
A Hierarchical Non-Parametric Method for
Capturing Non-Rigid Deformations

 Ady Ecker Shimon Ullman
 University of Toronto Weizmann Institute of Science
 adyecker@cs.toronto.edu shimon.ullman@weizmann.ac.il

Abstract

We present a novel approach for measuring
deformations between image patches. Our algorithm is
a variant of dynamic programming that is not
inherently one-dimensional, and its scores are on a
relative scale. The method is based on the combination
of similarities between many overlapping sub-patches.
The algorithm is designed to be robust to small
deformations of parts at various positions and scales.

1. Introduction

Current approaches for measuring images similarity
usually consist of two steps. The first step is carried
out by matching features from both images. This
matching can range from simple template matching to
complex feature matching such as SIFT features [1] or
shape context [2]. The second step is searching for a
transformation that aligns the images. This is usually
done by using affine transformations or more
complicated parametric transformations [2]. In this
paper we deal with the question of how to capture non-
rigid deformations. Figure 1 illustrates the sort of
transformations we would like to be able to explain. At
the bottom image of figure 1, part A stays in the same
place, part B moves rightwards and part C upwards.
With more subdivisions of the image, this sort of
transformations can be made arbitrarily complex and
no parametric transformations can capture that sort of
changes. Note that while many methods are designed
to be robust to small non-rigid deformations
encountered in practice, we are interested in a method
that can explain a wide range of non-rigid
deformations of image patches in theory.

Our work was inspired by dynamic programming
methods for matching strings, such as edit distance [3].
The main difficulty in applying the dynamic
programming paradigm directly is that two

dimensional images have no natural scanning
direction. For example, the rows of the two images in
figure 1 don't match exactly, as well as their columns.
There have been several previous attempts to use
dynamic programming to evaluate similarity of images.
In [4] the longest common subsequence algorithm has
been used over the columns of a matched template. In
[5] and [6] shape contours were aligned using dynamic
programming. In [7] shapes were represented by shock
graphs, and a specialized edit distance algorithm was
developed to align two skeleton-trees in minimum cost
of tree-transition operations. In [8] a polygon
triangulation is matched by dynamic programming
using an elimination order for the triangles.

Our method differs substantially from these works
in that it works entirely in two dimensions. To do so
we had to abandon a key property of the dynamic

C

B A

Figure 1. The bottom image was obtained by
shifting patches B (rightwards) and C
(upwards). While the two images are similar,
no parametric transformation can explain this.

programming paradigm, the definition of a cost
function. Instead, we apply iterative steps that optimize
some implicit objective function. In order to interpret
the similarity scores produced by the algorithm as it
compares different image patches, we normalize this
score using the empiric distribution of scores generated
by the algorithm for a class of images.

Our algorithm is based on matching sub-patches of
the two images. Intuitively, two similar images consist
of similar subparts. As noted in [9], the converse also
holds: if two images have many similar overlapping
shape fragments, then with high probability the images
are similar. It is very unlikely that overlapping patches
will be arranged in two configurations that are totally
dissimilar. The consequence is that relations among the
parts within each image can be ignored. Similar ideas
appear in [10]. Works in computer graphics (e.g. [11])
demonstrated patch-based method to be very effective
for texture synthesis. However, the problem of
systematically identifying similar sub-patches in
images has not been studied previously.

2. The Relative Dynamic-Programming
algorithm

In this section we present our algorithm, which we
call RDP (Relative Dynamic Programming). We
describe an implementation of RDP that measures the
similarity between grayscale images. Our aim is to
identify patches from the two images as similar if they
contain many overlapping similar sub-patches. The
question whether subparts are similar is recursive. This
leads to an iterative, bottom-to-top construction. The
algorithm starts by matching small patches, using a
basic similarity measure, and computes the similarity
of larger patches based on the similarity of the smaller
ones contained in them. The similarity values between
patches are stored in a table. At each phase, the
algorithm fills the table iteratively based on the table
computed in the previous phase. The algorithm is a
dynamic programming algorithm in the sense that it
reuses optimal solutions to sub-problems.

In contrast to standard dynamic programming
algorithms our algorithm is extendible to more than
one dimension. We don’t only mean that we use
multidimensional tables. The crucial distinction is that
in our method image blocks can move in
multidimensional directions during the alignment
process. The key that enables flexible movements in
multiple dimensions is the fact that our algorithm
builds the tables starting from many initial points
simultaneously, whereas standard dynamic
programming algorithms start from a single point and

require a scan order. This advantage comes at the price
that the objective function computed by the algorithm
is implicit, i.e. cannot be explicitly written down in a
short way. We don't start by stating the objective
function and formulating the iterative steps to optimize
this function. We start by formulating the iterative
steps in a way that the resulting function the algorithm
computes will be robust to small movements of
subparts.

