
Porous Interfaces for Small Screen Multitasking using
Finger Identification

Aakar Gupta

University of Toronto

Toronto, Canada

aakar@dgp.toronto.edu

Muhammed Anwar

University of Toronto

Toronto, Canada

muhammed.anwar@mail.utoronto.ca

Ravin Balakrishnan

University of Toronto

Toronto, Canada

ravin@dgp.toronto.edu

ABSTRACT

The lack of dedicated multitasking interface features in

smartphones has resulted in users attempting a sequential

form of multitasking via frequent app switching. In addition

to the obvious temporal cost, it requires physical and

cognitive effort which increases multifold as the back and

forth switching becomes more frequent. We propose porous

interfaces, a paradigm that combines the concept of

translucent windows with finger identification to support

efficient multitasking on small screens. Porous interfaces

enable partially transparent app windows overlaid on top of

each other, each of them being accessible simultaneously

using a different finger as input. We design porous

interfaces to include a broad range of multitasking

interactions with and between windows, while ensuring

fidelity with the existing smartphone interactions. We

develop an end-to-end smartphone interface that

demonstrates porous interfaces. In a qualitative study,

participants found porous interfaces intuitive, easy, and

useful for frequent multitasking scenarios.

Author Keywords

Multitasking; Smartphones; Finger Identification

ACM Classification Keywords

H.5.m. Information interfaces and presentation

INTRODUCTION

Salvucci et al. define multitasking as the ability to integrate,

interleave, and perform multiple tasks and/or component

subtasks of a larger complex task [25]. Multitasking forms

an integral part of the way we interact with a myriad of data

on computers with reasonably large screens. Smartphones,

with much smaller screens, do not lend themselves

naturally to such traditional forms of multitasking. While

smartphone operating systems support multiple apps

running simultaneously, the limited screen size limits the

interface’s ability to support multiple concurrently visible

and rapidly accessible windows which is the de facto

solution for multitasking in larger screen interfaces. The

lack of dedicated multitasking interface features has

resulted in smartphone users attempting a sequential form

of multitasking via frequent app switching. Bohmer et al.

[5] describe how users switch repeatedly among already

open apps within a short span and how users use groups of

apps frequently in sequence. The single window constraint

makes this frequent back and forth switching between apps

inefficient [19]. In addition to the obvious temporal cost, it

requires physical and cognitive effort which increases

multifold as the back and forth switching becomes more

frequent. Given the numerous obvious mobile form-factor

benefits of maintaining a small screen for smartphones, it is

clearly worth exploring alternative ways in which to

support multitasking on such small screen devices.

We propose porous interfaces, a paradigm to support

efficient multitasking on small screens. Porous interfaces

enable partially transparent app windows overlaid on top of

each other, each of them being accessible simultaneously

using a different finger as input. The semi-transparency

allows for at least coarse characteristics of data on multiple

windows to be discerned concurrently, while finger

identification enables concurrent interaction with multiple

windows without necessarily bringing the window being

interacted with to the top. Further, the interactions enable

easy, visible and more fluid data transfer between overlaid

windows than is currently possible with traditional “cut-

copy-paste” interactions. We designed porous interfaces to

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from
Permissions@acm.org.

UIST 2016, October 16 - 19, 2016, Tokyo, Japan

Copyright is held by the owner/author(s). Publication rights licensed to
ACM.

ACM 978-1-4503-4189-9/16/10…$15.00

DOI: http://dx.doi.org/10.1145/2984511.2984557

Figure 1: Porous Interfaces enable overlaid semi-transparent

apps accessible using different fingers as input.

145

http://dx.doi.org/10.1145/2984511.2984557

include a set of characteristics that enable a broad range of

multitasking interactions with and between windows, while

ensuring that the interface maintains existing commonly

used and understood interactions of existing smartphone

interfaces. We developed an end-to-end demonstration

smartphone interface including a hardware prototype that

performs finger identification on the touchscreen and a

series of applications that showcase porous interfaces. In a

qualitative study, participants found porous interfaces easy,

intuitive, and very likely to be used regularly if integrated

into smartphones.

RELATED WORK

Small Screen Multitasking

Prior research on small screen multitasking is surprisingly

sparse. Nagata et al. [22] found that messaging interruptions

on a PDA significantly disrupt task performance. Choi et al.

[6] propose easy notification peeking by flipping the

smartphone cover. Mobile device designers have started to

recognize the need for easy multitasking on today’s mobile

devices and have introduced side-by-side windowing on

tablets [21]. However, similar solutions are not easily

adapted to smartphones owing to their small screen size.

Partially Transparent Windows

While there have been no recent attempts at exploring

partially transparent windows in the context of mobile

devices, earlier research has explored how they affect

content visibility and comprehension on desktops. Harrison

et al. [11] introduce transparent layered windows and found

that information density in the layers governed the degree

of visual distinction between them. Follow up research

concluded that image on text or image on image layering is

better than text on text layering [12, 13]. Ishak et al.

propose content-aware transparency of windows which

obscures the unimportant regions in a window [16]. Besides

work on layered windows, ToolGlass and MagicLens

explore transparent toolboxes on top of an application [4].

However, there have been no published investigations into

overlaying full-screen partially transparent windows, and

how the user would interact with such an interface.

Finger Identification and other Finger Modalities

In designing porous interfaces, we are faced with the

challenge of enabling access to windows layered below the

topmost window without brining those windows to the

forefront. One possibility is to use a modality such as finger

pressure which is already out there in the market. There are

two reasons why this would not have worked well. First, we

envision the porous interface as an augmentation to the

currently ubiquitous smartphone interface. Consequently

we need to ensure that all existing gestures supported by an

app currently will work in the porous interface seamlessly.

With pressure gestures already being used in apps as “force

touch”, we could not overload the gesture with the new

porous interactions. Second, even if we assume that apps

using pressure are in the minority, we want seamless

multitasking where all gestures including tap, swipe, pinch

etc. work well with the overlaid apps. It is difficult to do

such gestures with added pressure consistently while

switching between less pressure and more at will. Finger

Identification allows us to address both these issues.

