
Overlay Networks

Soheil Abbasloo
Department of Computer Science
University of Toronto

Fall 2022

2

• Overlay Networks

• Routing Overlays

• P2P Networks

• Logistics of Final Exam

Outline

3

Overlay Networks

4

Overlay Networks

Focus at the application level

5

• A logical network built on top of a physical network

• Many logical networks may coexist at once

► Over the same underlying network

► And providing its own particular service

• Nodes are often end hosts

► Acting as intermediate nodes that can forward traffic

► Providing a service, such as access to files

Overlay Networks

6

• Content Delivery Networks (CDNs)

► Akamai (total asset: $8.12 billion)

► Cloudflare

• Routing Overlays

► Border Gateway Protocol (BGP) routers (with their peering relationships)

► Application-level multicast

• P2P applications

► Napster

► Gnutella

► BitTorrent

Examples of Overlays

Routing Overlays

7

8

• Alternative routing strategies
► No application-level processing at the overlay nodes

► Packet-delivery service with new routing strategies

• Incremental enhancements to IP
► IPv6

► Security

► Multicast

• Revisiting where a function belongs
► End-system multicast: multicast distribution by end hosts

Routing Overlays

9

Example: Incremental Deployment
6Bone Deploying IPv6 over IP4

A B E F

IPv6 IPv6 IPv6 IPv6

tunnelLogical view:

Physical view:
A B E F

IPv6 IPv6 IPv6 IPv6

C D

IPv4 IPv4

Flow: X
Src: A
Dest: F

data

Flow: X
Src: A
Dest: F

data

Flow: X
Src: A
Dest: F

data

Src:B
Dest: E

Flow: X
Src: A
Dest: F

data

Src:B
Dest: E

A-to-B:
IPv6

E-to-F:
IPv6

B-to-C:
IPv6 inside

IPv4

D-to-E:
IPv6 inside

IPv4

10

Example: Security
VPN

34.67.0.2 34.67.0.4

Internet

Private Private

Public

Dest: 74.11.0.2

74.11.0.1 74.11.0.2

Dest: 34.67.0.4

11

• An overlay to enhance anonymity and privacy

► Volunteer operated servers

• How Tor Works

► Obtain a list of Tor nodes from a directory

► Pick a random path to destination server

► Select a different path for other servers

Example: Security
Tor Project

• Unicast
– One-to-one
– Destination – unique receiver host address

• Broadcast
– One-to-all
– Destination – address of network

• Multicast
– One-to-many
– Multicast group must be identified
– Destination – address of group
Why not simply use unicast multiple times?!

Lots of applications:
Delivery of news, stock quotes
Remote conferencing
Streaming audio and video to many participants …

Example: Multicast
Definition Key:

Unicast transfer

Broadcast transfer

Multicast transfer

Example: Multicast
IP multicast

Highly efficient bandwidth usage BUT
Technical and business challenges
Should multicast be a network-layer service?

Berkeley

UBC Stanford

UofT

Routers with multicast support

14

• Making a logical network on top of the existing physical network

• Multicast tree of end hosts

► Allow end hosts to form their own multicast tree

► Hosts receiving the data help forward to others

Example: Multicast
End-Host-Based Multicast

Example: Multicast
End-Host-Based multicast

Berkeley

UBC Stanford

UofT

UofT

Stanford #1

Stanford #2

Berkeley #2

Overlay Tree

UBC

Berkeley #1

16

• Assume there are no services like Netflix, Spotify, …

• You wanna start a new file sharing business to provide free content.

• How do you architect that?

• Assume nothing is illegal!

Question

P2P Networks

17

• Client-server: Traditional Internet Service model
► Many clients, 1 (or more) server(s)

► Web servers, file downloads, video streaming

• P2P: A simple alternative
► Users bring their own resources to the table

► A cooperative model: clients = peers = servers

• How did it start?
► A killer application: file distribution

► Free music over the Internet! (not exactly legal…)

• Key idea: share storage, content, and bandwidth of individual users
► Lots of them

• Big challenge: coordinate all of these users

Peer-to-Peer

• Help users determine what they want
► Some form of search

► P2P version of Google

• Locate that content
► Which node(s) hold the content?

