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Abstract 
 

We present a novel approach for measuring 
deformations between image patches. Our algorithm is 
a variant of dynamic programming that is not 
inherently one-dimensional, and its scores are on a 
relative scale. The method is based on the combination 
of similarities between many overlapping sub-patches. 
The algorithm is designed to be robust to small 
deformations of parts at various positions and scales.  
 
 
1. Introduction 
 

Current approaches for measuring images similarity 
usually consist of two steps. The first step is carried 
out by matching features from both images. This 
matching can range from simple template matching to 
complex feature matching such as SIFT features [1] or 
shape context [2]. The second step is searching for a 
transformation that aligns the images. This is usually 
done by using affine transformations or more 
complicated parametric transformations [2]. In this 
paper we deal with the question of how to capture non-
rigid deformations. Figure 1 illustrates the sort of 
transformations we would like to be able to explain. At 
the bottom image of figure 1, part A stays in the same 
place, part B moves rightwards and part C upwards. 
With more subdivisions of the image, this sort of 
transformations can be made arbitrarily complex and 
no parametric transformations can capture that sort of 
changes. Note that while many methods are designed 
to be robust to small non-rigid deformations 
encountered in practice, we are interested in a method 
that can explain a wide range of non-rigid 
deformations of image patches in theory. 

Our work was inspired by dynamic programming 
methods for matching strings, such as edit distance [3]. 
The main difficulty in applying the dynamic 
programming paradigm directly is that two 

 
dimensional images have no natural scanning 
direction. For example, the rows of the two images in 
figure 1 don't match exactly, as well as their columns. 
There have been several previous attempts to use 
dynamic programming to evaluate similarity of images. 
In [4] the longest common subsequence algorithm has 
been used over the columns of a matched template. In 
[5] and [6] shape contours were aligned using dynamic 
programming. In [7] shapes were represented by shock 
graphs, and a specialized edit distance algorithm was 
developed to align two skeleton-trees in minimum cost 
of tree-transition operations.  In [8] a polygon 
triangulation is matched by dynamic programming 
using an elimination order for the triangles. 

Our method differs substantially from these works 
in that it works entirely in two dimensions. To do so 
we had to abandon a key property of the dynamic 
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Figure 1. The bottom image was obtained by 
shifting patches B (rightwards) and C
(upwards). While the two images are similar, 
no parametric transformation can explain this. 



programming paradigm, the definition of a cost 
function. Instead, we apply iterative steps that optimize 
some implicit objective function. In order to interpret 
the similarity scores produced by the algorithm as it 
compares different image patches, we normalize this 
score using the empiric distribution of scores generated 
by the algorithm for a class of images. 

Our algorithm is based on matching sub-patches of 
the two images. Intuitively, two similar images consist 
of similar subparts. As noted in [9], the converse also 
holds: if two images have many similar overlapping 
shape fragments, then with high probability the images 
are similar. It is very unlikely that overlapping patches 
will be arranged in two configurations that are totally 
dissimilar. The consequence is that relations among the 
parts within each image can be ignored. Similar ideas 
appear in [10]. Works in computer graphics (e.g. [11]) 
demonstrated patch-based method to be very effective 
for texture synthesis. However, the problem of 
systematically identifying similar sub-patches in 
images has not been studied previously. 

 
2. The Relative Dynamic-Programming 
algorithm 
 

In this section we present our algorithm, which we 
call RDP (Relative Dynamic Programming). We 
describe an implementation of RDP that measures the 
similarity between grayscale images.  Our aim is to 
identify patches from the two images as similar if they 
contain many overlapping similar sub-patches. The 
question whether subparts are similar is recursive. This 
leads to an iterative, bottom-to-top construction. The 
algorithm starts by matching small patches, using a 
basic similarity measure, and computes the similarity 
of larger patches based on the similarity of the smaller 
ones contained in them. The similarity values between 
patches are stored in a table. At each phase, the 
algorithm fills the table iteratively based on the table 
computed in the previous phase. The algorithm is a 
dynamic programming algorithm in the sense that it 
reuses optimal solutions to sub-problems.  