As a result, similarity scores have to be interpreted
relatively. The meaning of a score comes from
comparison to other scores produced by the same
algorithm on other inputs. Specifically, the score is the
probability to obtain lower values than the value
computed. Note that even for standard dynamic
programming algorithms, like edit distance [3], the
interpretation of the score depends on some
assumptions on the distribution of these scores. For
example, suppose we compare two strings and find
that 5 edit operations are required. The number "5" is
not informative unless we know how frequent it is in
the domain of these strings.

For expository reasons, we start by describing a
simplified version of the algorithm in one dimension.
The input consists of two rows of N pixels, I1(0..N−1),
I2(0..N−1), where each pixel has grayscale value
between 0 and 1. For simplicity assume that N is a
power of 2. The algorithm works in phases. In phase h,
where h=1,2,…,log(N), the algorithm computes the
similarity score between sub-patches of size 2h taken
from both images. The patches are equally spaced 2h−1
pixels apart, i.e. the distance between patches is
doubled at phase transitions. The final output is the
similarity score of phase log(N), when the patch size
equals N.

Intermediate scores are stored in a table for use in
the subsequent phase. We assume each pixel in I1
cannot move more than ∆ pixels to its "true location"
in I2. The similarity table T(i,δ) stores all possible
comparisons between patches whose centers are no
more than ∆ pixels apart. More specifically, T(i,δ) is
the similarity value between the patches whose left
corners are I1(i) and I2(i+δ). T has pixel index i ranging
from 0 to N−1 and displacement (offset) index δ ranging
from –∆ to ∆ (indexing based on the relative offset
between patches is a common compact way to store
matrices of small bandwidth. This representation is
extendible to multidimensional arrays). Some of the
entries in the similarity table are empty due to boundary
overflows. From here on we will ignore such problems
which are handled in the implementation.

The first phase is done using a basic similarity
function D on the intensity values of two 2-pixels
patches:

T(i,δ)=D([I1(i),I1(i+1)],[I2(i+δ),I2(i+δ+1)]).

The basic similarity function could range from simple
template matching such as L2 to more complicated such
as comparing features over two bigger windows centered
at the locations of these patches. The choice and
evaluation of basic similarity functions are beyond the
scope of this paper. The function we used in our
implementation is described in the appendix.

To allow for small distortions between the images
being compared, we maintain two tables M1, M2, of the
same dimensions as T. These two tables are introduced
for efficiency reasons. The algorithm will reuse the
values stored in them several times. M1 stores the
minimum of the comparisons of patches from I1 to
three possible patches from I2:

M1(i,δ)=min(T(i,δ−1)+c1,T(i,δ),T(i,δ+1)+c1).

M2 stores the minimum of the comparisons of patches
of I2 to three possible patches in I1. The offsets are
adjusted so that the three patches in I1 will point to the
same patch of I2:

M2(i,δ)=min(T(i−1,δ+1)+c1,T(i,δ),T(i+1,δ−1)+c1).

The minima are weighted in such a way that a
movement has a fixed cost c1. This cost was introduced
to give preference to coherent movements, which are
captured in the offset index, over irregular movements,
which are captured in the minimum operation.
Coherent movement of a large sub-patch results in a
single penalty at some stage of the hierarchical
framework, while many incoherent movements of sub-
patches in various directions result in multiple
penalties during the process.

To see why it is safer to perform the bidirectional
comparison, consider a case where I1=(0,1,0,1,0,1,…),
I2=(0,1,1,0,1,1,…). Each sub-patch of two pixels in I1
can find an exact mate in I2 by moving no more than
one position, but the "11" sub-patches of I2 have no
corresponding mates in I1.

Assume we know the empiric distribution of the
values in M1 and M2. Every value in the tables M1 and
M2 is normalized by this distribution. After
normalization, the entries are expected to be
distributed uniformly between 0 and 1.

In the iterative step, the algorithm computes the
similarity of doubled patches at doubled distances from
each other. The similarity score T(i,δ) of the next phase
is based on six similarity values between sub-patches

that were computed and normalized in the previous
phase:

v1=M1(2i,2δ), v2=M1(2i+1,2δ), v3=M1(2i+2,2δ),
v4=M2(2i,2δ), v5=M2(2i+1,2δ), v6=M2(2i+2,2δ).

