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ABSTRACT 

Haptic learning of gesture shortcuts has never been 

explored. In this paper, we investigate haptic learning of a 

freehand semaphoric finger tap gesture shortcut set using 

haptic rings. We conduct a two-day study of 30 participants 

where we couple haptic stimuli with visual and audio 

stimuli, and compare their learning performance with 

wholly visual learning. The results indicate that with <30 

minutes of learning, haptic learning of finger tap 

semaphoric gestures is comparable to visual learning and 

maintains its recall on the second day. 
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INTRODUCTION 

With the concurrent rise of wearables and sensors, there is a 

renewed interest in freehand gestures that can be used in 

stationary or mobile contexts (e.g., while sitting on a desk, 

and while walking on the street). They can be used to 

interact with large screen displays using Kinect, desktops 

using Leap Motion, smartwatches and smartphones using 

motion or muscle sensing, and even with devices without a 

visual display using novel technologies such as smartrings. 

This diversity of user contexts demands not just freehand 

gestures that can be used across contexts, but also freehand 

gestural learning methods that can be integrated across 

contexts. Existing methods that support the learning of 

gestures typically rely on visual learning. However, 

constant engagement with visual displays is not always 

feasible or desired. We propose and evaluate haptic 

learning as a possible solution. Despite its potential benefits 

for eyes-free learning, haptic learning has never been 

explored for freehand gestural learning. 

In terms of perceptual accuracy, the haptic modality has 

long been considered inferior to vision [8, 9, 25]. However, 

learning also depends on phenomena different from 

perception. Haptic feedback has been extensively used in 

motor training because 1) haptic training occurs in a body-

centered manner through motor coordinates as opposed to 

visuospatial coordinates, 2) certain complex motor 

movement information like 3D movements are difficult to 

explain visually or verbally and haptics removes the need 

for complex sensorimotor transformations [9]. The 

promising haptic explorations for motor learning suggest 

the potential applicability of haptics for gestural learning. 

Gestural learning is fundamentally different from motor 

learning in that it is associative where the user learns an 

association between two stimuli, one corresponding to the 

command and the other to its gesture. The most pervasive 

example is the keyboard shortcut where one stimulus 

corresponds to the keyboard shortcut and the other, to the 

command action. The value of haptics for gestural learning 

has several open sub-questions—a) Can haptic stimulus be 

used for associative learning of gestures? b) Is it better or 

worse than visual learning? c) Does it support immediate 

recall, or longer-term recall, or both? 

To answer the questions about haptic learning for freehand 

gesture shortcuts, we conduct a two-day study with 30 

participants comparing the learning of haptic stimuli for 

gestures coupled with visual and audio command stimuli 

against visual-only learning. Although most freehand 

gestural interactions in the current literature are 

manipulative gestures [24] (which “control an entity [on 

the screen] by applying a tight relationship between the 

actual movements of the gesturing hand or arm with the 

object being manipulated”), we focus our study on a second 

class of gestures, called semaphoric gestures [24] 

(which“employ a stylized dictionary of static or dynamic 

hand or arm gestures […that…] serve as a universe of 

symbols to be communicated to the machine”). Keyboard 

shortcuts for commands are semaphoric gestures which 

involve a fixed pattern of finger movement on the 

keyboard. Semaphoric gesture sets hold similar potential to 

be used as freehand gestures to rapidly invoke command 

shortcuts in a diversity of contexts through carefully 

designed actions that would be less prone to heavy hand 
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and arm fatigue, known as the gorilla arm effect [14]. 

Learning of freehand semaphoric gesture sets, however, is 

an open question. The most popular gestural learning 

techniques rely on self-revelation of the gesture while the 

user is using the interface with manipulative gestures. This, 

however, is not possible for situations where the freehand 

gestures are designed for non-visual scenarios. Freehand 

semaphoric gestures are therefore, perfect for our 

investigation of haptic learning of gesture shortcuts. Our 

study shows that with <30 minutes of learning, haptic 

learning of semaphoric finger tap gestures is comparable to 

visual learning and maintains its recall on the second day. 

