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Abstract—In many marketplaces consumers may interact with
more than one supplier in order to achieve a particular goal. This
paper takes the position that trust mediates agent interactions
and that agent demands are likely to increase with increasing
trust. Furthermore, trust of one agent in another is updated based
upon a trust model. The model proposed in this paper is one in
which agent demands can be divided amongst suppliers with the
division determined by trust. The model evaluates five prominent
trust models in a hypothetical marketplace and demonstrates
empirically that FIRE, Regret, Probabilistic Trust Models and a
model due to Yu and Singh can be exploited such that a consumer
agent will continue to interact with a malicious agent despite
periodic contract defaults by the malicious agent. Empirical
studies support the hypothesis that adaptive trust models such
as AER are resistant to this type of exploitation and discourage
periodic or cyclical defaulting on contractual obligations.

I. INTRODUCTION

Electronically mediated commerce is increasingly impor-

tant. Such commerce often relies upon individual being trust-

worthy in their transactions. Trust is a crucial concept driving

decision making and relationships among individuals in artifi-

cial societies such as are found in e-commerce marketplaces.

Generally speaking, trust is an essential aspect of any rela-

tionship in which the truster does not have direct control over

the actions of a trustee, the decision is important, and the

environment is uncertain [1].

In distributed systems, specifically e-commerce market-

places, individuals are often involved in supply chain relation-

ships and are capable of interacting with multiple suppliers in

order to achieve a specific goal. This paper takes the position

that trust mediates agent interactions and that supply chain

dynamics have natural growth characteristics that vary with

time. In this paper, we use a definition for trust provided by

Mui et al. [2]: “a subjective expectation an agent has about

another’s future behavior based on the history of their en-

counters” and mathematically characterize it using definitions

from Marsh [3]. The measure of trust that one agent has in

another is updated according to a trust model where updates

are dependent upon whether an agent perceives its contract

with another agent has been honoured or not. As such, we

view agent interactions in a game theoretic manner. This paper

considers those marketplaces in which the demand of an agent

for a specific product (service) can be satisfied by several

providers (sellers) as opposed to classical marketplaces in

which the demand of an agent can be satisfied by a single

provider.

Many trust models have been proposed; a review of which

can be found in [4], [5]. We consider five prominent mod-

els in this paper: FIRE [6], Regret [7], Yu and Singh [8],

Probabilistic Trust Models [9], [10] and AER [11]. Most

recently, researchers have identified the existence of cheaters in

artificial societies employing trust and reputation models [12],

[11]. Kerr and Cohen [12] examined the security of several

e-commerce marketplaces employing a trust and reputation

system by proposing several attacks and examined their effects

on each marketplace. Kerr and Cohen’s marketplace considers

only single supplier-consumer interactions for demand satis-

faction as opposed to the marketplace in this paper which

allows for multiple supplier-to-consumer interactions for a

given level of demand. Salehi-Abari and White have shown

that FIRE, Regret and Yu and Singh models are susceptible

to con-man exploitation [11]; that is, a trust model can be

manipulated such that one agent will continue to interact with

a malicious agent despite the malicious agent periodically

defaulting on its contract obligations.

Several researchers have postulated that seller reputation

has significant influence on prices, especially for high-valued

products in the eBay market [13], [14]. Similarly, Brainov and

Sandholm [15] have studied the impact of trust on contracting

in e-commerce marketplaces. This paper is motivated by the

hypothesis that trust models improve an agent’s performance

in a marketplace when the demand of an agent is dependent

on its trust in others and utility is dependent on agent demand.

With this hypothesis in mind, this paper makes the following

contributions. First, a taxonomy of demand models is pro-

posed. Second, a formal model of trust-dependent demand is

proposed. Third, a marketplace is constructed using a trust-

dependent demand model which is then empirically evaluated

using simulation for 5 prominent trust models. The results

support the hypothesis that AER can operate efficiently in

such marketplaces; higher demand-based utility is observed

for AER when compared to that seen for the 4 other selected

trust models.

