, only results in optimal assignment 

sets and not a fixed keyboard layout. Consequently, we 

perform a layout optimization that resulted in a keyboard 

layout which was closest to the qwerty layout amongst all 

the eligible layouts for the optimal assignment set. 

Step II: Nearest-qwerty Layout Optimization 

Procedure 

With 14 letters assigned to the index finger, and 12 to the 

middle finger, there are 14!x12! = 4.1E+19 eligible layouts 

for the optimal assignment set. SI
o and SM

o were optimized 

individually over their 14 and 12 slots. 

A keyboard is considered near to qwerty based on the 

distances of the positions of all letters in the new layout 

from their positions in qwerty. The coordinates were 

assigned to the 26 slots in the following manner: The first 

top-left slot is assigned (x, y) = (0, 0) and the x-coordinate 

increases by 1 for every move to a slot on the right. The y-

coordinate similarly increases by 1 for every move to a slot 

below. For instance, for the qwerty layout, q has 

coordinates (0, 0), p has (9, 0), and m has (6, 2). The 

distance of a letter in layout L from its position in the 

qwerty layout Q is defined as: 

𝒅𝑳𝑸
𝒊 =  √((𝒙𝑳

𝒊 − 𝒙𝑸
𝒊 )𝟐 + (𝒚𝑳

𝒊 − 𝒚𝑸
𝒊 )𝟐) 

Here 𝑥𝐿
𝑖  refers to the x-coordinate of the ith letter in a layout 

L, and 𝑥𝑄
𝑖  refers to the x-coordinate of the ith letter in the 

qwerty layout Q. Based on this distance, we define the 

distance cost function for a layout L: 

𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆 𝑪𝒐𝒔𝒕 = ∑ 𝒅𝑳𝑸
𝒊  ×  𝒇𝒊

𝒛

𝒊=𝒂

 

Here 𝑓𝑖 is the frequency of the ith letter in the English 

language corpus. This is a weighted distance cost function 

such that more weight is given to the near-qwerty 

positioning of the most frequent letters. 

The globally optimal layout will minimize the weighted 

distance cost function to give us the layout that is closest to 

qwerty. Since the cost function involves the sum of 

weighted distances, we can write it as the sum of two 

independent parts: the weighted distance cost function for 

letters in SI
o, and the weighted distance cost function for 

letters in SM
o. Because the letters in SI

o can never occupy 

the slots designated for letters in SM
o, and vice versa, these 

two cost functions can be independently optimized. Thus, 

we obtain the globally optimal layout by iterating through 

only 14!+12! = 8.8E+10 layout permutations. 

Results 
Figure 8(b) shows the optimal layout that resulted from the 

optimization. We term it the SWEQTY layout. The optimal 

weighted distance cost value is .53. The unweighted 

distance of SWEQTY from QWERTY is 16.9. As the 

figure shows, the highest frequency letters in both SI
o and 

SM
o have retained their qwerty positions if their finger 

assignment was same as qwerty. As a comparison, the 

farthest layout from qwerty had a weighted distance cost of 

2.95 and an unweighted distance of 93.6. 



 

             
(a)                                        (b) 

Figure 8: (a) DualKey QWERTY (b) DualKey SWEQTY  

SWEQTY is the optimal layout in terms of time taken 

between characters, finger switching instances, and 

closeness to qwerty for any DualKey keyboard with the 

same slot layout. The same process can be easily applied to 

any other slot distribution for any DualKey variation. 

PERFORMANCE EVALUATION: DUALKEY SWEQTY 

With sweqty, the problem of initial unfamiliarity with the 

keyboard is somewhat alleviated due to the closeness with 

QWERTY. Combined with the potentially reduced 

decision-making effort and higher speed, we hypothesize 

that we will see a net improvement in the novice, as well as 

the long-term speed and error rates. To validate our 

hypothesis we ran another 10-day study with eight 

participants with the exact same design as the first 

QWERTY study. All participants were different from the 

earlier study. In total, we had 8 participants x 10 sessions x 

5 blocks x 5 phrases = 2000 typed phrases. 