RELATED WORK 

Haptics for Learning 

Haptics has commonly been used as feedback or 

notifications. Haptic feedback can help to guide users’ 

movements for medical rehab purposes [30], and computer-

based interactions, such as target acquisition [22] and visual 

search tasks [20]. With respect to training, it has been used 

for posture [21] or trajectory training [3] mostly consisting 

of repetitive motor movements. Yang et al. found the 

effectiveness of visual-haptic and visual training were 

comparable for helping people develop motor skills [32]. 

Passive haptic learning allows acquisition of motor skills 

(like piano tune) while the user is engaged in a distraction 

task [29]. All these works focus on non-associative learning 

of a movement through repeated exposure to the haptic 

stimulus. Seim et al.’s work on braille training [28] using 

passive haptic learning is the only instance of haptics in 

associative learning. While haptics have been used as 

feedback to assist or guide freehand manipulative gestures 

[7, 20, 23, 27, 31], active haptic learning has never been 

used for associative learning of semaphoric gesture sets. 

Semaphoric Gestural Commands Learning 

Aside from cheat-sheets and video instruction, the common 

approaches to semaphoric gestural command learning are: 

self-revelation of gestures while performing manipulative 

gestures [16, 17], dedicated or active learning of gestures 

[2, 11, 12, 15], and a combination of the two (i.e., 

revelation while actively learning gestures, also called 

dynamic guides [1, 4, 10]). Most use only visual learning, 

except a few [11, 13] where audio cues are investigated for 

gesture presentation and have been found to be similar in 

performance to visual cues. Some active learning works 

include gesture cues in the visual interface [2, 13] similar to 

keyboard shortcuts being displayed next to the menu item. 

However, unless the user actively engages in learning, 

observational learning does not help [5, 18]. Our research 

investigates whether active haptic learning can support the 

learning of semaphoric gestures without the use of visual 

stimuli used in the learning process. Haptic cues are 

arguably easier to integrate in the interfaces because they 

do not take up any visual space.  

DESIGN OF A FREEHAND SEMAPHORIC GESTURE SET 

We design a simple set of freehand semaphoric gestures 

that are amenable to simple haptic learning. The set consists 

of 14 gestures, which is the standard number used in earlier 

shortcut gesture set learning investigations [2, 11, 13]. Each 

gesture is composed of a sequence of exactly three finger 

tap movements in air using the index (I), middle (M), and 

ring (R) fingers. For instance, the IMR gesture involves the 

index air-tap, followed by the middle air-tap, followed by 

the ring air-tap. Any finger can repeat and therefore we 

have a potential set of 27 gestures in total.  

We selected 14 gestures from these 27 based on i) the ease 

of performing them, and ii) on minimizing the confusion 

between them. We conducted a pilot with four users to test 

the ease of performance for the 27 gestures. Although the 

users performed most gestures with ease, they were most 

uncomfortable in performing gestures that involved using 

the ring finger twice, consecutively or alternately. Thus, we 

removed all gesture sequences which involved a repetition 

of the ring finger, except RRR which would have high 

memorability. For every gesture sequence, there are six 

other gesture sequences that only differ by a single finger 

tap. For instance, IMR has IMI, IMM, IIR, IRR, MMR, and 

RMR. To minimize confusion, we next removed gestures 

such that for every gesture there is a maximum of three 

other gestures that differ by a single finger tap. The final 

gesture set is as follows – III, IIM, IMR, IRI, IRM, MIM, 

MIR, MMM, MMR, MRI, RII, RMI, RMM, and RRR. 