T(i,δ) is a weighted geometric mean of these values
normalized by its empiric distribution. The rational for
taking the geometric mean is that we would like
evidences of high similarity (values close to 0) to have
high influence on the combined score. In the
implementation we actually multiply the values of
max(vi,ε), to prevent the possibility of zero product. A
product of zero would propagate through all the stages of
the algorithm and will result in perfect match at the last
phase. This situation may happen in practice due to image
discretization or inaccurate measure of the distribution by
which we normalize.

We used weights to put more emphasis on sub-
patches that contain salient features such as boundaries.
Following Moravec [12], for each point i in the image,
we compute

() .)(I)(I)(
2

2

2∑
−=

−+=
j

ijiiW

We assign a weight w for each patch by averaging W(i)
over the points i in that patch (we used some minimal
weight value to insure that uniform patches get a small
positive weight). Let

∑

∑
=

=

=
6

1

6

1
)log(

i
i

i
ii

w

vw
L .

The weighted geometric mean is then T(i,δ)=2L. The
representation 2L is more efficient because only a single
raise to a power is computed. The logarithms in L are
avoided by normalizing vi directly to the logarithm of its
tabulated distribution.

This process is iterated over. Each phase involves
computing the minima tables M1 and M2, normalizing
their values by an empiric distribution, and storing the
normalized weighted geometric means in the T table.

Our implementation uses separate distributions for
each phase. It is possible to sample the distribution of
phase h+1 only after the distribution of phase h had
been computed. To build the distributions, we pick a
set of image pairs, and build the distributions in
phases. At phase h we compute similarity scores for
patches of size 2h-1 from the tables of all pairs of
images simultaneously. Note that there is no need to
sample the similarity scores of full-size images,
because normalizing the final score will not change the
relative order of the final scores.

The resulting hierarchical alignment is illustrated in

figure 2. Patches of two pixels can match by moving up
to one position with respect to the four-pixel patch that
contains them. Patches of four pixels can move two
positions, and are matched by their overlapping sub-
patches of two pixels.

We end the description of the algorithm with a
cross-resolution enhancement. Scale changes need not
be homogenous over the images: some parts of the
image may grow while other parts shrink. It might be
that within a growing part some subparts are shrinking,
and this property is recursive.

To deal with scale variations, we add an additional
dimension to all of our data structures. First we build a
pyramid for the images. Denote by I(r) the image I at
resolution r. Our aim is to compare sub-patches of I1(r)
to sub-patches of I2 at resolutions r−1, r, r+1 and store
these values in the similarity table T(r,z,i,δ).
z∈{−1,0,1} is the resolution offset. The corresponding
resolution of I2 is r+z. Given two patches, we compute
the weighted geometric mean 2L of the evidences of
their parts as before. Two additional cross-resolution
terms are computed. If the two patches are at the same
resolution (i.e. z=0), the central sub-patch from I1 is
tested to fit the low-resolution version of the whole
patch from I2, and vice versa:

Vhigh-low=min(T'(r,1,2i+1,δ),T'(r+1,−1,i,2δ+1))+c2,

where T' denotes the normalized similarity table of the
previous phase. The term is taken with a cost c2 in
order to prevent possible "drift" to base the comparison

on repeated low-resolutions of both-patches. The last
term to compute is the similarity between the two
low-resolution versions of both patches:

Vlow-low= T'(r+1,z+1,i,δ)+c3.

This term is important because it allows the algorithm
to ignore non-similar details in high resolution.
Finally, the similarity score of the two patches is:

T(r,z,i,δ)=min(2L,Vhigh-low,Vlow-low).

The scheme carries on naturally to two dimensions.
The sub-patches compared at phase h are squares of
size 2h×2h. The data structures are extended by
additional two indices. T(r,z,i1,i2,δ1,δ2) represents the
similarity value between two sub-patches of I1(r) and
I2(r+z). i1 and i2 are the array coordinates of the patch
corner in I1. δ1 and δ2 are the displacement of the patch
of I2 relative to the projection of i1 and i2 on I2(r+z).
Each patch is covered by nine sub-patches. When the
minima tables are computed, each sub-patch is allowed
to move one array position left, right, up, down or
diagonally. The complexity of the algorithm, as well as
the storage requirement, is O(N2⋅∆2).

The algorithm could also recover the optimal
aligning transformation between the images. This
could be done by marking at each minimum operation
where this minimum has come from. By keeping track
of intermediate data-structures one can identify the
parts in the images that mostly contributed to the
similarity score (e.g. in case of partial occlusion).