► P2P version of DNS (map name to location)

• Download the content
► Should be efficient

► P2P form of Akamai

Peer-to-Peer:
3 Key Requirements

20

• The rise (Shawn Fanning, Northeastern freshman)

► January 1999: Napster version 1.0

► May 1999: company founded
► 2000: 80 million users
► 2000: ~28% of Uwisc’s traffic!*

• The fall
► September 1999: first lawsuits

► Mid 2001: out of business due to lawsuits
► Mid 2001: dozens of P2P alternatives
► 2003: growth of pay services like iTunes

• Instructive for what it got right
• And wrong …
• Had a powerful economic message …
• And also, a legal one …

Peer-to-Peer Networks:
Napster

*https://pages.cs.wisc.edu/~plonka/lisa/FlowScan/

21

Napster Centralized Architecture
Overview

Napster
Central Server

Log-in, upload
list of filesSearch for

Pink Floyd

A

B

C

D

E

F

G

B and C have
the file

23

• Centralized: Search & Location
► Centralized index server

► Centralization of liability

• Decentralized: Download
► Decentralized/p2p file transfer

► No load on the server

• Advantages:
► Simple

• Disadvantages:
► Single point of failure (technical and … legal!)

► The latter is what got Napster killed

Napster:
Overview

24

• Fully centralized systems:

► single points of failure

• Response: fully unstructured P2P

► No central server, peers only connect to each other

► Queries sent as controlled flood

Unstructured P2P Networks

25

• Justin Frankel, Nullsoft, 2000

► AOL was not happy at all!

• Original design: a flat network using Query flooding

• Join via bootstrap node

► pre-existing address list, or web caches of known nodes, …

• Connect to random set of existing hosts (“neighbors”)

► Query message sent over existing TCP connections

• Resolve queries by localized flooding

► ask neighbors (~7), who ask their neighbors, and so on ...

► when/if found, reply to sender

► Time to live fields limit hops (typically 10)

Gnutella:
First decentralized p2p

Gnutella:
Flooding on Overlays

xyz.mp3?

xyz.mp3

Flooding

Gnutella:
Flooding on Overlays

xyz.mp3?

xyz.mp3

Flooding

Gnutella:
Flooding on Overlays

xyz.mp3

29

• Advantages

► Fully decentralized

► Search cost distributed

► Processing per node permits powerful search semantics

• Disadvantages

► Search scope may be quite large

► Search time may be quite long

► High overhead and nodes come and go often

• Users’ anecdotal comments: “It stinks”

► Tough to find anything!

► Downloads don’t complete!

• Response: Hierarchy of nodes

Gnutella: Pros and Cons

30

• Some nodes better and longer connected than others
► Use them more heavily

• Cross between Napster and Gnutella

• Join: on startup, client contacts a “supernode”
► may at some point become one itself

• Publish: send list of files to supernode
• Search: send query to supernode,

► supernodes flood query amongst themselves.

• Fetch: get the file directly from peer(s)

• Improves scalability

• Limits flooding

• What if a supernode leaves the network?

• Still no guarantees of performance

Hierarchical P2P Networks
Example: KazaA 2001

supernode

31

• Query consolidation

► Many connected nodes may have only a few files

► Propagating query to a sub-node may take more time than for the super-node to
answer itself

• Stability

► Super-node selection favors nodes with high up-time

► How long you’ve been on is a good predictor of how long you’ll be around in the
future

KaZaA:
Motivation for Super-Nodes

32

• 2002: B. Cohen debuted BitTorrent

• Key motivation: popular content

► Popularity exhibits temporal locality (Flash Crowds)

► E.g., release of a new movie or game, Slashdot effect, …

• Focused on efficient fetching, not searching

► Distribute same file to many peers

• “Swarming”
► Download from others downloading same object at same time

Peer-to-Peer Networks

• Swarming:
► Join: contact centralized “tracker” server, get a list of peers

► Search: Out-of-band
- E.g., use Google to find a tracker for the file you want.

► Fetch: Download chunks of the file from your peers.

- Upload chunks you have to them.

• Big difference compared to Napster:
► Chunk based downloading

► “Few large files” focus

BitTorrent:
Overview

*BitTorrent - Wikipedia

https://en.wikipedia.org/wiki/BitTorrent

34

• Seed
► Peer with entire file (Fragmented in small pieces ~16KB)

• Leacher
► Peer with an incomplete copy of the file

• Torrent file
► Passive component
► Contains all meta-data related to a torrent

- File name(s), sizes

- Torrent hash: hash of the whole file, hash of each piece

- URL of tracker(s)

• Tracker
► Allows peers to find each other
► Returns a list of random peers
► Later, the creation of Distributed Hash Table (DHT) method led to trackerless torrents

- We will leave DHT for an advanced distributed course!