HARDWARE IMPLEMENTATION OF HAPTIC RINGS 

We designed the haptic setup such that i) the fingers are 

actuated directly, b) the system can be made compact, cost-

effective, and practical across diverse contexts, c) the 

gesture is presented in a duration no longer than an optimal 

visual presentation, and d) there is zero confusion over 

which fingers were actuated. We built a set of three 

vibrotactile rings, one for each finger. Each ring contained a 

mini coin Dura VibeTM motor that is 8mm diameter and 

2.5mm height. The motor is housed within elastic straps to 

ensure firm positioning of motors across finger sizes. The 

motor is controlled by pulses from an Arduino Pro Mini and 

driven through the ULN2003 chip to minimize load on the 

microcontroller. For any gesture, the rings on the respective 

fingers vibrated one by one in order. Because a finger can 

repeat in some patterns (e.g., IIM), we included a time gap 

between two vibrations to keep the patterns distinct. The 

ON duration of a single vibration ring was fixed at 100ms 

and the OFF duration at 350ms, resulting in a total gesture 

presentation time of 1000ms. The circuit assembly is 

mounted on an arm band as shown in Figure 2. 

Psychophysics has established that vibrations are best 

perceived in the ventral regions (like the palm) because 

they have less hair and more Pacinian corpuscles that are 

responsible for detecting vibrations on skin. However, 

motors placed in the ventral region of one finger can 

produce vibrations incorrectly perceived by the adjacent 
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fingers. We conducted a small pilot with three participants 

to test whether the ventral and dorsal regions was the better 

position on a finger to place the vibration motors. Testing 

with all 14 gestures, we found that participants incorrectly 

perceived the gesture in 7.9% of the cases with the ventral 

placement as opposed to 0.8% with the dorsal placement.  

STUDY OF ACTIVE HAPTIC LEARNING OF GESTURES 

To investigate the possibility of haptic learning with no 

visual engagement, we conducted a study comparing three 

conditions: Sound-Haptic (SH), where the command 

stimulus is given via sound and the associated gesture is 

presented haptically; Visual-Haptic (VH), where the 

command stimulus is visual; and Visual-Visual (VV), 

which is the baseline condition where both the command 

stimulus and the associated gesture are presented visually. 

The SH and VH conditions will inform our understanding 

of the performance of haptic learning with different 

command stimuli modalities. Because visual stimuli may 

lead to higher engagement, we hypothesize that the users 

will perform best in VV, followed by VH and then SH. 

Experiment Design 

We conducted a between-subjects study for the three 

conditions. The experiment followed closely the study 

design used by Ghomi et al. [11], which itself followed 

earlier studies by Appert et al. [2] and Grossman et al. [13]. 

In total, there were 30 (9 female) participants who were 

randomly assigned a condition (10 per condition). The 

participants were all right-handed and aged between 18 and 

29 (μ = 23.3). Each participant took part in the study for 

two-days. The experiment consisted of one learning block 

and two testing blocks on day 1 to test immediate learning, 

and a third testing block on day 2 to test mid-term recall. In 

the learning block, depending on the condition, the image 

or the audio stimulus for an object (representing a 

command) was presented to the participant, and then the 

associated gesture was presented visually or haptically. We 

asked the participant to perform the gesture after the 

presentation of each object and gesture pair. We repeated 

these steps with another object-gesture pair until all pairs 

have been presented. Then, in the testing blocks, the 

participant was presented with the object stimulus only and 

then asked to perform the associated gesture. If the 

participant does not remember the gesture, she may request 

a hint which showed the associated gesture to the 

participant. If the participant performed the gesture wrong, 

the correct gesture was presented and then she was asked to 

perform the gesture again. 

We defined a set of 14 common objects to act as commands 

that can be associated with the gestures (see Figure 1). 

Because the finger tap gestures vary in difficulty, both in 

terms of required motor control and memorability, we 

generated 10 random associations between the 14 gestures 

and the 14 objects; i.e., a different association was used for 

each of the 10 participants in a condition. To simulate a 

more realistic setup where some commands may appear 

more frequently than others, an appearance frequency is 

randomly assigned to each of the 14 objects following a 

Zipf distribution [X]. For the learning block, we use the 

frequencies (6, 6, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1) and for the 

testing blocks (12, 12, 6, 6, 4, 4, 3, 3, 2, 2, 2, 2, 1, 1). 