3. Results

We examined the performance of our implementation
on several test sets of 32×32 images. Three of the sets are
shown in table 1. The images in test 1 were created to
demonstrate the properties of the similarity measure. For
instance, in the second pair of test 1 the left part moves
vertically while the right part moves horizontally. Even if
we apply a global rigid transformation before computing
L2, half of the pixels will be misaligned. Notice that this
simple example poses conceptual difficulties to any
method based on local features, since any local feature
computed on the left image will match too many features
on the right image (except for the centers of those
images). Thus evaluating which of these matches is
"correct" becomes an optimization problem that has no
exact solution within the affine model. In contrast, our
method allows sub-patches to move independently and
capture the transformation locally. While feature based
method will penalize for the small movement of each
feature a bit, our method will penalize only for the
movement of the two parts as wholes.

D:

C:

A:

B:

Figure 2. Hierarchical alignment of 1D patches.
A: The two 8-pixels patches being compared.
B, C, and D: The best matches for the 4-pixels
sub-patches based on the movements of the
2-pixels sub-patches.

 Table 1.

 Test 1 Test 2 Test 3

1

2

3

4

5

6

7

8

9

10

RDP 0 0.1 0.05
L2 0.5 0.4 0.35
Correlation 0.45 0.4 0.25

In each of the three tests every image was compared to
the 10 images on the other column. A comparison of an
image to its similar pair was considered as a mistake
when the score was not the minimum out of the
comparisons to the 10 possible pairs in that test. The
mistake rate of a test is the number of error out of the 20
possible. Mistakes rates are summarized at the bottom of
table 1. The performance of the method should not be
understood just from the statistical rate of success,
because the numeric results depend on how confusing the
images are and on several implementation details. The
score depends on the distributions used (we sampled the
distributions for each test separately), the basic similarity
function, the choice of cost constants and the weight of
the background in the images. In all of these tests we

used the same constants
1

2.0 ,05.0 321 −
===

h
ccc , so

that the cost for comparison in low resolution
decreases with the phase. One can see that the results

 Table 2.

Test 4 Test 5 Test 6

0.031 0.031 0.031

0.031 0.047 0.031

0.039 0.055 0.031

0.047 0.055 0.031

0.055 0.055 0.031

0.055 0.094 0.047

0.055 0.180 0.055

0.055 0.180 0.055

0.055 0.234 0.055

obtained by RDP are superior to standard distance
functions used to compare images, such as L2 and
correlation. Parts of the images can undergo different
deformations simultaneously and still be matched.

We investigated how the similarity score of
our implementation varies under controlled image
deformations. The results are shown in table 2.
In test 4, the images are scaled by factors of
1,0.95, 0.9,…,0.55. The score below each image is the
similarity to the top image (the scores don't vary
smoothly because we used tabulated distributions). In
test 5, the images are rotated by 0,5,10,15,…,45
degrees. Test 6 evaluates the behavior of the score

under different levels of noise (the score is written
below each pair). For comparison, the averaged L2
distance between the last pair is 0.327. These examples
suggest that the scores are robust to small changes in
scale, small rotations and noise.

We also examined the dependency of the algorithm on
specific factors such as the empiric distributions and the
bi-directional computation [13]. We concluded that in
practice normalizations by the empiric distributions are
not always necessary, because the evidences were highly
correlated so the distribution of the minimum of several
normalized variables was almost uniform. On the other
hand, there are situations where not using the correct
distribution can lead to convergence of the similarity
score to 0. Performing a bi-directional computation
slightly improves the accuracy on the expense of running
time.

4. Discussion

We presented a general framework for similarity
assessment based on the composition of parts. Our
implementation demonstrated the qualitative properties of
the scheme. No domain-specific features have to be
detected and there is no need to specify the configuration
of the parts. The parts within each image are not
identified explicitly. The algorithm matches
systematically a large number of overlapping sub-
patches. Similar overlapping patches impose similar
configuration. The dynamic programming procedure
looks for an optimal transformation that aligns the
patches of both images. This transformation is not a
global transformation, but a composition of many local
transformations of sub-patches at various sizes,
performed one on top of the other. The aligning
transformation has many degrees of freedom that allow
for very flexible matching. The method involves an
unsupervised learning phase, in which the program
collects statistics on the distribution of similarity scores in
the domain of the images. The scheme is plausible
because it involves only simple operations. It can be
implemented in parallel hardware and with neural
networks.

Our experiments show that the implementation of
RDP is superior to L2 and correlation. The algorithm can
deal with various types of non-rigid transformations,
where parts of the images can undergo different types of
deformations at the same time. Objects that are
perceptually similar are often judged by the algorithm to
be similar even when a direct point-wise comparison
does not detect such similarity. This supports the
assumption that perceptual similarity is based in part on
the common substructures shared by the objects.