Results 

The sweqty speed by days is shown in Figure 9. The effect 

of days on speed was significant (F (9, 63) = 34.887, 

p<.001). The mean novice speed of sweqty is 14.69 WPM, 

and the long-term speed is 21.59, both of which are higher 

than qwerty. SWEQTY’s curve is higher than QWERTY. 

The novice speed shows a 19% improvement over qwerty. 

Sweqty speeds show a higher variance than qwerty. This is 

because a subset of participants texted heavily on their 

smartphones every day. Consequently, they were using 

qwerty soft keyboards daily, in addition to sweqty. The 

performance of these users was affected as a result, 

resulting in higher variance. 

 

Figure 9: Mean Speeds of DualKey: SWEQTY vs. QWERTY 

The novice and expert TERs of sweqty are 5.67% and 

3.27% respectively. A mixed ANOVA on error rates for 10 

days yielded a significant difference between TERs for 

qwerty v/s sweqty: F(1,16 = 6.737, p<.05). Figure 10 shows 

the TER %s. The novice TER improved by 10.93%, and the 

long-term TER improved by 37.71%, which is a rather 

large improvement. The sweqty TER% starts off close to 

qwerty, but falls rapidly to values considerably lower than 

qwerty. The relatively high error rates initially in both 

techniques are because of the techniques being unfamiliar 

to the users. The fall after first day is pronounced in sweqty 

because of less finger switching and the low frequency of 

middle finger taps. 

 

Figure 10: Mean TER% of DualKey: SWEQTY v/s QWERTY 

In the Q&A for sweqty, participants mentioned that they felt 

they needed to switch fingers very infrequently and the 

technique was easy to pick up. When asked about the non-

qwerty layout, one of the participants commented: 

“It looked weird. But when I actually started typing, I did 

not have to actively search for the alphabets a lot.” 

Looking back at Table 1, we see that all four metrics show 

improvements over DualKey QWERTY. While sweqty v/s 

qwerty speeds do not show significance, there is significant 

difference between their TERs. At novice stage, the speed 

improves 19% and TER improves 10.9% despite a non-

qwerty layout which shows that the gains of switching to a 

near-qwerty optimal layout outweigh the familiarity of a 

qwerty layout for DualKey even at the starting point. The 

huge improvement in error rates boosts the usability of 

sweqty further, especially in the long-term.  

SWEQTY further extends the improvement that DualKey 

showed over existing techniques. Although novice speed 

does not exceed Splitboard’s 15.30, its value of 14.69 can 

be considered comparable. The novice TER, on the other 

hand, at 5.67% is lower than Splitboard’s 7.35%. Both 

qwerty and sweqty perform comparably or better than others 

on all four metrics. To put it another way, DualKey at least 

performs comparably to the best performing novice 

technique while exceeding others, and performs better than 

all existing techniques on long-term performance.  



 

DISCUSSION 
Performance Improvements 

Even after optimization using the sweqty layout, there is 

further scope for improvement in multiple areas. First, our 

custom hardware limited the degree of freedom for the 

user’s fingers and thus constrained the user’s ability to do 

free form typing. Second, even though it was small, the 

finger sensor occluded the screen by a bit, which further 

impeded user’s performance. An unobtrusive finger 

identification technology will further improve the 

performance. In fact, aside from fingerprinting techniques, 

we can imagine miniature sensor rings that the user can 

wear that will reduce movement constraints or occlusion. 

Third, incorporating auto-correction into the keyboard will 

allow the user to make more imprecise taps which will 

increase the overall typing speed. However, auto-correction 

is not applicable in every situation, as people routinely type 

words that are not in the dictionary. Further, DualKey can 

be adapted for other languages that do not work as well 

with dictionary corrections. 