Prior work has extensively tackled the technical problem of

identifying fingers on a touchscreen using fiduciary tags [9,

20], multitouch finger arrangements [1, 7, 29, 30],

fingerprinting [8, 14], and muscle sensing [3]. While most

have been studied for tabletops, some, notably

fingerprinting and muscle sensing, hold promise for future

miniaturization. Recent efforts by Apple and others [26, 31]

on embedding fingerprinting into displays show

commercial interest in this space. The other thread of

related work focuses on interactions that use finger

identification and is limited in scope, using the same

buttons for different actions like cut-copy [3, 10, 20, 24, 28]

or using them for chording [7, 9]. Finger-specific chording

has been used for multi-step commands [9], mixing brush

colors [20], and a virtual mouse [7]. None of the above

explorations design end-to-end interfaces based on finger

identification. There is a lack of compelling investigation

into how these interactions can be uniquely ingrained in

interfaces, and how they might lead to better performance.

Our work on porous interfaces fills this gap and hopes to

fuel the conversation on finger identification interactions.

In summary, no existing works tackle the problem of small

screen multitasking in its entirety. We use a novel

combination of partially transparent overlaid windows and

finger identification on smartphones to design an end-to-

end interface for small screen multitasking.

POROUS INTERFACES

As described by Spink et al [27], typical multitasking

involves the desire to task switch, the actual task switch, the

task execution, and switching back to previous task. We

observe this behavior in daily smartphone use in the form of

app switching, where a user working on app A desires to

switch to app B, invokes the app switcher or goes back to

the home screen (1), performs optional swipe(s) to go to the

appropriate location on the screen (2), performs a quick

visual search to locate app B on the switcher or home

screen (3), selects the app (4), waits for the app to open (5),

performs tasks in the app, then invokes the app switcher or

home screen again to switch back to app A (6), performs an

optional swipe again (7), performs a quick visual search

again (8), selects app A (9) and waits for it to reopen (10).

Excluding task execution in app B, these are a total of 10

temporal, physical, or cognitive steps after the user’s desire

to switch apps, consuming time, physical, and cognitive

effort. While most of these steps are not overly taxing, as

users frequently perform app switching, their cumulative

effect over time greatly affects user experience and

performance. Leiva et al. [19] found that smartphone app

switching due to intended and unintended app interruptions

may delay completion of a task by up to 4 times.

146

The situation gets worse when the user has to perform rapid

repeated back and forth switching between the apps. Our

aim is to reduce this switching time and effort and free

users’ cognitive resources to work on task related

operations rather than window management operations. To

this end, we classify three types of operations that the user

performs when requiring app switching – switching and

viewing the content in app B without interaction, switching

and interacting with content in app B, switching and

transferring content from app B to app A. The aim

consequently becomes enabling the execution of these three

operations to happen as rapidly as possible.

Importing the above operations to application windows in

smartphones, we delineate three primary prerequisites of

porous interfaces that enable efficient multitasking:

concurrent visibility of windows, single-step interaction

with windows, and instant content transfer between

windows. To attain these prerequisites, we define three

primary characteristics: transparent overlapped windows for

concurrent visibility of windows, different fingers to access

different windows in a single step, and multi-identified-

finger gestures for instant content transfer between

windows. These characteristics are collectively termed as

Porosity. Another integral property of our system is Fidelity

which ensures that the porous multitasking interface will

not affect the prevailing single window use for touchscreens

and will rather be an augmentation to the existing interface.

Porosity

Transparent Overlapped Windows for Concurrent Visibility

Concurrent visibility of windows is the most obvious way

to rapidly switch viewing between multiple app. Currently,

the way users perform app switching is wholly time multi-

plexed. Desktops solve the problem by space multiplexing

the applications next to each other. This, however, is not

possible for small screens. We therefore apply depth

multiplexing [11], where multiple app windows overlap on

top of each other while being partially transparent.

As explored in previous work on transparent windows on

desktops, the potential interference of the content of one

window with another could be a real problem [12]. We

limit the number of overlapped app windows to two to

minimize this interference. The two overlapping apps will

comprise of a background (or back) app and a foreground

(or front) app. The front app is made partially transparent so

that both app windows are visible.

Figure 2 (left) shows a user scenario that we implemented.

A user is looking at messages from a friend in the front app

while looking at their picture gallery in the back app. The

information from both apps is coarsely visible. To improve

visibility, we use another form of overlap, the semantically

transparent overlap where the non-useful parts of the front

app are made completely transparent so the user can see

through those parts. Figure 2 (right) shows the semantically

transparent version of Figure 2 (left) which has improved

visibility. While the semantically transparent apps have

been custom-built in our demonstration to showcase the

interactions, the concept is an adaptation of Ishak et al’s

content-aware transparency [16] for desktop windows.

Different Fingers for Different Windows

Concurrent visibility of windows poses an immediate

problem: if two windows are visible at the same time, then

how does the user interact with each window? Prior works

address this by keeping only one window interactable at a

time. The user can perform a selection command to choose

which window to interact with. This mode change approach

is suited to desktop interfaces where the windows are only

partially overlaid so the user can easily select one or the

other by accessing their non-overlaid parts. For small

smartphone screens, however, the partial overlay would

have to be considerably smaller to make such selections

possible. Further, for tasks that require rapid back and forth

interactions with both windows, the intermediate selection

command upsets the interaction flow and speed

significantly, thus making the interaction frustrating. So

even though the visibility of windows is depth-multiplexed,

the interaction with them is still time-multiplexed. In fact,

in a study by Kamba et al. [17] on semi-transparent overlaid

widgets over news text, participants overwhelmingly found

their way of long press selection of the back layer tedious

and requested immediate responsiveness of both layers.

