
Congestion Control

Soheil Abbasloo
Department of Computer Science
University of Toronto

Fall 2022

2

• Let’s Talk abt Midterm!

• Overview of TCP

• Congestion Control

► What?

► How?

Outline

3

• Average

► 45.6 / 72 (63.33%)

• Median

► 46 / 72 (63.89%)

• Standard dev.

► 8.16 (11.33%)

Midterm Stats

4

• Midterm:

► About 10% of students were absent due to diff. issues (sickness, etc.)

Your Final Grade

Programming
Assignments

30%

Problem Sets

20%

Midterm
Exam

20%

Final Exam

30%

5

• Midterm:

► About 10% of students were absent due to diff. issues (sickness, etc.)

• Might not be fair!

Your Final Grade

Programming
Assignments

30%

Problem Sets

20%

Midterm
Exam

20%

Final Exam

50%

6

Your Final Grade

Programming
Assignments

30%

Problem Sets

20%

Max {v1, v2}

v1

Midterm Exam

20%

Final Exam

30%

v2

Final Exam

50%

7

Your Feedback!

• Top ranked suggestions (based on #students):

► Sample questions for final

► A break after 1st hour!

• Some other ones:

► pptx plus pdf

► Making slides easier to review later

► Starting at XX:10

► Better Seats!

8

• TCP provides:

► A stream-of-bytes service

► A connection-oriented service

• To bring reliability, TCP:

► Uses Sliding window algorithm (Flow Control)

► Sets RTO values proportional to network RTT

► Detects loss when it sees a timeout

Last time …

Application

Transport

Network

Data link

PhysicalL1

L2

L3

L4

L5

End-Host

• Allow a larger amount of data “in flight”

► Allow sender to get ahead of the receiver

Last time: Sliding Window

9

• Allow a larger amount of data “in flight”

► Allow sender to get ahead of the receiver

Last time: Sliding Window at Sender

Sending process

First unACKed byte

Last byte

can send

TCP

Last byte written
Previously

ACKed bytes

Buffer size (B)

10

Last time: Sliding Window at Receiver

Receiving process

Next byte needed

(1st byte not received)

Last byte read

Last byte received

Received and

ACKed

Buffer size (B)

Sender might overrun

the receiver’s buffer

11

Receiver uses an “Advertised Window” (W) to prevent sender from
overflowing its window

► Receiver indicates value of W in ACKs

► Sender limits number of bytes it can have in flight <= W

Last time: Advertised Window (Flow Control)

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

12

Sliding Window at Sender

Sending process

First unACKed byte

Last byte can send

TCP

Last byte written

W

13

• Sender can send no faster than
𝑊

𝑅𝑇𝑇

• Receiver only advertises more space when it has consumed old arriving
data

• In original TCP design, that was the sole protocol mechanism controlling
sender’s rate

• But it’s just a very small part of the picture!

► (Today!)

Last time: Advertised Window Limits Sending Rate

14

Congestion Control

15

16

What is Congestion?

17

18

In mid-1980s, Similar thing happened in Internet!

Network was fully utilized but no useful work was being done.

About 1000x throughput reduction

Flow Control was not enough!

19

Statistical Multiplexing

Leads to Congestion

• Internet is based on packet switching

► No BW reservation

► Using buffers to absorb transient load

• If two packets arrive at a switch at the same time

► Switch will transmit one and buffer/drop the other

• Internet traffic is bursty

• If many packets arrive close in time

► the switch cannot keep up and it gets congested

► causes packet delays and drops

20

• Definition: Increase in network load results in a decrease of useful work done

• Many possible causes

► Spurious retransmissions of packets still in flight

- E.g., congestion collapses in 1980s

► Undelivered packets

- Packets consume resources and are dropped elsewhere in network

Congestion Collapse

21

• High throughput

► Throughput: measured performance of a system

► E.g., number of bits/second of data that get through

• Low delay

► Delay: time required to deliver a packet or message

► E.g., number of msec to deliver a packet

• These two metrics are sometimes at odds

What Users Want?

22

Load, Delay, and Power

Average
Packet delay

Load

Typical behavior of queuing
systems with random arrivals:

Power

Load

A simple old metric of how well the
network is performing:

Load
Power

Delay
=

“optimal
load”

23

Demand

U
se

fu
l W

o
rk

24

Number of TCP connections

B
yt

es
 t

ra
n

sf
er

re
d

 b
y

TC
P

25

Experiment

Let’s forget abt reliability, what is the best sending rate?

Sender Receiver

100Mbps1Gbps

Delay: 10ms

Sub Net 2Sub Net 2Sub Net 1Sub Net 1
10Mbps

NetworkNetwork

26

How abt when we want reliability? What is the best sending rate?

Sender Receiver

100Mbps1Gbps

Delay: 10ms

Sub Net 2Sub Net 2Sub Net 1Sub Net 1
10Mbps

NetworkNetwork

27

How abt when we want reliability? What is the best sending rate?

