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Abstract—Many location-based services for alerting persons
of nearby friends have been deployed in practice. A drawback
of most approaches to providing such services is that friends
always learn each other’s location even when they are not actually
nearby. The Louis protocol proposed by Zhong, Goldberg and
Hengartner aims to ensure that a friend’s location is revealed
to another friend if and only if the friends are actually nearby.
The protocol lets a third party learn whether the friends are
nearby, without the third party learning their location. The third
party communicates the answer to the person who invokes the
service. A key feature of the protocol is that a person can detect
misbehavior by the third party or the person’s friend. This paper
reveals a flaw in the way the protocol handles the detection of
the misbehaving party, leading to an unauthorized disclosure of
a person’s location. Two alternatives for fixing the flaw in the
protocol are proposed and a heuristic analysis is given.

I. INTRODUCTION

Gone are the days when the only requirement met by a
mobile phone was to allow people to talk to each other.
Modern mobile devices provide lot more than this basic
facility. One such value added service category is that of
Location Based Services (LBS). According to Virrantaus,
Markkula, Garmash and Terziyan [16], “LBSs are information
services accessible with mobile devices through the mobile
network and utilizing the ability to make use of the
location of the mobile device.” Simply put, location based
services, besides other things, take the geographical position
(actual location co-ordinates or relative distance from a
reference point) of the user as a necessary input to provide
a personalized service, hence the name. Location privacy
is the property which states that a user’s location attributes
(distance from a point or actual co-ordinates) should not be
revealed unless it is authorized by the user.

The recent boom in location based services has given
rise to a number of Buddy Tracking and friend finding
applications [20], [21], [22], [23], [24], [25], [26]. These
services notify the users of their friends in the vicinity or
allow them to view the locations of their friends on a map.
Though each of them lets the user control whom they want
their location revealed to and when they want it, the degree
of privacy and security offered to the users varies with the
service; for example MyLoki [23] and iPling [22] simply
allow all the friends whom the user has approved, to get
location information without any constraints being put on

how far the user and his/her friend are from each other. This
results in friends knowing each others’ location information
without being nearby. Other services [20], [21], [24], [25],
[26] send alerts to a user if the user is nearby. But the
drawback of these services, other than being specifically
dependent on a particular cellphone network architecture
and the limited options given to the user for defining the
nearby area, is that they all are required to reveal the location
information to the service provider. MIT’s iFind project [2]
introduces a distributed buddy-tracking application, where an
individual’s WiFi device determines its location and shares
this information with his friends. Though this approach can be
exploited for alerting people of nearby friends, its drawback
is that the friends always learn each other’s location, not
considering whether they are actually nearby; thus resulting
in, possibly, revealing more information than desired. Let us
consider a scenario. Alice is at an invitation-only gathering,
and wants to find out if her contemporary Bob is there too. If
he is, she wants to exchange location and meet up with him;
but if not, then she does not want him to know her location,
as it could hurt Bob. Thus she needs to know if Bob is nearby
and only then can she exchange the location information
with him. Consider another scenario where an organization
implements such a service to locate its employees while
they are within the organization’s premises. Here the flaw
is evident, that is, because of this service the organization
will be able to track the employees wherever they are, thus
breaching their personal privacy. So what is actually needed
is a service which lets one know of his/her friends’ location
attributes only when they are nearby. This problem has been
explicitly addressed by Zhong, Goldberg and Hengartner [1]
and has been referred to as the nearby-friend problem. The
protocols proposed by Zhong et al. do not require a separate
service provider that is aware of user’s locations. It makes use
of secure multiparty computation (SMC). No other previously
proposed protocol directly handles this problem, although
other SMC problems such as the point-inclusion problem
introduced by Atallah and Du [11], [12] could be used to
solve the problem. This is further discussed in Section II.