This model consists of 5 further sections. In Section II

brief descriptions of the 5 trust models evaluated in this paper

are provided. Section III continues with a presentation of

a taxonomy of demand models. Section IV provides details



of our simulation model, including agent interaction models,

trust-dependent demand models and agent interaction strate-

gies. Section V describes our experimental setup and results.

Finally, Section VI reviews key messages of the paper and

suggests future work.

II. BACKGROUND ON TRUST MODELS

Direct interaction is the most popular source of information

for trust and reputation models [5]. It is used exclusively

within this paper. Trust and reputation models usually have

a direct interaction trust variable that indicates the level of an

agent’s trustworthiness. We discuss the direct interaction trust

components of Yu and Singh’s model, Regret, FIRE, AER,

and probabilistic trust models in the following subsections.

A. Yu and Singh (YS)

Yu and Singh’s [8] trust variable is defined by Ti,j(t)
indicating the trust rating assigned by agent i to agent j after

t interactions between agent i and agent j, with Ti,j(t) ∈
[−1, +1] and Ti,j(0) = 0.

An agent will update this variable based on the perception

of cooperation/defection. Cooperation by the other agents

generates positive evidence of α, with 1 > α > 0 and

defection generates negative evidence of β, with −1 < β < 0.

If Ti,j(t) > 0 and Cooperation then

Ti,j(t + 1) := Ti,j(t) + α(1 − Ti,j(t))
If Ti,j(t) < 0 and Cooperation then

Ti,j(t + 1) := (Ti,j(t) + α)/(1 − min(|Ti,j(t))| , |α|)
If Ti,j(t) > 0 and Defection then

Ti,j(t + 1) := (Ti,j(t) + β)/(1 − min(|Ti,j(t))| , |β|)
If Ti,j(t) < 0 and Defection then

Ti,j(t + 1) := Ti,j(t) + β(1 + Ti,j(t))
For our convenience, we refer to this model as YS.

B. Regret

Regret defines an impression as the subjective evaluation

made by an agent on a certain aspect of an outcome and bases

its trust model upon it. The variable ri,j(t), with ri,j(t) ∈
[−1, 1], is the rating associated with the impression of agent

i about agent j as a consequence of specific outcome at time

t. Ri,j is the set of all ri,j(t) for all possible t. A subjective

reputation at time t from agent i’s point of view regarding

agent j is noted as Ti,j(t)
1. To calculate Ti,j(t), Regret uses a

weighted mean of the impressions’ rating factors, giving more

importance to recent impressions. The formula to calculate

Ti,j(t) is:

Ti,j(t) =
∑

wk∈Ri,j

ρ(t, tk).wk (1)

where tk is the time that wk is recorded, t is the current time,

ρ(t, tk) = f(tk,t)
∑

rl∈Wi,j
f(tl,t)

, and f(tk, t) = tk

t
which is called

the rating recency function.

1For the purpose of simplification, we have changed the original notations
from [7].

C. FIRE

FIRE [6] utilizes the direct trust component of Regret but

does not use its rating recency function. FIRE introduced a

rating recency function based on the time difference between

current time and the rating time. The parameter λ is introduced

into the rating recency function to scale time values. FIRE’s

rating recency function is:

f(tk, t) = e−
t−tk

λ (2)

D. Probabilistic Trust Models (PTM)

Considerable progress has recently been made in the de-

velopment of probabilistic trust models, the Beta Reputation

System (BRS) and TRAVOS being two examples [9], [10].

Probabilistic trust models are built based on observations

of past interactions between agents mapping observations to

cooperations and defections.

In probabilistic trust models, the probability that agent j
satisfies its obligations for agent i is expressed by Bi,j . The

trust value of agent i for agent j at time t, denoted by Ti,j(t),
is the expected value of Bi,j given the set of outcomes Oi,j(t)
at time t.