Therefore, there were 30 trials in total in the learning block, 

and 60 trials in a testing block. The presentation of trials 

was randomized. 

Apparatus 

During the experiment, participants sat in front of a laptop 

which displayed the study interface using the LabVIEW 

software. During the learning block of the VV condition, 

participants saw an interface with the object image on the 

left and the three visual indicators that highlight in 

sequence according to the associated gesture (see Figure 2, 

right). For VH and SH, visual indicators were not shown on 

the interface. Instead, the participants wore the haptic rings 

along with the armband in their right hands. For SH, audio 

of the object name was played, instead of the object image.  

LabVIEW connects serially with the Arduino Pro Mini and 

administers the haptic pattern for gesture presentation 

without delay. We asked all participants to use the laptop’s 

trackpad with their left hand to press the Hint/Next button, 

and to perform the gestures with their right hand which 

rested vertically on an armrest. 

We use manual detection to decide if the participants 

performed the gestures correctly or incorrectly. To achieve 

this without making the participants overly conscious of the 

experimenter’s gaze, the setup was such that their fingers 

were visible in the laptop webcam which was live streamed 

to the experimenter in another area of the room. When the 

participants performed a gesture, the experimenter sees the 

 

Figure 1: Object images and names. 

 
Figure 2: (left) A participant wearing the haptic rings setup 

for the Visual-Haptic condition. (right) The screen for the 

Visual-Visual condition. 
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live stream and sends a Correct/Incorrect signal to 

LabVIEW which displays a popup window informing 

participants if their response was correct or not. LabVIEW 

keeps a log of all the events.  

Procedure 

When a participant arrives, she is introduced to the task and 

its interface using a sample object image or audio of its 

name and an associated gesture outside the sets of 14. The 

experiment starts after the introduction, with 2 minute 

breaks after every 15 trials. After the learning block, we 

inform the participant that the testing block will begin and 

instruct the participant to seek a hint whenever she is unsure 

of the response. We ask the participant to complete a 

questionnaire at the end on Day 1 and interview the 

participant about her approach at the end of the experiment 

on Day 2. The experiment takes about 50 minutes on Day 1 

and 20 mins on Day 2. Each participant completes in total 

30 learning block trials and 60 testing block 1 trials + 60 

testing block 2 trials +60 testing block 3 trials. Thus, there 

were (30+180) × 30 participants = 6,300 trials. 

RESULTS 

The primary measures of the study are recall rate, the 

percentage of correct answers in a testing block without 

hint; hint rate, the percentage of trials where participants 

used hint. We examine these two measures by their learning 

technique for each block. 

Quantitative Results 

We found a significant effect of learning technique on the 

recall rate in Block 1 (F(2, 27) = 4.590, p<0.05) and Block 

2 (F(2, 27) = 3.703, p<0.05). Post hoc Tukey tests revealed 

that the recall rate for Sound-Haptic was significantly lower 

than Visual-Visual in both blocks 1 (p<0.05) and 2 

(p<0.05). Figure 3 shows the mean recall rate % for each 

technique by block. The recall rate for SH is 52.8% 

compared to 62.7% and 73.2% for VH and VV respectively 

in Block 1. In Block 2, SH closes its gap with VH and VV 

with a recall rate of 78%, compared to 87.5% and 89.2% for 

VH and VV. However, it is still significantly lower than 

VV. By Block 3 on Day 2, there is no significant difference 

between the techniques. Further, there is a significant effect 

of Block on the recall rates for all techniques (VV: 

FGreenhouse-Geisser(1.172, 10.547) = 12.964, p<0.01; VH: 

FGreenhouse-Geisser (1.260, 11.339) = 76.830, p<0.001; SH: F(2, 

18) = 46.594, p<0.001). The post hoc tests with Bonferroni 

correction revealed that the difference was between blocks 

1 and 2, and blocks 1 and 3 (p<0.01 for all pairs). There 

was no significant difference between blocks 2 and 3 for 

any technique (see Figure 3).  