• (recall from last lecture) TCP uses a sliding window

► It controls the number of inflight packets (pkts sent but not Acked yet)

• What is throughput in terms of wnd?

► 𝑇ℎ𝑟 =
𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑠𝑒𝑛𝑡

𝑇𝑖𝑚𝑒
=

𝑤𝑛𝑑

𝑅𝑇𝑇

• So, desired wnd = BW × RTT

Sender Receiver

100Mbps1Gbps

Delay: 10ms

Sub Net 2Sub Net 2Sub Net 1Sub Net 1
10Mbps

NetworkNetwork

wnd

28

How abt when we want reliability? What is the best sending rate?

But what if ?

Sender Receiver

100Mbps1Gbps

Delay: 10ms

Sub Net 2Sub Net 2Sub Net 1Sub Net 1
10Mbps

NetworkNetwork

wnd

✓

29

How abt now?!

We don’t know the bottleneck BW

We don’t know how many other users are there

But we should come up with an acceptable sending rate!

Sender Receiver

100Mbps1Gbps

Delay: 10ms

Sub Net 2Sub Net 2Sub Net 1Sub Net 1
10Mbps

wnd

30

Congestion Control (CC) on the Internet is about . . .

• Maximizing your performance objective

► I want Higher throughput

► I want Lower delay

► I want no lost packets

• While being a good citizen

► Be fair to others and respect them!

• All that without having any prior knowledge of the network or other users!

Let’s design a CC scheme
A Simple One!

31

32

(1) Probe

Do Some Basic Measurements

Sender Receiver

Sub Net 2Sub Net 1
10Mbps

NetworkNetwork

• We need at least to know two things: RTT and bottleneck BW

• How to find RTT?
o Use sRTT estimations from older (like SYN) packets

• How to find bottleneck link bandwidth?
o Try and Error!
o Start from a small number, If everything is fine, increase your guess & If something is wrong, decrease

your guess
o How much increase at each step?

- Linearly? Exponentially?

o How much decrease at each step?
- Linearly? Exponentially?

33

(2) Use your best guess

Sender

Receiver

Sub Net 2Sub Net 1
10Mbps

NetworkNetwork

• After knowing congestion window (cwnd = BW×RTT), keep using it!

• Do we need to update value of cwnd?
o Bottleneck link BW may change!

o So, oscillate around your best guess

and update it

34

(3) Don’t hug the links forever!

Fairness

Sender

Receiver

Sub Net 2Sub Net 1
10Mbps

NetworkNetwork

• What does it mean if you detect a packet loss?
o Someone else is in the network?

o Backoff and let others probe/use the network

35

• TCP Tahoe & TCP Reno (~1989) use the same three-step algorithm

► Take a good guess about the bottleneck bandwidth

► Conservatively increase your sending rate

► Backoff in case of loss and let others use the network too

First TCP CC schemes were born more than 30 years ago

Van Jacobson

36

Step 1) Slow Start: take a good guess

► Each RTT, Double your cwnd, until you detect loss of packets

Step 2) Congestion Avoidance: see if bandwidth is changed (but cautiously)

► Each RTT, Increase your cwnd by only one packet

Step 3) Loss Detection: be a good citizen and backoff!

► E.g., If you detect packet loss, divide your 1st guess by 2

In more technical terms . . .

AIMD:
Additive Increase Multiplicative Decrease

37

A classic set of solutions {Reno, Tahoe, New Reno, etc.}

Time

C
w

n
d

1

2

3

2
3

2

More Details . . .

38

• Duplicate ACKs: isolated loss
► Still getting ACKs

• Timeout: much more serious
► Not enough dupacks

► Must have suffered several losses

• Will adjust rate differently for each case

• Duplicate ACK: cwnd = cwnd/2

• Timeout: cwnd = 1

Not All Losses Are the Same

Slow Start in Action

D A D D A A D D

Src

Dest

D D

1 2 43

A A A A

8

• For each RTT: double CWND
• We have a sliding window in practice not a jumping window!
• So, how to implement this?

• for each ACK, cwnd += 1
• Linear increase per ACK = exponential increase per RTT

• Some rate adjustment options: Every RTT, we can

► Multiplicative increase or decrease: CWND→ a*CWND

► Additive increase or decrease: CWND→ CWND + b

• Four alternatives:

► AIAD: gentle increase, gentle decrease

► AIMD: gentle increase, drastic decrease

► MIAD: drastic increase, gentle decrease

► MIMD: drastic increase and decrease

Why AIMD?