Ti,j(t) = E[Bi,j |Oi,j(t)] (3)

As the standard equation for the expected value of a beta

distribution is E[B|α, β] = α
α+β

, the trust value Ti,j(t) after

t interactions is:

Ti,j(t) = E[Bi,j |α, β] =
α

α + β
(4)

where α = nc(t) + 1 and β = nd(t) + 1. nc(t) and nd(t)
denote the number of cooperations (successful interactions)

and the number of defections (unsuccessful interactions)2. For

our convenience, we refer to this model as PTM.

E. AER

AER extended the direct trust of [8] by introducing the

following update schema for a positive evidence weighting

coefficient of α > 0 and a negative evidence weighting

coefficient β < 0 when the agent perceives defection:

α(i) = α(i − 1) × (1 − |β(i − 1)|)

β(i) = β(i − 1) − γd × (1 + β(i − 1))

Where γd is the discounting factor and is in the range of [0, 1].
Note that, α(i) and β(i) will be updated when the ith defection

occurs.

III. TAXONOMY OF DEMAND

We here present a taxonomy for demand to demonstrate

the scope the paper. As illustrated in Figure 1, demand can

be distinguished as either composite or simple. A simple

demand is the same in all its parts or particles whereas a

composite demand is not the same in all parts and composed of

heterogeneous parts. In other words, a composite demand can

2It is worth mentioning that the trust value in probabilistic models is in the
range of [0, 1] as opposed to Yu and Singh, Regret, AER, and FIRE models
in which trust is in the range of [-1, 1].



be decomposed to several simple demands. Consider the need

for “skiing equipment”. This demand is a composite demand,

consisting of simple demands for Gear, Skis, Ski Boots, Ski

Helmets, and Ski Clothing. Suppose you need 20 kg flour for

baking a cake, this demand is a simple demand.

Demand


Composite
Simple


Divisible
Indivisible


Discrete
Continuous


Fig. 1. A Taxonomy of Demand (this paper focused on the darker colors).

Although both demands for Ski Boots and flour are simple

demands, there is a subtle difference: we can divide the 20kg

flour demand into 15kg and 5kg flour demands or 10kg,

7kg, and 3kg demands but we can not divide the Ski Boots

demand to any sub-demands. To capture this difference in

the proposed taxonomy, simple demands can fall into two

categories: divisible and indivisible. We formally define them

as follows:

• An indivisible demand is not separable to partitions.

• A divisible demand, D, can be broken down into n
partitions each of which is denoted by pi where D =
p1 ∪ · · · ∪ pi ∪ · · · ∪ pn.

For flour demands, consider two marketplace settings: 1) the

flour can be ordered in terms of quantity with any precision

(e.g., an order of 12.452 kg flour) and 2) the flour should be

ordered by the number of 1kg packages (e.g., an order of 3

one-kilogram packages). In this sense, the divisible demands

can be further categorized into continuous and discrete in our

proposed taxonomy. The formal definitions for these two types

are as follows.

• A continuous divisible demand, D, with SD size (quan-

tity) can be partitioned into any numbers of pi partition

with Spi
size as long as

∑n

i=1 Spi
= SD.

• A discrete divisible demand, D, with SD size (quantity)

can be broken down into n numbers of pi partitions while

each pi partition consists of mi numbers of demand unit

u. Moreover,
∑n

i=1 miSu = SD where Su denotes the

size of unit u and is specified by the nature of each

demand type.

This paper focuses on simple demands which are divisible

and continuous. This is motivated by the lack of attention to

this type of demand in the literature in spite of its diverse

possible employment in distributed settings (e.g., file sharing

systems, peer-2-peer systems, and e-commerce). From now on,

whenever we refer to demand, we mean continuous divisible

demands.