Participants associated object-gesture pairs easiest when the 

object commands were presented visually (VV & VH). No 

statistical differences could be found in the recall rates of 

VH and VV. This suggests that in less than 20 minutes of 

active haptic learning with visual command stimuli, users 

can learn gestures with similar recall rates as wholly visual 

learning. However, even though the difference in VH and 

VV is not significant after Block 1, VH seems to trail VV in 

magnitude which might be worth looking into in larger 

studies. On the other hand, SH had the lowest recall rate. 

However, the improvement in SH recall rate from block 1 

to block 2 is 47.7% which indicates the learning with SH 

may start slowly but can briskly catch up with the other two 

techniques; by block 3, no statistical difference could be 

found in the recall rates of the 3 conditions (ηadj
2 = .026). 

This suggests that in less than 30 minutes, the learning of 

gesture shortcuts with haptic gesture presentation and audio 

command stimuli without any visual engagement is 

comparable to wholly visual learning.  

The mid-term recall rate from Block 3 is unaffected by a 

day’s gap for all three techniques. This is interesting 

because a majority of the studies in prior haptic literature 

for motor training have reported that participants get overly 

dependent on haptic feedback during training, thus harming 

performance later [19, 26]. Although prior work had 

already shown that visual learning is retained by the 

participants in medium-term, this has proven to be the case 

for haptic learning as well. The participants across all 

techniques invariably mentioned that after Day 1, they 

expected to forget most gestures by Day 2. In the words of 

one participant: “I just sat for the experiment on Day 2 

thinking I don’t remember anything, but then when the 

objects appeared, the gesture just automatically came to my 

fingers.” This suggests that the techniques result in muscle 

memory of the gestures in at least the mid-term. 

Figure 4 shows the hint rate for each technique by block. 

There is a significant effect of Block on hint rate for all 

techniques (VV: FGreenhouse-Geisser(1.223, 11.003) = 6.774, 

p<0.01; VH: FGreenhouse-Geisser (1.094, 9.845) = 29.920, 

 
Figure 3: Recall Rate % for all techniques by blocks. 

 
Figure 4: Hint Rate % for all techniques by blocks. 
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p<0.001; FGreenhouse-Geisser (1.015, 9.132) = 7.739, p<0.05.) 

The post hoc tests revealed the significant difference to be 

between blocks 1 & 2 and 1 & 3 for all techniques (p < 0.05 

for all pairs). There is no significant effect of technique on 

hint rate in any block. Essentially, participants took a lot of 

hints uniformly across all techniques in block 1, after which 

they did not need as many. 43% of the hints in block1 were 

for objects that appeared only once or twice per block even 

when they were only 10% of the total trials. Participants 

reported that remembering the gestures for objects that 

rarely appeared was the most difficult. 

Although the lower recall rate for SH was much lower than 

for VV and VH, the hint rate for SH is same for VV and 

VH. This suggests that the participants in SH did not seek 

hints when they were unsure and gave more incorrect 

responses. Participants reported they got confused between 

similar sounding words such as Chair and Cherry, Gloves 

and Guitar, and Key and Kiwi. To a lesser extent, there 

were also confusions because of similar images, such as 

Banana and Lemon being both yellow-colored confused 

some participants. Consequently, the performance of SH 

could potentially have been closer to VV and VH if there 

were similar number of confusing elements in the images. 

Subjective Feedback 

The results from the questionnaire are illustrated in Figure 5 

(left). A Kruskal-Wallis test revealed no effect of the 

technique on the participant’s perception of task difficulty, 

mental effort, and how successfully they thought they 

performed in the task. 