In contrast to standard dynamic programming 
algorithms our algorithm is extendible to more than 
one dimension. We don’t only mean that we use 
multidimensional tables. The crucial distinction is that 
in our method image blocks can move in 
multidimensional directions during the alignment 
process. The key that enables flexible movements in 
multiple dimensions is the fact that our algorithm 
builds the tables starting from many initial points 
simultaneously, whereas standard dynamic 
programming algorithms start from a single point and 

require a scan order. This advantage comes at the price 
that the objective function computed by the algorithm 
is implicit, i.e. cannot be explicitly written down in a 
short way. We don't start by stating the objective 
function and formulating the iterative steps to optimize 
this function. We start by formulating the iterative 
steps in a way that the resulting function the algorithm 
computes will be robust to small movements of 
subparts.  

As a result, similarity scores have to be interpreted 
relatively. The meaning of a score comes from 
comparison to other scores produced by the same 
algorithm on other inputs. Specifically, the score is the 
probability to obtain lower values than the value 
computed. Note that even for standard dynamic 
programming algorithms, like edit distance [3], the 
interpretation of the score depends on some 
assumptions on the distribution of these scores. For 
example, suppose we compare two strings and find 
that 5 edit operations are required. The number "5" is 
not informative unless we know how frequent it is in 
the domain of these strings. 

For expository reasons, we start by describing a 
simplified version of the algorithm in one dimension. 
The input consists of two rows of N pixels, I1(0..N−1), 
I2(0..N−1), where each pixel has grayscale value 
between 0 and 1. For simplicity assume that N is a 
power of 2. The algorithm works in phases. In phase h, 
where h=1,2,…,log(N), the algorithm computes the 
similarity score between sub-patches of size 2h taken 
from both images. The patches are equally spaced 2h−1 
pixels apart, i.e. the distance between patches is 
doubled at phase transitions. The final output is the 
similarity score of phase log(N), when the patch size 
equals N.  

Intermediate scores are stored in a table for use in 
the subsequent phase. We assume each pixel in I1 
cannot move more than ∆ pixels to its "true location" 
in I2. The similarity table T(i,δ) stores all possible 
comparisons between patches whose centers are no 
more than ∆ pixels apart. More specifically, T(i,δ) is 
the similarity value between the patches whose left 
corners are I1(i) and I2(i+δ). T has pixel index i ranging 
from 0 to N−1 and displacement (offset) index δ ranging 
from –∆ to ∆ (indexing based on the relative offset 
between patches is a common compact way to store 
matrices of small bandwidth. This representation is 
extendible to multidimensional arrays). Some of the 
entries in the similarity table are empty due to boundary 
overflows. From here on we will ignore such problems 
which are handled in the implementation. 



The first phase is done using a basic similarity 
function D on the intensity values of two 2-pixels 
patches: 

T(i,δ)=D([I1(i),I1(i+1)],[I2(i+δ),I2(i+δ+1)]). 

The basic similarity function could range from simple 
template matching such as L2 to more complicated such 
as comparing features over two bigger windows centered 
at the locations of these patches. The choice and 
evaluation of basic similarity functions are beyond the 
scope of this paper. The function we used in our 
implementation is described in the appendix. 

To allow for small distortions between the images 
being compared, we maintain two tables M1, M2, of the 
same dimensions as T. These two tables are introduced 
for efficiency reasons. The algorithm will reuse the 
values stored in them several times. M1 stores the 
minimum of the comparisons of patches from I1 to 
three possible patches from I2:  

M1(i,δ)=min(T(i,δ−1)+c1,T(i,δ),T(i,δ+1)+c1). 

M2 stores the minimum of the comparisons of patches 
of I2 to three possible patches in I1. The offsets are 
adjusted so that the three patches in I1 will point to the 
same patch of I2:  

M2(i,δ)=min(T(i−1,δ+1)+c1,T(i,δ),T(i+1,δ−1)+c1). 

The minima are weighted in such a way that a 
movement has a fixed cost c1. This cost was introduced 
to give preference to coherent movements, which are 
captured in the offset index, over irregular movements, 
which are captured in the minimum operation. 
Coherent movement of a large sub-patch results in a 
single penalty at some stage of the hierarchical 
framework, while many incoherent movements of sub-
patches in various directions result in multiple 
penalties during the process.  

To see why it is safer to perform the bidirectional 
comparison, consider a case where I1=(0,1,0,1,0,1,…), 
I2=(0,1,1,0,1,1,…). Each sub-patch of two pixels in I1 
can find an exact mate in I2 by moving no more than 
one position, but the "11" sub-patches of I2 have no 
corresponding mates in I1.  