However, the implementation is still inferior to
humans' similarity assessment. Two main causes for
inaccuracy have been identified. The first weakness is the
saliency measure for regions. Small but important regions
in the images may have large impact on the perceived
similarity. The second issue neglected by our scheme is
invariant topological properties of shapes. In particular,
the method does not identify and match the contours of
the shapes. It pays no attention to whether the shapes are
connected, closed or contain holes. This is in contrast to
humans' perception [14]. It was encouraging to observe
that low error rates were achieved even though the ability
to match contours was not considered in the design of our
implementation.

The principles of the RDP algorithm are fairly general
and could be extended to higher dimensions. For
instance, it is possible to deal with independent rotations
of sub-patches by adding an additional dimension to the
tables and comparing each patch to several rotated
versions of the patch from the other image. The same
method could be used for the alignment of 3D volumes
represented as sets of voxels or the alignment of
cube-patches in video sequences. These possibilities
remain for future research.

5. Appendix

In this appendix we describe a new variant of cross
correlation that we used as our basic similarity
function. We found this variant to be more effective
than correlation since it takes into account the
difference between the means of the two vectors.
We define the inter-correlation between two vectors x
and y with means x and y :

()
22)()(

))((),(
xyEyxE

xyyxEyxIC
−−

−−
=

By definition 0),(=yxIC when the denominator is 0.
Properties of this expression are listed below:

1. =),(yxIC

()
()()2222

2

)()()()(

)())((

yxyyEyxxxE

yxyyxxE

−+−−+−

−−−−

2. 1),(≤yxIC . This follows from the Cauchy-

Schwarz inequality.

3.)(1),(yxaxyyxIC −+=⇔= for some

constant 0≠a .

The proof is by equating to 0 the discriminant
of the non-negative quadratic expression:

()2)()(xyyxaE −−− .

By taking expectations it follows that

)(yxaxy −+= .

At the extremes of),(yxIC , either 1−=a or
yx = .

Substituting y by)(yxax −+ in the IC formula,
we get:

 0 and)(1),(>−+=⇔+= axxaxyyxIC

 () ()xxyyaxxaxy
yxIC

−+=<−+=
⇔−=

or 0 and)(
 1),(

 1),(=yxIC if and only if x and y have the same

mean, and their deviations from this mean are up
to a positive constant factor.

 1),(−=yxIC in two cases. The first possibility is
that that both vectors have the same mean, and
their deviation from this mean is a linear
reflection. The second possibility is that they have
different means, but the distribution around their
means is an exact reflection.

References

[1] D.G. Lowe, "Distinctive image features from scale-
invariant keypoints", IJCV 60(2), 91-110, 2004.

[2] S. Belongie, J. Malik and J. Puzicha, "Shape
Matching and Object Recognition Using Shape
Contexts", PAMI 24(4), 509-522, 2002.

[3] A. Apostolico and Z. Galil, Pattern matching
algorithms. Oxford university press, 1997.

[4] A.L. Ratan, W.E.L. Grimson, and W.M. Wells III.
"Object detection and localization by dynamic template
warping", CVPR, 634-640, 1998.

[5] R. Basri, L. Costa, D. Geiger, and D. Jacobs,
"Determining the similarity of deformable shapes",
Vision Research 38, 2365-2385, 1998.

[6] E. Milios and E.G.M. Petrakis, "Shape Retrieval Based
on Dynamic Programming", IEEE Trans. on Image
Processing 9(1), 141-147, 2000.

[7] P. Klein, S. Tirthapura, D. Sharvit, and B. Kimia, "A
tree-edit distance algorithm for comparing simple,
closed shapes", SODA, 696-704, 2000.

[8] P.F. Felzenszwalb, "Representation and Detection of
Deformable Shapes", PAMI 27(2), 208-220, 2005.

[9] E. Sali and S. Ullman, "Combining class-specific
fragments for object classification", BMVC, 203-213,
1999.

[10] R.C. Nelson and A. Selinger, "A Cubist Approach to
Object Recognition", ICCV, 614-621, 1998.

[11] A.A. Efros and T.K. Leung, "Texture Synthesis by
Non-Parametric Sampling", ICCV, 1033-1038, 1999.

[12] H.P. Moravec, "Towards automatic visual obstacle
avoidance", Proc. of the International Joint Conference
on Artificial Intelligence, 584, 1977.

[13] A. Ecker, Images Similarity Based on the Distributions
of Similar Substructures, M.Sc. thesis, Weizmann
Institute of Science, 2002.

[14] S.E. Palmer, "Structural aspects of visual similarity",
Memory and cognition 6(2), 91-97, 1978.