Zhong et al. proposed three distributed protocols - Louis,
Lester and Pierre [1] to solve the nearby friend problem. The
Pierre protocol achieves the objective of telling Alice whether
Bob is nearby or not, but at the cost of not being able to tell



the user the precise distance to a nearby friend. The Lester
protocol tells the precise distance, but has the drawback that
a user might be able to learn a friend’s location even if the
friend is in an area that is no longer considered nearby by the
friend. In the Louis protocol, which requires a semi-trusted
third party, it is claimed that after the protocol has been run,
the two involved parties (principals in the protocol) share
their location co-ordinates if and only if they are actually
nearby. (We will refer to this goal of the protocol as the only
nearby friend clause in the rest of this paper.) We show that
the Louis protocol is unsuccessful in maintaining the nearby
friend condition, in some of the cases when a party tries to
cheat.

The rest of this paper is organized as follows. In Section II,
we describe the related work that has been done in this field.
The Louis protocol is then described in Section III. In Section
IV, we present a security analysis of the protocol highlighting
its flaw. In Section V and VI, we describe proposed solutions
intended to overcome the discovered flaw in the protocol
along with their security analysis. And finally we conclude
the paper by describing possible directions for future work.

II. RELATED WORK

Location cloaking is the approach where the location of
a device is hidden (by the device or a third party) before
sending it to the service provider of the location based service.
It is a popular approach for providing location privacy [4],
[5], [6], [7]. Location cloaking is studied by Cheng, Zhang,
Bertino and Prabhakar [4] for a service that alerts people
of nearby friends. The service provider of LBS knows only
that the user (who is requesting the service), is within a
particular region, but not the exact location. The quality of
the answer received by the user from the service is dependent
on the privacy information, the user is willing to trade-off.
A drawback of this approach, as has also been pointed out
by Zhong et. al. [1] is that the service provider learns some
location information. The Louis protocol does not need such
a third party, that is, it does not require the active involvement
of the service provider. (In the Louis protocol, the third party
does not learn any location information.) Furthermore, there
is no trade-off between the quality of the answer and the
privacy information revealed.

Instead of revealing location attributes to a service provider,
the nearby-friend problem uses secure multiparty computation
(SMC), where multiple parties jointly compute the output
of a function without learning each other’s inputs. Many
SMC protocols which calculate distance between two nodes,
without revealing the individual location co-ordinates to each
other have been proposed [8], [9], [10]. But these are not
suitable for the nearby friend problem, as they reveal the
distance between the nodes to the involved parties, which is
a location attribute that has to be kept private in the nearby

friend application, until the nodes are proved nearby.

Atallah and Du identified the point-inclusion problem in
2001 as an SMC problem [11], [12]. Bob has a private point
and Alice has a private polygon, and they want to find out
whether the point is inside the polygon or not. Bob does not
want Alice or anyone else to know any information about the
point, and likewise, Alice does not want Bob or anyone to
know any information about the polygon. The point-inclusion
problem directly addresses the requirements of the nearby
friend problem, and can be exploited for letting Alice know
whether Bob is nearby. Du et al. propose a protocol for this
in [12], which lets both Alice and Bob learn whether Bob’s
point is in Alice’s polygon. As has been pointed out by
Zhong et al. [1], the resource usage and the number of steps
required for this protocol is very high. The Louis protocol,
which needs a semi-trusted third party, lets Alice know in
four communication steps whether Bob is nearby and requires
one additional step to inform Bob of this result.

Køien and Oleshchuk [15] also propose a secure two-party
protocol for the point-inclusion problem. However, as pointed
by Zhong et al. [1] the protocol has a flaw: Alice can
learn Bob’s location by choosing a degenerate polygon. For
example, if there are only two different edges in the polygon
and all the other edges are identical to one of them, Alice
will usually be able to solve a system of linear equations
to determine Bob’s location. Bob cannot detect degenerate
polygons, assuming the underlying encryption scheme is
semantically secure, so this protocol is not adequate for
solving the nearby-friend problem. Thomas [17] considers the
point inclusion problem in a star-shaped domain and a more
general polygonal domain (can have several disconnected
nested components). But, it is susceptible to a similar attack
as that on Køien and Oleshchuk.