• Two users

► rates x1 and x2

• Congestion when

x1+x2 > 1

• Unused capacity when x1+x2 < 1

• Fair when x1 =x2

Simple Model of Congestion Control

User 1’s rate (x1)

U
se

r
2

’s
 r

at
e

 (
x 2

)

Fairness line
(x1 =x2)

Efficiency line
(x1+x2 = 1)

1

1

Example

User 1: x1

U
se

r
2

:
x

2

fairness

line

efficiency

line

1

1

Inefficient: x1+x2=0.7

(0.2, 0.5)

Congested: x1+x2=1.2

(0.7, 0.5)

Efficient: x1+x2=1

Fair

(0.5, 0.5)

Efficient: x1+x2=1

Not fair

(0.7, 0.3)

• Increase: x + aI

• Decrease: x - aD

• Does not converge to fairness

AIAD

User 1: x1
U

se
r

2
:

x
2

fairness

line

efficiency

line

(x1,x2)

(x1-aD,x2-aD)

(x1-aD+aI),

x2-aD+aI))

45

AIAD Sharing Dynamics

0

10

20

30

40

50

60
1

2
8

5
5

8
2

1
0
9

1
3
6

1
6
3

1
9
0

2
1
7

2
4
4

2
7
1

2
9
8

3
2
5

3
5
2

3
7
9

4
0
6

4
3
3

4
6
0

4
8
7

A
50 pkts/sec

B
x1

D E
x2

• Increase: x*bI

• Decrease: x*bD

• Does not converge to fairness

MIMD

User 1: x1

U
se

r
2

:
x

2

fairness

line

efficiency

line

(x1,x2)

(bdx1,bdx2)

(bIbDx1,

bIbDx2)

(bDx1+aI,

bDx2+aI)

• Increase: x+aI

• Decrease: x*bD

• Converges to fairness

AIMD

User 1: x1

U
se

r
2

:
x

2

fairness

line

efficiency

line

(x1,x2)

(bDx1,bDx2)

48

AIMD Sharing Dynamics

0

10

20

30

40

50

60
1

2
8

5
5

8
2

1
0
9

1
3
6

1
6
3

1
9
0

2
1
7

2
4
4

2
7
1

2
9
8

3
2
5

3
5
2

3
7
9

4
0
6

4
3
3

4
6
0

4
8
7

A
50 pkts/sec

Bx1

D E

Rates equalize → fair share

x2

Do we still use a CC protocol from 1989?!
Short answer: No!

49

The march of congestion control mechanisms

DECbitDECbit

CARDCARD

DUALDUAL

TahoeTahoe RenoReno New RenoNew Reno

VegasVegas

SACKSACK

EBCCEBCC BinomialBinomial

WestwoodWestwood FASTFAST

EifelEifel VenoVeno CompoundCompound LEDBATLEDBAT

BICBIC CubicCubicH-TCPH-TCP SproutSprout

VerusVerus

C2TCPC2TCP

DeepCCDeepCC

PCCPCC

PRRPRR PCC-VivacePCC-Vivace

BBRBBR

REDRED

WFQWFQ

GPSGPS

NACubicNACubic

ECNECN

NATCPNATCPAVQAVQ RCPRCP

XCPXCP DCTCPDCTCP

VCPVCP

ABCABCCHOKeCHOKe FCPFCPPDQPDQ

pFabricpFabricBLUEBLUE DeTailDeTail

CoDelCoDel

1980s 1990s 2000s 2010s

??

??

??

??

?? ??

??

50

OrcaOrca

ReminisReminis

2020s

Why is that and why it matters?

Stadia

51

Discontinued!

52

• The latest Linux Kernel alone includes more than 15 different TCP CC flavors!

► TCP Cubic (the default TCP)
► Vegas
► BBR
► TCP Reno
► BIC
► CDG
► DCTCP
► Westwood
► Highspeed TCP
► Illinois
► Veno
► …

Deployed TCP CC schemes . . .

You can change your CC algorithm. e.g., in Linux:
sudo sysctl -w net.ipv4.tcp_congestion_control=“vegas"

53

• The default TCP CC algorithm in macOS, Linux, Windows, and Android.

• Cubic follows the three-step algorithm but changes each part a little bit!

• E.g., it replaces the AI (additive increase) part with a cubic function of time

• K is updated when a packet is lost

TCP Cubic (2008)

cwnd =C × t -K()
3
+Wmax

𝐾 = 3 𝑊𝑚𝑎𝑥 × 𝛽/𝐶

time

cwnd

54

TCP Cubic

Time

cw
n
d

Timeout

Slow Start

CUBIC Function

cwndmax

Fast ramp up

Stable
Region

Slowly accelerate to
probe for bandwidth

• Less wasted bandwidth due to fast ramp up
• Stable region and slow acceleration help maintain fairness

55

• In a packet switching network, congestion is inevitable

► Internet does not reserve resources

• TCP handles congestion control with a simple three-step algorithm

► Exponentially explore the available link BW

► Cautiously (~linearly) probe for more BW

► Backoff and let other use the network

• Congestion control is a hot active research topic

► New environments require new designs

► New demands lead to new designs

► We are still far from universally solving this!

Putting all together