IV. SIMULATION MODEL

A. Interactions

Different fields have their own interpretation and under-

standing of interaction. In the context of e-commerce, an

interaction might be considered as buying or selling a product

whereas in peer-to-peer systems (e.g., file sharing systems),

an interaction is uploading or downloading files. Providing a

service and consuming a service can be regarded as an inter-

action in the context of web services while asking a question

(sending a query) and answering that question (receiving the

result of that query) is an interaction from the perspective of

information retrieval.

In our model, an agent interacts with the specific set of other

agents that are the neighbors of the given agent. Two agents

are neighbors if they interact with one another continuously.

Interactions are modeled using an extension of the Prisoner’s

Dilemma called the Iterated Prisoner’s Dilemma (IPD) [16].

The Prisoner’s Dilemma is a non-zero-sum, non-cooperative,

and simultaneous game in which two players may each “co-

operate” with or “defect” from the other player. Similar to

the other games in game theory, the goal of each individual

is maximizing his/her payoff, without any concern for other

player’s payoff. In the Iterated Prisoner’s Dilemma (IPD),

the game is played repeatedly. As a result, players have the

opportunity to “punish” each other for previous uncooperative

play. In our simulation, each agent plays one game with each

of its neighbors in each cycle of simulation where it can either

cooperate or defect.

Cooperation and defection have different interpretations

depending on the context. In the context of e-commerce,

defection in an interaction can be interpreted as that the agent

does not satisfy the terms of a contract, sells poor quality

goods, delivers late or does not pay the requested amount of

money to a seller depending on the role of the agent [5]. In

the context of information retrieval, defection in an interaction

can be interpreted as that the queried agent returns irrelevant

documents to the asking agent as the consequence of its query.

In contrast, cooperation means that a proper answer is provided

according to the query for the questioner.

B. Agent Model

This paper considers two general types of agents: Service

Provider (SP) and Service Consumer (SC) agents. SP and SC

are not only restricted to web service applications and can be

considered in other contexts. For example, SP and SC in e-

commerce represent seller and buyer respectively. To simplify

our simulation and analysis but yet be realistic, we consider

that all SPs provide (or sell) a specific divisible service (or

product) and all SCs seek the same service (or product).

An agent model possesses trust variables, demand variables

and interaction strategies. Trust variables assist agents in

determining who is trustworthy while demand variables assist

agents in determining the demand value for each interaction.

Interaction strategies control the behavior of agents by helping

them in deciding how to interact with another agent. In other



words, the decision to cooperate or defect in an interaction

with a specific agent is made by an interaction strategy.

C. Trust and Demand Variables

Each trust variable is defined by Ti,j(t) indicating the

trust rating assigned by agent i to agent j after t inter-

actions between agents i and j, while Ti,j(t) ∈ [−1, +1]
and Ti,j(0) = 0. One agent in the view of the other agent

can be either Trustworthy, Not Yet Known, or Untrustworthy.

Following Marsh [3], we define an upper and a lower threshold

for each agent to model different levels of trustworthiness.

The agent i has its own upper threshold −1 ≤ ωi ≤ 1 and

lower threshold −1 ≤ Ωi ≤ 1. Agent j is Trustworthy from

the viewpoint of agent i after t interactions if and only if

Ti,j(t) ≥ ωi. Agent i sees agent j as an Untrustworthy agent

if Ti,j(t) ≤ Ωi and if Ωi < Ti,j(t) < ωi then the agent j is

in the state Not Yet Known. Each agent can use one of trust

updating schemes that described in Section II.

We define a demand variable, Di(t), indicating the demand

value assigned by agent i for its tth interactions with other

agents, while Di(t) ∈ [0, +1]. The demand variable is calcu-

lated as follows:

Di(t) =
∑

k∈N(i)

di,k(t) (5)

where N(i) set contains the neighbors of node i and

di,j(t) is a sub-demand variable, indicating the demand value

assigned by agent i to its tth interaction with agent j, while

di,j(t) ∈ [0, +1] with the constraint
∑

j∈N(i) di,j(t) ≤ 1.