To solve the problem for small touchscreens, we propose

different fingers for interacting with different windows at

the same time. This reduces the interaction with each

concurrently visible window to an immediate single step. In

our system, the index finger corresponds to the front app

and the middle finger corresponds to the back app. When

the two app windows are overlaid, then every interaction on

screen with the index finger corresponds to the front app

and every interaction on screen with the middle finger

corresponds to the back app. For example, if the back app

Figure 2: (Left) Messaging on photo gallery, (Right) the

semantically transparent overlapped version

147

uses taps, swipes, drags, long press, pressure touch etc. then

these operations can be performed using the middle finger.

In Figure 2 (b), the user performs messaging with the index

finger, and browses the gallery using the middle finger. We

will refer to the taps with a specific finger as an index tap or

a middle tap and similarly for other gestures such as swipe.

Multi-identified-finger gestures for instant content transfer
between apps

The third primary reason a user switches from app A to app

B besides viewing or interacting with app B is the need to

transfer content between apps. In the smartphone, we can

see this manifest in the form of sharing content, getting

attachment objects, and copy-pasting content. These

operations again take up a lot of interaction steps for the

user. We propose a pair of gestures that utilize finger

identification to rapidly transfer content between

concurrently visible app windows.

To transfer content selected in the front app to the back app,

the user index taps the screen (without lifting up), and then

middle taps in rapid succession, thus performing a “beat

gesture”. Multi-finger beat gestures have been shown [23]

to operate without interfering with single touch input owing

to the duration between the two taps or beats being very

small. We augment the beating gesture with finger

identification to make an index-to-middle finger beat

distinct from a middle-to-index finger beat. Content transfer

between the concurrently visible windows is thus made

symmetric. Transfer from the front to back app is done

using the index-to-middle beat and from the back to front

app is done using the middle-to-index beat.

Figure 3 shows two user scenarios that we implemented to

demonstrate rapid image sharing and text copy-pasting

enabled by the beat gesture. In Figure 3(a), (b), a user

messaging in the front app needs to send a picture to her

friend from the gallery in the back app. She selects the

required picture using a middle long press, and performs the

middle-to-index beat to bring it instantly into the messaging

textbox, then index taps Send to send it. In Figure 3(c), (d)

the user is messaging with a friend about a restaurant and

needs to look it up in the maps app in the background. She

copies the restaurant address and performs an index-to-

middle beat to paste it into the maps app’s search box.

Based on the above three characteristics, we see how the

porous interface simplifies multitasking for small

touchscreen devices. For two app windows that are

concurrently visible, the number of steps, if the user wants

to view the two apps in rapid succession, is reduced from

ten to zero. If the user wants to interact with the two apps in

rapid succession, the number of steps is reduced from ten to

one. If the user wants to transfer selected content, it is

reduced to a single multi-finger gesture.

Fidelity

The current interaction paradigm on touchscreens is

pervasive and works really well for single app use cases. A

new interface paradigm that addresses multitasking should

make sure that the existing paradigm is not affected in any

disruptive way. We term this property of our porous

multitasking interface as the fidelity constraint. Fidelity

implies two things – that the single app interaction should

keep working like before and when the apps are overlaid in

the porous mode, then all the interactions associated with

those apps should be supported.

We will address the first part in detail in the next section.

For the second part, we have mentioned how all the single

finger interactions associated with both the overlaid apps

will be supported by the corresponding finger. The use of

the beating gesture was motivated by the fact that it is

currently unused in the smartphone interface, besides being

(a) (b) (c) (d)

Figure 3: Single-step content transfer using the beat gesture. (a), (b) sharing an image from gallery in back to messaging in front

using the middle-to-index beat; (c), (d) copy-pasting text from messaging in front to maps in back using the index-to-middle beat.

148

quick and appropriate for our use case. The system also

ensures that multitouch interactions such as pinch-and-

zoom are supported in the overlaid apps too. When the user

wants to zoom into a foreground maps app, she can simply

use the standard pinch and zoom gesture using the thumb

and the index finger. Similarly a thumb and middle finger

pinch and zoom can be used for a background app.

However, we recognize that some users prefer to perform

pinch and zoom gestures using the index and middle finger.

The system currently does not support such a use case.

However, a mechanism where the index finger touches

slightly earlier than the middle finger to act on the

foreground app and vice versa for the background app

could alleviate this problem.

Users hold their smartphones in three styles of grips [15]: a)

one handed – phone is held in the fingers of one hand while

interacting using the thumb of the same hand, b) cradled –

phone is cradled in one hand and tapped with the finger in

the other hand, c) two handed –phone is held in fingers of

both hands with both thumbs providing the input. Since

porosity requires two fingers being used in tandem, it can

only be used when the user is holding the phone in the

cradled style. However, when the second hand is free, the

switch from one handed to cradled is easy. We design our

system such that existing interactions work in all three

usage styles, whether the index finger or thumb is used and

porous interface is invoked when the middle finger is used.

AN IMPLEMENTATION OF POROUS INTERFACS

We developed a demo operating system interface as an

application within Android that demonstrates porous

interfaces and their fidelity with existing interactions.

Finger Identification Prototype

The finger tap is detected by the touchscreen. The prototype

then needs to identify the finger whose tap was registered.

We explored multiple techniques to identify index and

middle fingers distinctly – tracking individual finger

movement with optical markers, color markers, and leap

motion; capturing differences in finger motion with ringed

inertial motion unit (IMU) rings; and muscle sensing.

However, none of these approaches worked proficiently

within the constraints of our application requirements – a

high accuracy for small screens, minimum instances of

failure, low communication latency to the phone, and

unobtrusive instrumentation. After multiple rounds of

experimentation, we settled on our final working design

that uses a combined miniature photo-transistor and optical

detector sensor mounted on both index and middle fingers.