BitTorrent:
Components

35

BitTorrent:
Overall Architecture

A

B

C

Peer

[Leech]

Downloader

Peer

[Seed]

Peer

[Leech]

TrackerWeb Server

36

BitTorrent:
Overall Architecture

A

B

C

Peer

[Leech]

Downloader

Peer

[Seed]

Peer

[Leech]

TrackerWeb Server

37

BitTorrent:
Overall Architecture

A

B

C

Peer

[Leech]

Downloader

Peer

[Seed]

Peer

[Leech]

TrackerWeb Server

38

BitTorrent:
Overall Architecture

A

B

C

Peer

[Leech]

Downloader

Peer

[Seed]

Peer

[Leech]

TrackerWeb Server

39

BitTorrent:
Overall Architecture

A

B

C

Peer

[Leech]

Downloader

Peer

[Seed]

Peer

[Leech]

TrackerWeb Server

40

BitTorrent:
Overall Architecture

A

B

C

Peer

[Leech]

Downloader

Peer

[Seed]

Peer

[Leech]

TrackerWeb Server

41

• More leechers = more replicas of pieces

• More replicas = faster downloads

► Multiple, redundant sources for each piece

• Even while downloading, leechers take load off the seed(s)

► Great for content distribution

► Cost is shared among the swarm

The Beauty of BitTorrent!

42

• Vast majority of users are free-riders
► Most share no files and answer no queries
► Others limit # of connections or upload speed

• A few “peers” essentially act as servers
► A few individuals contributing to the public good
► Making them hubs that basically act as a server

• BitTorrent prevents free riding: A “Tit-for-tat” sharing strategy
► Yang is downloading from some other people

- Yang will let the fastest N of those download from him

► Be optimistic: occasionally let freeloaders download
- Otherwise, no one would ever start!

- Also allows you to discover better peers to download from when they reciprocate

Free-Riding Problem in P2P Networks

43

• uTorrent (a minimalistic version of BT) lunched in Sep 2005

• Spotify bought uTorrent in 2006, before releasing its service (in 2008)

• Spotify uses BT as basic protocol

► Uses server for first 15s

► Tries to find peers and download from them

► Only 8.8% of bytes come from servers (@ 2010)

• When 30s left

► Starts searching for next track

► Uses sever with 10s to go if no peers found

2006

44

• Does Spotify use BitTorrent anymore? Why?

► In 2014, they moved away from p2p

• What drove P2P initially?

► Renting servers was expensive

► Content was not otherwise available

• What about now?

► AWS, Azure, Google Cloud, …

• In 2016 Spotify migrated to Google Cloud

• Is P2P dead?

► Still lives on: Bitcoin/Ethereum/…

Discussion

45

• Overlay networks
► Tunnels between host computers
► Hosts implement new protocols and services
► Effective way to build logical networks on top of the Internet

• P2P networks
► Nodes are end hosts
► Primarily for file sharing, and recently telephony
► E.g., Centralized directory (Napster)
► Query flooding (Gnutella)
► Super-nodes (KaZaA)
► Distributed downloading and anti-free-loading (BitTorrent)

• Great examples of how fast changes can happen in application-level protocols

Overlay networks
Wrap Up

Final Exam: the Logistics

46

47

Your Final Grade

Programming
Assignments

30%

Problem Sets

20%

Max {v1, v2}

v1

Midterm Exam

20%

Final Exam

30%

v2

Final Exam

50%

• Time:

► December 14th

► For exact location and time, check this:

- https://www.artsci.utoronto.ca/current/faculty-registrar/exams-assessments/exam-assessment-
schedule#exam-assessments-schedule-accordion-1

• Extra office hours on Monday Dec 12 (3-5pm)

• Closed book, closed notes, etc.

• Single two-sided “cheat sheet”, handwritten

► Not bigger than an A4 paper!

• No calculators, electronic devices, etc.

► Test does not require any complicated calculations

Final Exam
Logistics

48

https://www.artsci.utoronto.ca/current/faculty-registrar/exams-assessments/exam-assessment-schedule#exam-assessments-schedule-accordion-1

• Test only assumes material covered in our lectures

► Text: only to clarify details and context for the above
The test doesn’t require you to do complicated calculations

► Use this as a hint to whether you are on the right track!

• Everything covered

► With more focus on lectures 6-11

• You do need to understand how things work

► not for the sake of knowing gory details but to understand pros/cons, when a solution
is applicable/useful/useless, etc.

General Guidelines (1)
Similar to the Midterm!

49

Be prepared to:

• Weigh design options outside of the context we studied them in

► e.g., if TCP connections didn’t have three-way handshake, then …”

• Contemplate new designs we haven’t talked about

► e.g., I introduce a new congestion control; how does this affect …”

• Don’t let this daunt you. Reason from what you know about the pros/cons
of solutions we did study

- e.g., circuit switching is inefficient when …

General Guidelines (2)
Similar to the Midterm!

50

Q1- Multiple-choice questions (~26 questions)

Q2- Design questions

► Similar to the midterm:
- A set of “here’s a scenario, tell me if the following is true/false”-style questions

Q3- Short answer questions

Q4+ more traditional long questions

General Guidelines (3)
Exam format

51

52

• Some sample questions for final + Midterm and solutions:

https://t.ly/mxJBo

Sample questions

https://t.ly/mxJBo

Questions?

53