In our simulation, a sub-demand value of each interaction

is always assigned by only SC and consequently SP has to

participate in the specified interaction (i.e., there is no exit

option for agents). This is motivated by the fact that demand

of each SC agent is determined solely by the SC agent and

potentially by the marketplace; the SPs simply act to satisfy

the demand.

D. Trust-dependent Demand

It is the position of this paper that the level of trust of an

agent (truster) for another agent (trustee) influences the sub-

demand value (quantity) of interactions between those agents

(e.g., di,j ∝ Ti,j). This relation of trust and demand can

be observed in daily interactions in real life marketplaces.

Consider this hypothetical example: Alice is the owner of

a bakery and she has the capacity to order daily up to

100kg flour (her maximum possible demand). Bob is the

manager of a flour mill and offers to provide high quality

flour to Alice. Alice initially accepts daily shipments of 20kg

(i.e., dAlice,Bob(1) = 20kg) because she is not assured that

Bob can provide high-quality flour as he promised. After 10

satisfactory shipments (cooperations), Alice increases her trust

in Bob and consequently doubles her daily order to 40kg

(i.e., dAlice,Bob(11) = 40kg). The next day Bob sends low-

quality flour at an unchanged price to Alice (a defection). Alice

understands the defection and reduces her order to 30kg (i.e.,

dAlice,Bob(12) = 30kg). We model the direct relationship of

trust and demand as follows:

di,j(t + 1) = H [Ti,j(t)] (6)

Where H [t] is a convertor function which maps the trust value

t to demand value in the range of [0, 1]. After the calculation of

di,j for a specific i and all possible j, we check if the constraint
∑

j∈N(i) di,j(t) ≤ 1 is satisfied. If not, we normalize di,j(t)
for all j using Equation 7.

di,j(t) :=
di,j(t)

∑

k∈N(i) di,k(t)
if

∑

k∈N(i)

di,k(t) > 1 (7)

where N(i) set contains the neighbors of node i.
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Fig. 2. Conservative, Normal, and Optimistic H[x] functions

We introduce three different H [t] functions: Conservative,

Normal, Optimistic, each of which represents a cognitive

mapping of trust to demand (see Figure 2). The Conservative

function, Hc(t), has the lowest growth rate (for small values of

trust) and returns the smallest value of demand for a specific

value of trust when compared to the other converter functions.

Hc(t) is formulated as follows:

Hc[t] =











0 − 1 ≤ t < Ω
e(t−Ω)

−1
e(ω−Ω)−1

Ω ≤ t ≤ ω

1 ω < t ≤ 1

(8)

The Normal function, Hn[t], as presented in Equation 9,

maps trust value to demand value linearly. Its growth rate

is a constant and its returning demand value for a specific

trust value is always between the values that conservative and

normal functions return.

Hn[t] =











0 − 1 ≤ t < Ω
t−Ω
ω−Ω Ω ≤ t ≤ ω

1 ω < t ≤ 1

(9)

The Optimistic function, Ho(t), increases demand rapidly

when the trust value changes slightly. It has the highest growth

rate (for low values of trust) and returns the highest value of

demand for a specific trust value when compared to the other

converter functions. Ho(t) is formulated as follows:



Ho[t] =











0 − 1 ≤ t < Ω
log(t−Ω+1)
log(ω−Ω+1) Ω ≤ t ≤ ω

1 ω < t ≤ 1

(10)

E. Interaction Strategy

The required perception variables (trust and demand vari-

ables) have now been introduced; these variables help agents

perceive the cooperation/defection of other agents situated in

their environment and consequently to determine the trust-

worthiness of other agents and the demand value for future

interactions. This perception is necessary but not sufficient for

an agent model since agents need to decide how and when

they should interact with other agents. In this sense, each agent

requires strategies to help them in making decisions for their

interactions with the other agents.