As shown in Figure 4, the sensor is connected to an

Arduino, which processes the sensor data and sends it to a

Nexus 4 Android smartphone via a Bluetooth chip. The

sensor detects its distance from the touchscreen. It is

mounted and calibrated such that when the index finger

touches the screen, the distance value is noticeably lower

than when the index finger hovers over the screen. We have

a similar sensor on the middle finger. We define thresholds

for the distance values for both fingers for when they are

touching the screen. When the touchscreen registers a

touch, the system checks the distance from both sensors and

depending on the threshold, determines which finger was

used. If the distance values are high for both the finger, it

determines that a finger other than index or middle was

used (usually the thumb). An initial pilot with three users

showed that upon individual calibration, ~99.5% accuracy

was achieved. Each user performed a series of 75 taps and

swipes with index, middle, and thumb in random order.

Software System

We built an Android app that simulated an end-to-end

smartphone interface that supported porous multitasking.

This includes the home screen, notifications bar, window

switcher, lock screen, settings features, and nine demo apps.

To maintain fidelity, the system should ensure that when

the interface is not displaying porous windows, the

interaction remains unaffected. The central principle that

helps achieve this is gesture overloading. When the system

is not in the porous mode, user interaction on screen with

any other finger besides the middle finger results in the

system behaving in the usual way. If the user performs an

interaction with the middle finger, for instance, middle tap-

ping an app icon, it results in a response associated with the

porous interface. Thus, the middle finger works as a means

for implicitly indicating the porous mode to the system.

POROUS WINDOW MANAGEMENT

Kandogan et al. [18] define three processes that impact user

performance in a multi-window interface – task window

environment set up, environment switching, and task

execution. Earlier we described two-window task execution

with the window environment already set up. We now look

at how porous interfaces enable efficient setup and

switching via gesture overloading with the middle finger.

Window Environment Setup

The interface enables invocation of two overlapping app

windows while ensuring two things – a) the user can easily

designate which app will be the back app and which one

will be the front, and b) the single finger invocation of apps

should not be affected. A user scenario explains this below.

A user starting a road-trip wants to play songs while

constantly looking at their location in the maps app to make

Figure 4: Finger Identification Prototype with IR sensors

149

sure they’re following the route correctly. The user starts at

the home screen as shown in Figure 5 (left). To open

Maps+Music, with Maps in the background, the user first

middle taps the Maps app which lets the system know that

the user intends to open the app in the porous mode and the

Maps app is shown to be selected as in Figure 5 (right). The

user then index taps the Music app and both app windows

are instantly opened with the Music app overlaid over

Maps. To open just a single app, the user can use the index

finger (or thumb or any other finger besides middle finger)

in the usual way. The interface achieves both stated

objectives and keeps the interaction limited to two steps.

Since we designed the interface in Android, we overloaded

the standard android soft keys Back and App Switcher as

well. When two overlaid windows are open, an index tap on

the back button corresponds to its action in the front app

and a middle tap corresponds to its action in the back app.

If the user continually invokes Back, with an index tap for

instance, there will come a point when the corresponding

front app window will close. At this point, the system will

transition out of porous mode. The Home button will

always take the user to the home screen.

Window Environment Switching

Window environment switching is the act of changing the

screen contents to an existing environment setup [18]. In

our system, the window environment consists of a pair of

apps and their overlay order. We overload the App Switcher

icon such that when it is middle tapped (Figure 6 (left)), it

opens up the porous window switcher (Figure 6 (right)). It

shows the thumbnails of the pairs of apps the user is

currently working with. Tapping on one of these pairs with

either finger opens up the overlaid window pair. The paired

app switcher window can also include app pairs that the

user frequently works with to enable faster access than the

home screen invocation. Index Tapping the window

switcher will open the usual single app switcher window

where index tapping a thumbnail opens a single app.

However, a user might need to invoke a background app

while she is working on a single app. For instance, a user

messaging with a friend might want to capture a photo

instantly to send it. To enable this on-demand porosity

without a prior setup, all the app thumbnails in the single

app switcher window are overloaded such that middle

tapping an app thumbnail opens it in the background and

the front app becomes partially transparent.

Foreground-Background Indicator

While developing porous interfaces, we sought user

feedback at various stages. One feedback was that while

users intuitively remembered to use the index finger for the

front app and the middle finger for the back app, at times it

took them a moment to figure out which app window was at

the front and which one at the back even when they had

launched the apps in the first place. We included two kinds

of feedback to solve this. First, at launch time, the

background window was shown instantly on the screen,

followed by a delay of 250ms, followed by the animated

appearance of the front app such that the animation looked

like the front app jumping from above the screen onto the

back app. This established an immediate context in the

user’s mind that the app that appeared from above is the

front app corresponding to the index finger. The animation

appeared every time the overlaid windows were launched,

either from the home screen or from the app switcher.

However, if the user does not interact with the two apps for

some time, she might forget this association. Therefore, we

designed an indicator icon at the bottom of the screen that

showed the overlaid app icons in accordance with the

window ordering. Figure 7 shows the maps icon on top of

the messaging icon. The app icon doubles down as a soft

key such that when the icon is tapped with any finger, the

ordering of the overlaid windows is toggled which is in turn

reflected in the icon. This allows the user to switch their

front and back apps at any moment if they so desire.

The default partial transparency of the front window is set

at 50% which as noted by prior work works equally as well

as a single app [11, 17]. However, depending on the

windows’ content and the tasks, the user might want to alter

transparency themselves. We provide a dynamic

transparency control (Figure 7 (left)) which is invoked by

Figure 6: Porous window setup. (Left) Middle tap on app that

goes in the back. (Right) Index tap on app that goes in front.

Figure 5: Paired app switcher. (Left) Middle tap on app switch

icon shows (Right) the switcher for pairs of porous windows.

150

middle swiping from the top bezel. The usual notifications

bar appears when using the index or any other finger.