Finger identification leads to huge number of possibilities 

for simplifying and augmenting interactions. Therefore, as 

and when the technology gets mature, we will potentially 

see such applications on the rise and slowly become a part 

of the natural interaction ecosystem. In an ecosystem where 

finger identification interactions are a norm, the users’ 

novice performance will certainly be superior. 

Limitations and Future Work 

Our study does not account for left handedness. There is an 

added wrinkle when DualKey is implemented for the left 

hand. Since the index finger is on the right of the middle 

finger, the characters corresponding to the index finger 

should be on the right part of a key. This will change the 

layout from qwerty/sweqty to something that is farther from 

qwerty. While the process will remain the same, left handed 

DualKey needs to be studied independently. 

DualKey has been designed and optimized for a smartwatch 

form factor. However, there are even smaller screens where 

DualKey’s efficacy needs to be evaluated. As an extension, 

a TriKey model can be studied where a single key 

corresponds to three letters associated with three fingers (or 

2 fingers + thumb), reducing the space requirements even 

further. The insights we have gained from DualKey can be 

helpful in designing the optimized versions of such TriKey 

keyboards. As we have seen, the optimal finger assignment 

results in allocating the highest frequency letters to the 

index finger. We can apply the same principle for TriKey, 

where the highest frequency letters are allocated to the 

index finger, followed by the middle finger, and finally the 

ring finger or the thumb. 

Designing Finger Identification Interactions 

Our analysis provided us some insights on designing 

interactions that use finger identification. First, reducing 

finger switching even at the cost of impacting familiarity of 

an interface is an inquiry worth undertaking for any new 

application. Second, middle finger taps expectedly take 

longer and should be assigned low frequency keys. Third, 

such interactions will be prone to incorrect finger usage 

mistakes, and providing a quick Swap or Undo method will 

be useful. It also reduces the cost of an incorrect-finger tap 

in the user’s mind, thus relaxing the interaction without the 

user having to worry about making finger errors. Text-entry 

has a latent implication that it can be undone easily. 

However, keys like Send cannot be undone. It is 

recommended that buttons that trigger commands that 

cannot be undone easily should not be associated with 

multiple fingers. 

The space of interactions using finger identifications is 

starting to grow out of its infancy. What is needed is not 

just listing a library of interactions, but also end-to-end 

applications and in-depth analyses that provide a 

compelling argument for these interactions and how they 

improve and augment our current interactions. DualKey 

hopes to be a progressive step in that direction. 

CONCLUSION 

We presented DualKey, a novel technique for miniature 

screen text entry via finger identification. We built a custom 

hardware that performed finger identification with a 99.5% 

accuracy which involved detecting subtle finger 

movements. We conducted a comprehensive long-term 

study of the technique and do an in-depth analysis of the 

speed and error rates. The error analysis showed the 

usefulness of having the swap button. Based on the speed 

analysis, we optimize the assignment of letters to fingers to 

reduce the finger switching time. Based on the new 

assignments, we optimize the layout to get a nearest-to-

qwerty layout as close to familiar as possible. We conduct 

another long-term study with eight participants for the new 

sweqty layout to validate the theoretical premise. Despite 

being a non-qwerty layout, Sweqty improves upon DualKey 

in all respects, including improved novice and long-term 

speeds & error rates, as well as reduced initial decision-

making effort. 

DualKey (qwerty/sweqty) beats the existing techniques in 

multiple respects: (1) Using single step selection, instead of 

the prevalent two-step selection, it has a GPC of 1 in 

contrast to a minimum GPC of 1.28 among existing 

techniques. (2) In contrast to the best performing 

techniques, DualKey does not require swipe gestures, thus 

allowing for parallel shape writing on the layout. (3) 

DualKey’s long-term performance, both in terms of speed 

and error rate is better than the reported long-term speeds of 

other techniques, even while not being a typical expert 

technique. (4) DualKey qwerty’s novice performance 

exceeds all others barring Splitboard. DualKey sweqty 

improves upon this novice performance and is comparable 

to Splitboard in terms of novice speed and betters 

Splitboard in terms of error rate. 
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