Participants reported confusion with gestures in which only 

two fingers were involved, for instance IIM and MIM. 

Participants found the gestures with three distinct fingers to 

be easier, probably because it enabled the fingers to move 

in a smooth wave, for instance IMR, MIR, etc. Participants 

found patterns with one distinct finger (i.e., III, MMM, 

RRR) the easiest to remember. 

Half of the participants reported using mnemonics of some 

kind while the other half did not use any memory 

techniques. We classified their approaches into the 

following five categories:  

 No technique. 

 Image mnemonics. Participants developed tricks from 

how the object images looked and associated them with 

the gesture labels; for example, “Cycle has rims. And 

the gesture was MIR, so I remembered opposite of rim 

is mir.” 

 Sound mnemonics. Similar to above, SH participants 

also developed tricks from the way object names 

sound; for example, “Chair ends with IR, so MIR” and 

“Ba- -na- -na, so it is 1 2 2”. 

 Rhythm mnemonics. Some participants were music 

enthusiasts and used rhythm techniques to help them 

remember; for example, “I associated the patterns with 

piano playing and imagined every image in front of the 

piano playing the gesture.” 

 Grouping of mnemonics. Participants created 

associations with similar objects or similar gestures; 

for example, “123 for Tomato, so 321 for Cherry.”  

Figure 5 (right) shows the distribution of these by 

participant count for each learning technique. Although 

group mnemonics were used by many participants, only 

two participants reported it as their dominant memorization 

technique. As we can see, mnemonics based on image or 

sound were the most popular. However, almost half of the 

participants reported using no technique to remember the 

associations. We performed an ANOVA test to see if there 

was a difference between participants who used mnemonics 

vs. who used no memorization techniques, across all three 

learning techniques. We found that the recall rate was 

significantly higher for participants who used mnemonics 

for all three blocks (B1: F(1, 28)=5.347, p<0.05, B2: F(1, 

28)=9.579, p<0.01, B3: F(1, 28)=7.326, p<0.05 ). Although 

the differences are significant, with the first block having a 

recall rate of 69% for participants using mnemonics 

compared to 56% for no technique ones, by the second 

block, the recall rate of participants with no technique was 

80% compared to 90% for participants using mnemonics. 

This suggests that even without mnemonics, participants 

would be able to achieve fairly good recall rates with less 

than 20 minutes of active learning. 

DISCUSSION, RESEARCH & DESIGN CONSIDERATIONS 

Active vs. Passive Haptic Learning Approach 

Passive Haptic Learning (PHL) allows acquisition of motor 

skills via haptic stimulation while no perceived attention is 

given to learning [29]. If users would be able to learn 

gestures passively in this way, it removes the need for 

active or self-revelation learning. 

Before we investigated active haptic learning, we conducted 

a short pilot study with four participants to investigate 

PHL’s potential for gestural learning. We randomly 

selected 8 gestures from the set and associated them with 8 

object names randomly selected from the set shown in 

Figure 1. We employed a testing procedure similar to the 

design used in earlier PHL studies [29]. First, in the 

introductory phase, we played the audio of an object name 

and the haptic sequence for the associated gesture. We then 

     
Figure 5: (left) Questionnaire Results, (right) Mnemonics used 

by participants by learning technique 
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asked participants to perform the gesture once. This was 

done once for all 8 object-gesture pairs. Then in the PHL 

phase, we asked participants to play the Candy Crush game 

[6] on a smartphone and score as much as they can. At the 

same time, we played the audio cue followed by the 

associated haptic sequence for all 8 pairs in random order 

repeatedly. The PHL phase lasted 40 minutes within which 

each audio-haptic pair was played exactly 20 times. At the 

end of the PHL phase, we asked participants to reproduce 

the associated gesture to the different audio cues. 

Participants could only reproduce an average of 2 gestures 

correctly out of 8. We concluded that associative learning 

tasks where the user has to learn multiple command-gesture 

associations are not conducive for passive learning. As a 

result, we did not use PHL in our study. 