The two kinds of interaction strategy used in our experi-

ments are: Tit-For-Tat (TFT) and Con-Man (CM) [11]. Agents

employing TFT will start with cooperation and then imitate

the neighbor’s last move. In the con-man strategy [11], a con-

man is modeled by the parameter θ. The con-man will defect

after cooperating θ times. After each defection, the con-man

will again cooperate θ times possibly repeating this interaction

pattern several times. The formal language L over the alphabet

Σ = {C, D} demonstrates the interaction pattern of the con-

man:

L = {(CθD)+|θ ≥ 1} (11)

where C and D stand for cooperation and defection.

F. Demand-dependent Utility

In the Iterated Prisoner’s Dilemma (IPD), the utility is

merely determined by the action of agents indicating whether

each player “cooperates” with or “defects” from the other

player. This paper extends the classical IPD by letting the

demand value of each interaction affect the resulting utility

besides the actions of agent. We consider the demand-utility

relationship to be linear. More precisely, we calculate Ui,j(t),
the utility of agent i as a result of interaction with agent j at

time step t, as follows:

Ui,j(t) = di,j(t) × u(ai, aj) (12)

where di,j(t) is the sub-demand value of the interaction

between agents i and j at time step t. Moreover, u(ai, aj) is

the maximum possible utility of the interaction where action

ai is taken against action aj . u(ai, aj) is calculated based on

the following payoff matrix (the well-known payoff matrix of

the Iterated Prisoner’s Dilemma [16]):

TABLE I
PAYOFF MATRIX OF IPD

P1/P2 Cooperate Defect

Cooperate 3,3 0,5

Defect 5,0 1,1

According to Table I, if agent P1 defects and agent P2

cooperates, agent P1 gets the Temptation to Defect payoff of 5

points while agent P2 receives the Suckers payoff of 0. If both

cooperate each gets the Reward for Mutual Cooperation payoff

of 3 points, while if both defect each gets the Punishment for

Mutual Defection payoff of 1 point.

G. Metrics

In this paper we are interested in examining the internal

properties of each agent type, such as utility, trust value, and

demand value, cumulative demand, and weighted mean utility.

The utility of agent i as a result of an interaction with agent

j at time step t, denoted by Ui,j(t), is one of the metrics

which we used in our experiments. This metric is calculated

by Equation 12. The cumulative utility, CUi(t), represents the

total utility of agent i from the beginning until time step t.

CUi(t) =

t
∑

k=1

∑

j∈N(i)

Ui,j(k) (13)

The cumulative demand CDi(t) represents the total demand

of agent i from the beginning till time step t. We formally

define it as follows:

CDi(t) =

t
∑

k=1

Di(k) (14)

where Di(k) is the demand value of agent i at time step k.

Ui(t), the weighted mean of utilities for agent i at time step

t, is calculated by:

Ui(t) =
CUi(t)

CDi(t)
(15)

V. EXPERIMENTS

Our experiments are categorized into two sets: One-to-

one and One-to-multiple. In the former, the interactions are

between one service consumer and one service provider. The

motivation for the One-to-one experiments is to demonstrate

con-man service providers can flourish in a marketplace where

agents use non-adaptive schemes, while an adaptive AER trust

model limits its exploitation but has unsatisfied (or latent)

demand. In contrast, one service consumer interacts with

multiple service providers in the latter. The motivation for

the One-to-multiple experiments is to demonstrate that agents

using AER will learn to shift their demands to trustworthy

agents and result is high cumulative utility when compared to

agents using non-adaptive trust models.

As mentioned earlier, the agents can utilize various trust

updating schemes (i.e., Regret, FIRE, AER, PTM, and YS).