Li and Dai [9] studied the point-inclusion problem for
circular domain. However, their solution is not secure in the
sense that each party gets additional information regarding
the location of the other party’s object, that is, distance.
Moreover, their solution is highly inefficient. A more efficient
protocol for point-inclusion, which uses homomorphic
encryption [12], [13], [19], [14] in a circular domain was
proposed by Luo, Huang and Zhong [10]. This protocol is
the closest in methodology to the Louis protocol, but the
problem with this protocol is that the output is revealed
to only one of the parties, the other party has to trust the
knowledgeable one for the output. In the Louis protocol,
after Alice learns that Bob is nearby she can prove this to Bob.

III. THE LOUIS PROTOCOL

The Louis protocol involves three principals: Alice (the
initiator), Bob (the responder) and Trent (the semi-trusted
third party). As shown in Fig. 1, Alice exchanges messages
with Trent and Bob. Bob and Trent do not exchange messages



Fig. 1. Setup of the Louis Protocol

with each other. Therefore Trent never learns about Bob’s
identity. Trent learns whether two friends are nearby, without
learning their location attributes and is hence, termed as
semi-trusted. The protocol is designed to operate even when
each party acts maliciously, although it does not handle
collusion among the parties.

Alice and Bob are friends who want to find out whether
they are nearby. It is assumed that location of a principal
can be mapped to two-dimensional co-ordinates and Alice
and Bob understand this mapping. Alice considers Bob
to be nearby if he is within a circle of radius r (decided
by Alice, during the protocol run) centered around Alice.
This value of r must not be revealed to Trent. Two secure
communication channels (as shown in Fig. 1) are setup before
the protocol begins (one between Alice and Bob and the
other one between Alice and Trent). Each channel provides
confidential and authenticated communication between the
two communicating principals.

A. Notations

• (x, y) denotes Alice’s cartesian location co-ordinates and
(u, v) denotes Bob’s co-ordinates.

• r is the radius of the circle centered around Alice.
• D is the distance between Alice and Bob, D =√

(x− u)2 + (y − v)2 .
• d is the difference of squares of distance and radius, that

is, d = D2 − r2 = (x− u)2 + (y − v)2 − r2.
• εA(·) denotes the Paillier encryption using Alice’s public

key.
• εT (·) denotes non-homomorphic encryption using Trent’s

public key.
• H(·) is a cryptographic hash function.
• sigX(m) is a non-message recovering signature on mes-

sage m by principal X .
• k is a random value chosen by Bob.
• sX is a random salt chosen by principal X .

B. Paillier cryptosystem

The Paillier cryptosystem [3] is an encryption technique
where one can perform a specific algebraic operation on
the plaintext by performing an (possibly different) algebraic
operation on the ciphertext. If the algebraic operation being
performed on the plaintexts is addition, then the technique is
called additive homomorphic encryption. In other words, given
ε(m1) and ε(m2), one can efficiently compute ε(m1 +m2).
In Louis protocol this technique enables one of the principals
to perform a computation without actually knowing the values.

Alice selects random primes p and q and computes
n = pq. Plaintext messages are elements of Zn and
ciphertexts are elements of Zn2 . Alice picks up a random
g ∈ Z∗n2 such that µ = (L(gλ mod n2))−1 mod n exists,
where λ = lcm(p − 1, q − 1) and L(x) = (x − 1)/n. Alice
then uses (n, g) as her public key and (λ, µ) as her private key.

1) Encryption: In order to encrypt a message m, Bob,
computes the ciphertext E(m) = c = ε(m) = gm·γn mod n2,
where γ ∈ Z∗n is a random number.

2) Decryption: In order to decrypt the encrypted message,
Alice computes D(c) = (L(cλ mod n2)) · µ mod n,
which reveals m to her. Given two ciphertexts,
ε(m1) = gm1 · γn1 mod n2 and ε(m2) = gm2 · γn2 mod n2

one can efficiently compute ε(m1 + m2) =
ε(m1) · ε(m2) mod n2 = gm1+m2 · (γ1γ2)n mod n2.

C. Protocol Steps

The Louis protocol consists of two phases of which the
second one is optional. The first phase lets Alice determine
whether Bob is nearby. (Recall that Alice considers Bob
nearby if d < 0.) If this is the case, the (optional) second
phase lets Alice and Bob learn each other’s locations. On the
other hand, if Alice detects misbehaviour, she can also use
the second phase to detect the cheater. A detailed description
is as follows.