Active Haptic Learning Strategies 

Given our results show that haptic learning can be learned, 

an open research question that needs to be investigated next 

is how to naturally integrate haptic learning of gestures into 

actual systems. One possibility, for instance, is that 

whenever a user selects an icon (e.g., by dwelling on it), the 

associated shortcut gesture’s haptic cue can be played. 

Mnemonic associations depended heavily on the object-

gesture pairings that participants randomly received. 

However, even when there were no natural associations, 

participants found creative ways to make associations. We 

believe these associations have been uniquely bolstered by 

the type of gestures we used. The I, M, R finger patterns are 

amenable to different strategies that participants may use to 

connect them to images, sounds, and rhythms. Such 

connections are arguably not as easy to other types of 

gestures (e.g., drawing gestures), thus making finger tap 

gestures more compelling in practice. However, participants 

performed well even without mnemonics and participants in 

haptic conditions reported that the vibrations helped them 

build muscle memory without much conscious effort. An 

interesting question to explore would be the extent of active 

engagement that is elicited by each technique. 

Freehand Finger Tap Gestures 

Our results show that haptic learning of gestures can work 

comparably to visual learning. However, the extent of 

learning will depend on the kind of gestures that are 

involved; this is, of course, true for visual learning as well. 

Although we designed the finger tap gestures to explore 

haptic learning of gestures, we note that there have been no 

semaphoric finger gesture sets previously proposed in the 

literature. The finger tap gestures are uniquely positioned to 

fill this gap because they satisfy multiple requirements for 

practical gesture sets—i) they are easy to remember and 

associate, ii) they form a gesture vocabulary that uses the 

same style of invocation, iii) finger air-taps cause minimal 

fatigue, iv) their subtlety allows them to be performed 

across diverse contexts, and v) they are potentially less 

prone to variations in scale and user drawings of the 

gesture, allowing consistent detection by the computer. 

We observed that while some users performed the gestures 

in a wavy rhythmic form, others performed it in a jerky 

motion. The gesture detection algorithm needs to handle 

these different input scenarios. Additionally, gestures that 

are very similar to each should be avoided. Particularly, if 

possible, the number of gestures with exactly two distinct 

fingers should be minimized to reduce initial confusion in 

learning the gesture set. Gestures with a single distinct 

finger were the easiest to remember, followed by the ones 

with three distinct fingers, and then the ones with two. 

Because the gestures are of varying difficulty, different 

assignment strategies can be developed and tested. For 

instance, frequent commands could be assigned to the 

easiest gestures so that the user can start using them 

immediately. On the other hand, if the application requires 

all commands to be learnt at the same rate, then perhaps the 

easiest gestures should be assigned to less frequent 

commands, and the hardest gestures assigned to the most 

frequent ones. Alternatively, perhaps the users can also be 

given the freedom to choose which gestures to associate 

with different commands. 

CONCLUSION 

Our work is the first exploration into haptic learning of 

semaphoric gestures. To this end, we have designed 

freehand finger tap gestures and haptic rings which can 

potentially be used across diverse user scenarios. Through a 

two-day study with 30 participants, we learn that haptic 

learning can be successfully used for associative learning of 

freehand finger tap gestures and command shortcuts. We 

show that when combined with visual command stimulus, 

haptic learning of freehand semaphoric gestures performs 

comparably to visual learning. Further, haptic learning with 

audio command stimulus and no visual engagement initially 

has a lower initial recall rate, but with less than 30 minutes 

of learning, it becomes comparable to visual learning. We 

also show that the mid-term recall rate for haptic learning 

stays constant, as has been reported earlier for visual 

learning. Our results suggest that gestural learning can be 

integrated into many contexts with minimal visual 

engagement. As the first work that investigates the active 

haptic learning of semaphoric gestures, our findings are 

highly encouraging for future explorations in this space. 
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