When the agent uses Regret, PTM, or FIRE as a trust model,

the cooperation and defection is mapped to 1 and −1 respec-

tively and the value is used as an input of the trust model. In

the case of using YS or AER, cooperation and defection will

be used directly for updating the of trust value. We have used

the parameters listed in Table II for all experiments.



TABLE II
PARAMETER SETTINGS

Parameters Value Parameters Value

θ 4 γ 0.1

α 0.3 β -0.1

ω 0.80 Ω -0.2

λ −5

ln 5
time steps 30

A. One-to-One

All simulations reported in this section were run with

two agents, one Service Consumer agent (SC) and a Service

Provider agent (SP). We ran 3 sets of simulations while sets

are different in terms of examined converter functions (i.e.,

Hc[t], Hn[t], Ho[t]). Each set consists of 5 simulations in

each of which a SC agent utilizes either Regret, FIRE, AER,

PTM, or YS as its trust model and uses Tit-for-tat (TFT) as its

interaction strategy. In all simulations, the SP agent employs

the con-man (CM) strategy. For the simulations of this section,

we sometimes refer to TFT and CM instead of SC and SP;

however, they are equivalent. Figures 3 and 4 demonstrate

the variation of TTFT,CM (t) (the trust value of SC for SP),

UTFT,CM (t), UCM,TFT (t), and DTFT (t) over a simulation

in which SC (TFT) utilizes the FIRE model as its trust model

and Hn(t) as a convertor function.
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Fig. 3. The variation of trust and utility for SP and SC agents.

It is interesting to note that the interaction pattern of CM

causes the fluctuation of trust and consequently a similar

fluctuation, with one time step delay, for demand . This delay

occurs because the demand value at time step i depends on the

trust value at time step i − 1. Speaking of utility, when both

agents cooperate with each other, their utilities are matched

(UTFT,CM = UCM,TFT ). UCM,TFT has its peaks when CM

defects from TFT while TFT cooperates with it. UTFT,CM

has its local maximum one time step after CM defects. This

is because TFT imitates the last move of CM which was

defection and CM behave based on its interaction patterns

(θ = 4 cooperations after each defection).

According to Figure 3, it is noteworthy that the the peaks of

UCM,TFT are significantly higher than the peaks of UTFT,CM .

This is mainly due to the fact that when CM defects, the

demand and corresponding utility is higher than when TFT

defects. Although the number of cooperations and defections
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is equal for both SP and SC over the course of the simulation,

this difference of peak values results in higher cumulative

utility for SP when compared to SC’s cumulative utility (see

Figure 5).

In Figure 5, it is interesting that SP which uses CM

interaction strategy can gain higher cumulative utility in all

trust models and with any converter function settings. For all

converter functions, SP has a considerably lower cumulative

utility in AER when compared to all other trust models. This is

because AER is designed to be con-resistant by not letting the

con-man regain its lost trust easily and by punishing more after

each defection [11]. As a result the con-man with a constant

strategy will have a low value of trust after some cycles of

cooperations-defection in AER and consequently its demand

decreases. It is clear from this figure that an agent using AER

stops interacting with CM after approximately 10 interactions,

resulting in latent demand.
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Fig. 6. Cumulative demand over simulations for Hn(t)

Figure 6 demonstrates the variation of CDTFT over the

simulations with the Hn(t) convertor function setting. For all

trust models excluding AER, the cumulative demand mono-

tonically increase over the simulation. In contrast, CUTFT

remains steady after almost 10 time steps in AER. This is

because the CM in AER is detected as a con-man and is

assigned a low value of trust. Moreover, the consequent coop-

erations of CM are insufficient to increase its trust level and

consequently its demand level. Figure 7 illustrate CUTFT (30)

for all simulations. It is interesting to observe that all trust

models in terms of cumulative demand can be ranked in
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Fig. 5. Cumulative Utility of SP and SC (CUSP,SC and CUSC,SP ) for all 3 sets of simulations.