Dynamic Transparency Control

An implicit feature of note here is the hidden window. The

user can make the front app completely opaque at 0%

transparency. In this scenario, the user can still interact with

the back app using the middle finger, but can’t see it. This

would be useful in situations where the user does not want

the back app to affect the visibility of the front app, but still

wants to interact with the back app. For instance, prior work

suggests that when a text window is overlaid on another

text window, the visibility of both windows suffers

especially if either of the windows is text heavy [12]. A

user reading an eBook while playing music in the back app

would not like any visual interference but still want to skip

songs and replay them using middle swipe gestures that the

Music app supports. Hidden window enables these kind of

user scenarios. Similarly, the transparency can be set at

100% to make the front app the hidden window.

The Vanishing Notification

So far we have talked about situations where the user

explicitly intends to multitask and launches and works with

overlaid apps. However, there is another kind of situation

where the multitasking is not initiated by the user [22].

While performing single app tasks on a mobile device, there

are high rates of external interruptions in form of

notifications that distract the users from the main task,

hamper user performance and delay task completion [19,

22]. While one part of the problem is the cognitive context

switch, the second part is the interaction the user needs to

perform, especially when the user wants to attend to the

notification immediately. For instance, when using app A,

the user receives a messaging notification which prompts

her to stop the current task, swipe down the notification bar,

read the preview and decide to attend to it now, select the

notification to launch the messaging app, write a reply, and

then perform more steps to get back to her initial app.

We alleviate this problem via the vanishing notification. If

the user is interacting with a single app and she receives an

important notification, the porous mode auto-activates, with

the corresponding app window being opened in the

background and the front app becoming partially

transparent (Figure 7 (right)). The porous mode auto-exits

after 3s, the background window disappears, and the front

app regains its opacity. The duration is chosen based on

prior work which showed that users take a median of 2s to

Figure 7: (Left) Dynamic Transparency Control invoked using

a middle swipe form top, (Right) the messaging app appears in

background when it receives a new message notification

Middle Tap Icon
Home Screen

Selected icon on
home screen for
back app

Porous
Windows

Front app response

Back app response

Single Open
App Screen

Info transfer from
back to front app

Info transfer from
front to back app

Single Open
App Screen

Notification App
in Back, Front
App Transparent

Single Open App Screen
(Notification App Vanishes)

Porous Windows

Index (or thumb)
Tap

Index Tap Icon
(Indicator Animation)

Middle Tap Icon

Index Gesture [+ Thumb]

Middle Gesture [+ Thumb]

Index-Middle Beat
Middle-Index Beat

Tap Indicator Icon
Toggled front & back apps

Notification for Priority App
3s with no Middle Gesture

Middle Gesture within 3s

Home Screen/ Overlaid
Window Screen/ Single
Open App Screen

Dynamic Transparency Control

Existing Behavior

Paired App Task Switcher

Index Gesture on Home/Back/Top Bezel

Middle Swipe Top Bezel

Middle Tap Switcher

Any Gesture on App
Existing Behavior

Overlaid Window Screen/
Single Open App Screen

Index Tap Switcher Single App
Switcher Screen

New Single Open App (Existing Behavior)

Porous Windows
Middle Tap an New App

Index Tap on New App

Figure 8: Interaction Flow Diagram for Porous Interfaces which maintain fidelity with the existing smartphone interface.

Porous interactions and screens are in orange and existing smartphone interactions and screens are in Grey.

151

decide if they want to engage with a notification [2]. Since

the interface is in porous mode for 3s, the user can interact

with the background app using the middle finger. When this

happens, the interface stays in the porous mode and does

not auto-exit. The user can then use the two windows in

porous mode and can switch back to the single window

mode by index tapping the app switcher and index tapping

the single app or by continually middle tapping Back. Since

the vanishing notification could feel intrusive to the user,

we make it a setting such that it is only allowed for apps

that the user explicitly marks as a priority app. Figure 8

summarizes the porous interface interactions and their

integration into the existing interface in a flow diagram.

APPLICATIONS

We built a series of demo applications to showcase various

user scenarios of how porous interfaces work – Messaging,

Photo Gallery, Maps, Music, Video Player, Twitter, Call,

News, and Camera. We have already touched upon some of

these scenarios such as playing music and navigating on

maps during a road-trip, messaging while browsing a photo

gallery and messaging a picture from the gallery instantly,

messaging notification while reading, and copying text

from the messaging app to maps. Other scenarios

demonstrated by our apps could include watching a live

game while scrolling through live tweets about the game,

messaging while watching a video, playing and changing

songs without switching out from reading the news, etc. We

now discuss applications that show how porous interfaces

can lead to even more interesting and optimal extensions.

Camera+Messaging

So far we have discussed how porous interfaces will ease

multitasking based on existing app designs. However, if

developers can design features specific to porous interfaces

in their apps, it could result in unforeseen benefits. We

developed a modified camera app (Figure 9), which when

overlaid with another app such as messaging, can perform

photo capture, in addition to sending it to the messaging

app, all with the beating gesture alone, thus allowing the

user to capture and send images across even more rapidly

than a usual camera app overlaid with the messaging app.

Drag and Drop in Droppable Zones

While the beat gesture enabled content transfer between

apps, we exploit a property of the Android operating system

to enabled drag and drop between two porous windows. In

standard Android, when the user starts dragging an object,

it automatically detects droppable zones on the window

when the object hovers over the zone. With overlaid

windows this leads to the following scenario: If the user is

browsing a photo gallery in the back app and messaging in

the front app, and she long presses an image and starts

dragging it, then the image detects the text box on the

messaging app as a droppable zone where the user can

simply drop the object without using any other gesture. This

could be useful in multiple applications such as for email

attachments, image sharing between apps, and dragging text

items. However, such a technique will not work if the

droppable zones of two apps overlap each other at the same

location. One solution to this problem that might be

implemented in the future is to allow for dynamically

movable drop zones that move away from each other across

layers so that they never overlap.