1) First Phase: In order to initiate the protocol, Alice
determines her location co-ordinates (x, y), a desired radius
r, and chooses a random salt sA. She then sends these values
to Bob in the following message.

1. A → B : εA(x2 + y2), εA(2x), εA(2y), r,H(x, y, sA)

The aim is to let Bob compute the encrypted value of d+k
without the knowledge of Alice’s co-ordinates, (x, y). This is
one of the instances where the Paillier cryptosystem has been
efficiently utilized. The hash value acts as a commitment of
(x, y).

Bob checks the value of r. If he thinks r is too large, he
aborts the protocol. Otherwise, he determines his location co-



ordinates (u, v), selects a random value k and computes:

εA(d+ k) =
εA(x2 + y2) · εA(u2 + v2) · εA(k)

εA(2x)u · εA(2y)v · εA(r)2

This random value k is necessary to hide the value of d from
Alice. Otherwise, knowing d and k will allow to compute
D. Bob encrypts k using Trent’s public key in order to keep
the value of k confidential from Alice. Bob also chooses
a random salt sB for another hash function that will be
similarly used as a commitment on part of Bob by Alice,
later in the protocol (message 6).

2. B → A : εA(d+ k), εT (k), H(u, v, sB), H(k)

Alice decrypts εA(d + k) and sends it to Trent along with
her signatures.

3. A → T : d+k, εT (k), sigA(d+ k), sigA(εT (k))

Trent decrypts εT (k) and verifies Alice’s signatures. Next,
he computes d (by subtracting from d+ k the value of k, that
he decrypted). If d < 0, Trent sets ans = ‘YES’ else, he sets
ans = ‘NO’ and send it to Alice.

4. T → A : ans, sigT (ans, sigA(d+ k), sigA(εT (k)))

Note that since Trent does not know the value of r, he can
not calculate the actual distance between Alice and Bob.

Alice verifies Trent’s signature and, if she sees ans is
‘YES’, she believes that Bob is nearby. Alice may initiate
the second phase of the protocol if she is convinced with
Trent’s answer that Bob is nearby (and hence does not get
suspicious). Alice may also initiate the second phase in order
to find out the cheater when she gets suspicious on noticing
an inconsistency between Trent’s answer and her ‘visual
spotting’. The protocol is terminated if she is convinced with
Trent’s answer that Bob is not nearby or if only the first
phase of the protocol is run.

2) Second Phase (Optional): At the end of the first
phase, Alice learns Trent’s answer to the question whether
Bob is nearby. Since either Bob or Trent can cheat, she
can not be sure of the answer. Such misbehaviour can be
detected by Alice through visual spotting; then, to detect
who is cheating Alice can execute the second phase. The
term ’visual spotting’ coined by Zhong et al. refers to any
external means, through which Alice(or Bob) can detect
inconsistencies. For example, if Alice receives ‘NO’at the
end of first phase, but ’spots’ Bob nearby, she knows that
cheating has taken place. Alice also executes the second
phase, if she does not detect any misbehaviour and wants to
find out the location coordinates of Bob when the answer
says that they are nearby. The second phase is described below.

Alice sends ans to Bob along with signed copies of the
messages she received from Trent in message 4.

5. A → B : ans, d+k, sigA(d+ k), sigA(εT (k)),
sigT (ans, sigA(d+ k), sigA(εT (k))), x, y, sA

Bob verifies all signatures. He then computes H(x, y, sA)
and compares the hash value with the one provided by Alice
in message 1. He also uses (x, y) to compute d + k and
compares it to the value received. If the values do not match,
Bob aborts the protocol. Otherwise Bob reveals his location
co-ordinates to Alice. He computes the d + k value again in
order to be assured that Alice didn’t tamper with the d + k
value she received from Trent in message 2. He then sends
his actual co-ordinates and the secret salt (sB) so that Alice
can also perform similar verifications.