the same order over three different sets of simulations. By

comparing cumulative demand in each of the trust models

over three different convertor functions, we can observe that

the cumulative demand of a specific trust model in Ho(t) is

higher than that in Hn(t). Moreover, the cumulative demand

of specific trust model in Hn(t) is higher than that of Hc(t).
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Fig. 7. Cumulative demand after 30 time steps

B. One-to-multiple

The simulations reported in this section were run with one

Service Consumer agent (SC) and two Service Provider agents

(SP). As with the One-to-one experiments in Section V-A, we

ran 3 sets of simulations while sets are different in terms of the

examined convertor functions (i.e., Hc[t], Hn[t], Ho[t]). Each

set consists of 5 simulations in each of which a SC agent

utilizes either Regret, FIRE, AER, PTM, or YS as its trust

model and uses Tit-for-tat (TFT) as its interaction strategy. In

all simulations, one of the SP agents employs the con-man

(CM) strategy and the other one utilizes Tit-For-Tat (TFT).

Figure 8 demonstrates the distribution of SC’s demand over

two SPs agents (CM and TFT) while SC uses the YS model.

As both the TFT service provider and SC use TFT as their

interaction strategy, cooperation emerges between them and

they stay in equilibrium with each other (continue cooperating

with each other). As a result, the trust value of SC on TFT
increases monotonically and consequently the corresponding

demand (dSC,TFT ) increases monotonically. On the contrary,

dSC,CM fluctuates over the simulation because the correspond-

ing trust (i.e., TSC,CM ) fluctuates. It is interesting to note that

CM agent always covers a considerable part of DSC in YS
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Fig. 8. Distribution of demand over SPs when the SC uses YS.

despite being the con-man. This is because YS, FIRE, Regret,

and PTM let the con-man regain trust too easily.
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Figure 9 demonstrates the distribution of SC’s demand over

two SPs agents (CM and TFT) while SC uses the AER model.

As AER is able to detect the CM agent and assigned a low

value of trust to it, after 10 interactions, the SC demand

will mostly be supplied by the TFT service provider. This

adaptability of AER in switching to the trustworthy service

provider results in maximizing the utility of the SC agent using

AER over the other SC agents, as illustrated in Figure 10.

Using AER, the SC agent can gain higher utility than the other

SC agents in all simulations over various converter functions.

It is interesting that this difference of utility is caused by only

the usage of different trust models since all SCs utilize the

same interaction strategy (i.e., TFT).
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Figure 11 shows USC over the simulation and confirms that

the higher utility of an agent using AER is not because it has

higher cumulative demand over the simulation. This success

is achieved by the adaptability of AER in switching to more

trustworthy agents.
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Fig. 11. USP for all 3 sets of simulations.

Figure 12 illustrates CUTFT for all the simulations. When

the SC uses AER, the TFT service provider agent has the high-

est cumulative utility compared to when SC uses other trust

models. These results are evidence that using AER is not only

benefiting the SP agents but also benefiting the trustworthy SP

agents by allocating higher amount of demand to them. Note

that these results are independent of the convertor functions

used.
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VI. CONCLUSION

In real marketplaces agents will attempt to satisfy their

demands by moving demand between service providers based

upon their trust in available service providers. This paper has

investigated the proposal that demand naturally increases with

time and with increasing trust in a service provider. In the 2

classes of experiment described, in a single provider market-

place, service consumers will tend to have unsatisfied demand.

In a multi-provider marketplace adaptive trust schemes such

as AER will lead to the identification of trustworthy providers

and satisfaction of consumer demand by using trustworthy

agents. Furthermore, agents using the AER trust model have

higher cumulative utility than con-man agents thereby provid-

ing an incentive for them to behave in a trustworthy manner.

Future work will extend the trust-dependent demand model

to consider other marketplace factors such as the number of

transactions and transaction profile. Moreover, it would be

interesting to model discrete divisible demand and analyze the

performance of the trust models in such marketplaces.
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