Simultaneous Keyboard use in two apps

The keyboard is a system artifact that is usually the same

across all apps. In certain scenarios, users perform back and

forth typing in two apps in quick succession. For instance,

when messaging with a friend about places to eat in the

vicinity, the user might want to search maps at the same

time, while going back and forth between them. We modify

the behavior of the interface such that if both apps contain

text boxes, index tapping the keyboard will type in the front

Figure 10: Camera+messaging: the beat gesture captures the

picture, and sends it to the chat recipient instantly

Figure 9: Keyboard works in sync with the porous interface.

(Left) Middle tap types in the back messaging app. (Right)

Index tap types the address in the front maps app.

152

app and middle tapping it will type in the back app, thus

reducing the effort even more (Figure 10). The users can

stop this behavior via an off key on the keyboard.

USER FEEDBACK ON POROUS INTERFACES

We gathered feedback from 8 regular smartphone users (3

female), ages 22 to 30. Our goal was to get user reactions

and comments on porous interfaces. The study took 60

minutes per participant. In the first 15 mins of the study, the

researcher briefed the participants on the system goals,

followed by a demo of porosity interactions, followed by

participants playing with each interaction. The next 30 mins

consisted of a demo of the window management

interactions, and an intro to the 9 demo apps followed by

participants playing with each interaction and different app

combinations. Participants were free to talk to the

researcher, ask questions and comment on their experience.

In the last 15 mins, participants were asked to rate the

usefulness (how useful is a feature) and the easiness (how

easy it is to perform) for every interaction feature on a

Likert scale while assuming a less obtrusive hardware.

Results

Participants uniformly liked porous interfaces and found it

intuitive. Seven of eight participants indicated that they are

very likely to use the system if integrated into smartphones.

Figure 11 shows subjective rankings for each interaction.

Participants liked that they were able to see overlaid apps,

however, they had issues with the visibility for some app

combinations – “I want to watch the game and see the

twitter stream but when the video gets white, it’s hard to see

the tweets because their font is white too”. However, they

really liked semantic transparency – “The chat bubbles are

great. I can use them anywhere. It will be great if they can

change their color according to my background app.”

Participants loved concurrent access to two apps via

different fingers and found finger switching easy but

mentioned that they would prefer a less obtrusive hardware

setup. A couple of users found a way to interact by tapping

the indicator icon to switch app ordering whenever they

needed to interact with the back app and kept interacting

without changing the finger – “Usually my other fingers

are folded inwards so that I can see the screen completely. I

don’t want to unclench them, so I just bring the app front.”

An anticipated problem was that long nailed users use index

and middle fingers to pinch and zoom instead of the thumb,

which is not possible in our interface. One participant faced

this issue and switched to using her ring finger.

The most uniformly liked were the beat gesture and the

vanishing notification. “I spend all my time attaching files

on email or copy pasting things on phone. This copy paste

is the killer feature.”, “It’s so fluid. I can just beat pictures

to my friends all day.”, “I don’t want to check the

notification, but can’t stop myself and it stops my work.

May be if I see it instantly I can let it vanish without doing

anything.” Participants suggested functional extensions –

“The only reason I switch apps is to copy paste or for

notification. If the video automatically pauses when I start

replying to the notification in background, it would be

great!” One participant had privacy concerns with the

vanishing notification – “So if I look at the chat notification

in the background, will it still tell my friend that I read the

message? I don’t want to tell them immediately every time”

The most polarizing feature was the dynamic transparency

control. Some users liked it. However, others wanted it to

be easier and involve only a single step. Participants

suggested creative alternatives – “I don’t want to touch the

screen to change the screen. Can we use the (hard) volume

buttons so that tapping the buttons with middle finger

changes transparency?” We believe the feature is useful,

however, it needs a more user friendly execution. An

alternative is finger sliding on the bottom soft key row.

Messaging was the most popular app – “I use chat all the

time. I can use it with video, with Facebook, with maps,

with news, everything.” In fact, three participants

mentioned using video+chat as one of their intended use

cases even when we had not explicitly demonstrated them

as a pair – “I can’t really focus on the TED talks but if they

keep playing in the background while I am chatting, it’ll be

easier”. Another participant mentioned using chat with an

online shopping browser window – “It’ll be cool to chat

with my friend while looking at the products.” The TED

comment demonstrates how they could do productive but

boring activities while being simultaneously engaged in

another app. This desire to do productive things if not for a

lack of focus was echoed a lot and they saw a solution in

porous interfaces. “I can play mindless games while

reading news…maybe I’ll read news more that way.”

Participants also mentioned using video and music in

frequent combination with other apps – “I’ll watch Game of

Thrones and switch on the camera in the background to

record my reaction video!”, “I want to play music while

recording with my camera so that my personal video will

have an automatic background score.” Some more apps

that participants mentioned were Calendar+Email for

scheduling, Contact List+Calling for adding friends to an

ongoing call without multiple taps, and

Figure 11: Questionnaire results boxplot.

153

Browser+Chat/Email to open links and see them then and

there. One participant mentioned an interesting use case for

the phone lock screen – “If I unlock the phone with my

thumb or index finger, the phone opens in the mode without

any porous interface. If I unlock with the middle finger, it

opens the phone with the porous interface.” This is a

compelling way to think about the fidelity challenge. If a

user intentionally unlocks the phone in the porous interface,

she won’t expect it to follow the standard interface.

DISCUSSION

Kandogan et al. [18] define five requirements of multi-

window systems for multitasking – i) allow organization of

windows according to tasks, ii) allow fast task-switching

and resumption, iii) free the user to work on tasks rather

than window management, iv) use screen space efficiently,

and v) spatially indicate the relationship between windows.

Looking back, porous interfaces fulfill all five of these.

Porous interfaces, by definition, satisfy iv), and enable i)

and ii) using its window setup, app switching, and

notification handling. Porous interfaces free the user to

work on tasks rather than incessant switching by enabling

simultaneous visibility and interaction with frequently

paired apps, and rapid content transfer between them,

delivering a big improvement over the existing smartphone

interface. The indicator animation and icon show the spatial

app ordering which is adequate for our paired app use.