6. B → A : u, v, sB , k

Alice computes H(u, v, sB) and H(k) and compares the
values with the hash values provided by Bob in message
2. Alice also computes d + k based on (x, y), (u, v), and
k and verifies whether it equals the decrypted value of
εA(d + k). If all the quantities are consistent, the protocol
ends successfully. At the end of the protocol, once both the
phases have been successfully run, both the parties (Alice
and Bob) know each other’s location co-ordinates.

IV. THE FLAW

Any of the three principals Alice, Bob or Trent can
misbehave during the protocol run. Alice or Bob may reveal
locations, at which they are not present and Trent can
misbehave by manipulating the answer it sends to Alice. The
Louis protocol claims to directly detect such scenarios where
one of the principals misbehaves but does not claim to detect
the situations when Alice or Bob collude with Trent.

The detection of suspicious behaviour by Alice or Bob is
through means external to the protocol, that is, the protocol
does not provide means to detect misbehaviour, it only
provides the means to detect as to who the misbehaving party
is, if a suspicion arises. For example, if Alice visually spots
Bob in the nearby vicinity after being told by Trent that Bob
is not nearby, she gets suspicious and can now, according
to the original protocol, detect who the misbehaving party
is. The protocol also makes a hidden assumption, that has
not been explicitly stated, which is that all the participants
of the protocol have to remain static during the run, that is,
movements of the participants are not accounted for. This is
because if Bob moves to a different location during the run
of the protocol, then an inconsistency will occur when Alice
verifies them on receiving message 6 even if all the principals
have been honest throughout the run. Also the outcome of
Alice’s visually spotting mechanism may be affected if Bob



changes his location during the run of the protocol.

Now let us see how the protocol attempts to detect the
misbehaving parties, compromising one of the goals it was
designed to achieve, in the process.

The visual spotting mechanism or the external means
for Bob have been assumed in the analysis to support the
statement in the original paper that if the second phase of the
protocol is run and Bob detects suspicious behaviour, Bob uses
mechanisms similar to Alice’s to discover misbehaviour[1].
This mechanism is similar to Alice’s (which has been
described in the original paper), specifically if Bob does not
spot Alice in the nearby area, he concludes she must be
outside it.

We consider the following types of cheating.

• Cheating by Trent implies that he flips the answer after
he calculates the distance. In other words, if the distance
calculation suggests that Bob and Alice are nearby, Trent
flips the answer and sends the response denoting that Bob
and Alice are not nearby and vice versa.

• Cheating by Bob or Alice implies that they use fake co-
ordinates, right from the start of the protocol run, instead
of their actual location co-ordinates.

The protocol does not safeguard the privacy of a party which
cheats. It should also be noted that if a participant tries to
misbehave during the protocol, for instance, it changes its
co-ordinates sent in the second phase, from those in first, it
will be detected using the commitments made earlier. This
kind of misbehaviour is hence detected.

We will now consider three cases for analysis, which are
exhaustive under the assumptions being made. Note that
unless the second phase is initiated by Alice, Bob will not
detect any misbehaviour; it is only after that, that Bob needs
to detect misbehaviour.

• Case 1: When only Trent Cheats
In this case, if Trent sends the (flipped) answer as ‘NO’
(even when Alice and Bob are actually nearby), then
Alice asks Bob to reveal his co-ordinates if she gets
suspicious (that is to say that she spots Bob in her
vicinity even when Trent said otherwise). So there is no
problem in this situation as the parties exchanging the
co-ordinates are actually nearby.
On the other hand, if Trent sends the (flipped) answer
as ‘YES’ (even when Alice and Bob are not actually
nearby), then Alice reveals her co-ordinates (in order
to initiate the second phase of the protocol) if she gets
suspicious (that is to say that she fails to spot Bob in
her vicinity even when Trent said otherwise). So here,
there is a problem as Bob is forced to reveal his location
coordinates to Alice even though he is not nearby. Also,
even though Bob comes to know about Trent’s cheating

(as he can easily recalculate all quantities and yet fail to
spot Alice in his vicinity), he has no way to convey this
information to Alice without revealing his coordinates
in the existing protocol. Also, Alice’s coordinates are
revealed to a party that is not nearby. If Bob aborts the
protocol at this stage, he is labelled a cheater by Alice
which may affect their friendship. The problem arises in
this case as even when Bob has the capability to visually
spot Alice, he can not convey this information to Alice
as the protocol does not provide any channel to Bob to
convey to Alice that he can also verify her absence (or
presence) in his vicinity.