Assume we know the empiric distribution of the 
values in M1 and M2. Every value in the tables M1 and 
M2 is normalized by this distribution. After 
normalization, the entries are expected to be 
distributed uniformly between 0 and 1. 

In the iterative step, the algorithm computes the 
similarity of doubled patches at doubled distances from 
each other. The similarity score T(i,δ) of the next phase 
is based on six similarity values between sub-patches 

that were computed and normalized in the previous 
phase: 

v1=M1(2i,2δ), v2=M1(2i+1,2δ), v3=M1(2i+2,2δ),  
v4=M2(2i,2δ), v5=M2(2i+1,2δ), v6=M2(2i+2,2δ). 

T(i,δ) is a weighted geometric mean of these values 
normalized by its empiric distribution. The rational for 
taking the geometric mean is that we would like 
evidences of high similarity (values close to 0) to have 
high influence on the combined score. In the 
implementation we actually multiply the values of 
max(vi,ε), to prevent the possibility of zero product. A 
product of zero would propagate through all the stages of 
the algorithm and will result in perfect match at the last 
phase. This situation may happen in practice due to image 
discretization or inaccurate measure of the distribution by 
which we normalize.  

We used weights to put more emphasis on sub-
patches that contain salient features such as boundaries. 
Following Moravec [12], for each point i in the image, 
we compute 

( ) .)(I)(I)(
2

2

2∑
−=

−+=
j

ijiiW  

We assign a weight w for each patch by averaging W(i) 
over the points i in that patch (we used some minimal 
weight value to insure that uniform patches get a small 
positive weight). Let 
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The weighted geometric mean is then T(i,δ)=2L. The 
representation 2L is more efficient because only a single 
raise to a power is computed. The logarithms in L are 
avoided by normalizing vi directly to the logarithm of its 
tabulated distribution. 

This process is iterated over. Each phase involves 
computing the minima tables M1 and M2, normalizing 
their values by an empiric distribution, and storing the 
normalized weighted geometric means in the T table.  

Our implementation uses separate distributions for 
each phase. It is possible to sample the distribution of 
phase h+1 only after the distribution of phase h had 
been computed.  To build the distributions, we pick a 
set of image pairs, and build the distributions in 
phases. At phase h we compute similarity scores for 
patches of size 2h-1 from the tables of all pairs of 
images simultaneously. Note that there is no need to 
sample the similarity scores of full-size images, 
because normalizing the final score will not change the 
relative order of the final scores. 



 
The resulting hierarchical alignment is illustrated in 

figure 2. Patches of two pixels can match by moving up 
to one position with respect to the four-pixel patch that 
contains them. Patches of four pixels can move two 
positions, and are matched by their overlapping sub-
patches of two pixels. 

We end the description of the algorithm with a 
cross-resolution enhancement. Scale changes need not 
be homogenous over the images: some parts of the 
image may grow while other parts shrink. It might be 
that within a growing part some subparts are shrinking, 
and this property is recursive.  

To deal with scale variations, we add an additional 
dimension to all of our data structures. First we build a 
pyramid for the images. Denote by I(r) the image I at 
resolution r. Our aim is to compare sub-patches of I1(r) 
to sub-patches of I2 at resolutions r−1, r, r+1 and store 
these values in the similarity table T(r,z,i,δ). 
z∈{−1,0,1} is the resolution offset. The corresponding 
resolution of I2 is r+z. Given two patches, we compute 
the weighted geometric mean 2L of the evidences of 
their parts as before. Two additional cross-resolution 
terms are computed. If the two patches are at the same 
resolution (i.e. z=0), the central sub-patch from I1 is 
tested to fit the low-resolution version of the whole 
patch from I2, and vice versa:  

Vhigh-low=min(T'(r,1,2i+1,δ),T'(r+1,−1,i,2δ+1))+c2, 

where T' denotes the normalized similarity table of the 
previous phase. The term is taken with a cost c2 in 
order to prevent possible "drift" to base the comparison 

on repeated low-resolutions of both-patches. The last 
term to compute is the similarity between the two  
low-resolution versions of both patches:  

Vlow-low= T'(r+1,z+1,i,δ)+c3. 

This term is important because it allows the algorithm 
to ignore non-similar details in high resolution. 
Finally, the similarity score of the two patches is:  

T(r,z,i,δ)=min(2L,Vhigh-low,Vlow-low). 