However, there are multiple areas for improvement. First,

good visibility is conditional upon the windows’ contents.

Apps that allow for sufficient white space would work well

both with apps that allow/don’t allow white spaces.

Messaging is immensely popular, and allows significant

white space. Similarly, apps with item list like music,

Twitter, stocks, file browsing, calendar, voice calls, all

allow for white spaces. These will work with apps with

limited white space like maps, video, news, Facebook, web

browser, shopping, photos, email. These may not work well

with each other. However, app combinations with an

image+text overlay will work well [13] (e.g. photo+email).

Semantic transparent overlaps offer a solution to make

visibility work more consistently. However, while we

custom-built our apps to illustrate the concept, more

automated methods need to be explored. A direct way

would be to allow developers to indicate segments in their

app views which contain less information which can in turn

be used automatically by the system to generate porous

windows or given to the user to pick and choose the

segments they want. Another way is to dedicatedly explore

content-aware transparency for overlapped apps on

smartphones.

Second, while our system places high emphasis on fidelity,

it isn’t able to maintain 100% fidelity in all situations as

evidenced by the multitouch with long nails issue. Our

system is designed to handle a variety of touch input

modalities which continue to function as usual, such as

pressure. However, if we move to other modalities such as

voice and accelerometer motion sensing, the user needs a

way to indicate which app should respond to that input. The

simplest way to address this would be to always have the

front app respond to these, with the user having the control

to change the behavior. Another way would be to

intelligently predict this based on app behavior and past

use. A third solution is to disregard fidelity altogether and

design an interface from the ground-up that is rooted in

finger identification and transparency. Porous interfaces

assume that finger id isn’t used within apps. However, both

could work together. Porous interfaces only need one

additional finger and others can be used for within-app

operations. Or, individual apps that use finger id can choose

to disable porous multitasking while they are open.

Third, almost all participants said that if the hardware can

be compacted into a typical smartring, they will not mind

wearing it on their fingers in order to be able to use the

interface. However, we recognize that this is not tenable for

widespread use and future work will have to focus on

developing a ring-free finger identification technique. The

point of porous interfaces isn’t simply optimizing existing

app switching, but opening the space for newer

multitasking interactions that result from complete

concurrent interactivity of both apps. Consequently,

something like explicit mode switching to access different

windows is not desirable. As mentioned before, recent

commercial efforts could mean that the problem solves

itself in the coming years. Plus, misidentified finger

handling can be incorporated into the interface by delaying

the action to give user the time to undo it when the finger is

identified with low surety or blocking high impact

operations like email sending in porous mode.

CONCLUSION

In this paper, we proposed porous interfaces that enable

small screen multitasking using window transparency and

finger identification. To that end, we define their primary

characteristics of task execution, the window setup and

switching, and helper features. We built an end-to-end

interface with fidelity to the existing smartphone interface.

We further demonstrated user scenarios using nine demo

applications. We gathered detailed user feedback which

reinforced the usefulness and ease of porous interfaces.

Two instances where users have to switch apps most

frequently are for content transfer and attending to

notifications. The beat gesture and the vanishing

notification directly addressed the two scenarios and

received highly enthusiastic feedback from the participants.

Aside from existing scenarios, advanced multitasking on

smartphones where people perform complex tasks that

require multiple sources of information is infrequent. We

need solutions that solve the inefficiencies in existing app

switching scenarios and that stimulate newer multitasking

use-cases and applications for small screen devices. We

believe the porous interface is the first step in that direction.

154

REFERENCES

[1] Au, O.K.-C. and Tai, C.-L. 2010. Multitouch finger

registration and its applications. Proceedings of the

22nd Conference of the Computer-Human

Interaction Special Interest Group of Australia on

Computer-Human Interaction - OZCHI ’10 (New

York, New York, USA, Nov. 2010), 41.

[2] Banovic, N., Brant, C., Mankoff, J. and Dey, A.

2014. ProactiveTasks. Proceedings of the 16th

international conference on Human-computer

interaction with mobile devices & services -

MobileHCI ’14 (New York, New York, USA, Sep.

2014), 243–252.

[3] Benko, H., Saponas, T.S., Morris, D. and Tan, D.

2009. Enhancing input on and above the interactive

surface with muscle sensing. Proceedings of the

ACM International Conference on Interactive

Tabletops and Surfaces - ITS ’09 (New York, New

York, USA, Nov. 2009), 93.

[4] Bier, E.A., Stone, M.C., Pier, K., Buxton, W. and

DeRose, T.D. 1993. Toolglass and magic lenses.

Proceedings of the 20th annual conference on

Computer graphics and interactive techniques -

SIGGRAPH ’93 (New York, New York, USA, Sep.

1993), 73–80.

[5] Böhmer, M., Hecht, B., Schöning, J., Krüger, A.

and Bauer, G. 2011. Falling asleep with Angry

Birds, Facebook and Kindle. Proceedings of the

13th International Conference on Human Computer

Interaction with Mobile Devices and Services -

MobileHCI ’11 (New York, New York, USA, Aug.

2011), 47.

[6] Choi, K., Song, H., Koh, K., Bok, J. and Jinwook,

S. 2016. Peek-a-View: Smartphone Cover

Interaction for Multi-tasking. Proceedings of the

SIGCHI conference on Human factors in computing

systems - CHI ’16 (2016).

[7] Ewerling, P., Kulik, A. and Froehlich, B. 2012.

Finger and hand detection for multi-touch interfaces

based on maximally stable extremal regions.

Proceedings of the 2012 ACM international

conference on Interactive tabletops and surfaces -

ITS ’12 (New York, New York, USA, Nov. 2012),

173.

[8] Fitzpatrick, G.P., Haynes, T.R. and Williams, M.L.