• Case 2: When only Bob Cheats
In this case Trent is honest and performs the calculation
according to the protocol. Now, when Bob cheats, and
Alice gets suspicious, then in order to find out who the
cheater is, Alice has to initiate the second phase of the
protocol. This results in the disclosure of her location
coordinates to a cheating party (Bob, who may not be
nearby) and so Alice’s privacy is compromised.

• Case 3: When only Alice Cheats
Bob recalculates all the quantities and hence knows that
Trent has not cheated. Now, since Bob has the ‘visual
spotting’ capability he can conclude that Alice is the one
who is cheating, on finding inconsistencies in Trent’s
answer and his ‘visual spotting’. Hence, here he knows
about Alice’s cheating and will abort the protocol. This
is the only case, where protocol works and where Bob’s
visual spotting mechanism will prevent his privacy from
being compromised.

We have shown that in two of the cases (cases 1 and
2), when a party cheats, the Louis protocol is unable
to safeguard the location privacy of its users. In the
next two sections we propose two fixes to solve the
problem. The proposed fixes address the issue of flawless
functioning of the Louis protocol under the original
assumptions. They do not handle the situation when
collusion between two parties takes place and assumes
the parties to be static during the run of the protocol.

When Alice gets suspicious of a supposed misbehaviour
by either Trent or Bob, she initiates the second phase
in order to detect the cheater, and if she does not
receive Bob’s cooperation, she deduces that he is the
misbehaving party. The flaw, in the Louis protocol, is
the result of Alice’s faulty conclusion. This is caused
as Alice does not have the information about Trent’s
behaviour (who could be cheating) when she gets the
fifth message, when Bob gets to know about it. Secondly,
on getting suspicious Alice has no choice but to execute
the second phase to identify the cheater, resulting in
revealing her coordinates unconditionally.



We propose two fixes to solve the problem. The first
fix uses an additonal phase which effectively solves the
problem of finding out the cheating party. But the fix
only tones down the problem of location coordinates
being revealed, as it requires the distance between Alice
and Bob to be revealed when cheating takes place, in
order to find the cheater. The second fix, which uses
a probabilistic cut and choose method does not have
this problem, but here the trade-off is in terms of cost
efficiency.

V. A FIX USING AN ADDITIONAL PHASE (FIRST FIX)

In the original protocol, the second optional phase has
two motives - detection of the cheater (when Alice
gets suspicious) and exchange of the exact location
coordinates. In our fix we aim to decouple these
two motives by finding out the cheating principal in
one phase (in case of Alice getting suspicious) and
exchanging actual coordinates in another. The second
optional phase of the Louis protocol above remains same
in application, but its purpose is now limited only to
the exchange of coordinates, when no suspicion arises.
(Remember that cheating by Alice/Bob meant using
fake coordinates right from the start; the case when they
misbehave during the protocol is still handled by this
phase itself.) To find out the cheating principal when
Alice gets suspicious, we introduce another optional
extra phase after the first phase, which requires Bob
to let Alice know his actual relative distance from her
and thus validate the correctness of Trent’s reply sent
to Alice. This decoupling allows Bob to remain free of
the dilemma of whether to send the coordinates or not,
and therefore the condition to Alice’s faulty conclusion
is avoided as well. The noteworthy fact here is that only
one of the two optional phases in the fixed protocol
can be executed in a protocol run since the additional
phase is executed only when someone has cheated
and as a result of that Alice gets suspicious. Once a
cheating has taken place, there is no basis of exchanging
the coordinates and hence the other phase can not be
executed. Now, let us look at the proposed additional
phase.