The scheme carries on naturally to two dimensions. 
The sub-patches compared at phase h are squares of 
size 2h×2h. The data structures are extended by 
additional two indices. T(r,z,i1,i2,δ1,δ2) represents the 
similarity value between two sub-patches of I1(r) and 
I2(r+z). i1 and i2 are the array coordinates of the patch 
corner in I1. δ1 and δ2 are the displacement of the patch 
of I2 relative to the projection of i1 and i2 on I2(r+z). 
Each patch is covered by nine sub-patches. When the 
minima tables are computed, each sub-patch is allowed 
to move one array position left, right, up, down or 
diagonally. The complexity of the algorithm, as well as 
the storage requirement, is O(N2⋅∆2). 

The algorithm could also recover the optimal 
aligning transformation between the images. This 
could be done by marking at each minimum operation 
where this minimum has come from. By keeping track 
of intermediate data-structures one can identify the 
parts in the images that mostly contributed to the 
similarity score (e.g. in case of partial occlusion). 
 
3. Results 
 

We examined the performance of our implementation 
on several test sets of 32×32 images. Three of the sets are 
shown in table 1. The images in test 1 were created to 
demonstrate the properties of the similarity measure. For 
instance, in the second pair of test 1 the left part moves 
vertically while the right part moves horizontally. Even if 
we apply a global rigid transformation before computing 
L2, half of the pixels will be misaligned. Notice that this 
simple example poses conceptual difficulties to any 
method based on local features, since any local feature 
computed on the left image will match too many features 
on the right image (except for the centers of those 
images). Thus evaluating which of these matches is 
"correct" becomes an optimization problem that has no 
exact solution within the affine model. In contrast, our 
method allows sub-patches to move independently and 
capture the transformation locally. While feature based 
method will penalize for the small movement of each 
feature a bit, our method will penalize only for the 
movement of the two parts as wholes. 

D: 

C: 

A: 

B: 

Figure 2. Hierarchical alignment of 1D patches.
A: The two 8-pixels patches being compared.
B, C, and D: The best matches for the 4-pixels 
sub-patches based on the movements of the 
2-pixels sub-patches. 



        Table 1.  

 Test 1 Test 2 Test 3 

1 
    

2 
    

3 
    

4 
    

5 
    

6 
    

7 
    

8 
    

9 
    

10 
    

RDP 0 0.1 0.05 
L2 0.5 0.4 0.35 
Correlation 0.45 0.4 0.25 

 
 

In each of the three tests every image was compared to 
the 10 images on the other column. A comparison of an 
image to its similar pair was considered as a mistake 
when the score was not the minimum out of the 
comparisons to the 10 possible pairs in that test. The 
mistake rate of a test is the number of error out of the 20 
possible. Mistakes rates are summarized at the bottom of 
table 1. The performance of the method should not be 
understood just from the statistical rate of success, 
because the numeric results depend on how confusing the 
images are and on several implementation details. The 
score depends on the distributions used (we sampled the 
distributions for each test separately), the basic similarity 
function, the choice of cost constants and the weight of 
the background in the images. In all of these tests we 

used the same constants 
1

2.0  ,05.0 321 −
===

h
ccc , so 

that the cost for comparison in low resolution 
decreases with  the  phase.  One can see that the results   

         Table 2.  

Test 4 Test 5 Test 6 

  
 

   
0.031 0.031 0.031 

   
0.031 0.047 0.031 

   
0.039 0.055 0.031 

   
0.047 0.055 0.031 

   
0.055 0.055 0.031 

   
0.055 0.094 0.047 

   
0.055 0.180 0.055 

   
0.055 0.180 0.055 

   
0.055 0.234 0.055 

 
 
obtained  by RDP are superior to standard distance 
functions used to compare images, such as L2 and 
correlation. Parts of the images can undergo different 
deformations simultaneously and still be matched. 

We investigated how the similarity score of  
our implementation varies under controlled image 
deformations. The results are shown in table 2.  
In test 4, the images are scaled by factors of  
1,0.95, 0.9,…,0.55. The score below each image is the 
similarity to the top image (the scores don't vary 
smoothly because we used tabulated distributions). In 
test 5, the images are rotated by 0,5,10,15,…,45 
degrees. Test 6 evaluates the behavior of the score 



under different levels of noise (the score is written 
below each pair). For comparison, the averaged L2 
distance between the last pair is 0.327. These examples 
suggest that the scores are robust to small changes in 
scale, small rotations and noise. 