1995. Method and apparatus for accessing touch

screen desktop objects via fingerprint recognition.

1995.

[9] Goguey, A., Casiez, G., Vogel, D., Chevalier, F.,

Pietrzak, T. and Roussel, N. 2014. A three-step

interaction pattern for improving discoverability in

finger identification techniques. Proceedings of the

adjunct publication of the 27th annual ACM

symposium on User interface software and

technology - UIST’14 Adjunct (New York, New

York, USA, Oct. 2014), 33–34.

[10] Gupta, A. and Balakrishnan, R. 2016. DualKey:

Miniature Screen Text Entry via Finger

Identification. Proceedings of the SIGCHI

Conference on Human Factors in Computing

Systems - CHI ’16 (San Jose, California, USA,

2016).

[11] Harrison, B.L., Ishii, H., Vicente, K.J. and Buxton,

W.A.S. 1995. Transparent layered user interfaces.

Proceedings of the SIGCHI conference on Human

factors in computing systems - CHI ’95 (New York,

New York, USA, May 1995), 317–324.

[12] Harrison, B.L., Kurtenbach, G. and Vicente, K.J.

1995. An experimental evaluation of transparent

user interface tools and information content.

Proceedings of the 8th annual ACM symposium on

User interface and software technology - UIST ’95

(New York, New York, USA, Dec. 1995), 81–90.

[13] Harrison, B.L. and Vicente, K.J. 1996. An

experimental evaluation of transparent menu usage.

Proceedings of the SIGCHI conference on Human

factors in computing systems common ground - CHI

’96 (New York, New York, USA, Apr. 1996), 391–

398.

[14] Holz, C. and Baudisch, P. 2013. Fiberio.

Proceedings of the 26th annual ACM symposium on

User interface software and technology - UIST ’13

(New York, New York, USA, Oct. 2013), 41–50.

[15] Hoober, S. 2013. How do users really hold mobile

devices. UXmatters, http://www. uxmatters.

com/mt/archives/ …. (2013).

[16] Ishak, E.W. and Feiner, S.K. 2004. Interacting with

hidden content using content-aware free-space

transparency. Proceedings of the 17th annual ACM

symposium on User interface software and

technology - UIST ’04 (New York, New York,

USA, Oct. 2004), 189.

[17] Kamba, T., Elson, S.A., Harpold, T., Stamper, T.

and Sukaviriya, P. 1996. Using small screen space

more efficiently. Proceedings of the SIGCHI

conference on Human factors in computing systems

common ground - CHI ’96 (New York, New York,

USA, Apr. 1996), 383–390.

[18] Kandogan, E. and Shneiderman, B. 1997. Elastic

Windows. Proceedings of the SIGCHI conference

on Human factors in computing systems - CHI ’97

(New York, New York, USA, Mar. 1997), 250–

257.

[19] Leiva, L., Böhmer, M., Gehring, S. and Krüger, A.

2012. Back to the app. Proceedings of the 14th

155

international conference on Human-computer

interaction with mobile devices and services -

MobileHCI ’12 (New York, New York, USA, Sep.

2012), 291.

[20] Marquardt, N., Kiemer, J., Ledo, D., Boring, S. and

Greenberg, S. 2011. Designing user-, hand-, and

handpart-aware tabletop interactions with the

TouchID toolkit. Proceedings of the ACM

International Conference on Interactive Tabletops

and Surfaces - ITS ’11 (New York, New York,

USA, Nov. 2011), 21.

[21] Multitasking on Mobile Devices: 2015.

https://www.nngroup.com/articles/multitasking-

mobile/. Accessed: 2016-03-21.

[22] Nagata, S.F. 2003. Multitasking and Interruptions

during Mobile Web Tasks. Proceedings of the

Human Factors and Ergonomics Society Annual

Meeting. 47, 11 (Oct. 2003), 1341–1345.

[23] Oakley, I., Lee, D., Islam, M.R. and Esteves, A.

2015. Beats. Proceedings of the 33rd Annual ACM

Conference on Human Factors in Computing

Systems - CHI ’15 (New York, New York, USA,

Apr. 2015), 1237–1246.

[24] Roy, Q., Guiard, Y., Bailly, G., Lecolinet, É. and

Rioul, O. 2015. Glass+Skin: An Empirical

Evaluation of the Added Value of Finger

Identification to Basic Single-Touch Interaction on

Touch Screens. INTERACT: IFIP International

Conference on Human-Computer Interaction

(2015).

[25] Salvucci, D., Kushleyeva, Y. and Lee, F. 2004.

Toward an ACT-R General Executive for Human

Multitasking. ICCM. (2004).

[26] Sonavation has bonded 3D fingerprint sensors to

Gorilla Glass: 2015.

http://thenextweb.com/insider/2015/07/21/sonovatio

n-has-bonded-3d-fingerprint-sensors-to-gorilla-

glass-kiss-your-home-button-goodbye/. Accessed:

2015-09-11.

[27] Spink, A., Cole, C. and Waller, M. 2009.

Multitasking behavior. Annual Review of

Information Science and Technology. 42, 1 (Nov.

2009), 93–118.

[28] Sugiura, A. and Koseki, Y. 1998. A user interface

using fingerprint recognition. Proceedings of the

11th annual ACM symposium on User interface

software and technology - UIST ’98 (New York,

New York, USA, Nov. 1998), 71–79.

[29] Wagner, J., Lecolinet, E. and Selker, T. 2014.

Multi-finger chords for hand-held tablets.

Proceedings of the 32nd annual ACM conference

on Human factors in computing systems - CHI ’14

(New York, New York, USA, Apr. 2014), 2883–

2892.

[30] Westerman, W.C. and Elias, J.G. 2006. System and

method for packing multi-touch gestures onto a

hand. 2006.

[31] Yousefpor, M. and Bussat, J. 2014. Fingerprint

Sensor in an Electronic Device. US Patent App. 14/

451,076. (2014).

156