5’. A → B : ans, d+k, sigA(d+ k), sigA(εT (k)),
sigT (ans, sigA(d+ k), sigA(εT (k)))

After the first phase is executed and Alice gets suspicious,
it executes the additional optional phase to detect the
cheater. Here, Alice sends to Bob the ans and d + k
values and the related signatures which she receives
from Trent in message 4 but refrains from revealing the
actual location coordinates (x, y) at this stage. When
Bob receives d + k, he subtracts k from it and can thus
check whether the answer Trent had sent to Alice is
consistent, that is, if d + k − k comes out to be less

than zero then ans must equal ‘YES’ implying Bob was
nearby and accordingly for the other case when it comes
out to be greater than zero.

In case Bob detects an inconsistency, he will send the
k value to Alice (Bob can not modify the k value due
to the commitment he has sent previously), thus helping
her realize that Trent was cheating, after which Alice
can choose to abort the protocol at this stage itself. The
security analysis presented in the next section discusses
other cases (of cheating by Alice or Bob himself) in
depth.

6’. B → A : k

A. Security Analysis

– Case 1: When only Trent cheats.
In this case, when Alice gets suspicious, she sends
message 5’; Bob in turn checks its consistency with
Trent’s answer. When Bob finds Trent’s ans to
be inconsistent with the value Alice has sent, he
knows that Trent is cheating here and conveys this
to Alice, by sending message 6’. Thus, the problem
of finding out for sure who the misbehaving party
is, is solved. The problem of Alice having to reveal
her coordinates in order to find out the misbehaving
party, is toned down in the sense that Alice simply
has to reveal the distance to Bob.

– Case 2: When only Bob cheats.
In this case, again, Alice sends message 5’, after
getting suspicious. Now, Bob’s cheating will be
caught if he replies to this message by sending
message 6’, because Alice will verify the consistency
of Trent’s ans, and hence will know that it is Bob
who has cheated. Also, if Bob chooses not to
reply in this situation, then again Alice will know
that Bob is the cheater. The problem of Alice’s
coordinates getting revealed, is again toned down,
just like in Case 1.

Note that here Alice does not need to trust any
one, to find out the cheater, once she is sure that a
cheating has taken place. If Alice receives a k, after
5’ from Bob, then she will first check using previous
commitments if it is the same value sent earlier; if
it is the same value, then she uses it to find d. If
this value of d is consistent with Trent’s previous
ans, then it must be Bob who has cheated. If not,
then Trent is the cheater. If Alice does not receive
any reply for message 5’, then she concludes that
Bob is the cheater as he has not provided evidence
to the contrary.

– Case 3: When only Alice cheats.
Here, suppose Alice wants to use the new phase



for her advantage, to know Bob’s distance attributes
without any suspicion. Alice sends message 5’,
revealing her distance (which might be from some
fake coordinates); Bob checks its consistency with
Trent’s ans, which agrees with the d value. Thus
Bob knows that Trent has not cheated, and since
Bob himself is honest, this means Alice’s suspicion
is unfounded, implying that Alice is misbehaving to
know Bob’s distance attributes. Thus Bob will not
send message 6’, and will sever his friendship with
Alice. This is the reason, why Alice should be sure
of the fact that someone has cheated, before sending
message 5’, because her only purpose is to know
who the cheater is, once it has been confirmed that
someone has cheated, through the visual spotting
mechanism.
Also, note that the visual spotting mechanism for
Bob is not required in this additional phase.

Using this fix, Alice and Bob are able to hide their actual
coordinates when they are not nearby but this is done at
the cost of revealing the relative distance between the
two. Another fix that we propose in the next sub-section
overcomes this shortcoming as well.

VI. A FIX USING CUT AND CHOOSE PROTOCOL
(SECOND FIX)

The problem with the protocol, as stated above is
that Alice does not have the information about Trent’s
behaviour when she gets fourth message, where Bob
gets to know about it. This leads to Alice’s incorrect
conclusion that Bob is dishonest if his reply does not
come. To fix this, we propose the following solution,
which ensures Trent’s honesty and ensures that Alice is
sure upto a certain probability about the veracity of his
reply before initiating the optional phase of the (original)
protocol.