We also examined the dependency of the algorithm on 
specific factors such as the empiric distributions and the  
bi-directional computation [13]. We concluded that in 
practice normalizations by the empiric distributions are 
not always necessary, because the evidences were highly 
correlated so the distribution of the minimum of several 
normalized variables was almost uniform. On the other 
hand, there are situations where not using the correct 
distribution can lead to convergence of the similarity 
score to 0. Performing a bi-directional computation 
slightly improves the accuracy on the expense of running 
time. 
 
4. Discussion 
 

We presented a general framework for similarity 
assessment based on the composition of parts. Our 
implementation demonstrated the qualitative properties of 
the scheme. No domain-specific features have to be 
detected and there is no need to specify the configuration 
of the parts. The parts within each image are not 
identified explicitly. The algorithm matches 
systematically a large number of overlapping sub-
patches. Similar overlapping patches impose similar 
configuration. The dynamic programming procedure 
looks for an optimal transformation that aligns the 
patches of both images. This transformation is not a 
global transformation, but a composition of many local 
transformations of sub-patches at various sizes, 
performed one on top of the other. The aligning 
transformation has many degrees of freedom that allow 
for very flexible matching.  The method involves an 
unsupervised learning phase, in which the program 
collects statistics on the distribution of similarity scores in 
the domain of the images. The scheme is plausible 
because it involves only simple operations. It can be 
implemented in parallel hardware and with neural 
networks. 

Our experiments show that the implementation of 
RDP is superior to L2 and correlation. The algorithm can 
deal with various types of non-rigid transformations, 
where parts of the images can undergo different types of 
deformations at the same time. Objects that are 
perceptually similar are often judged by the algorithm to 
be similar even when a direct point-wise comparison 
does not detect such similarity. This supports the 
assumption that perceptual similarity is based in part on 
the common substructures shared by the objects.  

However, the implementation is still inferior to 
humans' similarity assessment. Two main causes for 
inaccuracy have been identified. The first weakness is the 
saliency measure for regions. Small but important regions 
in the images may have large impact on the perceived 
similarity. The second issue neglected by our scheme is 
invariant topological properties of shapes. In particular, 
the method does not identify and match the contours of 
the shapes. It pays no attention to whether the shapes are 
connected, closed or contain holes. This is in contrast to 
humans' perception [14]. It was encouraging to observe 
that low error rates were achieved even though the ability 
to match contours was not considered in the design of our 
implementation. 

The principles of the RDP algorithm are fairly general 
and could be extended to higher dimensions. For 
instance, it is possible to deal with independent rotations 
of sub-patches by adding an additional dimension to the 
tables and comparing each patch to several rotated 
versions of the patch from the other image. The same 
method could be used for the alignment of 3D volumes 
represented as sets of voxels or the alignment of  
cube-patches in video sequences. These possibilities 
remain for future research. 
 
5. Appendix 
 

In this appendix we describe a new variant of cross 
correlation that we used as our basic similarity 
function. We found this variant to be more effective 
than correlation since it takes into account the 
difference between the means of the two vectors. 
We define the inter-correlation between two vectors x 
and y with means x and y : 
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By definition  0),( =yxIC  when the denominator is 0. 
Properties of this expression are listed below: 
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2. 1),( ≤yxIC . This follows from the Cauchy-

Schwarz inequality. 
 
3. )(   1),( yxaxyyxIC −+=⇔=  for some 

constant 0≠a .  



The proof is by equating to 0 the discriminant  
of the non-negative quadratic expression: 

( )2)()( xyyxaE −−− . 

By taking expectations it follows that 

)( yxaxy −+= . 

At the extremes of ),( yxIC , either 1−=a  or 
yx = .  

Substituting y by )( yxax −+  in the IC formula, 
we get: 

    0  and  )(  1),( >−+=⇔+= axxaxyyxIC  

    ( ) ( )xxyyaxxaxy
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or    0  and  )(
  1),(

 
 1),( =yxIC if and only if x and y have the same 

mean, and their deviations from this mean are up 
to a positive constant factor. 

 1),( −=yxIC in two cases. The first possibility is 
that that both vectors have the same mean, and 
their deviation from this mean is a linear 
reflection. The second possibility is that they have 
different means, but the distribution around their 
means is an exact reflection. 
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