A cut and choose protocol is the one where one person
divides goods or resource into what they believe are
equal halves, and the other person chooses the half they
prefer. Our fix is based on this concept, in the way
that the initiating party, Alice, at the start of protocol,
has N inputs X1, · · · , XN out of which Alice may be
interested in maintaining the secrecy of only one input
Xi, 1 ≤ i ≤ N . She then sends all these N inputs to the
other party, Trent who performs his part of the operation
on all the N inputs without getting to know the secret
input Xi as he does not know i. He then sends back
all the N processed inputs to Alice who retrieves Xi

out of X1, · · · , XN . Trent can of course try and guess
the value of i, the probability of which is 1/N , but this
can be controlled by Alice (by varying the value of N )
according to the implementation needs.

We propose to use this idea in order to act as a fix.
This needs tweaking of message 3 and 4 of the original
protocol:

3. A → T : d+k, εT (k), sigA(d+ k), sigA(εT (k))

4. T → A : ans, sigT (ans, sigA(d+ k), sigA(εT (k)))

Let Xj = {dj + kj , εT (kj)}. Going by the above idea,
Alice sends N such message sets, X1, · · · , XN , to Trent,
while the actual message (including the calculated d+ k
value) she has received from Bob is Xi, 1 ≤ i ≤ N ,
such that i is known only to Alice. The other dummy
values are chosen so that Alice knows whether their
‘d’ value is greater than or less than zero. Trent then
performs the computations on all these N message sets,
thereby generating N response message sets, which
he sends back to her as message 4. The probability of
cheating by Trent, without getting detected is hence
1/N . So in message 4 of the ‘fixed’ protocol, Alice now
receives, {ans1}, · · · , {ansN}.

3. A → T : {d1 + k1, εT (k1)}, · · · , {dN + kN , εT (kN )}
3’. T → A : {ans1, · · · , ansN}

Alice can then check the messages for tampering, that
is, if she finds a different answer (other than what she
expects, as she knows the ‘d’ value already) for any of
the ‘d’ value other than that of Xi, she can be assured
that Trent has resorted to cheating. If all the values are
as expected then if any cheating takes place, Bob is held
responsible. Alice sends the ans she received from Trent
to get his signatures on it so that it can then be sent to
Bob, like in the original protocol.

4. A → T : {ansi, di + ki, εT (ki), sigA(di + ki), sigA(εT (ki))}
4’. T → A : sigT (ansi, sigA(di + ki), sigA(εT (ki)))

This modification allows to make the whole process
more efficient than signing N different messages of
which N −1 are dummy values but this is made possible
at the cost of an additional communication step. The
security of the fix depends on the magnitude of N and
hence a trade-off between security and cost is required.

A. Security Analysis

– Case 1: When only Trent Cheats
In this case, Alice knows about Trent’s cheating
immediately with a probability (N − 1)/N .

– Case 2: When only Bob Cheats
In this case, since Trent is not cheating (who can
be caught, as mentioned in 1.1), Bob is blamed if
any cheating occurs, so Alice can thus specifically
pinpoint the cheater.



– Case 3: When only Alice Cheats
Bob recalculates all the quantities and hence knows
that Trent has not cheated. Now, since Bob has the
‘visual spotting’ capability he can conclude that
Alice is the one who is cheating, on finding that
Trent’s answer (ans is ‘YES’) is not consistent
with his ‘visual spotting’ (when he does not spot
Alice nearby). Hence, here he knows about Alice’s
cheating and will abort the protocol.

VII. CONCLUSION

In this paper we analyse the Louis protocol [1] and
propose two fixes to a flaw in it. A direction of future
work is to work on a solution that handles collusion
between the parties. Additionally, as previously stated,
the protocol with the first fix still requires some location
attributes to be revealed to find out the cheater; and the
second fix is based on a probabilisitic model. Hence,
there still remains ample scope in the direction of finding
a better solution to the problem.

A very plausible direction of work is the development of
a practical implementation of the Louis protocol, along
the lines of the NearByFriend [27] application, which
is an implementation of the Pierre protocol [1].

While the analysis done in this paper is a heuristic one,
a more rigorous and formal analysis of such protocols
could be a future line of research in this area.
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